
A Simple and Improved Algorithm for Integer

Factorization with Implicit Hints

Koji Nuida∗† Naoto Itakura§ Kaoru Kurosawa§

∗ National Institute of Advanced Industrial Science and Technology
(AIST), Japan (k.nuida@aist.go.jp)

† Japan Science and Technology Agency (JST), PRESTO Researcher

§ Ibaraki University, Japan

Abstract

Given two integers N1 = p1q1 and N2 = p2q2 with α-bit primes
q1, q2, suppose that the t least significant bits of p1 and p2 are equal.
May and Ritzenhofen (PKC 2009) developed a factoring algorithm for
N1, N2 when t ≥ 2α+3; Kurosawa and Ueda (IWSEC 2013) improved
the bound to t ≥ 2α+ 1. In this paper, we propose a polynomial-time
algorithm in a parameter κ, with an improved bound t = 2α−O(log κ);
it is the first non-constant improvement of the bound. Both the con-
struction and the proof of our algorithm are very simple; the worst-case
complexity of our algorithm is evaluated by an easy argument, without
any heuristic assumptions. We also give some computer experimental
results showing the efficiency of our algorithm for concrete parameters,
and discuss potential applications of our result to security evaluations
of existing factoring-based primitives.

1 Introduction

For a large number of computationally secure cryptographic schemes in the
literature, including the RSA cryptosystem [10], the (expected) computa-
tional hardness of integer factorization is a necessary (and sometimes suf-
ficient) condition for their security. Consequently, the actual hardness of
integer factorization has been intensively studied so far, e.g., [4, 5, 9].

Among these work, there exists a direction of studies on integer factor-
ization with hints. One of the most remarkable results was given by Copper-
smith [1]; the factorization of a composite integer N = pq with primes p, q

1

becomes efficient when a half of the most significant bits of p are revealed.
In the setting, a hint for the factorization is given explicitly.

On the other hand, there are also previous results where some implicit
hints are supposed. May and Ritzenhofen [7] considered the following set-
ting: Given two RSA moduli N1 = p1q1 and N2 = p2q2, it is supposed that
the t least significant bits of p1 and of p2 are equal. Here the precise values
of their t common bits are not given; i.e., the hint is only implicit. They
showed that, if q1 and q2 are α-bit primes and t ≥ 2α + 3, then N1 and
N2 can be factorized efficiently. Recently, Kurosawa and Ueda [3] gave an
improved algorithm providing a better bound t ≥ 2α+ 1; they also slightly
generalized the situation in such a way that p1 ≡ p2 (mod T) for some pa-
rameter T > q1

2 + q2
2 (the original case corresponds to T = 2t). In this

paper, we improve these results further, yielding a better bound for T .

1.1 Our Contributions

In this paper, we study the integer factorization of composite integers N1 =
p1q1 and N2 = p2q2 with implicit hint p1 ≡ p2 (mod T). We aim at devel-
oping a polynomial-time algorithm with respect to a certain parameter κ;
for example, κ can be the security parameter for some scheme, whose un-
derlying assumption is the hardness of factorizing these composite integers.
Then we propose an algorithm to factorize N1 or N2 with probability one
in polynomial time with respect to the parameter κ under a condition1

log T = 2 logQ−O(log κ) (1)

where Q is an upper bound for q1, q2. When Q = 2α and T = 2t for integer
parameters α and t, our condition above is equivalent to

2α− t = O(log κ) ,

significantly better than the best existing bound 2α − t ≤ −1 in [3].2 We
emphasize that our result is the first result achieving non-constant improve-
ment of the bound (in fact, it is even the first to cover the situation t ≤ 2α).

The essence of our remarkable improvement from the previous results
[3, 7] can be explained as follows. In the previous results, a two-dimensional
lattice L associated to the given composite integers N1, N2 is defined, and it
is shown that its shortest vector, calculated by Gaussian reduction algorithm,

1In fact, some easy-to-satisfy conditions are also required for the sake of completeness.
2It was shown in [3] that their algorithm fails (rather than being inefficient) when the

bound is not satisfied; hence our result is indeed an improvement of the previous work.

2

coincides with the vector (q1, q2) of the target factors under their condition
for T and Q (or t and α, when T = 2t and Q = 2α). Now we point out that,
the Gaussian reduction algorithm outputs not only the shortest vector, but
also the second shortest vector of the lattice L. Our main idea is to utilize
the second shortest vector (as well as the shortest vector) which was not
previously used; this new ingredient enabled us to improve the algorithm.

Another noteworthy characteristic of our result is its simplicity; it relies
solely on the basic fact that the vector q⃗ = (q1, q2), which lies in the lattice
L, can be expressed by using the shortest vector v⃗ and the second shortest
vector u⃗ of L as q⃗ = av⃗ + bu⃗ for some integers a, b. Our algorithm finds the
correct coefficients a, b by exhaustive search; now our improved condition
(1) guarantees that there are only polynomially many (with respect to κ)
candidates of (a, b). Our proof is also very simple and elementary; it does not
use any typical facts for lattices such as Minkowski bound and Hadamard’s
inequality (which were used in the previous work [3, 7]).

We performed some computer experiments, which show that our pro-
posed algorithm indeed works efficiently (e.g., the average running time on
an ordinary PC was approximately 17 min. for α = 250 and t = 470). We
also discuss potential applications of our proposed algorithm to some exist-
ing schemes such as the Okamoto–Uchiyama cryptosystem [8] and Takagi’s
variant of the RSA cryptosystem [12]; we emphasize that our algorithm does
not require the implicitly correlated factors p1, p2 to be primes.

1.2 Related Work

As mentioned above, for the case of factorization of two integers, our result
improves the previous results by May and Ritzenhofen [7] and Kurosawa and
Ueda [3]. On the other hand, May and Ritzenhofen also studied factorization
of three or more integers which are implicitly correlated in a similar manner.
Such an extension of our result is left as a future research topic.

Sarkar and Maitra [11] extended the result of May and Ritzenhofen [7]
under a heuristic assumption (see Assumption 1 of [11, page 4003]). In
a recent preprint [6], Lu et al. announced that they improved the result
of Sarkar and Maitra. However, their result is also based on a heuristic
assumption. In contrast, the evaluation of our algorithm in this paper needs
no such heuristic assumptions; our algorithm is worst-case polynomial-time
for the parameters specified in this paper.

3

1.3 Organization of the Paper

In Sect. 2, we summarize basic notations and terminology, as well as some
properties of Gaussian reduction algorithm for two-dimensional lattice. In
Sect. 3, we clarify our problem setting, describe our proposed factorization
algorithm, and then show its correctness and computational complexity.
In Sect. 4, we give the results of our computer experiments to show the
efficiency of our proposed algorithm. Finally, in Sect. 5, we discuss potential
applications to security evaluations of some existing cryptographic schemes.

2 Preliminaries

For two-dimensional vectors v⃗ = (v1, v2), u⃗ = (u1, u2) ∈ R2, let ||v⃗|| =√
v12 + v22 and (v⃗, u⃗) = v1u1 + v2u2 denote the Euclidean norm and the

standard inner product. For a two-dimensional lattice L ⊂ Z2, let λ1 =
λ1(L) and λ2 = λ2(L) denote the successive minima of L; i.e., λi is the
minimal radius of a ball containing i linearly independent vectors of L.

We recall that, in a two-dimensional lattice L, a basis (v⃗1, v⃗2) of L sat-
isfying ||v⃗1|| = λ1 and ||v⃗2|| = λ2 can be efficiently obtained by Gaussian
reduction algorithm. Here we describe the algorithm:

Definition 1 (Gaussian reduction algorithm). Given any basis (b⃗1, b⃗2) of a
lattice L, Gaussian reduction algorithm performs as follows:

1. First, order the vectors b⃗1, b⃗2 and rename those as v⃗1, v⃗2, in such a
way that ||v⃗1|| ≤ ||v⃗2||.

2. Set µ := ⌊(v⃗1, v⃗2)/||v⃗1||2⌉, i.e., the integer closest to (v⃗1, v⃗2)/||v⃗1||2 (if
two integers have equal smallest distance from the value, then choose
the one with smaller absolute value).

3. Repeat the following, until µ becomes 0:

(a) Update v⃗2 by v⃗2 ← v⃗2 − µv⃗1.

(b) If ||v⃗2|| < ||v⃗1||, then swap v⃗1 and v⃗2.

(c) Set µ := ⌊(v⃗1, v⃗2)/||v⃗1||2⌉.

4. Output the pair (v⃗1, v⃗2).

The following property is well-known; see e.g., [2]:

4

Proposition 1. The Gaussian reduction algorithm outputs a basis (v⃗1, v⃗2)
of the lattice L satisfying that ||v⃗1|| = λ1 and ||v⃗2|| = λ2. Moreover, the
computational complexity of the algorithm is O(log2max{||b⃗1||, ||b⃗2||}).

We also use the following property of Gaussian reduction algorithm:

Lemma 1. For any input (b⃗1, b⃗2) and the corresponding output (v⃗1, v⃗2) of
Gaussian reduction algorithm, we have | det(b⃗1, b⃗2)| = | det(v⃗1, v⃗2)|, where

we write det((x1, x2), (y1, y2)) := det

(
x1 x2
y1 y2

)
= x1y2 − x2y1.

Proof. The transformations for (v⃗1, v⃗2) performed at each step of Gaussian
reduction algorithm are one of the followings:

• Subtract a scalar multiple of v⃗1 from v⃗2; it preserves the value det(v⃗1, v⃗2).

• Swap v⃗1 and v⃗2; it changes the value det(v⃗1, v⃗2) to − det(v⃗1, v⃗2).

Hence, the absolute value of det(v⃗1, v⃗2) is not changed, as desired.

3 Our Proposed Algorithm

3.1 Problem Setting

Let N1 = p1q1 and N2 = p2q2 be given composite numbers. Let T ≥ 2 be
an integer parameter (for example, a power of two as in [7]) with T < N1

and T < N2. In this paper, we consider the following situation:

• We have p1 ≡ p2 ≡ p (mod T) for some unknown integer p.

• Any two of N1, N2 and T are coprime to each other.

When T = 2t for an integer t, the first condition means that the t least
significant bits of p1 and p2 are equal (the precise t bits are not known). We
emphasize that we do NOT assume that each of p1, p2, q1 and q2 is a prime.
The second condition implies that any two of q1, q2 and T are coprime to
each other, and p is coprime to T (indeed, if p and T have a common divisor
a > 1, then p1 and p2, hence N1 and N2, are multiples of a, a contradiction).

3.2 The Algorithm

In order to describe our proposed algorithm, first we define, for given com-
posite numbers N1 and N2, the following two-dimensional lattice L:

L := {(x1, x2) ∈ Z2 | N2x1 −N1x2 ≡ 0 (mod T)} .

5

We have a basis of L consisting of two vectors (1, N2/N1 mod T) and (0, T),
whereN2/N1 mod T signifies the unique integer a in [0, T−1] withN1a ≡ N2

(mod T). It is indeed a basis of L, since N1 and T are coprime; if (0, x2) ∈ L,
then we have N1x2 ≡ 0 (mod T), therefore x2 must be a multiple of T .

Then we describe our proposed algorithm to find a non-trivial factor of
at least one of the given composite numbers N1 and N2:

1. Compute, by Gaussian reduction algorithm with initial basis consisting
of (1, N2/N1 mod T) and (0, T), a basis (v⃗ = (v1, v2), u⃗ = (u1, u2)) of
the lattice L above with ||v⃗|| = λ1 = λ1(L) and ||u⃗|| = λ2 = λ2(L).

2. Compute gcd(v1, N1), gcd(v2, N2), gcd(u1, N1) and gcd(u2, N2), and if
at least one of those is different from 1, then output it and halt.

3. If v1u2 − v2u1 < 0, then replace u⃗ with −u⃗.

4. For A = 2, 3, . . . , execute the following:

(a) For integers a, b ̸= 0 satisfying |a|+|b| = A, execute the following:
If |au1−bv1| is a non-trivial factor of N1, then output it and halt.

3.3 Analysis of Our Algorithm

We analyze the correctness and the efficiency of our proposed algorithm.
First, note that (since T ≥ 2)

||(1, N2/N1 mod T)|| ≤
√

12 + (T − 1)2 < T = ||(0, T)|| , (2)

therefore by Proposition 1, the complexity of Step 1 of our algorithm (con-
sisting of Gaussian reduction algorithm) is O(log2 T). Secondly, the lattice
L contains the vector q⃗ := (q1, q2); indeed, we have

N2q1 −N1q2 = p2q2q1 − p1q1q2 ≡ pq2q1 − pq1q2 = 0 (mod T) .

Now we show the following property for Step 2 of our algorithm:

Lemma 2. If our algorithm halts in Step 2, then the output of the algorithm
is correctly a non-trivial factor of either N1 or N2. Moreover, if ||q⃗|| < λ2,
then our algorithm always halts in Step 2.

Proof. We have λ2 ≤ T by (2), therefore λ2 < N1 and λ2 < N2 by the
condition in Sect. 3.1. This implies that all of |v1|, |v2|, |u1| and |u2| are
smaller than N1 and N2. Hence, gcd(v1, N1) will be a non-trivial factor of

6

N1 if gcd(v1, N1) ̸= 1, and the same holds for gcd(v2, N2), gcd(u1, N1) and
gcd(u2, N2). This deduces the first part of the claim.

For the second part, if ||q⃗|| < λ2, then q⃗ and v⃗ are linearly dependent by
the definition of λ2 = λ2(L); cv⃗ = c′q⃗ for some coprime integers c, c′ ̸= 0.
Since q1 and q2 are coprime, we have |c| = 1 and v⃗ = ±c′q⃗. Moreover, since
||q⃗|| ≥ ||v⃗|| by the choice of v⃗, we have |c′| = 1. Therefore, we have |v1| = q1
and gcd(v1, N1) = q1 ̸= 1. This completes the proof of Lemma 2.

Note that the computation of gcd in Step 2 can be done in polynomial
time with respect to max{logN1, logN2}. By virtue of Lemma 2, to see the
correctness of our algorithm, we may focus on the case that the algorithm
does not halt at Step 2. Now we have λ2 ≤ ||q⃗|| by Lemma 2.

Since p1 ≡ p2 ≡ p (mod T) and v⃗, u⃗ ∈ L, we have

p(q2v1 − q1v2) ≡ p(q2u1 − q1u2) ≡ 0 (mod T) .

Moreover, since gcd(p, T) = 1 as mentioned in Sect. 3.1, it follows that

q2v1 − q1v2 ≡ q2u1 − q1u2 ≡ 0 (mod T) .

Hence, there are integers a0, b0 ∈ Z satisfying

q2v1 − q1v2 = a0T , q2u1 − q1u2 = b0T , (3)

or equivalently (
−v2 v1
−u2 u1

)(
q1
q2

)
=

(
a0T
b0T

)
. (4)

We have a0 ̸= 0 by (3), since q1 is coprime to q2 and v1 (note that v1 is
coprime to N1 = p1q1, since our algorithm does not halt at Step 2 by the
current assumption). Similarly, we have b0 ̸= 0. Now Lemma 1 implies that

det

(
−v2 v1
−u2 u1

)
= det

(
v1 v2
u1 u2

)
= ± det

(
1 N2/N1 mod T
0 T

)
= ±T ,

while det

(
v1 v2
u1 u2

)
= v1u2 − v2u1 ≥ 0 by virtue of Step 3 of our algorithm,

therefore we have det

(
−v2 v1
−u2 u1

)
= T . Hence the system of equations (4)

can be solved as(
q1
q2

)
=

(
−v2 v1
−u2 u1

)−1(
a0T
b0T

)
=

1

T

(
u1 −v1
u2 −v2

)(
a0T
b0T

)
=

(
a0u1 − b0v1
a0u2 − b0v2

)
.

7

Consequently, if the pair (a, b) in Step 4a of our algorithm becomes (a0, b0),
then our algorithm halts with output q1, which is indeed a non-trivial factor
of N1. This completes the proof of the property that our algorithm halts
within a finite computational time and its output is always a non-trivial
factor of either N1 or N2 (we note that |a0|+ |b0| ≥ 2, since a0, b0 ̸= 0).

From now, we evaluate the number of iterations in Step 4, by evaluating
the sizes of a0 and b0 above. For the purpose, we introduce the following
additional assumption, where Q is an integer parameter:

• We have q1, q2 ≤ Q for any given N1, N2.

We emphasize that the parameter Q is used in the analysis of the algorithm
only, and is not needed by our algorithm itself. By Lemma 2, we may focus
on the case λ2 ≤ ||q⃗||; otherwise, our algorithm halts at Step 2. Note that
||q⃗|| =

√
q12 + q22 ≤

√
2 ·Q, therefore λ2 ≤

√
2 ·Q. Now by (3), we have

|a0| =
∣∣∣∣q2v1 − q1v2

T

∣∣∣∣ ≤ |q2v1|+ |q1v2|T
≤ Q

T
(|v1|+ |v2|) ≤

Q

T

√
2 · ||v⃗||

and similarly |b0| ≤ (Q/T)
√
2 · ||u⃗||. Since ||v⃗|| ≤ ||u⃗|| = λ2 by the choice of

v⃗ and u⃗, it follows that

|a0|, |b0| ≤
Q

T

√
2 · λ2 ≤

2Q2

T
,

therefore |a0|+ |b0| ≤ 4Q2/T . Hence, the index A in Step 4 of our algorithm
does not exceed A0 := ⌊4Q2/T ⌋ during the execution. Since Step 4a of
our algorithm is repeated at most 4A times for each choice of A, the total
number of executions of Step 4a is at most

∑A0
A=2 4A = 2A0(A0 + 1) − 4.

Moreover, for each 1 ≤ A ≤ A0, Step 4a for each choice of (a, b) can be
done in polynomial time with respect to logA0, logQ and logN1 (note that
|a|, |b| ≤ A0 and |v1|, |u1| ≤ λ2 ≤

√
2 ·Q).

Summarizing the argument, our algorithm runs in polynomial time with
respect to the maximum among log2 T , logN1, logN2, log(4Q

2/T), logQ
and 4Q2/T . Here, the values log(4Q2/T) (≤ 4Q2/T) and log2 T (≤ logN1,
since T < N1, N2) are redundant. Moreover, we have max{4Q2/T, logN1} ≥
logQ; indeed, if 4Q2/T < logQ, then we have 4Q2/N1 < logQ (since T <
N1), N1 > 4Q2/ logQ > 4Q, and logN1 > logQ. Therefore, the value logQ
above is also redundant. Hence, we have the following result:

Theorem 1. In the setting of Sect. 3.1, suppose that q1, q2 ≤ Q. Then our
proposed algorithm in Sect. 3.2 always outputs a non-trivial factor of either
N1 or N2, and its computational complexity is polynomially bounded with
respect to max{logN1, logN2, Q

2/T}.

8

By Theorem 1, if κ is another parameter (e.g., when the factorization
problem we are discussing is the base of security of some cryptographic
scheme, κ can be chosen as the security parameter for the scheme) and all
of logN1, logN2 and Q2/T are of polynomial order with respect to κ, then
our proposed algorithm runs in polynomial time with respect to κ.

For example, we consider the case that q1 and q2 are α-bit integers and
the t least significant bits of p1 and p2 coincide with each other (as in the
previous work [3, 7]). Then Theorem 1 implies the following result:

Theorem 2. Let κ be a parameter as mentioned above. Suppose that the
bit lengths of N1 and N2 are polynomial in κ, and let Q = 2α and T = 2t.
Then our proposed algorithm runs in polynomial time with respect to κ if

t = 2α−O(log κ) .

This sufficient condition for t is significantly improved from the condi-
tions t ≥ 2α + 3 in [7] and t ≥ 2α + 1 in [3]. In particular, this is the first
result achieving that the difference 2α− t can be beyond of constant order.

4 Computer Experiments

We performed a computer experiment to evaluate the running time of our
proposed algorithm; see Figure 1. Here we set Q = 2α, α = 250 (i.e., q1 and
q2 are 250-bit primes), T = 2t, and the bit length t of implicit hints is chosen
as t = 501, 500, . . . , 470. The other factors p1 and p2 have 750-bit lengths.
We used an ordinary machine environment, namely our algorithm is written
in C++ with NTL for large-integer arithmetic, on CentOS 6.5 with 2.4GHz
CPU and 32GB RAM. For each t, we calculated the average running time
of our algorithm for 100 experiments (N1 and N2 are correctly factorized at
every experiment). Our experimental result shows that our algorithm can
successfully factorize the integers efficiently, even for a significantly better
parameter t = 470 than the best bound t ≥ 2α + 1 = 501 in the previous
results (now the average running time is approximately 1030 sec. ≈ 17 min.).

We also evaluated the sufficient number A of iterations for the main
loop of our proposed algorithm by computer experiments. We used the
same parameters and machine environment as above, except that the range
of the bit length t of implicit hints is now t = 499, 498, . . . , 475. For each
t, we calculated the maximum, average, and minimum of the numbers of
iterations for 100 experiments; see Figure 2 (the factorization succeeded at
every experiment again). We note that the upper bound of A given in our

9

Figure 1: Running time of our proposed algorithm (here the bit lengths of
q1 and q2 are α = 250 bits, T = 2t, and the range of t is {501, 500, . . . , 470})

theoretical analysis in Sect. 3.3 is ⌊4Q2/T ⌋ = 2502−t; it is, for example,
227 ≈ 1.34 × 108 for t = 475. Our experimental result suggests that this
theoretical bound of A would still be far from the precise value; further
analyses to improve the bound of A are left as a future research topic.

5 Potential Applications

It is noteworthy that the implicitly correlated factors p1, p2 need not be
primes in our proposed algorithm; see Sect. 3.1. This widens the potential
applications of our method to security evaluations of existing schemes. In
this section, we consider the cases of the Okamoto–Uchiyama cryptosystem
[8] (Sect. 5.1) and Takagi’s variant of the RSA cryptosystem [12] (Sect. 5.2).

5.1 Okamoto–Uchiyama Cryptosystem

In the Okamoto–Uchiyama cryptosystem [8], the public key involves a com-
posite number of the form n = (p′)2 · q′, where p′ and q′ are different large
primes of the same bit length. Here p′ and q′ should be secret against the
adversary; a necessary condition for the security of the scheme is the hard-
ness of factorizing the integer n. Now we regard the integers (p′)2 and q′ as

10

Figure 2: Number A of iterations for the main loop (here the bit lengths of
q1 and q2 are α = 250 bits, T = 2t, and the range of t is {499, 498, . . . , 475})

pi and qi in our algorithm, respectively; we emphasize again that the factor
pi in our method is not necessarily a prime.

More precisely, given two public keys n1 = p′1
2 · q′1 and n2 = p′2

2 · q′2 of
the Okamoto–Uchiyama cryptosystem, we consider the following situation:
p′1

2 ≡ p′2
2 (mod T) and q′1, q

′
2 ≤ Q, where T and Q are parameters. To

simplify the argument, we set Q := 2α where α is the common bit length of
p′i and q′i. Then our proposed algorithm factorizes at least one of n1 and n2

in polynomial time with respect to the security parameter κ, if Q2/T is of
polynomial order in κ, or equivalently, if 2α− log2 T = O(log κ).

From now, we discuss the frequency of the condition p′1
2 ≡ p′2

2 (mod T)
being satisfied, in the situation of the previous work [3, 7] and our situation.
First, in the situation of [3, 7], T and Q should satisfy log2 T ≥ 2α + 1,
therefore T ≥ 2p′1

2 and T ≥ 2p′2
2. Now the condition p′1

2 ≡ p′2
2 (mod T)

implies that p′1
2 = p′2

2 as integers, i.e., p′1 = p′2, which is a trivial case. This
means that the algorithms in [3, 7] cannot be applied to the present case.

In contrast, in our method, the parameter log2 T may be smaller than
2α, hence there is a (non-trivial) possibility of the case p′1

2 ≡ p′2
2 (mod T).

Going into detail, p′1
2 ≡ p′2

2 (mod T) is equivalent to p′1 − p′2 ≡ 0 (mod T1)

11

and p′1 + p′2 ≡ 0 (mod T2) for some factorization T = T1T2 of T . Hence, to
increase the possibility of the case p′1

2 ≡ p′2
2 (mod T), it would be better

to use the parameter T with many possibilities of appropriate factorizations
T = T1T2. Now if T1 and T2 have an odd common divisor d > 1, then 2p′1
and 2p′2, hence p′1 and p′2, are multiples of d. This is not desirable, since
p′1 and p′2 are primes. By the observation, it seems better to use a smooth
and square-free T ; then the number of possible factorizations T = T1T2

with coprime factors T1, T2 is increased. For example, we may let T be the
product of all primes smaller than a certain threshold. For such parameters
T , further evaluations of how frequently given two composite numbers n1, n2

satisfy the condition above are left as a future research topic.

5.2 Takagi’s Variant of RSA

A similar argument is also applicable to Takagi’s variant of the RSA cryp-
tosystem [12]. In the scheme, the public key involves a composite number
of the form N = (p′)r · q′, where p′ and q′ are different large primes of the
same bit length and r ≥ 2. We regard the integers (p′)r and q′ as pi and qi
in our algorithm, respectively. Since the case r = 2 is essentially the same
as the case of the Okamoto–Uchiyama cryptosystem (Sect. 5.1), here we
focus on the other case r ≥ 3. In the case, the bit length of the factor (p′)r

becomes much larger than that of the other factor q′, which would make
the condition p′1

r ≡ p′2
r (mod T) easier to satisfy under the requirement

log2 T = 2 log2Q−O(log κ) for our proposed algorithm. On the other hand,
when r ≥ 3, the analysis of the condition p′1

r ≡ p′2
r (mod T) would be more

difficult than the condition p′1
2 ≡ p′2

2 (mod T) in the case of the Okamoto–
Uchiyama cryptosystem. A detailed analysis of our method in relation to
Takagi’s RSA is left as a future reserach topic.

Acknowledgements. The authors thank the members of Shin-Akarui-
Angou-Benkyo-Kai for their precious comments on this paper, especially
Goichiro Hanaoka for his suggestion about the potential applications of our
result mentioned in Sect. 5.

References

[1] D. Coppersmith, Finding a Small Root of a Bivariate Integer Equation,
Factoring with High Bits Known, in: Proceedings of EUROCRYPT
1996, LNCS 1070, 178–189 (1996)

12

[2] S. D. Galbraith, Mathematics of Public Key Cryptography, Cambridge
University Press (2012)

[3] K. Kurosawa and T. Ueda, How to Factor N1 and N2 When p1 =
p2 mod 2t, in: Proceedings of IWSEC 2013, LNCS 8231, 217–225 (2013)

[4] H. W. Lenstra Jr., Factoring Integers with Elliptic Curves, Ann. Math.
126, 649–673 (1987)

[5] A. K. Lenstra and H. W. Lenstra Jr., The Development of the Number
Field Sieve, Springer, Heidelberg (1993)

[6] Y. Lu, L. Peng, R. Zhang and D. Lin, Towards Optimal Bounds
for Implicit Factorization Problem, IACR Cryptology ePrint Archive
2014/825 (2014)

[7] A. May and M. Ritzenhofen, Implicit Factoring: On Polynomial Time
Factoring Given Only an Implicit Hint, in: Proceedings of PKC 2009,
LNCS 5443, 1–14 (2009)

[8] T. Okamoto and S. Uchiyama, A New Public-Key Cryptosystem as
Secure as Factoring, in: Proceedings of EUROCRYPT 1998, LNCS
1403, 308–318 (1998)

[9] C. Pomerance, The Quadratic Sieve Factoring Algorithm, in: Proceed-
ings of EUROCRYPT 1984, LNCS 209, 169–182 (1985)

[10] R. L. Rivest, A. Shamir and L. M. Adleman, A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems, Commun. ACM
21(2), 120–126 (1978)

[11] S. Sarkar and S. Maitra, Approximate Integer Common Divisor Prob-
lem Relates to Implicit Factorization, IEEE Transactions on Informa-
tion Theory 57(6), 4002–4013 (2011)

[12] T. Takagi, Fast RSA-Type Cryptosystem Modulo pkq, in: Proceedings
of CRYPTO 1998, LNCS 1462, 318–326 (1998)

13

