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Abstract

We consider interactive proof systems over adversarial communication channels. We show
that the seminal result that IP = PSPACE still holds when the communication channel is
malicious, allowing even a constant fraction of the communication to be arbitrarily corrupted.

1 Introduction

Interactive proofs are fundamental objects in both cryptography and complexity theory, and come
with a rich history of exciting developments, such as the surprising characterization that IP =
PSPACE [20]. This characterization assumes that a prover and a verifier communicate over a
perfect communication channel, and crucially relies upon the fact that the number of rounds of the
interaction can be polynomially long.

Recently, the study of interactive coding (pioneered by Schulman [17, 18]) has emerged as a
promising way to extend results involving lengthy interactions over perfect channels to analogous
results over adversarial channels - even with a constant relative error rate. This high level of
robustness cannot be achieved by simply applying an error correcting code to each message, a
method which is limited to an error rate proportional to 1

r , where r is the number of rounds. There
has been much success in obtaining interactive coding protocols capable of performing any two party
communication tasks over a noisy or adversarial channel [17, 18, 6, 8, 4, 3, 15, 1, 11, 10, 5, 14].
However, all of these works assume that the task is described as a function of two inputs, and only
correctness of the computation is required.

In the case of interactive proofs, it is not enough to ensure that an honest party “eventually”
learns the real message the other party was attempting to send. Instead, we must ensure that the
interference of the channel cannot prevent an honest prover from convincing a verifier of a true
statement, and also cannot help a malicious prover convince a verifier of a false statement. This
appears to be problematic if we consider the techniques employed by interactive coding protocols,
which enable parties to “replay” and “revise” their messages as the interactive coding mechanism
runs. We must worry, then, that a malicious prover may use the excuse of potential channel errors
to change its responses adaptively after peeking ahead at the verifier’s future challenges. For this
reason, it does not suffice to simply take an interactive proof system designed for an error-free
channel and compile it blindly using an off-the-shelf interactive coding method.

An undaunted optimist might then ask for strong interactive coding mechanism, one that could
provably compose with a wide variety of security properties, such as soundness for interactive
proof systems or input privacy for multiparty computation. The most general version of this
would achieve a notion ensuring that the participants in the error-resilient version of the protocol
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“do not learn” anything more than they would learn from executing the error-free protocol. A
formalization of this called “knowledge-preserving interactive coding” was introduced and studied
by Chung, Pass, and Telang [7], who showed that under this strong requirement, applying an error-
correcting code in each round is essentially optimal. This means no error rate beyond 1

r is possible
without making computational assumptions. Similarly, the work of Gelles, Sahai, and Wadia [9]
proves an impossibility result for error-resilient secure multiparty computation.

In contrast, we show that for interactive proofs a constant relative error rate can be achieved.
In other words, while positive results in traditional interactive coding only (successfully) handle
correctness, and negative results rule out (strong forms of) zero-knowledge/privacy, we show that
ensuring soundness is still feasible in the presence of adversarial communication noise. This is
perhaps a bit counterintuitive, as the negative results proceed by proving that some amount of
backtracking and replaying messages is inherent for this level of error-correction. Nonetheless, using
amplification techniques, we can preprocess our interactive proofs to withstand a certain amount
of backtracking, since the verifier is aware of the backtracking, and can sample fresh randomness
to mitigate the potential advantage gained by a malicious prover as a consequence.

One additional challenge we face is that the verifier must remain efficient, meaning that the
encoding and decoding for the interactive coding mechanism must be computable in polynomial
time. Many of the interactive coding results are existential rather than efficient (e.g. [17, 18, 6]), but
the recent work of Brakerski and Kalai [3] managed to obtain computationally efficient interactive
coding protocols, even for constant rate adversarial errors. We employ a simplified version of
their techniques, obtaining our simplifications due to the fact that the individual messages of our
protocols can be taken to be not too short. This allows us to avoid the use of expensive “tree
codes” that are needed in [3], and results in much easier to understand protocols.

Our Techniques. It is well-known how to design an interactive proof system for PSPACE that
has both perfect completeness (an honest prover can convince a verifier of a true statement with
probability 1) and very small soundness error (a malicious prover can only convince a verifier of a
false statement with very small probability). Starting from such a system, we observe that even if
a malicious prover could make a verifier re-sample a particular challenge polynomially many times,
the chance of obtaining a value that would allow “cheating” remains reasonably small. We can thus
hope to withstand a certain fraction of channel errors by allowing the protocol to “backtrack” when
errors occur, while having the verifier resample its randomness to control the potential gain for a
malicious prover. Our coding techniques will prevent a malicious prover from changing its answer
to a previous challenge, instead requiring it to answer a new challenge if it uses the potential errors
as an excuse to backtrack.

We organize our proof into two separate tasks: first obtaining an IP system that still works over
perfect channels, but allows parties to arbitrarily signal that they want to back up one round of
interaction at a time. We call such a system “backtracking-resilient.” We then design a compilation
procedure that takes any backtracking-resilient IP system and produces a new proof system that
works over adversarial channels, allowing a constant error rate. This compilation relies upon hashing
techniques that are reminiscent of the efficient compiler in [3]. In particular, we have both parties
hash their current simulated transcripts with freshly chosen keys at each exchange, so that they
can detect any disagreements whenever the channel does not introduce too many errors.

There are two noteworthy features of our compiler. First, since the backtracking-resilient IP
system we use anyway has reasonably large individual messages, we can avoid the use of expensive
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tree codes that are needed in [3] to protect the “simulation units between the hash stages”. Second,
we give an explicit reduction between the soundness of our compiled protocol and the notion of
backtracking resilience. This formalizes the intuition that the hashing techniques essentially limit a
malicious prover impersonating an adversarial channel to choosing when to backtrack the protocol,
and could be useful for future work.

2 Resilient Interactive Protocols

Interactive Protocols. We recall the notion of an r-round interactive protocol Π between a
deterministic prover P and a probabilistic verifier V (who share some common input x which we
omit, when clear). We view the verifier V as an algorithm that takes in a partial transcript and
some fresh randomness and outputs a next message.1 More formally, V : T × Rand → {0, 1}∗,
where T is the set of partial transcripts and Rand is the set of random values. We view the prover
P as a deterministic algorithm that takes in a partial transcript and outputs a next message:
P : T → {0, 1}∗.

In the typical (error-free) setting, the protocol proceeds in some number of rounds, r, where
in each round i the verifier sends a challenge Ci and the prover sends a response Ri. If we let
τi−1 denote the transcript after i− 1 rounds, the ith round consists of the verifier sampling a fresh
random value ci ∈ Rand and sending the challenge Ci := V(τi−1, ci). The prover then sends the
response Ri := P(τi−1||Ci). We then have τi = τi−1||Ci||Ri.

We assume each party locally stores its own copy of the partial transcript. We let τp denote the
prover’s (evolving) copy and τv denote the verifier’s (evolving) copy of the transcript. (Note, in the
error-free settings these values are always consistent; however, once we are allowing channel errors,
these two partial transcripts may temporarily diverge.) At the end of round r, V either accepts or
rejects the final transcript τv, and we denote the random variable (over the coins of V) indicating
this decision by (P,V).

Given a language L, we say that Π is (perfectly) complete on L, if for any x ∈ L, we have
Pr[(V(x),P(x)) → accept] = 1. Similarly, Π is ε-sound on L, if for any x 6∈ L and any potentially
cheating prover P̃, we have Pr[(V(x), P̃(x))→ accept] ≤ ε.

Definition 1. We say that L belongs to the class IP (Interactive Protocols), if there exist polyno-
mial r = r(n) and t = t(n) and an r-round interactive protocol (P,V) where the running time of V
on n-bit inputs x is at most t(n) and: (a) Π is (perfectly) complete; (b) Π is (1/2)-sound.

Of course, repeating Π in parallel λ times, we can reduce the soundness error to ε = 2−λ, for
any polynomial λ = λ(n). It is known [20] that IP = PSPACE, the class of languages decided
with polynomial space.

Error-Resilient Protocols. To define error-resilient protocols, we must specify the power of
an adversarial channel. We will model an adversarial channel as an algorithm A that intercepts
messages as they are sent and may modify them arbitrarily in transit. We make no restrictions on
the computational power of A (it may be unbounded) and also allow it to know the entire state of
the prover, the verifier, and the partial transcript at any point during the execution. It does not
know, however, the future randomness to be selected by the verifier.

1This view is without loss of generality, since it is known that private-coin protocols can be simulated by public-coin
ones [13], meaning that V never needs to keep any state beyond its partial transcript so far.
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Definition 2. ( Completeness with Adversarial Channel Error) Given a language L, we say that
a T -round protocol Π is (α, δ)-error-complete on L, if the following condition holds for any x ∈ L.
For any (unbounded) adversary A that can cause at most an α-fraction of errors throughout the
entire communication, the honest prover Pα will convince the honest verifier Vα with probability
> δ.

For soundness in the presence of adversarial noise, we observe that we can always “merge” the
adversarial prover P̃ with our channel adversary A, simply resulting in a different adversarial prover
P̃ ′. In other words, soundness with adversarial channel error is equivalent to traditional soundness!

Definition 3. We say that L belongs to the class ERIP (Error-Resilient IP), if there exists a
constant α > 0, polynomials T = T (n) and t = t(n), and a T -round interactive protocol Π =
(Pα,Vα) where the running time of Vα on n-bit inputs x is at most t(n) and: (a) Π is (α, 2

3)-error-
complete; (b) Π is (1/3)-sound.

Just like for (imperfect completeness) IP, the completeness and soundness constants 2/3 and
1/3 of ERIP can be amplified to (1−2−Ω(p)) and 2−Ω(p), respectively, by doing p parallel repetitions
Π1, . . . ,Πp, and taking the majority vote. A small subtlety in this (otherwise immediate) argument
comes from analyzing completeness in the presence of errors (soundness is the same as for IP).
This is because the attacker A can split his errors non-uniformly across the p repetitions Πi,
causing failures with high probability for repetitions where more than α-fraction of errors were
introduced. Fortunately, by setting the robustness threshold α′ of the new parallel protocol Π∗ to
be α′ = α/10, we can apply Markov’s inequality to conclude that A can cause more than α-fraction
of errors on at most p/10 sub-protocols Πi, meaning that A would still need to break (α, 2/3)-error-
completeness for at least p/2− p/10 = 2p/5 protocols Πi in order to break the error-completeness
of Π∗. However, since in any of the p protocols A’s success of doing so is at most 1/3, the honest
verifier acts independently across the p runs, and 2p/5 > p/3, we can use the Chernoff bound to
conclude that A’s overall success probability will be 2−Ω(p).

Main Result. Our main result can then be stated as:

Theorem 4. (Main Result) ERIP = IP = PSPACE.

We will prove this over the course of the next three sections.

3 Backtracking-Resilient Protocols

As an intermediary step in achieving error-resilient proof systems, we will define proof systems
that retain their completeness and soundness properties under a milder disruption we call “back-
tracking.” In other words, we augment usual error-free protocols with an additional mechanism
for backtracking. In addition to sending a challenge or response, either party may at any time
transmit a special symbol B instead. Upon sending or receiving a B, the parties each remove the
latest complete round from their partial transcripts. For example, suppose τp = τv = τi at the
time a B is sent/received. Then both parties revert to τi−1 and will start again with the verifier
choosing fresh randomness to send a (potentially) new challenge to P for round i (it is as if the old
version of round i never happened).

4



We let U be the maximal number of backtracking steps (i.e., the “budget”) allowed by each
party. Given any standard interactive protocol Π and any such budget U , we obtain U -backtracking
extension of Π, ΠU , where the modified prover PU (resp. verifier VU ) is identical to the honest
prover P (resp. verifier V), except allowing allow up to U backtracking steps to the communicating
partner, as described above. In particular, VU will output the same decision as V when the transcript
τv reaches the last round (for the first time), but also VU will reject if more than U backtracking
steps are attempted by the (possibly malicious) prover. Thus, if Π has r rounds, without loss of
generality we can cap the number of rounds of ΠU by T = r + 4U , as each of the (at most 2U)
backtracking steps requires one extra “normal step” to get back, meaning that in at most r + 4U
rounds the transcript τv is guaranteed to reach the decision point for V.

Of course, when playing against themselves, PU and VU will not use back backtracking steps,
and the protocol will terminate in r rounds. However, we would like to extend completeness of
soundness condition to hold even if (possibly malicious) backtracking is allowed. For the former, we
will assume that PU and VU are honest, except for the adversarial backtracking steps (see below);
for the latter, we will assume that the verifier VU is honest, but the prover P̃U is malicious, including
(wlog, up to U) backtracking steps. This is formalized below.

Definition 5. ( Perfect Completeness with U -Backtracking) Given a language L, we say that an
r-round protocol Π is (perfectly) U -backtracking-complete on L, if the following condition holds
with probability 1, for any x ∈ L. Let T = r + 4U and Cp, Cv ∈ {⊥, B}T be two strings of length
T containing at most U occurrences of the symbol B. We let Cp(i) denote the ith symbol of Cp,
and same for Cv(i). We require that if an honest prover PU and verifier VU run the protocol for a
true statement, except with the prover sending B in round i whenever Cp(i) = B and the verifier
sending B in round i whenever Cv(i) = B, then the verifier accepts after at most T rounds with
probability 1.

Definition 6. ( Soundness with U -Backtracking) Given a language L, we say that an r-round
protocol Π is (U, ε)-backtracking-sound on L, if for x 6∈ L, and any malicious prover P̃U for the
U -backtracking extension ΠU of Π, Pr[(VU (x), P̃U (x))→ accept] ≤ ε.

Lemma 7. Assume Π is an r-round interactive protocol which is complete and ε-sound for some
langueage L. Then, for any U , Π is U -backtracking-complete and (U, ε′)-backtracking-sound, where

ε′ ≤ ε · 2r+4U

Proof. Every final transcript produced with non-zero probability in ΠU must also occur with non-
zero probability without backtracking, using the original algorithms. Thus, perfect completeness
for the underlying algorithms implies perfect completeness with backtracking.

To prove soundness, we fix a false statement x and an arbitrary malicious prover P̃U for ΠU .
Let ε′ be the probability that P̃U (x) convinces VU (x). Given any fixed sequence C ∈ {⊥, B}r+4U of
possible backtracking steps of P̃U containing at most U occurrences of the symbol B, we let ε′C be
the probability that P̃U (x) succeeds and precisely respects the backtracking sequence C. Clearly,
since all such events are disjoint, we have ε′ =

∑
C ε
′
C . To complete the proof, it suffices to show

that ε′C ≤ ε, for any fixed C, as the number of C’s is at most 2r+4U .
To show that ε′C ≤ ε, we define a malicious prover P̃C of the original (non-backtracking)

protocol Π whose success probability is at precisely ε′C , which implies that ε′C ≤ ε, by standard
ε-soundness. Given C, P̃C can pre-compute all the r rounds 1 ≤ i1, . . . , ir ≤ r + 4U which will
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not be “erased” from the final transcript of VU assuming that P̃U follows C. Then P̃C(x) emulates
P̃U (x) as follows: (a) the challenges for all the “non-erased” rounds i1, . . . , ir are obtained from the
honest verifier V; (b) the challenges from the remaining “erased” rounds are honestly generated by
P̃C himself; (c) if at any point P̃U generates a backtracking step inconsistent with C, P̃C aborts.
Since the above emulation is identical to the real run of P̃U when consistent with C, P̃C succeeds
with probability ε′C ≤ ε, as claimed.

Definition 8. We say that L belongs to the class BRIP (Backtracking-Resilient IP), if there exist
polynomial r = r(n) such that for any polynomial U = U(n) there exists a polynomial t = t(n)
and an r-round interactive protocol Π = (P,V) where the running time of V on n-bit inputs x is at
most t(n) and: (a) Π is (perfectly) U -backtracking-complete; (b) Π is (U, 1/2)-backtracking-sound.

Using Lemma 7, we observe that the class of interactive protocols is backtracking-resilient.

Corollary 9. BRIP = IP = PSPACE.

Proof. Take any L ∈ IP. This means L has an r-round, 1/2-sound interactive protocol Π for some
polynomial r. Now take any polynomial U for the backtracking budget. By repeating Π in parallel
r + 4U + 1 times, we get protocol Π′ for L which still has r rounds, polynomial-time verifier, is
complete and ε-sound, where ε = 2−r−4U−1. By Lemma 7, Π′ is U -backtracking-complete and
(U, 1/2)-backtracking-sound, completing the proof.

Remark 10. We can easily reduce the soundness error 1/2 to be exponentially small, either by
directly adjusting the proof of Corollary 9, or by doing parallel repetition on any BRIP protocol.

4 Compiling Backtracking-Resilient Protocols Against Adversar-
ial Channel Errors

We now present a method for taking a backtracking-resilient interactive proof system and compiling
it into one that can resist a constant rate of adversarial channel errors. Intuitively, the prover and
verifier will attempt to simulate the backtracking-resilient protocol over the adversarial channel.
They will use hash functions with freshly chosen keys each time to check if they are in agreement
on the partial transcript simulated so far. Every message and hash key will be encoded with an
error correcting code, to ensure that the adversary must invest a high amount of errors to cause
confusion between the parties. Of course, sometimes channel errors will still prevent the parties
from detecting an inconsistency in the simulated transcript. But the adversary cannot afford to
keep up this high error investment indefinitely, and eventually the parties will detect the problem
and backtrack to fix it. This will result in a simulated transcript that mimics an execution of the
backtracking-resilient protocol, and hence appropriate analogs of completeness and soundness for
this compiled protocol can be reduced to backtracking-resilience of the underlying protocol.

We prove the following result, which, by Corollary 9, suffices to establish our main result in
Theorem 4.

Theorem 11. ERIP = BRIP.

Since ERIP ⊆ IP = BRIP, we only need to show that BRIP ⊆ ERIP. Before proving this
result, we need some standard tools from hashing and coding.
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Hashing and Coding. We will use a family of hash functions indexed by keys k ∈ {0, 1}γ . More
precisely, we invoke the following theorem also used in [3]:

Theorem 12. ([16, 2]). There exists a constant q > 0 and an ensemble of hash families {HN}N∈N
such that for every N ∈ N and for every h ∈ HN , h : {0, 1}≤2N → {0, 1}qN is poly-time computable,

it is efficient to sample h← HN using only qN random bits, and for all y 6= z ∈ {0, 1}≤2N it holds
that

Pr
h→HN

[h(y) = h(z)] ≤ 2−N .

We let γ = qN = O(N) and write hk : {0, 1}≤2N → {0, 1}γ to denote the element of HN

sampled with the random string k ∈ {0, 1}γ . We also let Encode and Decode denote the encoding
and decoding algorithms of an error-correcting code with a constant rate and a constant relative
distance β.

Our Compiler. Take any L ∈ BRIP which means that L has an r-round backtracking-resilient
protocol Π, for any polynomially bounded budget U . (As we will see shortly, we will only use
U = O(r).) To show L ∈ ERIP, we set α = Ω(β) to be the constant error rate we will tolerate on
the channel, and show how to build an error-resilient proof system for L tolerating an α-fraction
of adversarial errors. Our new protocol Π̃ will run for T̃ rounds, where we define T̃ such that
T̃ (1 − 18αβ−1) = r. In particular, when α is chosen to be a suitably small constant fraction of β
(e.g., α = β/36), this is possible with T̃ = O(r) (e.g., T̃ = 2r).

We define the backtracking budget U of our original protocol Π = (P,V) by U = 9αβ−1T̃ = O(r)
(e.g., for α = β/36, we have U = r/2), and assume that Π is (U, 1

3)-backtracking sound and perfectly
U -backtracking complete (guaranteed possible by Lemma 7). We also denote by T = r+4U = O(r)
(e.g., T = 3r when α = β/36) the maximal number of rounds of the U -backtracking extension ΠU of
Π, by ` the length of the challenges to be sent by the verifier V in each round, and assume that the
hashing parameters γ,N = Ω(log r). Finally, we will use Encode and Decode for encoding/decoding
messages of length `+ 2γ + log(T ).

We can now describe the new algorithms P̃ and Ṽ for an interactive proof system that can resist
adversarial channel errors at a constant rate α. These algorithms will run for T̃ message exchanges,
where each exchange will still consist of a message sent by the verifier and then a response sent by
the prover, and will require only black-box access to P and V.
P̃ will maintain internal variables τ̃p and ĩp. These will function as the prover’s internal views of

the simulated transcript and round number respectively. Ṽ will similarly maintain internal variables
τ̃v, ĩv, and C̃. These will function as the verifier’s internal views of the simulated transcript, the
round number, and the pending challenge. We initialize τ̃p, τ̃v and C̃ to ∅, which denotes the empty
string. We initialize ĩp and ĩv to 1.

The First Round: Ṽ will start a run of V to obtain a first challenge C. It sets C̃ = C. It also sam-
ples a uniformly random hash key k1 ∈ {0, 1}γ . It will send to the prover: Encode(C||k1||hk1(τ̃v)||̃iv).

The Prover’s Algorithm: In any round, when the prover receives a message from the verifier,
it decodes it as a challenge C, a key k, a hash value h, and a round index i. It then performs the
following steps to update its internal variables and produce a response:
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• If hk(τ̃p) 6= h and i ≤ ĩp, then decrement ĩp, erase a round from τ̃p, and set R equal to the
last prover response now reflected in τ̃p.

• If hk(τ̃p) 6= h and i > ĩp, then keep ĩp, τ̃p the same, and set R equal to the last prover response
reflected in τ̃p.

• If hk(τ̃p) = h, then set R = P(τ̃p||C), concatenate C||R onto τ̃p, and increment ĩp.

The prover then chooses a new uniformly random key k′ and sends Encode(R||k′||hk′(τ̃p)||̃ip).

The Verifier’s Algorithm: When the verifier receives a message from the prover, it decodes it
as a response R, a key k, a hash value h, and a round index i. It then performs the following steps
to update its internal variables and produce a response:

• If hk(τ̃v||C̃||R) 6= h and i ≤ ĩv, then decrement ĩv, erase a round from τ̃v, and set C̃ =
V(τ̃v, rand), for a freshly chosen random value rand.

• If hk(τ̃v||C̃||R) 6= h and i > ĩv, then keep ĩv, τ̃v, C̃ the same.

• If hk(τ̃v||C̃||R) = h, then concatenate C̃||R onto τ̃v, increment ĩv, and then set C̃ = V(τ̃v, rand)
for a freshly chosen random value rand.

The verifier then chooses a new uniformly random key k′ and sends Encode(C̃||k′||hk′(τ̃v)||̃iv).
At the end of the T̃ message exchanges, the verifier outputs the decision of V(τ̃v).

5 Analysis of the Compiled Algorithms

We now prove that the algorithms P̃ , Ṽ presented in the previous section satisfy completeness and
soundness despite adversarial channel error.

5.1 Completeness

We first seek to prove completeness. For this, we assume an honest prover and an adversarial
channel that can cause at most an α-fraction of errors throughout the entire communication. We
prove:

Lemma 13. If P,V is perfectly U -backtracking complete, then P̃, Ṽ is (α, 2
3)-error-complete.

Proof. We will define a measure of progress, M , that will potentially oscillate as the protocol runs.
At the beginning of any particular exchange (just before the verifier sends its next message), we
can determine the value of M as follows. First, we let m be the maximal number of rounds such
that τ̃p and τ̃v agree on a prefix of m rounds. We then set

M := m− (̃ip −m)− (̃iv −m).

We define a good exchange as follows. First, we require that the verifier has correctly decoded
the previous message sent by the prover. Additionally, we require that the two messages sent during
the exchange (by the verifier and then by the prover) are also decoded correctly. We refer to any
other exchange as a bad exchange.
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Lemma 14. A bad exchange decreases M by at most 3.

Proof. In any exchange, the value of m can decrease by at most 1, since at most one round of the
simulated transcripts is erased at a time. Since each of ĩp, ĩv can be incremented by at most 1 in
any exchange, we then have that the total decrement in M is bounded by 3.

Lemma 15. Conditioned on the event that there are no hash collisions, a good exchange increases
M by at least 1.

Proof. Suppose at the beginning of a good exchange, the verifier has calculated that the current
hash value agrees, and has just incremented ĩv. Since we are assuming no hash collisions have
occurred, this implies that τ̃v = τ̃p and ĩv = ĩp at this point. V will choose a new challenge C̃, send
this to P, who will form a response R, and both V, P will concatenate C̃||R onto their transcripts.
In this case, m will increase by 1, and ĩp−m, ĩv −m will both remain 0. Hence M will increase by
1.

Now suppose instead that at the beginning of a good exchange, the verifier has detected a
disagreement in the hash values. In the case that ĩv ≥ ĩp, the verifier will erase a round from τ̃v
and decrement ĩv. This will lead to a decrease in ĩv −m but no decrease in m. When P correctly
decodes the next message from V, a decrease in m is impossible since an agreed upon round cannot
be erased when ĩp = ĩv (since the hash values will agree in this case) and when ĩp remains less than
ĩv, the prover will not erase a round from τ̃p. Also an increase in ĩp −m is impossible, since ĩp will
only be incremented if a new agreed upon round is being added to the simulated transcript. Thus
M will also increase in this case.

We next consider the case where the verifier has detected a disagreement in the hash values and
ĩv < ĩp. The verifier will then leave τ̃v, ĩv unchanged, but the prover will decrement ĩp and erase a
round from τ̃p, leading to a decrease in ĩp −m, and hence an increase in M .

We now observe that a bad exchange can be extended to a bad interval containing three trans-
mitted encodings - the previous message from the prover to the verifier, and the two messages in the
bad exchange itself. At least one of these messages must have been corrupted beyond its capacity,
resulting in a relative error rate within this interval of > β

3 .
We note the following lemma stated in [19]:

Lemma 16. (Lemma 7 in [19]) In any finite set of intervals on the real line whose union is of
total length s, there is a subset of disjoint intervals whose union is of total length at least s

2 .

We suppose there are s bad exchanges during a run of T̃ total exchanges. Then there are at
least s

2 bad exchanges whose corresponding bad intervals are disjoint. This results in a total relative

error rate of sβ

6T̃
. We must have: s ≤ 6αβ−1T̃ .

Thus, after T̃ exchanges if no hash collisions have occurred, the value of our progress measure
M satisfies M ≥ T̃−18αβ−1T̃ , which we can rewrite as M ≥ T̃ (1−18αβ−1). Recall that this is ≥ r
by our choice of T̃ . This implies that the simulated transcript will be a full r rounds of a transcript
that occurs with non-zero probability in the backtracking resilient algorithms over clear channels.
We also observe that if Ũ is the number of backtracks occurring during a particular execution, then
T̃ − 2Ũ ≥M , so because we set U := 9αβ−1T̃ , we have ensured that at most U backtracks occur.
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Thus, completeness follows from the perfect completeness of the underlying backtracking resilient
algorithms if we choose parameters that make the probability of a hash collision < 1

3 .
To bound the probability of hash collisions, we employ Theorem 12 and a union bound to

conclude that the probability of a hash collision occurring at any time throughout the protocol
simulation is O(T̃2−N ) = O(r2−N ). Thus it suffices to set N proportional to log(r) to achieve a
bound < 1

3 .
Putting this all together, we have proven Lemma 13.

5.2 Soundness

Next, we show that soundness is preserved by our compiler, irrespective of the value U .

Lemma 17. If P,V is (U, 1
3)-backtracking-sound, then P̃, Ṽ is

(
1
3

)
-sound.

Proof. We are considering a perfect channel and a malicious prover who seeks to convince the
verifier of a false statement. The verifier, of course, does not know the errors are not coming from
the channel. We fix a false statement and a malicious prover P̃ who manages to convince Ṽ to
accept with probability > 1

3 . From this, we will create a malicious prover P for the underlying
back-tracking resilient algorithm that contradicts soundness with backtracking.

The Malicious P: The malicious prover P for the backtracking-resilient proof system behaves as
follows. It will run the malicious prover P̃ internally, simulating the messages from V. It initializes
P̃ with the same false statement to be proved, and initializes internal variables τ̃v, ĩv, C̃.

When V submits a challenge C, P chooses a random hash key k and sends
Encode(C||k||Hk(τ̃v)||̃iv). It updates C̃ = C. Upon receiving a response from P̃, it decodes it and
parses the result as a tuple (R, k, h, i). It then internally performs the algorithm of Ṽ. If the result
is a decrement to ĩv and the erasure of round from τ̃v, then P sends B to V. If the result is an
increment to ĩv, it sends R to V. If the result is no change, it simulates the next message to P̃. It
continues simulating Ṽ in this way.

By construction, Ṽ will accept in this simulation only when V accepts. Hence this malicious
prover P can falsely convince V with probability > 1

3 .

We observe that Lemmas 13 and 17 imply Theorem 11. Taken together, Theorem 11 and
Corollary 9 imply Theorem 4.

6 Conclusions and Open Problems

We showed the feasibility of interactive coding for interactive protocols, tolerating a constant frac-
tion of adversarial communication errors. In particular, our error-resilient protocols are within a
constant factor from optimal in their error rate and round complexity. On the other hand, our
compiler incurs an O(r) overhead in communication complexity, as compared to the error-free set-
ting (where r is the number of rounds in the error-free setting). We stress that communication
complexity, while important, is always a secondary constraint in the area of interactive coding, as
compared to achieving constant error-resiliency α.2 In particular, it is certainly not obvious how

2For example, Ghaffari, Haeupler, and Sudan [11] show how to achieve optimal α = 2/7 for traditional
(“completeness-only”) interactive coding, at the expense of quadratic blow-up in communication complexity.
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to achieve any constant α, irrespective of the communication overhead allowed. Indeed, the trivial
technique of applying error-correcting codes to every message will only achieve α = O(1/r), where
r is the number of communication rounds. In contrast, our work achieves α = Ω(1), even while
maintaining soundness. Still, once constant α is achieved by our work, it is an interesting open
problem if O(r) communication overhead is inherent.

We also believe that our result should “scale down” to the setting of “interactive proofs for mug-
gles” considered by Goldwasser, Kalai and Rothblum [12], who showed how to achieve polynomial-
time, communication-efficient interactive proofs with O(n · polylog(n)) verification time for any
language in NC (class of uniform, polynomial size and polylogarithmic depth circuits).

Finally, given the negative results of [7, 9] for zero-knowledge/privacy in the presence of adver-
sarial noise, coupled with our positive results for soundness, it is interesting to characterize which
other security properties can withstand adversarial errors, and at what cost.
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