Accountable Tracing Signatures

Markulf Kohlweiss and Ian Miers

Abstract. Demands for lawful access to encrypted data are a long standing obstacle to integrating
cryptographic protections into communication systems. A common approach is to allow a trusted
third party (TTP) to gain access to private data. However, there is no way to verify that this trust
is well place as the TTP may open all messages indiscriminately. Moreover, existing approaches do
not scale well when, in addition to the content of the conversation, one wishes to hide ones identity.
Given the importance of metadata this is a major problem. We propose a new signature scheme as an
accountable replacement for group signatures, accountable forward and backward tracing signatures.

Keywords: Accountability, traceable signatures, group signatures

Hosepsit, no nposepsau. (Trust, but verify.)
— (alleged) Russian proverb

1 Introduction

For digital communication there are few scaling issues to prevent mass surveillance and, indeed,
no easy way to detect it. To ensure privacy, we rely on cryptographic guarantees which are
typically—indeed hopefully—absolute. However, precisely because they are inviolable, widespread
deployment of such systems, e.g., in cloud services, often raises governmental objections or requires
mandated ways of providing access. This in part contributes to an interesting contradiction: robust
end-to-end cryptography (e.g. PGP, OTR, and ZRTP) is available and can be used given sufficient
motivation (e.g. the need to hide criminal activity), but is not widely deployed in the systems we
use on a daily basis for mail, chat, or voice communication. Mass surveillance is easy, yet targeted
surveillance where the targets suspect they might be targeted and take precautions is hard.

For cryptographic schemes, a commonly proposed solution for lawful access is to appoint a
trusted party (or multiple partially-trusted parties) who escrow(s) a user’s identity or information
about her actions for future retrieval. This has been applied to anonymous signatures [CvH91,FV10],
e-cash schemes [FPV09], and even saw very limited (and ultimately failed) real-world deployment
in the from of the Clipper chip for encryption.

Even if we discount the philosophical, political, and moral objections to mandating lawful
access, these approaches, while in many cases technologically novel, fail to provide adequate privacy
protections in light of recent developments.

First, in the face of nation-states that are willing to compromise hardware, penetrate systems,
and coerce individuals, such an approach seems foolhardy: eventually the trusted party’s key or
unfettered access to it will be extracted even if the party is itself trustworthy.

Second, escrow systems typically fail to hide metadata—something the last few years has proved
quite valuable—and are not easily modified to do so. If a user’s messages can easily be located (and
subsequently decrypted with an escrowed key), then the privacy protections are severely lacking
as such a system leaks metadata. If this is impossible, locating the messages to decrypt relies on
expensive operations such as trial decryption with every escrowed key. This doesn’t scale.

The question is, if we absolutely have to allow lawful access, how do we overcome these issues?
We begin with three insights:

1. If no third party can be trusted, then each user must, solely on their own, hold the necessary
key for opening their messages and the authority must be able to accountably gain access to
this key.

2. Communication is increasingly via (cloud based) services. Even after raising suspicion, a user
will likely continue to resubscribe to the service and this can be leveraged to gain access to his
escrow key.

3. We gain accountability by forcing the authority to verifiably quantify—either by (i) directly
identifying, or (ii) statistically describing (e.g. in a transparency report) —which (re)subscript-
ions involved a search.

Our approach is as follows: as in a group signature, users escrow their identity under an escrow
public key as part of the signature. When a user resubscribes, the authority searches them by
either (i) replacing that key with one the authority holds, or (ii) requiring the user to provide the
escrow private key encrypted under an authority provided key. The former results in tracing going
forward, while the latter allows backward tracing as well. In case a user is not traced, the authority
does not replace keys and provides a random group element for a user to encrypt their key under.

The core of our approach is a key-oblivious encryption scheme where public keys are randomiz-
able and randomized keys cannot be linked to each other or the original key. As a result, without
the entropy used in key randomization, users cannot tell if their key was replaced—as in the case
of forward tracing—or if they are encrypting to a random group element or the authority’s public
key—as in the case of backward tracing. Because users cannot tell if either search mechanism was
invoked, users remain oblivious. However, once the randomness is revealed, the authority is held
accountable.

Definitionally, this approach adds a new requirement to escrow systems: authentication. As
such a scheme depends on user re-subscription, it is imperative that users demonstrate, for every
potential escrow operation, that they are currently subscribed. Similarly, the service forwarding
messages must verify users’ identities for every message to ensure it can provide lawful access.
Authenticating this in the clear erodes the sender’s privacy and doing so completely anonymously
makes it impossible to efficiently locate a user’s messages once they are targeted.

At first glance, group signatures seem like a reasonable solution. They allow anonymity
revocation by a group manager while still providing privacy to everyone else. Group managers,
however, can open any message and are simply trusted not to. For accountable escrow, this is
not the case and the group manager is fundamentally an adversary who seeks to actively violate
user privacy. None the less, group signatures are a decent starting point. However, we need to add
properties to ensure that
e the group manager can only open messages from users she selects when (re)enrolling them
e users cannot tell if they are enrolled with an opening key
e the group manager can prove that a given enrollment did not allow tracing.

By starting with the definitions for group signatures we inherit the strong guarantees that
allow the group manager to prove that someone authored a message if-and-only-if they actually did
S0, i.e., she cannot frame users. While this property is understandably neglected in many escrow
schemes, given the legal context in which escrowed message are likely to be used as evidence in
court, attribution seems to be a fundamental property that should be dealt with.

Our Contribution. We provide four contributions. First, we propose accountability as a novel
security requirement of escrow systems and formalize it in the definitions for accountable tracing

signatures. Second, we provide a practical construction for an accountable forward-tracing signature
complete with proofs of security. This allows an authority to covertly and accountably tag and trace
user messages once the user becomes suspect. Third, we extend our approach with an interactive
subscribe protocol to build an accountable backward-tracing signature scheme where all of a user’s
messages can be identified even retroactively. Finally, we show how to augment either approach
to create an accountable tracing signcryption scheme where messages are encrypted and opening
a signature reveals both the author and the message content, giving us an efficient accountable
wiretapping system.

Related work. Several cryptographic schemes, both from the academic literature and in practice,
use a trusted party for escrow. For example, in a group signature scheme [CvH91|, a group manager
allows users to sign messages as coming from some member of the group while he alone maintains
the ability to provably identify who signed the message. A related problem is given a suspicious
user, identify all messages they have authored. Systems that support both functionalities are called
traceable signatures [KTY04|. Variants of these properties have been defined for e-cash systems,
with owner tracing, and coin tracing being defined analogously. Interestingly there are e-cash
schemes that hold the authority accountable [KV01,KV03]. Unfortunately, these schemes require
interaction with the tracing authority for every transaction and, as a result, the techniques do not
necessarily scale.

Finally, key-escrow, where an encrypted message can be decrypted by both the recipient and
an escrow authority, is both a well studied topic and one that has seen at least limited real world
deployment in the (failed) Clipper chip. A key escrow mechanism in which multiple trustees need
to collaborate to decrypt has been proposed by [LRC14].

2 Key-oblivious encryption

We call a public-key encryption scheme key-oblivious if (i) it allows for a large set of public keys
all related to the same secret key, if (ii) existing public keys can be randomized to generate related
keys, and if (iii) it cannot be discerned, without knowledge of the secret key and the randomness
used in their generation, how public keys are related. The existence of such schemes is cryptographic
folklore and we do not claim much novelty here. In order to allow for accountability, we insist on
the ability to prove, for a given public key, which key was randomized to produce it. This leads to
slight variants of the standard key-privacy and plaintext-indistinguishability games.

2.1 Syntax

We formalize a key-oblivious encryption scheme OE as a collection OE.(GroupGen, KeyGen, KeyRand,
Enc, Dec) of five algorithms:

GroupGen(11) — G: generates parameters, usually a prime order group.

KeyGen(G) — (pk, sk): generates a key pair.

KeyRand(pk) — pk’: randomizes an existing public key into a public key for the same secret key.
Enc(pk, m) — ct: standard encryption functionality.

Dec(sk, ct) — m: standard decryption functionality.

In definitions and in protocols, we sometimes make the randomness of KeyRand explicit and write
(pk';r) < KeyRand(pk) and pk’ = KeyRand(pk;r). For two fixed random public keys pk(®), pk™).
pk = KeyRa nd(pk(b);r) acts as a hiding and binding bit commitment scheme, with r its opening.
(Similarly, we write (ct;s) < Enc(pk, m) and ¢t = Enc(pk,m; s) to make the randomness of Enc
explicit in zero-knowledge proofs.)

2.2 Definitions

In addition to key randomizability—which corresponds to the commitment being hiding, we require
that ciphertexts are plaintext indistinguishable even when the adversary can randomize the target
keys. We term this plaintext indistinguishability under key randomization(INDr). We also require
such schemes to be key private [BBDPO1], again with the modification that this holds even for
adversarially randomized keys. Even though stronger variants of these properties exist, security
under chosen plaintext attacks suffices for our purposes. We note that any key randomizable
encryption scheme can be made key private via the added step of randomizing the public key prior
to encryption.

Game KR £ Game KPr £ Game INDr £
b+ {0,1} b+ {0,1} b+« {0,1}
G < GroupGen(1*) G < GroupGen(1*) G < GroupGen(1*)
(pk, sk) <+ KeyGen(G) (pko, sko) < KeyGen(G) (pk, sk) < KeyGen(G)
pko < KeyRand(pk) (pk1, sk1) < KeyGen(G) (pk', r,mo, m1, st) < Ao(G, pk)
(pk1, sk1) + KeyGen(G) (m,pky,ro, pky, 1, st) + Ao(G, pko, pk1) if pk’ # KeyRand(pk;r) then
b+ A(pk, pkp) if —(pk; = KeyRand(pk;;r;) for i € {0,1}) then return L
return (b' = b) return L ct < Enc(pk’,msp)
ct < Enc(pkj,,m) b <+ Ai(ct, st)
b« Ai(ct, st) return (b’ = b)

return (b' = b)

Definition 1 (Key randomizability). Let OE be a key-oblivious encryption scheme. Consider
Game KR played by adversary A: The key-randomizability advantage of A, AdeR(A) 1s defined
as 2- Pr[KR : true] — 1. A scheme is key randomizable if for any polynomial time A this advantage
1s negligible.

Definition 2 (Key privacy under key randomization). Let OE be a key-oblivious encryption
scheme. Consider Game KPr played by adversary A: The key-privacy advantage of A, AdePr(A)
is defined as 2- Pr[KPr : true] — 1. A scheme is key private if for any polynomial time A = (Ao, A1)
this advantage is negligible.

Definition 3 (Plaintext indistinguishability under key randomization). Let OE be a key-
oblivious encryption scheme. Consider Game INDr played by adversary A: The plaintext distin-
guishing advantage of A, Adv'NP"(A) is defined as 2 - Pr[INDr : true] — 1. A scheme is secure if
for any polynomial time A = (Ay, A1) this advantage is negligible.

3 Accountable forward-traceable signatures

In a group signature scheme, a group manager can open any suspect message. In a tracing signature
scheme, the manager can test if any message belongs to a suspect user. In an accountable tracing
signature, the manager can do the same but must later reveal which users she deems suspect.

3.1 Syntax

We formalize an accountable tracing signature scheme ATS as a collection ATS.(Setup, GKg, UKg,
Enroll, Sign, Verify, Open, Judge, Account) of 9 algorithms:

Setup(1*) — gp: Generates the public parameters for security level .
GKg(gp) — (gpk, gsk): Generates the initial group key-pair.

UKg(gp) — (upk, usk): Generates a user key-pair. Each user has a public key upk and a cor-
responding private key usk. Per [BMWO03| this is necessary to provide any meaning to the
assertion that a user actually did sign an opened message: without it, the group manager is
free to simply assert that a key of their generation actually belongs to a user.

Enroll(gsk, upk, epoch,t) — (cert,w®™™): The authority produces a certificate on a user’s escrow
public key. This certificate either provides full anonymity (¢ = 0) or allows for tracing (¢t = 1)
depending on the bit ¢. The authority stores the witness w“¥ to ¢ and returns the certificate
to the user. The certificate cert contains the time range for which the user is enrolled. We call
this counter the epoch of the certificate.

Sign(gpk, cert, usk, m) — o : Takes the group public key, a certificate, the user’s private key, and
a message to sign as input. It outputs a signature that may contain an escrow of the user’s
identity. The epoch of the signature corresponds to the epoch of the certificate.

Verify(gpk, m, o, epoch) — {0,1}: Given the group public key, a message, its signature, and an
epoch, verifies the signature is valid for the specified message and epoch.

Open(gsk,m,o) — (upk,1): Given the group private key, a message and its signature; if possible
(i.e. if signed using an escrow certificate), return the public key of the user and a proof that
the user generated the message-signature pair. Otherwise returns L.

Judge(gpk, m, o, epoch, upk,) — {0,1}: Given the group public key, a message, its signature, an
epoch, a user’s public key, and a proof that the user generated the signature of that epoch on
that message, verifies the proof.

Account(gpk, cert, w®s™ t) — {0,1}: Given a certificate, a bit ¢ saying whether it escrows the
user’s identity, and a witness w®“™ returns 1 if the witness confirms the choice of ¢.

We will expose some implementation details for the sake of simplifying definitions and avoiding
excessive scaffolding. We use cert.epoch to denote the epoch of a certificate, cert.upk to denote
the user public key being certified, gpk.gp the parameters of the group public key, and gsk.csk to
denote the certificate signing key—this makes an adversary with access to this key strictly stronger
than an adversary with access to an ENROLL oracle.

3.2 Definitions

The first three properties are only slight adaptations of the standard group signature properties.
The last two, anonymity with accountability and trace-obliviousness, are fundamentally different
from the guarantees that group signatures can provide. These stem from the requirement to hold
the group manager accountable.

Definition 4 (Anonymity under tracing). Let ATS be an accountable forward-tracing signature
scheme. Consider the following game played by an adversary A:

Game AuT = Oracle Ch(sko, sk1, certo, certi, m, wg ™, wi*"™, t) 2
b+« {0,1} oo < Sign(gpk, sko, certo, m)
gp + Setup(1?) o1 < Sign(gpk, sk1, cert1,m)
(gpk, gsk) < GKg(gp) if (00 # L A o1 # L A certo.epoch = certi.epoch A
b — AMOPEN(gnk, gsk.csk) Account(gpk, certo, ws*™ t) A Account(gpk, certr, w§*<™ , t))
return (b’ =b) Q<+ QU{ow}

return oy,

else
return |

Oracle OPEN(m, o) =
if (0 € Q) then return L
return Open(gsk,m, o)
The anonymity under tracing advantage of A, AdvA”T(A) is defined as 2 - Pr[AuT : true|] — 1.
ATS is anonymous under tracing if for any polynomial time A this advantage is negligible.

Anonymity under tracing corresponds to the standard anonymity property of group signatures
which guarantees anonymity toward everyone except the group manager. It ensures that even when
being traced users are anonymous to the general public.

Definition 5 (Traceability). Let ATS be an accountable forward-tracing signature scheme. Con-
sider the following game played by adversary A:

Game Trace = Oracle UKG(upk, epoch) 2
gp + Setup(1*) (upk, usk) <= UKg(gp)
(gpk, gsk) < GKg(gp) Supk] usk
(m, o) 4 AUKGENROLLSIGN.OPEN (o)1) return upk
(upk,vp) < Qpen(gsk,m,a) Oracle ENROLL (upk, epoch, t) 2
return (Verify(gpk,m,0) =1 A (cert, w®*e™) <« Enroll(gsk, upk, epoch, (t V upk ¢ dom(S)))
EWL o) (¢ QA) return cert
Judge(gpk, m, o, upk,) =0V
upk = 1)) Oracle SIGN(cert,m) £

usk = S|cert.upk]
if (usk = L) then return L

2

Oracle OPEN(m, o)

(upk, 1)) < Open(gsk, m, o) o <« Sign(gpk, cert, usk,m)
return (upk,) Q<+ QuU{(m,o)}
return o

The traceability advantage of A, AdvT™(A) is defined as Pr|Trace : true]. ATS is traceable if
for any polynomial time A this advantage is negligible.

Informally, traceability requires that every valid message will trace to someone as long as the
adversary does not have a certificate and private key for a non-tracing certificate.

Although the attacker is free to choose the type of certificate for honest users whose keys are
generated by the UKG oracle, he is not allowed to get untraceable certificates on user keys of his
choosing. In the definition this is ensured by (¢ V upk ¢ dom(S)) always evaluating to 1 on such
occasions. This is a slight departure from the standard tracing game [BMWO03|, where ENROLL
always produces traceable certificates.

Definition 6 (Non-frameability). Let ATS be an accountable forward-tracing signature scheme.
Consider the following game played by adversary A:

Game NF = Oracle UKG(upk, epoch) =
gp + Setup(1*) (upk, usk) < UKg(gp)
(gpk, st) < Ao(gp) Slupk] + usk
if gpk.gp # gp then return upk

return | a

(m, o, upk,) AlIJKG’SIGN(st) Ora(ﬂe SIGN(cert, m)
i Jud f o) — 1 usk = S[cert.upk]
return (Judge(gpk, m, o, upk,) = if (usk = 1) then return L

Alm, o) & Q A upk € 5 o < Sign(gpk, cert, usk,m)

Q<+ QU{(m,0)}

return o

The non-frameability advantage of A, AdvNF(A) is defined as Pr[NF : true]. ATS is non-
frameable if for any polynomial time A = (Ao, A1) this advantage is negligible.

Non-frameability requires that no one, not even the group manager, can sign messages on the
user’s behalf. At the same time, it guarantees that users, if they are being traced, have to take
responsibility for the messages they sign, i.e., traced signatures ensure non-repudiation.

Definition 7 (Anonymity with accountability). Let ATS be an accountable forward-tracing
signature scheme. Consider the following game played by an adversary A:

Game AwA = Oracle Ch(sko, sk1, certo, certi, m,ws™ ™, wi*"™)) =

b+ {0,1} oo = Sign(gpk, sko, certo, m)

gp + Setup(1*) o1 = Sign(gpk, sk, cert1,m)

(gpk, st) < Ao(gp) if (o0 # L Ao1 # L A certo.epoch = certi.epoch A

if gpk.gp # gp Account(gpk, certo, w5*™,0) A Account(gpk, certy, wi*™, 0))
return L return oy

b ASh(st) else

return (' =) return |

The anonymity advantage of A, AdvA"A(A) is defined as 2 - Pr[AwA : true] — 1. ATS is
anonymous if for any polynomial time A = (Ag, A1) this advantage is negligible.

Intuitively, this captures the notion that the user is anonymous even from a corrupt authority
that has full control of the system. It requires that even if every single parameter in the system
is adversarially controlled, a user is anonymous as long as the escrow key in his certificate is
accountably private.

Definition 8 (Trace-obliviousness). Let ATS be an accountable forward-tracing signature scheme.
Consider the following game played by an adversary A:

Game TO 2 Oracle OPEN(m, o) =

gp + Setup(1*) (upk, 1)) < Open(gsk, m, o)

(gpk, gsk) < GKg(gp) if upk € U then

b+ {0,1} return |

(b) 4 ACHENROLL,OPEN (g 1y else

return (' =) return (upk, 1)

Oracle Ch(upk, epoch) = Oracle ENROLL (upk, epoch, t) =
(cert,w®*°™) <« Enroll(gsk, upk, epoch,b) (cert,w***") « Enroll(gsk, upk, epoch, t)
U=UU{upk} return cert

return cert

The trace-obliviousness advantage of A, Adv'(A) is defined as 2 - Pr[TO : true] — 1. ATS is
trace oblivious if for any polynomial time A this advantage is negligible.

Trace-obliviousness requires that users cannot tell whether they are being traced.

Remarks. Note two things. First, if all keys are tracing keys, then (i) the trace game would be
standard, (ii) the trace-oblivious game is moot, and (iii) there is no accountable anonymity. As a
result, we would have a standard group signature scheme. Perhaps more interestingly, if we dropped
the requirement for anonymity under tracing, we would not require simulation extractability for
the proof system.

Note, moreover, that the anonymity under tracing adversary A provides all input to Ch. A simple
hybrid argument thus shows that anonymity under tracing with a single challenge query implies
security with multiple challenge queries. This means that even one-time simulation extraction is
sufficient to prove security.

4 Accountable forward-tracing signature from key-oblivious encryption

Assume we have an unforgeable signature scheme SIG.(GroupGen, KeyGen, Sign, Verify), a one-
time signature scheme OTS.(GroupGen, KeyGen, Sign, Verify), a key-oblivious encryption scheme

OE.(GroupGen, KeyGen, KeyRand, Enc, Dec), and a simulation-extractable non-interactive zero-
knowledge proof system .(GroupGen, Setup, Prove, VfyProof, SimExtSetup, Sim, Ext). (For efficiency
we require that SIG.GroupGen = OTS.GroupGen = OE.GroupGen = [M1.GroupGen and refer to this
algorithm as GroupGen.)

We construct an accountable tracing scheme ATS:

ATS.Setup(1*): Runs G « GroupGen(1"), (pk(®, sk(®) < OE.KeyGen(G), crs < M.Setup(G).
The secret key sk(©) is discarded, in fact pk(® should be generated in such a way that sk(© is
not known to any party. Outputs gp = (G, pk(©), crs).

ATS.GKg(gp): Runs (cpk, csk) < SIG.Keygen(gp.G) and (pk™), sk(M)) « OE.KeyGen(gp.G). Re-
turns gpk = (gp, cpk, opk = pk(M) and gsk = (gpk, csk, osk = sk(1).

ATS.UKg(gp): Returns (upk, usk) < SIG.Keygen(gp.G).

ATS.Enroll(gsk, upk, epoch,b): Given a user public key, computes (epk; w) + OE.KeyRand(pk®)
and a signature o ey < SIG.Sign(csk, (upk, epk, epoch)). Returns certificate cert = ((upk, epk,
epoch), o cert) and witness w™.

ATS.Sign(gpk, cert, usk,m): Parses gpk as (gp, cpk,opk) and cert as ((upk, epk,epoch), o cert).
Runs (pkots, skots) < OTS.Keygen(gp), oy, < SIG.Sign(usk, pkos), and (escrw; s) < OE.Enc(epk, (upk, oy,)).
Computes a proof 7 using crs for the following relation to prove knowledge of (upk, epk, o cert, ov):

((escrw, pkots, cpk, epoch), (upk, epk, 0 cert, 0, 8)) € Raig
iff (SIG.Verify(cpk, ocert, (upk, epk, epoch)) =1 A
escrw = OE.Enc(epk, (upk,0y);8) A
SIG.Verify(upk, oy, pkots) = 1) .

Computes o4ts < OTS.Sign(skots, (M, (escrw, pkots, cpk, epoch), w)) and sets o = (7, Oots, Pkotss
escrw). If ATS.Verify(gpk, m, o) = 0, returns L, otherwise returns o. This check is needed as
we guarantee anonymity even for maliciously formed inputs, as long as the signature verifies
and the user is not being traced.

ATS Verify(gpk, m, o, epoch): Parses gpk as (gp, cpk, opk) and o as (7, 0ots, Pkots, €escrw). First, ver-
ifies the one-time signature: OTS.Verify(pkots, Oots, (M, (escrw, pkots, cpk, epoch),)). Second,
verifies the proof M.VfyProof(crs, (escrw, pkots, cpk, epoch),). If all checks succeed, returns 1,
otherwise returns 0.

ATS.Open(gpk, gsk, m, o, epoch): Parses gpk as (gp, cpk, opk) and o as (7, 0ots, Pkots, €SCTW).
Runs ATS.Verify(gpk, m, o, escrw) and abort if it fails. Extracts osk from gsk and runs (upk, oy,)
= OE.Dec(osk, escrw). Returns (upk,) = oy,).

ATS.Judge(gpk, m, o, upk,): Parses gpk as (gp, cpk, opk), o as (7, Oots, Pkots, €scrw), and 1 as
oy. Runs ATS.Verify(gpk, m, o, epoch) and then runs SIG.Verify(upk, oy, pkots). If both checks
succeed, returns 1, otherwise 0.

ATS.Account(gpk, cert, w®™* b): Returns 1, if cert.epk = OE.KeyRand(pk®); w®¢™%), otherwise 0.

Theorem 1. If SIG is unforgeable, OTS is strongly unforgeable, OE is plaintext indistinguishable,
key private and key randomizable, and I is zero-knowledge and simulation-extractable then ATS is

anonymous under tracing, traceable, non-frameable, accountably anonymous, and trace oblivious as
defined in Section 3.2. See the proofs of Theorems 2-6 in Appendix A.1.

5 Instantiation

We now detail how to instantiate our scheme.

EIKO. Intuitively key-oblivious encryption can be obtained from key-private homomorphic public-
key encryption. For a given key pair, let C(m;r) be the ciphertext of message m with randomness
r. Consider the homomorphic property C(m;r) @ C(m’;r") = C(m - m/;r +r"). We construct a
key-oblivious encryption scheme by letting each oblivious public key corresponds to an encryption
C(1;r). We randomize a key by computing C(1;r * r') for a random »’ (this can be computed
using ® by square-and-multiply). Encryption corresponds to computing C(m;r) by multiplying
the public key C'(1;7) with the ciphertext C'(m;0), i.e. the message encrypted with randomness
zero—see also [GJJS04].

We will use such a simple construction of key-oblivious encryption based on ElGamal (EIKO):

EIKO.GroupGen(11): Pick a group G of prime order ¢ with generator g, and return G = (G, ¢, g).
EIKO.KeyGen(G): Sample r,v < Z, and return pk = (¢9", (¢7)"), sk = (pk, 7).
EIKO.KeyRand(pk): Let pk = (A, B), sample 7 < Zg, return pk’ = (A", B") and randomness 7.
EIKO.Enc(pk, m): Let pk = (A, B), sample s <— Z,, and return ct = (A*, B® - m).
EIKO.Dec(sk,ct): Let sk = (pk,~) and ¢t = (C, D). Return m = D/C".

Lemma 1 (Key privacy of EIKO). If the decisional Diffie-Hellman problem holds in G then
EIKO is a key-private key-oblivious encryption scheme.

Lemma 2 (Key randomizability of EIKO). If the decisional Diffie-Hellman problem holds in
G then EIKO is a key-randomizable encryption scheme.

Lemma 3 (Plaintext indistinguishability of EIKO).
If the decisional Diffie-Hellman problem holds in G then EIKO satisfies INDr.

SIG and OTS. To ensure efficiency, we need structure-preserving signatures (SPS) [AHO10].
SPS can either be proved secure in the generic group model [AGHO11], using g-type assump-
tions [AHO10], or using static assumptions [ACD'12|. Usually the stronger the assumption, the
better the performance. This gives us several options. Moreover, if we only use the signature scheme
to sign freshly created one-time signature (OTS) public keys, we do not require full adaptive
unforgeability, but it suffices if the signature scheme is secure for random messages. We can thus
use the xSIG scheme from [ACD"12| secure under DDHy and zDLIN with |og,| = 6. For the
OTS scheme, which does not need to be structure preserving, on the other hand, we will always
make use of the scheme of [HJ12| with |pkos| = 2 and |o4s| = 2. Note that the xSIG scheme
requires random messages of a specific form, and thus requires extended pk;s of size 2 x 3 = 6.

Groth-Sahai proofs and simulation extraction. We will use Groth-Sahai (GS) proofs to
efficiently instantiate the simulation-extractable proof system [1 for the relation R, used in the
signing algorithm of our accountable forward-tracing signature scheme. GS proofs operate over
bilinear groups and we thus pick suitable primitives for SIG, OTS, and OE. In our instantiation, we
let GroupGen on input security parameter 1 output the bilinear group G := (¢, Gy, Ga, Gy, e, G, G‘)
used by IN.Setup. We let of SIG, OTS, which will be pairing based, use the same groups. While OE
will use (Gq,q,G) as its (G, q, g).
Recall the properties of bilinear groups:

q is a A-bit prime,

G1,Ga, Gy are groups of prime order g with efficiently computable group operations, membership
tests, and bilinear mapping e : G; X Go — Gy,

G and G are random generators of G, G, and e(G, G) generates Gy, and

VA € Gy, VB € Gy, Va,y € Z : e(A*, BY) = e(A, B)™.

e an equation of the form [], [, e(4;, B;)?7 = 1 for constants v;; € Zy, and constants or variables
A; € G1, Bj € Gy is called a pairing product equation (PPE for short).

These are exactly the type of equations that can be proved using the GS proof system. Pairing
product equations that are linear, that is equations in which variables appear only on one side of
the pairing are more efficient to prove.

We use the standard R-or-Sign technique to construct a simulation-extractable proof system T[T
from GS proofs, SIG and OTS. The left side of the ‘or’ proves the original statement (this is Ry
which we denote Sp), while the right side proves knowledge of a signature (og;,) under a public
key in the crs (we denote this S7). This signature certifies a one-time signature public key, which
in turn is used to sign the instance and the Groth-Sahai proof. For details on the construction we
refer to the construction of [CCS09|. For the performance analysis we fall back on [ADK™13]:

The number of group elements in a proof of SE-NIZK is counted as follows. Let Sy =
(Rsig(x,w) = 1) and Sy = (Verify,, (Dksim, Tsim, Pkots sim) = 1) be the statements of the left
and right side respectively, both represented by pairing product equations. The proof size of the
SE-NIZK is as follows:

(size of Spy) + (size of switcher) + (size of S1) + (size of OT'S)

= (size of Sy)

+ (Jeom| x 1+ |wnp| x 1)

+ ([com| x (|osim| + S1(C)) + |7r| x (S1(L) + 51(C)) + |7nr] x S1(NL)
+ (Ipkots_sim| + |ots_siml)

~—~ I~~~
A
— — ~— ~—

|71| denotes the cost of proving a single linear PPE (e.g, e(A4, X) = 1 where A is a constant),
S1(L) denotes the number of linear relations needed to prove Verify,,.(...) =1

|mnr| denotes the cost of proving a non-linear PPE (e.g., e(X,Y) = 1)

S1(L) denotes the number of linear PPEs.

S1(C) denotes the number of constant pairings, e.g. (A, B), in PPEs.

Pkots sim 18 the size of the one-time signature key signed by the key in the crs (not part of a PPE)
Oots sim 1s the size of the actual signature (again not part of a PPE).

For GS proofs over DLIN in asymmetric groups, we have (|com|, |nz|, |7nL|) = (3,3,18); and for
GS proofs over XDH, we have (|com|, |7L], |7nL|) = (2,2,8).

We consider the one-time simulation-extractable scheme SE-NIZK4 from [ADK™13| and an
instantiation based on the xSIG scheme of [ACD" 12| with unbounded simulation extraction. For
these constructions, we summarize the overhead for achieving simulation extractability on top of
simply proving the original statement, computed as the sum of equations (2)+(3)+(4), for both
DLIN and XDH-based GS proofs in Table 1.

SE-NIZK overhead simulatability |osim| S1(C) Si(L) Si1(NL) |pkots sim| |0ots sim| |[DLIN XDH
SE-NIZK4 [ADKT13] one-time 3 2 3 0 2 2 55 34
SE-NIZK+xSIG [ACDT12] | unbounded 6 2 1 1 2x3 2 80 48

Table 1. Overhead of GS proof.

Putting it all together. We now examine the actual cost of our ATS scheme. It is dominated
by proving the statement for the core relation R4 of our accountable tracing signature scheme
(Sp above).

The equation for the proof size for Ry;, is given below and the results for various instantiations
is summarized in Table 2.

(size of Sp) (5)
= |com| x (|upk| + |epk| + |ocert| + |ou] + 1+ So(C)) (6)
+ [mp| % (So(L) + So(C)) + |mnL| x So(NL) (7)

Where So({L,C, NL}) are defined as in the same way as S1({L,C, NL})

To reduce the size of epk we use a key-oblivious randomness-reusing variant of EIKO similar to
[Kur02| to allow us to efficiently encrypt multiple group elements. Effectively, each group element
is encrypted under a distinct key using the same randomness. This results in a ciphertext overhead
of only a single group elements and thus shorter oblivious keys. (The PPE for verifiable encryption
is Airy e(D;, G) = e(B;, G%)e(m;, G) A e(C,G) = e(A,G?)). Note that keys now correspond to
encryptions of vectors of 1.

For performance, we instantiate SIG with two different schemes. As discussed above, we can for
instance use a general purpose structure-preserving signature scheme (SPS) with secret key csk for
the group manager and use an XRMA-secure scheme with secret keys usk for users.

As a further optimization, instead of the complete upk, we encrypt a single unique group
element that serves as an identifier of upk. Instead of adding an additional group element to cert,
the group manager can reuse one of the random elements of upk by ensuring that it is unique. The
user encrypts this element together with o, so OE needs to encrypt only |o,| + 1 group elements,
thus |epk| = |oy| 4+ 2 because of the ciphertext overhead.

Relation R |upk| |epk| |ocert|] |ou| So(C) So(L) So(NL) |DLIN XDH
SPS [AGHO11]+SPS [AGHO11] 1 2+|ou] 3 3 8+lou] 4+|ou] 4 198 116
SPS [AGHO11]+xSIG [ACDT12]| 10 24 o.] 3 6 6+ ou] 3+]ou] 3 237 144
SIG2 [ACDT12]+xSIG [ACDT12] | 10 2+ |ou| 14 6 4+4]|ou] 4+ ou 4 279 170

Table 2. Cost of ATS relation Rsig

An ATS signature o consists of the elements (7, oots, pkots, escrw). To reduce the overhead, we
generate only a single pkys (and one-time signature o,5) and use it both in Sy and Sp. In both
cases Ots, respectively ooes sim, signed the instance, the proof, and the message. They can thus
be merged. -

The overall signature size of an ATS signature is thus the sum of the number of group elements
needed to prove Rg g, the simulation-extraction overhead, and the ciphertext size |escrw| = |epk]|.
In our example instantiations it ranges from 155 to 367 group elements.

Because of the availability of a large number of structure-preserving primitives, there is plenty
of room for optimization, especially when one is aiming for both efficiency and weak cryptographic
assumptions. We stress, moreover, that our instantiation does not make use of random oracles in
its security proof.

6 Backward-tracing and message-escrow extensions

We only formally describe and analyze a base scheme and our approach can be extended in several
directions to fit specific application requirements. We discuss two such extensions for applications
that require backward-tracing and encryption respectively.

6.1 Accountable backward-tracing signatures

So far we have considered monitoring a suspect’s future actions. In the case of recovering past
actions, we cannot retroactively tag a message and must, instead, extract something from the user
to identify her messages.

With some applications (e.g. cloud based email), where users may maintain an encrypted
inbox /outbox of their messages merely (accountably) extracting the necessary decryption key is
sufficient. We can decrypt the inbox rather than resort to trial message decryption. For other
applications, it seems search costs are on the order of m X ¢ where m is the number of messages in
the system and t is the number of targeted users.

In either case, retrieving the user’s key introduces a second issue: restoring privacy. For forward
tracing, the authority merely needs to replace the escrow key with a randomization of pk(® when a
warrant expires. For backward tracing, things are more complicated as we need the user to replace
her key with a new one without realizing she did so. This requires more than just key obliviousness:
the user must only hold a share of her private key. If not, she can simply test if she can decrypt
messages encrypted under the new key.

We augment EIKO with a basic distributed key generation functionality to form DEIKO. We
model distributed key generation using the following algorithms: ShareGen(G) generates public
and private key shares (ps, ss), while CombinePS and CombineSS combine a vector of public and
private key shares into a public and a private key respectively. We extend EIKO with algorithms
ShareGen, CombinePS and CombineSS for generating keys from public and private shares:

DEIKO.ShareGen(G): a = Zg, ps = g%, ss < a. Returns (ps, ss).
DEIKO.CombinePS(ps): r < Z,, Returns pk = (9", ([[psi)").
DEIKO.CombineSS(ss): Returns sk =) ss;.

Adding backward tracing. An Accountable backward-tracing signature scheme is a set of 8 algo-
rithms: (Setup, GKg, UKg, Sign, Verify, Open, Judge, Account) and one protocol Subscribe(gpk, usk)
<> Enroll(gsk, upk, b).

Our construction is based on our forward-tracing scheme from Section 4 with two modifications
(i) epk instead of being a key for EIKO is now for DEIKO and (ii) we replace Enroll with an
interactive protocol (Subscribe,Enroll); that handles key generation, key retrieval in the case of a
warrant, and key renewal on warrant expiration.

Subscribe, detailed in Figure 1, uses a blind decryption scheme [Grell| with algorithms BE.(
KeyGen, Enc, Blind, BlindDec, UnBlind). Intuitively, in Subscribe, the user provides the authority
with an encryption of her share of the escrow key. The authority can gain oblivious access to this
share via a blind decryption query. To maintain trace-obliviousness, the authority normally issues
blind decryption queries on an encryption of 0. Again, revealing the randomness—in this case for
blinding the ciphertext—renders this accountable.

The process for key renewal is best understood via Figure 1. It leverages the fact that a user,
since she knows only shares of escrow keys, cannot tell at the end of subscription whether she
holds an escrow key generated from an old share, a new share, or a randomized key shared with all
traced users.

6.2 Extending to encryption and message escrow

Both signature schemes can be readily adapted to form an escrowed encryption scheme by having
the message be a ciphertext and including in escrw a copy of the plaintext, and modifying the
proof in the signature accordingly. Formally, such as scheme has 10 algorithms: (Setup, GKg,

Subscribe(gpk, usk) Enroll(gsk, upk, epoch, b)

read(upk, (epkotd, 9PS 014, 955 10+ Eotds
boid, witnesses, keys))
starttracing = b A —bod;
stoptracing = boig A —b
wo < $
if (starttracing) then
B = BE.Blind(Eoa, wo)
else
B = BE.B“nd(Eo,wo)

(ps, ss) < OE.ShareGen(gp)
E < BE.Enc(bpk, ss) ps E,D,m
D = BE.Dec(bsk, B)
m is a proof of correct decryption
w1 < $
verify the proof of correct decryption
if (starttracing)
$So14 = BE.Unblind(D, wo)
k = OE.CombineSS(gss 4, SSotd)
epk = OE.KeyRand(pk(l);wl)
store(upk, (epk, L, L, 1 1, witnesses, keys :: k))
else if (stoptracing) then
(gps, gss) < OE.ShareGen(gp)
epk = OE.CombinePS(gps, ps; w1)
store(upk, (epk, gps, gss, E,
0, witnesses :: (wo,w1), keys))
else
epk = OE.KeyRand(epkia; w1)
store(upk, (epk, gps yia; 955 o1q+ Eotd,
b, witnesses :: (wo, w1), keys)
sig < Sign(gsk, (epk, upk, epoch))
cert = (upk, epk, epoch, sig)

cert

—

Fig. 1. The Subscribe <+ Enroll protocol

UKg, Enroll, Signcrypt, Decrypt, Verify, Open, Judge, Account). Sign is replaced by Signcrypt and aug-

mented to additionally take a public key under which the message is encrypted. These keys can

either be from an external source or produced by UKg. The resulting “signature” can be decrypted

by Decrypt only with the corresponding private key. Verify can still be run by anyone of course.
Concretely, ATS.Sign becomes

(0, escrw) <« Signerypt(gpk, cert, usk, m, pk):
Parse gpk as (cpk, crs, opk) and cert as (upk, epk, epoch). Compute (ct; sp) < PKEnc(pk, m).
Run (pkots, skots) < OTS.Keygen(gp), oy, < SIG.Sign(usk, pkots), and (escrw, s,e) < OE.Enc(epk,
(upk, oy, m)). Compute a proof 7 for the relation

((escrw, pkots, cpk, epoch, ct), (upk, O cert, Tus MySoe, Spk)) € Raig
iff (SIG.Verify(cpk, o cert, (upk, epk, epoch)) = 1A
escrw = OE.Enc(epk, (upk, 0y, m); Soe) A
ct = PKEnc(pk, m; spi)A
SIG.Verify(upk, oy, pkots) = 1) .

Run o455 < OTS.Sign(skots, (escrw, pkots, cpk, epoch, ct,m)), set 0 = (7, Oots, Pkots, €SCTW, Ct)
and if ATS.Verify(gpk, m,o) = 0, return L else, return o).

7 Transparency reports and conclusions

Accountable tracing signatures hold those who demand “lawful” access to encrypted messages
accountable for what they access. With it, under some circumstances at least, demands for lawful
access to cryptographic systems can be dealt with without allowing mass surveillance of message
content and, crucially, metadata.

For most ordinary criminal cases, the existence of a search warrant is already revealed when
data obtained from it is used in court. Thus the requirement to reveal searches after the fact is
innocuous. However, many of the more troubling issues stem from orders which demand both access
and silence. Currently, many companies issue transparency reports purportedly giving statistical
data about the volume of such requests. These, again, are not accountable. Using an ATS scheme
or its message escrow variant, however, these transparency reports become provable. If every epk
is stored in a public ledger, then the authority can easily issue proofs attesting that less than some
fraction of its transactions use tracing keys for warrants accompanied by gag orders.

Accountable tracing signatures do not, of course, preclude the use of backdoors, software
vulnerabilities, or other non-cryptographic attack vectors. However, given that they provide a vector
for lawful access (and arguably bounded “unlawful” access to whatever extent the transparency
report allows), they eliminate part of the motivation. Moreover, by potentially eliminating the
lawful access objection to strong cryptography and allowing its deployment, they make mass
surveillance far more difficult.

While accountable tracing signatures hold the authority accountable, they obviously only do so
after the fact. An attacker who compromises the authority’s keys gets access to all data until they
are detected. Thus, if the goal is to maximize security, such systems should be avoided unless the
alternatives are a non-accountable escrow system or no cryptographic protections at all.

References

[ACD'12] Masayuki Abe, Melissa Chase, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo.
Constant-size structure-preserving signatures: Generic constructions and simple assumptions. In Advances
in Cryptology - ASTACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings, pages 4-24, 2012.

[ADKT13] Masayuki Abe, Bernardo David, Markulf Kohlweiss, Ryo Nishimaki, and Miyako Ohkubo. Tagged
one-time signatures: Tight security and optimal tag size. In Public-Key Cryptography - PKC 2013 - 16th
International Conference on Practice and Theory in Public-Key Cryptography, Nara, Japan, February 26
- March 1, 2013. Proceedings, pages 312-331, 2013.

[AGHO11] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Optimal structure-preserving
signatures in asymmetric bilinear groups. In Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, pages 649-666, 2011.

[AHO10] Masayuki Abe, Kristiyan Haralambiev, and Miyako Ohkubo. Signing on elements in bilinear groups for
modular protocol design. Cryptology ePrint Archive, Report 2010,/133, 2010.

[BBDPO01] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key
encryption. In Advances in Cryptologyd ATASIACRYPT 2001, pages 566-582. Springer, 2001.

[BMWO03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In Advances in
Cryptologya AT Eurocrypt 2003, pages 614—629. Springer, 2003.

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme secure against
key dependent chosen plaintext and adaptive chosen ciphertext attacks. In Advances in Cryptology -
EUROCRYPT 2009, volume 5479, pages 351-368, 2009.

[CvH91] David Chaum and Eugéne van Heyst. Group signatures. In EUROCRYPT, volume 547 of Lecture Notes
in Computer Science, pages 257265, 1991.

[FPV09] Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Transferable constant-size fair e-cash.
In Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, CANS, volume 5888 of Lecture Notes in
Computer Science, pages 226—247. Springer, 2009.

[FV10] Georg Fuchsbauer and Damien Vergnaud. Fair blind signatures without random oracles. In
AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science, pages 16-33, 2010.

[GJJS04] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul F. Syverson. Universal re-encryption for mixnets.
In CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages 163-178, 2004.

[Grell] Matthew Green. Secure blind decryption. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages
265—282. Springer, 2011.

[HJ12] Dennis Hofheinz and Tibor Jager. Tightly secure signatures and public-key encryption. In CRYPTO.
Springer, 2012.

[KTYO04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Traceable signatures. In Advances in Cryptology-
EUROCRYPT 2004, pages 571-589. Springer, 2004.

[Kur02] Kaoru Kurosawa. Multi-recipient public-key encryption with shortened ciphertext. In Public Key
Cryptography, pages 48—63. Springer, 2002.

[KVO01] Dennis Kiigler and Holger Vogt. Auditable tracing with unconditional anonymity. 2001.

[KV03] Dennis Kiigler and Holger Vogt. Offline payments with auditable tracing. In Financial Cryptography,
pages 269-281. Springer, 2003.

[LRC14] Jia Liu, Mark D Ryan, and Liqun Chen. Balancing societal security and individual privacy: Accountable
escrow system. In 27th IEEE Computer Security Foundations Symposium (CSF), 2014.

A Proofs

A.1 Security for ATS.

Theorem 2 (Anonymity under tracing). If I is zero-knowledge and simulation-extractable
and OE is plaintext indistinguishable and key private, then the construction described in Section /
18 anonymous under tracing as defined in Section 3.2.

Proof. We now proceed to describe a sequence of hybrid experiments.

— 0o. The original AuT game.

— D1. Same as 0y, except that in the Ch oracle we use Sim to simulate 7, in o and store the
simulated proof along with its inputs in a log LS. By the zero-knowledge property of the proof
system, the attacker has a negligible advantage in distinguishing between this and the previous
game.

— Oo. Same as 01, except that for proofs 7 € LS we answer with the stored data from the
simulator. For m ¢ LS we use extraction to answer OPEN oracle queries without using the
decryption key in gsk. If this fails we abort. Because [T is simulation extractable, by definition
the probability of failing to extract on a proof that was not directly produced by the simulator
(i.e. is not in LS) is negligible, and hence so is the probability of abort and the attacker’s
advantage in distinguishing between this and the previous game.

— 03 and 04 correspond to Do and O3 of the anonymity with accountability proof.

In Oy, all inputs to A are independent of b and its advantage is therefore zero.

Theorem 3 (Traceability). If I is extractable, SIG is unforgeable, and OTS is strongly unforge-
able, then the construction described in Section 4 is traceable as defined in Section 3.2.

Proof. We proceed through a sequence of hybrids.

— 0o. The original traceability game.

— O1. The same as g, except that we attempt to extract (upk, epk, ocert, 0y) from the proof =
in ¢ and abort without 4 winning if extraction fails. The difference in the advantage of A
winning compared with g is negligible by the extractability of the proof system.

— Do. Same as 01, except that we abort if the attacker uses a signature o+ on a fresh upk, epk.

Lemma 4. The difference in the advantage of A winning compared with 01 is negligible by the
unforgeability of SIG.

— O3. Same as D9, except that we abort if the attacker uses a signature o, on a fresh OTS public
key pk ., i.€., one that did not result from a signing query.

Lemma 5. The difference in the advantage of A winning compared with O9 is negligible by the
unforgeability of SIG.

— 04. Same as O3, except that we abort if the attacker reuses a OTS public key to sign a different
message (i.e not the one stored in Q). The probability of this happening, and hence aborting,
is negligible by a slight variant of Lemma 4 and 5 for one-time signatures.

In O4 the advantage of A is zero.

Theorem 4 (Non-frameability). Let SIG be an unforgeable signature scheme and OTS a strongly
unforgeable one-time signature scheme, then the construction described in Section 4 is non-frameable
as defined in Section 3.2.

Proof. Informally causing Judge to validate is the same as forging one of the two signature in .
This is assumed impossible for secure signature schemes.

The proof is thus nearly identical to that of traceability, except that A already provides o, as
part of his output and it is thus does not need to extracted. For the hybrids see 03 and 04 of the
traceability proof.

Theorem 5 (Anonymity with accountability). If I is zero-knowledge and OE is plaintext
indistinguishable and key private, then the construction described in Section 4 is accountably
anonymous as defined in Section 3.2.

Proof. We proceed through a sequence of hybrids.

— 0p. The original AwA game.

— O1. Same as Dy, except that we replace the zero-knowledge proofs by simulated proofs. By
the zero-knowledge property of the proof system, the attacker has a negligible advantage in
distinguishing between this and the previous game.

— Oo. Same as 0. except we modify ATS.Sign in game Ch to produce an escrow ciphertext of
the encryption of 0 for oy.

Lemma 6. By the INDr-CPA property of EIKO, the new ciphertext is indistinguishable from
the old one and so D1 and D9 are indistinguishable.

— O3. Same as Ds. except we modify ATS.Sign in game Ch to use a fresh random key as the
escrow key.

Lemma 7. By the key privacy property of EIKO, the new ciphertext is indistinguishable from
the old one and so O3 and D4 are indistinguishable.

In O3, Ch returns a simulated proof and an encryption of zero under a new key. Hence all inputs
to A are independent of b and its advantage is therefore zero.

Theorem 6 (Trace-obliviousness). If OE is key randomizable, and I is extractable, then the
construction described in Section 4 is trace-oblivious as defined in Section 3.2.

Proof. We proceed through a sequence of hybrids.

— 0o. The original trace-obliviousness game.

— D1. Same as Dy, except that we change OPEN to invoke the extractor for 1 to decrypt escrw
instead of using the private key. The attacker has a negligible advantage in distinguishing
between this game and Jg by the extractability of the proof system.

— Dg. Same as 01, except that we change Enroll in ENROLL to return freshly generated public
keys instead of randomized keys.

Lemma 8. By the key randomizability property of EIKO, the new key is indistinguishable from
the old one.

In 09 the output of all oracles is independent of b, and therefor the adversary’s advantage
is zero.

A.2 Proofs of supporting lemmas

Proof (Lemma 1). Given an attacker A = (Ap,.A1) who breaks KPr we construct a distinguisher

D for DDH.
Distinguisher D(G, X,Y,T) 2
b+ {0,1}
A, &m0, 11, 4 Zg
Xo—= XYoo« Y10« T
X1 X -gM Y1« Y g« T8 X1 YA ghe
pko « (97, Y5°)
pko < (gn) YlT1)
(m, pkg, wo, pk1, w1, st) < Ao(G, pko, pk1)
if pk{ # KeyRand(pko; wo) V pki # KeyRand(pki;w1)
return |
d <+ A (XToWe T/0r - M, st)
return (d =)

Given Diffie-Hellman’s random self-reducibility, if X,Y,T is a Diffie-Hellman triple, then so is
X1,Y1,T1. Moreover, both triples are distributed identically regardless and produce the proper
distributions of keys in EIKO. In the case that T is a random group element, then the challenge
ciphertext given to A contains no information, as Y3 and 7,” are identically distributed regardless
of b. Hence, A’s advantage at guessing the bit is negligible. On the other hand, in the case where
the challenge is a valid Diffie-Hellman triple, A’s inputs are the same as in Game KO, since
Tl:”bwb = (gTo) v W = gTo YTy Wo — (X0 W)Yo = CYb,
Thus if A has a non-negligible advantage at breaking Game KO, then D breaks DDH.

Proof (Lemma 2). Given a DDH challenge (G, X,Y,T), the reduction is immediate.

AN

Distinguisher D(G, X,Y,T)
T, 4 ZLq

d< A((g", X"),(Y",T"))
return d

In the case where (X = g%, Y = ¢¥, T = ¢"¥), then our original key is (¢, ¢*"), and the second
one is ((¢")Y, (¢™")Y)), i.e. the original key re-randomized by y. On the other hand, where (X =
g%, Y = g¥, T = g*), the second key is unrelated. Thus if A distinguishes between a real or random
key with a non-negligible advantage, then the distinguisher above breaks DDH with the same
advantage.

Proof (Lemma 3). Given an attacker A = (Ag, A1) who wins against INDr we construct a DDH
distinguisher D.

Distinguisher D(G, X,Y,T) =

b+ {0,1}

T Lq

pk < (9", X")

pk' v’ mo,my — Ao(G, pk)

if pk’ # KeyRand(pk;r’) then

return L

et (Y")", (T7)" - my)

b A1 (Ct)

return (b =1/)

In the case where (X,Y,T) is a DDH triple, A’s view is identical to INDr game: she receives a

public key ¢"* and a base ¢" and then a properly formed ciphertext (((gr)’",)y, ((g")")™ - m) On

the other hand, when T is a random group element, (TT)T’ - my, reveals no information about mg,.
Hence her advantage is negligible. Thus if A has an advantage in winning INDr, then the above
breaks DDH with the same advantage.

Proof (Lemma 4). Given an attacker A5 who forgers a signature in Trace, we construct a reduction
to the standard EU-CMA signature game where an attacker A is given access to a signing oracle
and a public key and produces a forgery on a message not previously signed by the oracle.

ASG(pk) works as follows. Given pk it simulates the standard Trace game using the verification
key it received as input as the authorities key in the parameters. We modify SIGN to return
signatures generated by the oracle SIG oracle. When Ay triggers abort by producing a signature
on a key not in S, A return it as a signature forgery.

Proof (Lemma 5). This proof is nearly identical to that of Lemma 4. Instead of inserting the
challenge public key into the parameters, however, we must have ENROLL embed this key in some
generated user key. Unfortunately, we can only do so for one query and must simply blindly guess
upon which one to do so. Having done so, the game continues as in the proof above and, if we
guessed correctly, we get the appropriate forgery. Because Ay makes at most poly() queries to
ENROLL, there is a —+—~ chance A5 forges a signature under the target key (i.e. that the forgery

poly()
resulted from the query we picked), thus A5’s probability of abort is negligible.

Proof (Lemma 6). Ay makes at most poly() queries to the Ch oracle. We construct a series of
hybrids—09,...,0%,,..., Dgozy() where DgOly() is equivalent to Do—replacing the ciphertext in each
successive query with 0. Given an adversary Aé who detects the hybrid that modifies the ith query
to Ch, we construct an adversary A;yp = (Ag,. A1) who breaks INDr as follows.

Ap runs the standard AwA game with A% using the provided parameters as the (non)escrow key
in gp. On the ith query to the Ch oracle, Ay returns (certy.epk, w;*™), ctm,0) as (pk’,r, mg, m1)
where ctm is the correct content of an escrow ciphertext. Upon receiving the challenge ciphertext,
A1 constructs o using ct as the escrow ciphertext and allows the AwA game to continue. Finally, it
returns the resulting bit.

In the case where my is chosen in the IN Dr game, AL’s view is identical to that of D;fl (i.e.
where the ith query is untampered with and results in a proper ciphertext). On the other hand, in
the case where m is chosen, her view is identical to the case of O} (i.e. where the ith ciphertext is
an encryption of the all zero string). Thus A%’s advantage is the same as Adv'NPr(A) which is
negligible. Thus A5’s advantage for the whole set of substitutions is Adv'NP"(A) - poly() which is
still negligible.

Proof (Lemma 7). This proof proceeds similarly to lemma 6. Again, A5, this time distinguishing
between oo and 03, makes at most polynomially many queries to Ch. We construct a series of
hybrids —09,...0%, .. .Dgalyo where Dgozy() is equivalent to D3—in which we swap the key in the
tth query. Given an adversary Af) who detects the hybrid that modifies the ith query to Ch, we
construct an adversary Axp = (Ag, A1) who breaks KPr as follows.

Ao (pko, pk1) runs the standard AwA game with A5 using pko as the key in gp. On the ith query
to the Ch oracle, A samples fresh randomness 7 and returns (0, certy.epk, w§*™, KeyRand(pk;; r),
r,0) as (m, pk{, wo, pk}, w1, st). Upon receiving the challenge ciphertext, A; constructs o using ct
as the escrow ciphertext and allows the AwA game to continue. Finally, it returns the resulting bit.

In the case where pky is chosen as the encryption key in the KPr game, Aia’s view is identical
to E)éfl, where the provided key is used. On the other hand, in the case where pks is chosen, her
view is identical to 0% where a fresh key is used. Thus her advantage in distinguishing between any
two hybrids is Adv¥P"(A) which is negligible. This implies A5’s advantage Adv<F"(A) - poly()
which is still negligible.

Proof (Lemma 8). This proof proceeds similarly to the others above. We construct a series of
hybrids, one for each query to ENROLL where we sequentially replace the returned key with a
random one. We denote these 09, ...0%,. ..Dgozy() where D‘;Olyo is equivalent to 0. Given an
adversary .Aia who detects the hybrid that tampers with the ith query, We construct Ag r(pk, pky)
as follows.

Agr embeds pk as the escrow key in the parameters and runs Aé. On the query to ENROLL,
it returns pkp. The game continues as normal. Finally, it returns the resulting bit.

In the case of Agr(pk, pko), AL receives a randomized key and her view is identical to that of
Dé_l. On the other hand, in the case of Ak g(pk, pk1), her view is identical to that in 0%. Thus
her advantage is AdVKR(A) when detecting tampering with any one query. A5’s advantage in
distinguishing between D and D9 is AdvKR(A) - poly() which is negligible.

