
Dual-System Simulation-Soundness with

Applications to UC-PAKE and More

Charanjit S. Jutla
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

csjutla@us.ibm.com

Arnab Roy
Fujitsu Laboratories of America
Sunnyvale, CA 94085, USA

arnab@cs.stanford.edu

Abstract

We introduce a novel concept of dual-system simulation-sound non-interactive zero-knowledge
(NIZK) proofs. Dual-system NIZK proof system can be seen as a two-tier proof system. As op-
posed to the usual notion of zero-knowledge proofs, dual-system defines an intermediate partial-
simulation world, where the proof simulator may have access to additional auxiliary information
about the potential language member, for example a membership bit, and simulation of proofs
is only guaranteed if the membership bit is correct. Further, dual-system NIZK proofs al-
low a quasi-adaptive setting where the CRS can be generated based on language parameters.
This allows for the further possibility that the partial-world CRS simulator may have access
to additional trapdoors related to the language parameters. We show that for important hard
languages like the Diffie-Hellman language, such dual-system proof systems can be given which
allow unbounded partial simulation soundness, and which further allow transition between par-
tial simulation world and single-theorem full simulation world even when proofs are sought
on non-members. The construction is surprisingly simple, involving only two additional group
elements for general linear-subspace languages in asymmetric bilinear pairing groups.

As a direct application we give a short keyed-homomorphic CCA-secure encryption scheme.
The ciphertext in this scheme consists of only six group elements (under the SXDH assumption)
and the security reduction is tight. An earlier scheme of Libert et al based on their efficient
unbounded simulation-sound QA-NIZK proofs only provided a loose security reduction, and
further had ciphertexts almost twice as long as ours.

We also show a single-round universally-composable password authenticated key-exchange
(UC-PAKE) protocol which is secure under adaptive corruption in the erasure model. The
single message flow only requires four group elements under the SXDH assumption. This is the
shortest known UC-PAKE even without considering adaptive corruption. The latest published
scheme which considered adaptive corruption, by Abdalla et al [ABB+13], required non-constant
(more than 10 times the bit-size of the password) number of group elements. For fully adaptive
corruption, we realize a relaxed ideal functionality that uses non-information oracles.

Keywords: NIZK, bilinear pairings, UC-PAKE, keyed-homomorphic encryption, SXDH.

1

Contents

1 Introduction 4
1.0.1 Applications. 5

2 Preliminaries: Quasi-Adaptive NIZK Proofs 7

3 Dual-System Simulation-Soundness 8

4 DSS-QA-NIZK for Linear Subspaces 11

5 Keyed-Homomorphic CCA Encryption 17

6 Single-Round UC Password-Based Key Exchange 19
6.1 UC-PAKE Definition . 19
6.2 UC-RPAKE Definition using Non-Information Oracle 20

6.2.1 Discussion about Non-Information Oracle Relaxation 21
6.3 Main Idea of the UC Protocol using DSS-QA-NIZK 22
6.4 Main Idea of the UC Simulator . 23
6.5 Main Idea of the Proof of UC Realization . 25
6.6 Adaptive Corruption . 25

A Proofs of Dual-System Lemmas 29

B Proof of General DSS-QA-NIZK Construction 30
B.1 DSS-QA-NIZK Instantiation for Linear Subspaces 35
B.2 DSS-QA-NIZK for Specific Languages . 37

B.2.1 DSS-QA-NIZK for DH Languages. 38
B.2.2 Summary - DSS-QA-NIZK. 39

C Keyed-Homomorphic CCA Encryption 40
C.1 Proof of Theorem for KH-CCA Construction . 41
C.2 Revealing the Partial-Simulation Key . 45

D Proof of Realization of the UC-PAKE Functionality 48
D.1 The Simulator for the UC Protocol. 49
D.2 New Session: Sending a message to Z. 49
D.3 On Receiving a Message from Z. 49
D.4 Corruption . 50
D.5 Proof of Indistinguishability - Series of Experiments. 50

D.5.1 Handling Legitimate Messages . 54
D.5.2 Handling Adversarial Messages . 56

E Proof of Realization of the Non-information Oracle based UC-RPAKE 57

2

F Identity-Based Encryption 59
F.1 DSS-QA-NIZK with Restriction Keygen . 60
F.2 Construction for an Affine DDH Language . 61
F.3 IBE Construction Using DSS-QA-NIZK . 63
F.4 Proof of security of IBE Construction . 63

3

1 Introduction

Since the introduction of simulation-sound non-interactive zero-knowledge (NIZK) proofs in [Sah99]
(based on the concept of non-malleability [DDN91]), simulation-soundness has become an essential
cryptographic tool. While the idea of zero-knowledge simulation [GMR89] brought rigor to the
concept of semantic security, simulation-soundness of some form is usually implicit in most crypto-
graphic applications. While the original construction of [Sah99] was rather inefficient, the advent
of pairing based cryptography, and in particular Groth-Sahai NIZK proofs [GS08], has led to much
more efficient simulation-sound NIZK constructions. Pairing-based cryptography has also led to
efficient construction of powerful primitives where simulation-soundness is not very explicit.

It has been shown that different forms of simulation-soundness suffice for many applications.
Indeed, the original application (CCA2-secure encryption) considered in [Sah99] only required what
is known as single-theorem simulation-soundness (also known as one-time simulation-soundness).
However, many other cryptographic constructions are known only using unbounded simulation-
sound NIZK proofs. In this paper, we introduce the concept of dual-system simulation-sound
NIZK proofs, which lie somewhere in between one-time and unbounded simulation-sound NIZK
proofs. The aim is to show that this weaker concept suffices for constructions where unbounded
simulation-soundness was being used till now. We also show that in many applications this new
concept of dual-system simulation soundness is implicit, in the sense that although we cannot get
a generic construction from a NIZK proof, we can use the underlying ideas of the dual-system
simulation-sound NIZK proofs.

Indeed, our novel definition is inspired by the dual-system identity-based encryption (IBE)
scheme of Waters [Wat09], where such a concept was implicit, and led to the first IBE scheme
which was fully-secure under static and standard assumptions. So without further ado, we jump
straight into the main idea of the new concept. In dual-system simulation-sound NIZK proof
systems we will consider three worlds: the real-world, the partial-simulation world, and the one-
time full-simulation world. The real world consists of a common-reference string (CRS), an efficient
prover P, and an efficient verifier V. The concept of completeness and soundness of P and V with
respect to a witness-relation R is well-understood. The full-simulation world is also standard, and
it includes two simulators: a CRS simulator and a proof simulator. The proof simulator is a zero-
knowledge simulator in the sense that it can simulate proofs even without access to the witness.
In order to achieve this, the CRS simulator generates the CRS in a potentially different way and
produces a trapdoor for the proof simulator. The partial-simulation world we consider also has
a CRS simulator, and a proof simulator, but this proof simulator is allowed partial access to the
witness (or some other auxiliary information) about the member on which the proof is sought.

At this point, we also bring in the possibility of the CRS being generated as a function of the
language or witness-relation under consideration. The recent quasi-adaptive NIZK (QA-NIZK)
proofs of [JR13] allow this possibility for distributions of witness-relations. The CRS in the real
and the full-simulation world is generated based on a language parameter generated according to
some distribution. Now we consider the possibility that in the partial-simulation world, the CRS
simulator actually generates the language parameter itself. In other words, the CRS simulator has
access to the “witness” of the language parameter. For example, the CRS simulator may know the
discrete-logs of the language parameters. This leads to the possibility that in the partial simulation
world the proof simulator may have access to additional trapdoors which makes simulation and/or
simulation soundness easier to achieve.

In this paper, we will only define and consider dual-system simulation sound QA-NIZK proofs

4

(called DSS-QA-NIZK), where the only auxiliary information that the partial proof simulator gets
is a single bit which is called the membership bit. The membership bit indicates whether the
statement on which the proof is sought is in the language or not. We show that we can achieve
unbounded partial-simulation soundness for important languages like the Diffie-Hellman language
by a relatively simple constructions. The constructions also allow one-time full-ZK simulation, and
hence form a DSS-QA-NIZK for the Diffie-Hellman language. We actually give a general construc-
tion for arbitrary languages which allow smooth and universal2 projective hash proofs [CS02], and
such that the language augmented with such a hash proof has a usual QA-NIZK. We show that
for linear subspace languages (over bilinear groups), like the Diffie-Hellman and decisional-linear
(DLIN) languages, the requirements for the general construction are easy to obtain. Thus, for all
such languages, under the standard and static SXDH assumption in bilinear pairing groups, we get
a DSS-QA-NIZK proof of only two group elements.

Table 1 summarizes comparison among existing schemes and ours. DSS is weaker than un-
bounded simulation soundness, and although incomparable with one time simulation soundness,
it seems to enjoy better properties. Consistent with this, we observe that the proof sizes also
place in the middle of the shortest known OTSS-NIZKs [ABP15, KW15] and the shortest known
USS-NIZKs [KW15] for linear subspaces.

Table 1: Comparison with existing NIZK schemes for linear subspaces with table adapted
from [KW15]. The language of interest is a t dimensional subspace of an n dimensional ambi-
ent space. m is the bit-size of the tag. AS is adaptive-soundness. OTSS is one-time simulation-
soundness and USS is unbounded simulation-soundness.

Soundness Assumption Proof CRS #pairings

[GS08] AS DLIN 2n+ 3t 6 3n(t+ 3)
[LPJY14] AS DLIN 3 2n+ 3t+ 3 2n+ 4
[JR13] AS k-Linear k(n− t) 2kt(n− t) + k + 1 k(n− t)(t+ 2)
[JR14] AS k-Linear k kn+ kt+ k2 kn+ k2

[ABP15] AS k-Linear k kn+ kt+ k kn+ k
[KW15] AS k-Linear k kn+ kt+ k − 1 kn+ k − 1

[ABP15] OTSS k-Linear k 2m(kn+ (k + 1)t) + k mkn+ k
[KW15] OTSS k-Linear k 2m(kn+ (k + 1)t)+k−1 mkn+k−1

This paper DSS k-Linear k + 1 k(n+ 1) + kt+ k2 k(n+ 1) + k2

[CCS09] USS DLIN 2n+ 6t+ 52 18 O(tn)
[LPJY14] USS DLIN 20 2n+ 3t+ 3m+ 10 2n+ 30
[KW15] USS k-Linear 2k + 2 kn+ 4(k + t+ 1)k + 2k k(n+ k + 1) + k

1.0.1 Applications.

We now give the main idea as to why such a construction is useful. The security of most appli-
cations is shown by reduction to a hard language. However, a particular application may have a
more complex language for which the NIZK proofs are required, and the security proof may require
soundness of the NIZK system while proofs of many elements (real or fake) of such a complex lan-
guage are being simulated. The idea is that multiple simulations of such elements can be performed
in a partial-simulation manner (i.e. it is always possible to supply the correct membership-bit),
and full simulation is only required of one member at a time, on which the hardness assumption
can then be invoked.

5

Keyed-Homomorphic CCA-secure Encryption. As a first application we consider the keyed-
homomorphic CCA-secure encryption scheme notion of [EHO+13]. In such an encryption scheme, a
further functionality called Eval is available which using a key can homomorphically combine valid
ciphertexts. The scheme should provide IND-CCA2 security when this Eval key is unavailable to
the adversary, and should continue to enjoy IND-CCA1 security when the Eval key is exposed to
the adversary. Emura et al. also gave constructions for such a scheme, albeit schemes which are
not publicly verifiable, and further satisfying a weaker notion than CCA1-security when Eval key
is revealed. Recently, Libert et al gave a publicly-verifiable construction which is more efficient and
also CCA1-secure when Eval key is revealed. Their construction is based on a new and improved
unbounded simulation-sound QA-NIZK for linear subspace languages. We show in this paper that a
DSS-QA-NIZK for the Diffie-Hellman language suffice, and leads to a much improved construction.
While the construction in [LPJY14], under the SXDH assumption, requires nine group elements
in one group, and two more in the other plus a one-time signature key pair, our construction only
requires six group elements in any one of the bilinear groups. Further, while the earlier construction
was loose (i.e. looses a factor quadratic in number of Eval calls), our reduction is tight.

Universally-Composable Password-Authenticated Key Exchange (UC-PAKE). The
UC-PAKE ideal functionality Fpake was introduced in [CHK+05] where they also gave a three-round
construction. In [KV11] a single-round construction for UC-PAKE was given using Groth-Sahai
NIZK proofs along with unbounded simulation-soundness construction of [CCS09] (also see [JR12]).
Later [BBC+13] gave a UC-PAKE construction based on novel trapdoor smooth projective hash
functions, but secure only under static corruption; each message consisted of six group elements in
one group, and another five elements in the other group (under the SXDH assumption).

In this paper, we construct a a single-round construction based on dual-system simulation-
soundness which is UC-secure under adaptive corruption (in the erasure model), and which has
only a total of four group elements in each message. The key is generated in the target group. The
construction is not a black-box application of the DSS-QA-NIZK for the Diffie-Hellman language,
but uses its underlying idea as well as the various component algorithms of the DSS-QA-NIZK.
The main idea of the construction is given in more detail in Section 6.3.

To the best of our knowledge, this is the shortest known UC-PAKE, even without considering
adaptive corruption. The first UC-PAKE to consider adaptive corruption was by Abdalla, Chevalier
and Pointcheval [ACP09], which was a two round construction. Recently, Abdalla et al [ABB+13]
also constructed a single round protocol, which required a non-constant (more than 10 times the bit-
size of the password) number of group elements in each flow. Comparison with existing UC-PAKEs
is given in Table 2.

Our result only obtains adaptive security in synchronous models, where either one party sends
the first message in phase one and the second party responds in phase two (all phases being time
bound), or where both parties simulataneously send a message to the network adversary in round
one and adversary deivers both messages simultaneously in round two. For adaptive corruption
in the asynchronous model, where the adversary can corrupt a party even after the peer has
emitted its session key, we can only realize a relaxed ideal functionality Frpake that uses a non-
information oracle [CK02]. This is really a technical restriction1, as it can be shown that UC-secure
(password-based) constant message-length secure channel, for any constant, can be realized in the
Frpake-hybrid model [CK02] by a simple one-message protocol. Variable-length secure channel

1 More details as well as a discussion about the relaxed functionality can be found in Section 6.2.

6

realization anyway requires unnatural protocols as it is impossible to realize non-interactive non-
committing encryption in the standard model [Nie02]. Alternatively, one can consider a relaxed
non-information oracle based variable message-length secure channel, which can then be realized
using Frpake [CK02].

Table 2: Comparison with existing UC-PAKE schemes. m is the password size in bits and λ is the
security parameter. AC stands for Adaptive Corruption. For one-round schemes, message size is
per flow.

AC One-round Assumption Message size

[ACP09] yes no DDH O(mλ)
[KV11] no yes DLIN > 65×G
[JR12] no yes SXDH > 30 total group elements
[BBC+13] no yes SXDH 6×G1 + 5×G2

[ABB+13] yes yes SXDH 10 ∗m×G1 +m×G2

This paper yes yes SXDH 3×G1 + 1×G2

In Appendix F, we show that the recent efficient dual-system IBE [JR13] (inspired by the original
dual-system IBE of Waters [Wat09]) can also be obtained using the ideas of DSS-QA-NIZK. While
the construction is not black-box and utilizes additional “smoothness” and “single-pairing-product
test” properties of the verifier, it along with the other two applications clearly demonstrate the
power and utility of the new notion, which we expect will find many more applications.

2 Preliminaries: Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a (potential) language
member and the second called a witness. Note that each witness relation R defines a corresponding
language L which is the set of all x for which there exists a witness w, such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distribution D on a
collection of (witness-) relations R = {Rρ} (with corresponding languages Lρ). Recall that in a
quasi-adaptive NIZK, the CRS can be set after the language parameter has been chosen according
to D. Please refer to [JR13] for detailed definitions.

Definition 1 ([JR13]) We call (pargen, crsgen, prover, ver) a (labeled) quasi-adaptive non-interactive
zero-knowledge (QA-NIZK) proof system for witness-relations Rλ = {Rρ} with parameters sam-
pled from a distribution D over associated parameter language Lpar, if there exist such that for all
non-uniform PPT adversaries A1,A2,A3 we have (in all of the following probabilistic experiments,
the experiment starts by setting λ as λ← pargen(1m), and choosing ρ as ρ← Dλ):

Quasi-Adaptive Completeness:
Pr[crs←crsgen(λ, ρ); (x,w, l)← A1(crs, ρ);
π ← prover(crs, x, w, l) : ver(crs, x, l , π) = 1 if Rρ(x,w)] = 1

Quasi-Adaptive Soundness:
Pr[crs←crsgen(λ, ρ); (x, l , π)← A2(crs, ρ) : x 6∈ Lρ ∧ ver(crs, x, l , π) = 1] ≈ 0

7

Quasi-Adaptive Zero-Knowledge:

Pr[crs← crsgen(λ, ρ) : Aprover(crs,·,·,·)3 (crs, ρ) = 1] ≈
Pr[(crs, trap)← crs-sim(λ, ρ) : Asim

∗(crs,trap,·,·,·)
3 (crs, ρ) = 1],

where sim∗(crs, trap, x, w, l) = sim(crs, trap, x, l) for (x,w) ∈ Rρ and both oracles (i.e. prover and
sim∗) output failure if (x,w) 6∈ Rρ.

The QA-NIZK is called a statistical zero-knowledge QA-NIZK if the view of adversary A3 above
in the two experiments is statistically indistinguishable.

3 Dual-System Simulation-Soundness

To define dual-system simulation soundness of QA-NIZK proofs, we will consider three worlds: the
real-world, the partial-simulation world, and the one-time (or single theorem) full-simulation world.
While the real-world and the full-simulation world should be familiar from earlier definitions of
NIZK proof systems, the partial-simulation world leads to interesting possibilities. To start with,
in the partial simulation world, one would like the proof simulator to have access to partial or
complete witness of the potential language member2. Finally, in the quasi-adaptive setting, the
language parameters may actually be generated by the CRS simulator and hence the simulator
may have access to, say, the discrete logs of the language parameters, which can serve as further
trapdoors.

Rather than considering these general settings, we focus on a simple partial-simulation setting,
where (a) the CRS simulator can generate the language parameters itself and (b) the proof simulator
when invoked with a word x is given an additional bit β, which we call the membership bit, that
represents the information whether x is indeed a member or not.

The partial simulation world is required to be unbounded simulation-sound, and hopefully this
should be easier to prove than usual unbounded simulation-soundness (given that its simulators
have additional information). We also allow the partial simulation world to be sound with respect
to a private verifier (this concept has been considered earlier in [JR12]), and this further leads
to the possibility of easier and/or simpler constructions. A surprising property achievable under
such a definition is that one can go back and forth between the partial-simulation world and the
one-time full-simulation world even when simulating fake tuples.

Definition 2 (Dual-System Non-Interactive Proofs) A Dual-system non-interactive proof sys-
tem consists of PPT algorithms defined in three worlds as follows:

Real World consisting of:

• A pair of CRS generators (K0,K1), where K0 takes a unary string and produces an ensemble
parameter λ. (The ensemble parameter λ is used to sample a witness-relation parameter ρ using
Dλ in the security definition.) PPT algorithm K1 uses ρ (and λ) to produce the real-world CRS
ψ.

• A prover P that takes as input a CRS, a language member and its witness, a label, and produces
a proof.

2In case the proof simulator is being invoked on a non-language word, it is not immediately clear what this witness
can be, unless we also define a language and a distribution for a super-language which includes the language under
consideration as a subset.

8

• A verifier V that takes as input a CRS, a word, a label, and a proof, and outputs a single bit.

Partial-Simulation World consisting of:

• A semi-functional CRS simulator sfK1 that takes ensemble parameter λ as input and pro-
duces a witness relation parameter ρ, a semi-functional CRS σ, as well as two trapdoors τ and
η. The first trapdoor is used by the proof simulator, and the second by the private verifier.

• A semi-functional simulator sfSim that takes a CRS, a trapdoor τ , a word, a membership-bit
β, and a label, to produce a proof.

• A private verifier pV that takes a CRS, a trapdoor η, a word, a label, and a proof and outputs
a single bit.

One-time Full Simulation World consisting of:

• A one-time full-simulation CRS generator otfK1, that takes as input the ensemble pa-
rameter λ, the witness relation parameter ρ to produce a CRS and three trapdoors τ , τ1 and
η.

• A one-time full simulator otfSim that takes as input a CRS, a trapdoor τ1, a word, a label,
and produces a proof.

• A semi-functional verifier sfV that takes as input a CRS, a trapdoor η, a word, a label, a
proof and outputs a bit. The adversaries also have access to the semi-functional simulator.

Definition 3 (DSS-QA-NIZK) The definition of the real-world components of a dual-system
non-interactive proof to be complete and (computationally) sound are same as in QA-NIZK defini-
tion 1. Such a proof system is called a dual-system simulation-sound quasi-adaptive NIZK
(DSS-QA-NIZK) for a collection of witness relations Rλ = {Rρ}, with parameters sampled from
a distribution D, if its real-world components are complete and (computationally) sound, and if
for all non-uniform PPT adversaries A = (A0,A1,A2,A3,A4) all of the following properties are
satisfied (in all of the following probabilistic experiments, the experiment starts by setting λ as
λ← K0(1m)):

• (Composable) Partial-ZK:

Pr[ρ←Dλ;σ ← K1(λ, ρ);A0(σ, ρ) = 1] ≈ Pr[(ρ, σ, τ, η)← sfK1(λ);A0(σ, ρ) = 1],

and

Pr[(ρ, σ, τ, η)← sfK1(λ); A P(σ,·,·,·), sfSim(σ,τ,·,·,·), V(σ,·,·,·)
1 (σ, ρ) = 1] ≈

Pr[(ρ, σ, τ, η)← sfK1(λ); A sfSim∗(σ,τ,·,·,·), sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
1 (σ, ρ) = 1],

where sfSim∗(σ, τ, x, w, l) is defined to be sfSim(σ, τ, x, β = 1, l) (i.e. witness is dropped, and
membership-bit β = 1), and the experiment aborts if either a call to the first oracle (i.e. P and
sfSim∗) is with (x,w, l) s.t. ¬Rρ(x,w), or call to the second oracle is with an (x, β, l) s.t. x 6∈ Lρ
or β = 0.

• Unbounded Partial-Simulation Soundness:

Pr[(ρ, σ, τ, η)← sfK1(λ); (x, l , π)← A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
2 (σ, ρ) :

((x 6∈ Lρ) ∨ V(σ, x, l , π) = 0) ∧ pV(σ, η, x, l , π) = 1] ≈ 0.

9

Figure 1: The three worlds of a DSS-QA-NIZK

• One-time Full-ZK:

Pr[(ρ, σ, τ, η)← sfK1(λ); (x∗, l∗, β∗, s)← A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
3 (σ, ρ);

π∗ ← sfSim(σ, τ, x∗, β∗, l∗) : A sfSim(σ,τ,·,·,·), pV(σ,η,·,·,·)
4 (π∗, s) = 1] ≈

Pr[ρ←Dλ; (σ, τ, τ1, η)← otfK1(λ, ρ); (x∗, l∗, β∗, s)← A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)
3 (σ, ρ);

π∗ ← otfSim(σ, τ1, x
∗, l∗) : A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)

4 (π∗, s) = 1],

where the experiment aborts if either in the call to the first oracle, or in the (x∗, β∗) produced by
A3, the membership-bit provided is not correct for Lρ, or if 〈x∗, l∗, π∗〉 is queried to sfV/pV. Here
s is a state variable.

The three worlds and the properties of a DSS-QA-NIZK are depicted in Figure 1.

Remark 1. In the partial-simulation soundness definition, there is no restriction of x, l , π being
not the same as that obtained from a call to the first oracle sfSim.

Remark 2. Note that in the partial-ZK definition, the calls to the prover are restricted to ones
satisfying the relation. However, the calls to the simulator sfSim in the one-time full-ZK definition
are only restricted to having the correct membership bit β.

10

Remark 3. It can be shown that sfSim generated proofs on words (whether members or not)
are accepted by real-world verifier V (with semi-functional CRS). Of course, the private verifier
pV will even reject proofs generated by sfSim on non-language words. This justifies the name
“semi-functional simulator”. See Lemma 11 in Appendix A for a precise claim and proof.

It can also be shown that the semi-functional verifier sfV is still complete, i.e. it accepts language
members and proofs generated on them by P(σ, ·, ·, ·) (with σ generated by otfK1). As opposed to P
and pV, it may no longer be sound. This justifies the name “semi-functional verifier” a la Waters’
dual-system IBE construction. However, if the one-time full-ZK property holds statistically, it
can be shown that the semi-functional verifier is sound in the one-time full-simulation world. See
Lemma 12 in Appendix A for a precise statement.

Remark 4. The composable partial-ZK and unbounded partial-simulation soundness imply that
that the system is true-simulation-sound [Har11] w.r.t. the semi-functional simulator. More pre-
cisely, the following lemma holds.

Lemma 4 (true-simulation-soundness) For a DSS-QA-NIZK, for all PPT A,

Pr[(ρ, σ, τ, η) ← sfK1(λ); (x, l , π) ← AsfSim(σ,τ,·,·,·) (σ, ρ) : (x 6∈ Lρ) ∧ V(σ, x, l , π) = 1] ≈ 0,
where the experiment aborts if A invokes the oracle with some (y, β, l) , s.t. y 6∈ Lρ or β = 0.

The lemma is proved in Appendix A.

4 DSS-QA-NIZK for Linear Subspaces

In this section we show that languages that are linear subspaces of vector spaces of hard bilinear
groups have very short dual-system simulation sound QA-NIZK. In fact, under the symmetric-
external Diffie-Hellman (SXDH) assumption, such proofs only require two group elements, regard-
less of the subspace. It was shown in [JR14] that such subspaces have a QA-NIZK proof of just
one group element (under SXDH assumption). Our construction essentially shows that with one
additional group element, one can make the QA-NIZK dual-system simulation-sound. We will ac-
tually show a more general construction which is more widely applicable, and does not even refer
to bilinear groups or linear subspaces. Informally speaking, the requirement for such a general
construction for parameterized languages is that each language have a 2-universal projective hash
proof system and the augmented language with this hash proof attached have a QA-NIZK proof
system with statistical zero-knowledge. A few other properties of the QA-NIZK are required for
this construction, and we show that such properties already hold for the construction of [JR14].
Since for linear subspaces, 2-universal projective hash proofs are rather easy to obtain, the general
construction along with the QA-NIZK of [JR14] allows us to obtain a short DSS-QA-NIZK for
linear subspaces. Apart from abstracting the main ideas involved in the DSS-QA-NIZK construc-
tion for linear subspaces, the general construction’s wider applicability also allows us to extend our
results to linear subspaces with tags.

We start this section by briefly reviewing projective hash proofs [CS02], and their extensions to
distributions of languages, as they are extensively used in the rest of the section.

Projective Hash Proof System. For a language L, let X be a superset of L and let H =
(Hk)k∈K be a collection of (hash) functions indexed by K with domain X and range another set Π.
The hash function family is generalized to a notion of projective hash function family if there is a

11

set S of projection keys, and a projection map α : K → S, and further the action of Hk on subset
L of X is completely determined by the projection key α(k). Finally, the projective hash function
family is defined to be ε-universal2 is for all s ∈ S, x, x∗ ∈ X, and π, π∗ ∈ Π with x 6∈ L ∪ {x∗},
the following holds:

Pr[Hk(x) = π | Hk(x
∗) = π∗ ∧ α(k) = s] ≤ ε.

A projective hash function family is called ε-smooth if for all x ∈ X \L, the statistical distribution
between the following two distributions is ε: sample k uniformly from K and π′ uniformly from Π;
the first distribution is given by the pair (α(k), Hk(x)) and the second by the pair (α(k), π′). For
languages defined by a witness-relation R, the projective hash proof family constitutes a projective
hash proof system (PHPS) if α, Hk, and another public evaluation function Ĥ that computes Hk

on x ∈ L, given a witness of x and only the projection key α(k), are all efficiently computable. An
efficient algorithm for sampling the key k ∈ K is also assumed.

The above notions can also incorporate labels. In an extended PHPS, the hash functions take
an additional input called label. The public evaluation algorithm also takes this additional input
called label. All the above notions are now required to hold for each possible value of label. The
extended PHPS is now defined to be ε-universal2 is for all s ∈ S, x, x∗ ∈ X, all labels l and l∗,
and π, π∗ ∈ Π with x 6∈ L and (x, l) 6= (x∗, l∗), the following holds: Pr[Hk(x, l) = π | Hk(x

∗, l∗)
= π∗ ∧ α(k) = s] ≤ ε.

Since, we are interested in distributions of languages, we extend the above definition to distri-
bution of languages. So consider a parametrized class of languages {Lρ}ρ∈Lpar with the parameters
coming from an associated parameter language Lpar. Assume that all the languages in this collec-
tion are subsets of X. Let H as above be a collection of hash functions from X to Π. We say that
the hash family is a projective hash family if for all Lρ, the action of Hk on Lρ is determined by
α(k). Similarly, the hash family is ε-universal2 (ε-smooth) for {Lρ}ρ∈Lpar if for all languages Lρ
the ε-universal2 (resp. ε-smooth) property holds.

Intuition for the Construction. The main idea of the construction is to first attach (as a
proof component) a universal2 and smooth projective hash proof T . The DSS-QA-NIZK is then
just (T, π) , where π is a QA-NIZK proof of the original language augmented with hash proof T .
So, why should this work? First note that the smooth projective hash function is a designated-
verifier NIZK, and hence this component T is used in private verification. Secondly, since it is
universal2, its soundness will hold even when the Adversary gets to see the projection key α(k)
plus one possibly fake hash proof (i.e. Hk(x), where x not in the language).

We will assume in our general construction that the parameterized language is such that the
simulator can sample the language parameters along with auxiliary information that allows it to
easily verify a language member. For example, this auxiliary information can be discrete logs
of the language parameters. The idea of obtaining partial-ZK and unbounded partial-simulation
soundness is then pretty simple. The proof simulation of T is easy to accomplish given the hash
keys and, crucially, the correct membership-bit. In fact, if the membership-bit is false, T can just
be set randomly (by smoothness). The simulation of π part of the proof is done using the QA-NIZK
simulation trapdoor. The private verification is done as conjunction of three separate checks: (a)
using the auxiliary information, (b) using the hash proof and (c) using the real-world verifier.

Now, in the one-time full simulation, the auxiliary information is not available, but the semi-
functional verifier can still use hash keys. Further, we can have one bad use of keys (in full

12

simulation of one proof. Since the oracle calls to semi-functional simulator sfSim are restricted to
having correct membership-bit, they do not yield any additional information about the hash keys.

Requirements of the General Construction. Consider a parameterized class of languages
{Lρ}ρ∈Lpar, and a probability distribution D on Lpar. Assume that this class has a projective hash
proof system as above. Let Rρ be the corresponding witness relation of Lρ. Now consider the
augmented witness-relation R∗ρ,s defined as follows (for ρ ∈ Lpar and s ∈ S):

R∗ρ,s(〈x, T, l〉, w) ≡ (Rρ(x,w) ∧ T
?
= Ĥ(s, 〈x, l〉, w)).

Note, the witness remains the same for the augmented relation. Since H is a projective hash
function, it follows that for s = α(k), the corresponding augmented language is L∗ρ,s = {(x, T, l) | x ∈
Lρ ∧ T

?
= Hk(x, l)}. Let the distribution D′ on pairs (ρ, s) be defined by sampling ρ according to D

and sampling k uniformly from K, and setting s = α(k). We remark that the language parameters
of the augmented language include projection keys s (instead of keys k) because it is crucial that
the CRS simulator in the quasi-adaptive NIZK gets only the projection key s (and not k).

We will also assume that the distribution D on Lpar is efficiently witness sampleable which is
defined by requiring that there are two efficient (probabilistic) algorithms E1, E2 such that E1 can
sample ρ from D along with auxiliary information ψ (which can be thought of as witness of ρ in
the language Lpar), and E2 can decide w.h.p. if a potential language member x is in Lρ given ρ
and ψ, where the probability is defined over choice of ρ according to D and the internal coins of
E2.

Finally, we need a few additional properties of QA-NIZK proofs (section 2) that we now de-
fine. We will later show that the single group element QA-NIZK construction for linear-subspaces
of [JR14] already satisfies these properties.

Definition 5 There are various specializations of QA-NIZK of interest:

• The QA-NIZK (Section 2) is said to have composable zero-knowledge [GS08] if the CRS are
indistinguishable in the real and simulation worlds, and the simulation is indistinguishable even
if the adversary is given the trapdoor. More precisely, for all PPT adversary A1,A2,
Pr[crs← crsgen(λ, ρ) : A1(crs, ρ) = 1] ≈ Pr[(crs, trap)← crs-sim(λ, ρ): A1(crs, ρ) = 1],

and
Pr[(crs, trap)← crs-sim(λ, ρ) : Aprover(crs,·,·,·)2 (crs, ρ, trap) = 1] ≈
Pr[(crs, trap)← crs-sim(λ, ρ) : Asim

∗(crs,trap,·,·,·)
2 (crs, ρ, trap) = 1],

where A2 is restricted to calling the oracle only on (x,w, l) with (x,w) ∈ Rρ.

• The QA-NIZK is called true-simulation-sound [Har11] if the verifier is sound even when an
adaptive adversary has access to simulated proofs on language members. More precisely, for
all PPT A, Pr[(crs, trap) ← crs-sim(λ, ρ); (x, l , π) ← A(crs, ρ)sim(crs,trap,·,·) : x 6∈ Lρ ∧
ver(crs, x, l , π) = 1] ≈ 0, where the experiment aborts if the oracle is called with some y 6∈ Lρ.

• The simulator is said to generate unique acceptable proofs if for all x, all labels l , and all
proofs π∗, Pr[(crs, trap)← crs-sim(λ, ρ); π ← sim(crs, trap, x, l) : (π∗ 6= π) and ver(crs, x, l , π∗) =
1] ≈ 0.

13

General Construction. We now show that given:

1. An ε-smooth and ε-universal2 (labeled) projective hash proof system for the collection {Lρ}ρ∈Lpar,
and

2. A composable zero-knowledge, true-simulation-sound QA-NIZK Q= (pargen, crsgen, prover,
ver, crs-sim, sim) for the augmented parameterized language L∗ρ,s with probability distribution
D′, such that the simulator generates unique acceptable proofs, and

3. Efficient algorithms (E1, E2) s.t. D is efficiently witness-sampleable using (E1, E2), and

4. An efficient algorithm E3 to sample uniformly from Π,

one can construct a DSS-QA-NIZK for {Lρ}ρ∈Lpar with probability distribution D. We first give
the construction, and then prove the required properties. The QA-NIZK Q need not take any labels
as input. The various components of the dual-system non-interactive proof system Σ are as follows.

Real World consisting of:

• The algorithm K0 takes a unary string 1m as input and generates parameters λ using pargen of
Q on 1m. The CRS generation algorithm K1 uses crsgen of Q and produces the CRS as follows:
it takes λ and the language parameter ρ, and first samples k uniformly from Kλ (recalling that
the hash function families are ensembles, one for each λ). It then outputs the CRS to be the
pair (crsgen(λ, 〈ρ, α(k)〉), α(k)).

• The prover P takes a CRS (σ, s), input x, witness w, and label l and outputs the proof to
be (T, W) where T is computed using the public evaluation algorithm Ĥ as Ĥ(s, 〈x, l〉, w) and
W = prover(σ, 〈x, T, l〉, w).

• The verifier V on input CRS = (σ′, s) , x, l , and proof (T,W), returns the value ver(σ′,〈x, T, l〉,
W) (using ver of Q).

Partial-Simulation World consisting of:

• The semi-functional CRS simulator sfK1 takes λ as input and samples (ρ, ψ) using E1, and
also samples k uniformly from Kλ. It then uses crs-sim of Q, and key projection algorithm α
to generate the CRS σ as follows: Let (σ′, trap) = crs-sim(λ, 〈ρ, α(k)〉). The CRS σ is then the
pair (σ′, α(k)). sfK1 also outputs k, trap as proof simulator trapdoors τ , and ρ, ψ, k as private
verifier trapdoors η.

• The semi-functional simulator sfSim uses trapdoors k, trap to produce a (partially-simulated)
proof for a potential language member x, a label l and a binary bit β using sim of Q as follows:
if β = 1, output

T = Hk(x, l), W = sim(σ, trap, 〈x, T, l〉),

else sample π′ at random from Π (using E3) and output

T = π′ , W = sim(σ, trap, 〈x, T, l〉).

This proof is partially simulated as it uses the bit β.

14

• The private verifier pV uses trapdoors (ρ, ψ, k) to check a potential language member x, label
l and a proof T,W as follows: it outputs 1 iff (a) E2 using ρ and ψ confirms that x is in Lρ, and
(b) Hk(x, l) computes to be equal to T , and (c) verifier of Q accepts, i.e. ver(σ, 〈x, T, l〉,W) = 1.

One-time Full Simulation World consisting of:

• The one-time full-simulation CRS generator otfK1 takes as input λ and language pa-
rameter ρ, and using crs-sim of Q outputs σ as follows: first it samples k uniformly from Kλ.
Let (σ′, trap) = crs-sim(λ, 〈ρ, α(k)〉). Then σ = (σ′, α(k)). otfK1 also outputs k, trap as proof
simulator trapdoors τ and τ1, and outputs k as private verifier trapdoor η.

• The one-time full simulator otfSim takes as input the trapdoors k, trap and a potential
language member x and a label l to produce a proof as follows:

T = Hk(x, l), W = sim(σ, trap, 〈x, T, l〉).

• The semi-functional verifier sfV uses trapdoors k to verify a potential language member x,
a label l and a proof T,W as follows: output 1 iff (a) Hk(x, l) computes to be same as T , and
(b) ver(σ, 〈x, T, l〉,W) = 1.

Theorem 6 For a parameterized class of languages {Lρ}ρ∈Lpar with probability distribution D, if
the above four conditions hold for projective hash family H, QA-NIZK Q, and efficient algorithms
E1, E2, E3, then the above dual-system non-interactive proof system Σ is a DSS-QA-NIZK for
{Lρ}ρ∈Lpar with probability distribution D.

Remark. in Appendix B.1 we instantiate the general construction for linear subspaces of vector
spaces of hard bilinear groups. As a corollary, it follows that under the SXDH assumption the
Diffie-Hellman (DH) language has a DSS-QA-NIZK with only two group elements.

Due to space limitations, we will focus on only the proof of one-time zero-knowledge (otzk)
property, as that is the most non-trivial proof. Indeed, this property is a significant generalization
of the usual dual-system technique employed in IBE constructions because although in otzk only one
proof needs to be fully simulated (i.e. without its membership bit being available), all the private
verifier calls in the partial-simulation world need to be simulated in the otzk world without the
quasi-adaptive trapdoors (i.e. trapdoor obtained by witness-sampling the language parameters).
Recall, in the IBE construction the ciphertext is the counterpart of our verifier, and the IBE private
keys are the QA-NIZK proofs. Thus, in IBE only a single ciphertext needs to be simulated when
the different private keys are being “fixed” one-by-one by otzk simulation.

The detailed proof of all other properties is given in Appendix B. The main idea of the proof
of these properties is already sketched earlier in this section.

Lemma 7 In the context of Theorem 6, let the maximum probability that the simulator of Q does
not generate unique acceptable proofs be δ. Let H be an ε-smooth and ε-universal2 (labeled) projec-
tive hash proof system for the collection {Lρ}ρ∈Lpar. Let M be the number of calls to the second

oracle (verifier) by A3 and A4 combined in the two experiments of the one-time full-ZK prop-
erty of DSS-QA-NIZK Σ. Then the maximum statistical distance (over all Adversaries) between

the views of the adversaries (A3,A4) in these two experiments, denoted distotzk(Σ), is at most
(ε+ δ) ∗ (1 +M).

15

Proof: We will show that the one-time full-ZK property holds statistically. We will define a
sequence of experiments and show that the view of the adversary is statistically indistinguishable
in every two consecutive experiments. The first experiment H0 is identical to the partial-simulation
world. First, note that ρ is identically generated using D in both worlds. Next, note that the CRS
σ and trapdoors τ generated by sfK1 is identically distributed to the CRS σ and both the trapdoors
τ and τ1 generated by otfK1.

The next experiment H1 is identical to H0 except that on A3 supplied input (x∗, l∗, β∗) the
proof π∗ generated by sfSim is replaced by proof generated by otfSim. If β∗ provided by A3 is not
the valid membership bit for x∗ then both experiments abort. So, assume that β∗ is the correct
membership bit. In case β∗ = 1, both sfSim and otfSim behave identically. When β∗ = 0, the
random T ∗ produced by sfSim is identically distributed to the T ∗ generated by Hk(x

∗, l∗) since H
is assumed to be smooth.

The next experiment H2 is identical to H1 except that the second oracle is replaced by sfV (from
being pV). In order to show that the view of the adversary is indistinguishable in experiments H2

and H1, we define several hybrid experiments H1,i (for 0 ≤ i ≤ N , where N is the total number
of calls to the second-oracle by A3 and A4 combined). Experiment H1,0 is identical to H1, and
the intermediate experiments are defined inductively, by modifying the response of one additional
second-oracle call starting with the last (N -th) second-oracle call, and ending with the changed
response of the first second-oracle call. The last hybrid experiment H1,N will then be same as H2.
The second-oracle call response in experiment H1,i+1 differs only in the (N − i)-th second-oracle
call response in H1,i. In the latter experiment, this call is still served as in H1 (i.e. using pV). In
the former experiment H1,i+1, the (N − i)-th call is responded to as defined in H2 above (i.e. using
sfV).

To show that the view of the adversary is statistically indistinguishable in H1,i and H1,i+1,
first note that the view of the adversary (A3 and A4 combined) till it’s (N − i)-th call in both
experiments is identical. Moreover, as we next show, the dependence on k of this partial view (i.e.
till the (N − i)-th call) is limited to α(k) and at most one evaluation of Hk (by otfSim) on an input
that is not in Lρ. To start with, the CRS generated by sfK1 depends only on α(k). Next, the first
oracle sfSim produces T using Hk on its input only if the membership bitβ is 1 and correct, and
since H is projective this hash value is then completely determined by α(k). Finally, all calls to
the second oracle till the (N − i)-th call are still served using pV, and again using the projective
property of H, it is clear that the conjunct (b) in pV can be computed using only α(k), because
for non Lρ members, the conjunct (a) is already false, and hence (b) is redundant.

Now, the difference in the (N − i)-th call is that the conjunct (a) of pV is missing in sfV. Let
x, l , T,W be the input supplied by the Adversary to this call. If Hk(x, l) is not equal to the supplied
T , then both pV and sfV return 0. So, suppose Hk(x, l) is equal to T , and yet x is not in Lρ, i.e.
conjunct (a) of pV is false. First, if this input x, l , T,W is same as (x∗, l∗, T ∗,W ∗) associated with
the one-time call to otfSim, then the experiment aborts. Thus, we can assume that this is a different
input. If (x, l) is same as (x∗, l∗), then (T,W) 6= (T ∗,W ∗). Now, by construction (i.e. by definition
of otfSim) T ∗ = Hk(x

∗, l∗), and hence either T 6= Hk(x, l) which is not possible by hypothesis, or
(x, l , T) = (x∗, l∗, T ∗) and W 6= W ∗. But, W ∗ is proof generated by the simulator of Q, and since
the simulator of Q generates unique acceptable proofs (by assumption), the verifier ver of Q rejects
(x, l , T,W), and thus both pV and sfV return 0.

On the other hand, if (x, l) 6= (x∗, l∗) then by the ε-universal2 property of H, the probability of T
being same as Hk(x, l) is at most ε. Thus, both pV and sfV return 0. That completes the induction

16

step, and thus the view of the adversary in experiments H1 and H2 is statistically indistinguishable.
The next experiment H3 is identical to H2 except that the CRS is generated using otfK1. The

only difference is that the (verifier) trapdoor does not include ρ, ψ. But, since the second oracle
is served by sfV and it does not need ρ, ψ, the experiment H3 is well-defined and statistically
indistinguishable from H2, Further, H3 is identical to the one-time simulation world, and that
completes the proof.

The statistical distance between the views of the adversaries (A3,A4) in H0 and H3 is at most
(ε+ δ) ∗ (1 +M). � �

5 Keyed-Homomorphic CCA Encryption

Keyed-Homomorphic Encryption is a primitive, first developed in [EHO+13], which allows homo-
morphic operations with a restricted evaluation key, while preserving different flavors of semantic
security depending on whether access to the evaluation key is provided or not. For an adversary
not having access to the evaluation key, the homomorphic operation should not be available and
this is ensured by requiring CCA security. However, if an adversary comes into possession of the
evaluation key, CCA security can no longer be preserved and thus weaker forms of security, such
as CCA1, are required. In [LPJY14], the authors gave improved constructions for multiplicative
homomorphism with better security guarantees.

A KH-PKE scheme consists of algorithms (KeyGen,Enc,Dec,Eval), where the first three
are familiar from public-key encryption, and KeyGen generates a public key pk, a decryption key
skd and an Eval key skh. Algorithm Eval takes two ciphertexts and returns a ciphertext or ⊥.
Detailed definitions can be found in Appendix C. The scheme is said to be correct if (i) for Enc
we have Dec(skd, Enc(pk,M)) = M , where skd is the secret decryption key, and (ii) for Eval we
have Dec(skd, Eval(skh, C1, C2)) = Dec(skd, C1)�Dec(skd, C2), where � is a binary operation on
plaintexts, and if any operand of � is ⊥ then the result is ⊥. The KH-PKE scheme is defined to be
KH-CCA secure by a usual public-key CCA experiment with the following twists: the challenger
maintains a set D of ciphertexts dependent on the challenge ciphertext (via Eval); decryption
queries are not allowed on ciphertexts in D. Further, an adversary A can adaptively ask for skh,
which we call the reveal event. After the reveal event, the Eval oracle is not available. Similarly,
decryption is not available after A has both requested skh and obtained the challenge ciphertext,
in any order. Again, detailed definitions can be found in Appendix C.

Construction. We present a construction of a KH-CCA secure KH-PKE encryption scheme with
multiplicative homomorphism which utilizes our general DSS-QA-NIZK construction for the Diffie-
Hellman (DH) language. In fact, if we assume that the adversary never invokes RevHK, we can
prove security generically assuming any DSS-QA-NIZK (with statistical one-time full-ZK) for the
DH language. When the adversary invokes RevHK, the partial-simulation trapdoor is revealed to
the Adversary, and hence the one-time full-ZK property of DSS-QA-NIZK may not hold. Thus,
we a need a stronger notion of DSS-QA-NIZK that incorporates the reveal event, and includes
an additional requirement that the semi-functional verifier remains sound as before. Using this
stronger notion, we can prove generic security of the KH-PKE scheme even with RevHK, and we
further show that our general construction of Section 4 continues to satisfy this stronger property.

We start with the observation that a standard El Gamal encryption scheme (gx,m · fx) is
multiplicatively homomorphic, but is not CCA secure due to the exact same reason. The main idea

17

of our construction is as follows. The ciphertexts include an El-Gamal encryption of the message M ,
say gr,M ·gkr for a public key gk. The public key also consists of a member ga, and the ciphertext
also include gar (we refer to this triple in the ciphertext as augmented El-Gamal encryption). It
is well-known [JR12] that if a one-time simulation-sound NIZK proof of gr and gar being of the
correct form is also included in the ciphertext then it becomes a publicly-verifiable CCA2-secure
encryption scheme. In our keyed-homomorphic construction, we include a DSS-QA-NIZK for gr

and gar being of the correct form (i.e. being a DH tuple). Although the DSS-QA-NIZK itself is
not homomorphic, we can take advantage of the corresponding Semi-Functional Simulator sfSim
and simulate the proof of a multiplicatively generated (augmented) El Gamal encryption when
computing a homomorphic evaluation.

So, given a dual-system non-interactive proof Σ, consider the following algorithms for a KH-PKE
scheme P:

KeyGen: Generate g, a, k randomly. Use sfK1 of Σ to get CRS σ and trapdoors τ and η, and
language parameters ρ = (g,ga). Set pk = (g,ga,gk, σ), skh = τ , skd = k.

Enc: Given plaintext m, generate w ← Zq and compute (using P of Σ)
c := (gw,gaw, γ,P(σ, (gw,gaw), w, l = γ)), where γ := m · gkw.

Dec: Given ciphertext c = (ρ, ρ̂, γ, π), first check if V(σ, π, (ρ, ρ̂), γ) of Σ holds, then compute
m := γ/ρk.

Eval (multiplicative): Given ciphertexts c1 = (ρ1, ρ̂1, γ1, π1) and c2 = (ρ2, ρ̂2, γ2, π2), first check
if V(σ, πi, (ρi, ρ̂i), γi) of Σ holds for all i ∈ {1, 2}. Then compute: ρ = ρ1ρ2ρ3, ρ̂ = ρ̂1ρ̂2ρ̂3,
γ = γ1γ2γ3, where 〈ρ3, ρ̂3, γ3〉 is a fresh random tuple obtained by picking r at random and setting
the tuple to be 〈gr, (ga)r, (gk)r〉. Then compute π := sfSim(σ, τ, (ρ, ρ̂), β = 1, l = γ) using sfSim
of Σ. Output ciphertext c := (ρ, ρ̂, γ, π).

Theorem 8 (Security of Construction) The above algorithms P= (KeyGen, Enc, Dec, Eval)
constitute a KH-CCA secure Keyed-Homomorphic Public Key Encryption scheme with multiplica-
tive homomorphism, if Σ is a DSS-QA-NIZK for the parameterized Diffie-Hellman language (with
language parameters distributed randomly) and RevHK is not available.

The main idea of the proof of the above theorem is similar to proofs of CCA2-secure public key
encryption schemes using alternate decryption. In other words, the ciphertext can be decrypted as
m := γ/ρk, or as m := γ/(ρk0 ρ̂k1), where k = k0 + ak1. But, this requires that the ciphertext has
correct ρ̂ component, i.e. ρ̂ = ρa. The ciphertexts include a NIZK for this purpose, but the NIZK
needs to be simulation-sound. Additional complication arises because of dependent ciphertexts. To
handle this, we first build an intermediate experiment where all dependent ciphertexts are generated
using fresh random El Gamal tuples. Indistinguishability of such an intermediate experiment from
the KH-CCA experiment is shown inductively, by carefully employing one-time full-ZK and partial-
simulation unbounded simulation soundness. The theorem is proved in detail in Appendix C.1. The
Adversary’s advantage in the KH-CCA security game is at most (8L+1) ·advddh+O(L/q), where
L is the total number of calls to Eval.

The more general theorem (with RevHK) is stated and proved in Appendix C.2. Under the
SXDH assumption, the above construction leads to ciphertexts of size only five group elements.
Further, using an augmented Diffie Hellman language (augmented with a smooth hash proof of

18

DH tuple) and its DSS-QA-NIZK, we also extend our result to get CCA1-security despite the key
being revealed (see Appendix C.2). The resulting scheme has KH-PKE ciphertexts of size six group
elements.

6 Single-Round UC Password-Based Key Exchange

The essential elements of the Universal Composability framework can be found in [Can01]. In the
following, we adopt the definition for password-based key exchange (UC-PAKE) from Canetti et
al [CHK+05].

6.1 UC-PAKE Definition

Functionality Fpake

The functionality Fpake is parameterized by a security parameter k. It interacts with an adversary S and a set of
parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if this is the second
NewSession query and there is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw) and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw′) from the adversary S:
If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record compromised and
reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw
′) with pw′ = pw, and a key sk′ was sent to Pj , and

(Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Upon receiving (Corrupt, sid, Pi) from S: if there is a (Pi, Pj , pw) recorded, return pw to S, and mark Pi cor-
rupted.

Figure 2: The password-based key-exchange functionality Fpake

Just as in the normal key-exchange functionality, if both participating parties are not corrupted,
then they receive the same uniformly distributed session key and the adversary learns nothing of
the key except that it was generated. However, if one of the parties is corrupted, then the adversary
determines the session key. This power to the adversary is also given in case it succeeds in guessing
the parties’ shared password. Participants also detect when the adversary makes an unsuccessful
attempt. If the adversary makes a wrong password guess in a given session, then the session is
marked interrupted and the parties are provided random and independent session keys. If however
the adversary makes a successful guess, then the session is marked compromised, and the adversary
is allowed to set the session key. If a session remains marked fresh, meaning that it is neither
interrupted nor compromised. uncorrupted parties conclude with both parties receiving the same,
uniformly distributed session key.

The formal description of the UC-PAKE functionality Fpake is given in Figure 2.

19

If a party is corrupted, the ideal world adversary is provided with the password. Moreover, if a
party is corrupted after its peer has already issued a session key, and the party has not yet issued
a session key, then the Adversary is given the session key.

The real-world protocol we provide is also shown to be secure when different sessions use the
same common reference string (CRS) To achieve this goal, we consider the universal Composability
with joint state (JUC) formalism of Canetti and Rabin [CR03]. This formalism provides a “wrapper
layer” that deals with “joint state” among different copies of the protocol. In particular, defining
a functionality F also implicitly defines the multi-session extension of F(denoted by F̂): F̂ runs
multiple independent copies of F , where the copies are distinguished via sub-session IDs ssid. The
JUC theorem [CR03] asserts that for any protocol π that uses multiple independent copies of F ,
composing π instead with a single copy of a protocol that realizes F̂ , preserves the security of π.

6.2 UC-RPAKE Definition using Non-Information Oracle

In the UC-PAKE ideal functionality Fpake, on corruption of a party (if its peer has already issued a
session key) the session key is provided to the ideal world adversary. However, it has been pointed
out in [CK02] that some efficient protocols, especially two message protocols, cannot realize this
ideal functionality under such adaptive corruption, i.e. when a party is corrupted after its peer has
emitted the session key. This is the case even though these protocols can be used to build secure
channels.

Thus, it is worth considering a relaxed UC-PAKE ideal functionality which can be realized
by these efficient protocols. [CK02] suggest using an ideal functionality parameterized by a non-
information oracle. A non-information oracle N is an interacting probabilistic Turing machine,
which interacts with the ideal world adversary, and outputs a key which is indistinguishable from
uniformly random to the ideal world adversary, if the adversary is efficient. In a multi-session
version, the non-information oracle N̂ , starts with a first phase where it receives a message from
the ideal world adversary and generates a state σ, and a message τ for the adversary. For example,
it can expect a bilinear pairing group along with generators and just check that the generators
are of claimed order. In the next phase, for each session it spawns a new N initialized with σ,
and auxiliary information consisting of both passwords stored in records for the two parties in the
session (this auxiliary information is provided by the ideal functionality). For each N we will refer
to the random coins, passwords and all other inputs from the adversary used by N to generate the
key from σ as local witness. For any party, the adversary can call N with a corrupt message
and N computes a state ξ from the local witness, the incoming message and password stored in
the record for all sessions and this party and gives it to the adversary. We will refer to ξ as local
ample-witness. On a NewKey call from the adversary, N computes a key and outputs the key,
as its final output. This output is not to the adversary, but to the ideal functionality. On a
NewKeySim call from the adversary, N computes a key and returns the key to the adversary (i.e.
does not output).

For defining non-information multi-session oracle N̂ consider another interactive Turing ma-
chine M̂ with the same interface as N̂ such that M̂ does not use the passwords provided by the
functionality, and further for any adaptively chosen choice of a session by the adversary, on NewKey
call it outputs a random and independent key. The adversary cannot call corrupt for this party
or the peer in this session if their passwords are the same. M̂ can still use the passwords for
computing the local ample-witness. The multi-session oracle N̂ is called a non-information oracle
for password-based key-exchange if there exists another interactive Turing machine M̂ such that

20

no efficient adversary can distinguish between the interacting with N̂ or M̂.

Thus, in the relaxed (multi-session) ideal functionality F̂
ˆN
rpake, the ideal functionality is param-

eterized by a security parameter k, and a non-information oracle N̂ . As a first step in the ideal
functionality, the non-information oracle N̂ expects a message from the Adversary, it computes τ
and σ, sends τ to the Adversary, and saves σ as the starting state of all the individual session N
it is going to spawn.

Also, on receiving a query (NewSession, sid, ssid, Pi, Pj , pw, role) from party Pj , recall the ideal
functionality sends (NewSession, sid, ssid, Pi, Pj , role) to S. N̂ spawns a new N for this ssid (unless
it was already started) and sets its initial state to σ. Moreover N is provided with pw as auxiliary
information by the ideal functionality. N can expect the message (NewSession, sid, ssid, Pi, Pj , role)
from S, which then sends a reply meesage to S.

Further, in the step “in any other case, pick a new random key sk′ of length k and send
(sid, ssid, sk′) to Pi” is now replaced by “in any other case, send (NewKey, sid, ssid, Pi) to S which
then calls N with the same. N then outputs a key sk′ and then the ideal functionality outputs
(sid, ssid, sk′) to Pi”.

Finally, on corruption of a party Pi, for every session such that there is a record of the form
(ssid, Pi, Pj , pw) which is fresh, and there is a record (ssid, Pj , Pi, pw

′) with pw′ = pw, and a key
sk′ was sent to Pj in session ssid, and (ssid, Pj , Pi, pw) was fresh at the time, then output the local
coins of N of that session ssid to S. The password pw is also revealed to S as usual.

6.2.1 Discussion about Non-Information Oracle Relaxation

The ideal functionality FNrpake is both a relaxation and a restriction of Fpake. It is a restriction
because its realization would require N -based protocols. This is not a problem, as we do show such
a realization. It is a relaxation because this protocol does not seem to realize Fpake. However, this
is really an artifact of the N -restriction. The definition of realization says that for every adversary
A in the real world (protocol) its view is indistinguishable from the view of another adversary S
in the ideal world. Since in the ideal world (as long as there is no corruption) the adversary S
gets no information about the session key or the password, it must also be the case in the real
world. This property holds for both ideal functionalities Fpake and Frpake. Now, if a party is
corrupted after the session key is output by the peer (and it has output its outgoing message to
the adversary A), we do expect in the real world for the adversary A to obtain this session key as
well as local state stored at the party to compute the session key (including password). However,

the security guarantee should be that the A should not get anything beyond that. The FNrpake
ideal functionality discloses to the ideal world adversary S the session key as well as information
it used to generate the session key. This is information which is based completely on the internal
random coins of the ideal functionality, and its interaction with adversary, and the passwords. This
information is no more than the information we are expected to securely release to the adversary in
the real world. In the multi-session version, releasing the local ample-witness of multiple sessions
does not affect the security of other sessions as keys in those session continue to appear random to
the efficient adversary, by multi-session non-information stipulation. Similarly, information about
passwords in the good sessions is zero-knowledge.

21

Generate g1 ← G1,g2 ← G2 and a, b, c, d, e, u1, u2 ← Zq, and let H be a CRHF.

Compute a = ga1 , d = gd1, e = ge1, w1 = gu1
1 , w2 = gu2

1

b = gb2, c = gc2, v1 = gu1b−d−ca
2 , v2 = gu2b−e

2 .

CRS := (g1,g2,a,b, c,d, e,w1,w2,v1,v2,H).

Party Pi Network

Input (NewSession, sid, ssid, Pi, Pj , pwd, initiator/responder)

Choose r1, s1
$←− Zq.

Set R1 = gr11 , S1 = pwd · ar1 , T1 = (d · ei1)r1 , ρ̂1 = bs1 ,
R1,S1,T1,ρ̂1−−−−−−−−→ Pj

ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v
i′2
2)s1 .

W1 = (w1w
i1
2)r1 , where i1 = H(sid, ssid, Pi, Pj , R1, S1, ρ̂1)

and erase r1, s1. Send R1, S1, T1, ρ̂1, and retain ρ1, θ1, γ1,W1.

Receive R′2, S
′
2, T

′
2, ρ̂
′
2. Let i′2 = H(sid, ssid, Pj , Pi, R

′
2, S
′
2, ρ̂
′
2)

If any of R′2, S
′
2, T

′
2, ρ̂
′
2 is not in their respective group or is 1,

set sk1
$←− GT , else

R′
2,S

′
2,T

′
2,ρ̂

′
2←−−−−−−−− Pj

Compute sk1 = e(T ′2, ρ1) · e(S′2/pwd, θ1) · e(R′2, γ1) · e(W1, ρ̂
′
2)

Output (sid, ssid, sk1).

Figure 3: Single round UC-secure Password-authenticated KE under SXDH Assumption.

6.3 Main Idea of the UC Protocol using DSS-QA-NIZK

For the sake of exposition, let’s call one party in the session the server and the other the client.
(There is no such distinction in the actual protocol, and in fact each party will run two parallel
protocols, one as a client and another as a server, and output the product of the two keys generated).
The common reference string (CRS) defines a Diffie-Hellman language, i.e. ρ = g1,g

a
1. The client

picks a fresh Diffie-Hellman tuple by picking a witness r and computing 〈x1 = gr1,x2 = ga·r1 〉. It
also computes a DSS-QA-NIZK proof on this tuple, which is a hash proof T and a QA-NIZK proof
W of the augmented Diffie-Hellman tuple. Note, the QA-NIZK proof W is just a single group
element [JR14] (see Appendix B.2 for details). It next modifies the Diffie-Hellman tuple using the
password pwd it possesses. Essentially, it multiplies x2 by pwd to get a modified group element
which we will denote by S. It next sends this modified Diffie-Hellman tuple, i.e. x1, S, and the
T component of the proof to the server. It retains W for later use. At this point it can erase the
witness r.

As a first step, we intend to utilize an interesting property of the real-world verifier V of the
DSS-QA-NIZK: the verifier is just the verifier of the QA-NIZK for the DH language augmented with
the hash proof, and the QA-NIZK verifiers for linear subspaces are just a single bi-linear product
test. Specifically (see Appendix B.2), V on input x1,x2 and proof T,W , computes ι = H(x1,x2),
and outputs true iff

e(x1, (v1v
ι
2)) · e(x2, c) · e(T,g2) = e(W,b).

Thus, it outputs true iff the left-hand-size (LHS) equals the right-hand-side (RHS) of the above
equation. Note that the client sent x1, S (i.e. x2 linearly modified by pwd) and T to the server.
Assuming the server has the same password pwd, it can un-modify the received message and get
x2 = S/pwd, and hence can compute this LHS (using the CRS). The client retained W , and can
compute the RHS (using the CRS).

The intuition is that unless an adversary out-right guesses the password, it cannot produce a

22

different x′1, S
′, T ′, such that x′1, S

′/pwd, T ′ used to compute the LHS will match the RHS above.
While we make this intuition rigorous later by showing a UC simulator, to complete the description
of the protocol, and using this intuition, the client and server actually compute the LHS and RHS
respectively of the following equation (for a fresh random s ∈ Zq picked by the server):

e(x1, (v1v
ι
2)s) · e(x2, c

s) · e(T,gs2) = e(W,bs). (1)

Now note that for the client to be able to compute the RHS, it must have bs, since s was picked
by the server afresh. For this purpose, the protocol requires that the server send bs to the client
(note this can be done independently and asynchronously of the message coming from the client).
It is not difficult to see, from completeness of the prover and verifier of the DSS-QA-NIZK, that
both parties compute the same quantity.

As mentioned earlier, each pair of parties actually run two versions of the above protocol, where-
in each party plays the part of client in one version, and the part of server in the other version.
Each party then outputs the product of the LHS of (1) computation (in the server version) and
the RHS of (1) computation (in the client version) as the session-key. We will refer to these two
factors in the session-key computation as the server factor and the client factor resp. This is the
final UC-PAKE protocol described in Fig. 6.2.1 (with the parties identities, session identifiers and
bs from its server version, used as label). The quantity x1 is called R in the protocol, as subscripts
will be used for other purposes.

Theorem 9 Assuming the existence of SXDH-hard groups, the protocol in Fig 6.2.1 securely re-
alizes the F̂pake functionality in the Fcrs hybrid model, in the presence of adaptive corruption
adversaries, as long as an adversary does not corrupt a party after its peer has issued a key in a
session and the adversary has not delivered the message in the session from the peer to the party.

The theorem is proved in Appendix D. We provide the intuition below.

Theorem 10 Assuming the existence of SXDH-hard groups, there exists a multi-session non-

information oracle N̂ such that the protocol in Fig 6.2.1 securely realizes the F̂
ˆN
rpake functionality

in the Fcrs hybrid model, in the presence of adaptive corruption adversaries.

In appendix E we describe the changes required in the proof of theorem 9 to get the proof of this
theorem.

6.4 Main Idea of the UC Simulator

We first re-define the various verifiers in the DSS-QA-NIZK for the DH language described in
Section B.2, to bring them in line with the above description. In particular, the real-world verifier
V is defined equivalently to be: the verifier V takes as input CRSv, a potential language member
〈x1,x2〉, and a proof π = (T,W), computes ι = H(x1,x2, l), picks a fresh random s ∈ Zq, and
outputs true iff

e(x1, (v1v
ι
2))s · e(x2, c)s · e(T,g2)s = e(W,bs).

This is equivalent as long as s 6= 0.
The partial-simulation world private-verifier pV is now defined as: it checks a potential language

member 〈x1,x2〉 and a proof T,W as follows: compute ι = H(x1,x2, l); pick s and s′ randomly

23

and independently from Zq, and if x2 = xa1 and T = xd+ιe
1 then set ξ = 1T else set ξ = e(g1,g2)s

′

and output true iff
e(x1, (v1v

ι
2))s · e(x2, c)s · e(T,g2)s · ξ = e(W,bs). (2)

This is equivalent to the earlier definition of pV with high probability by an information-theoretic
argument, if the trapdoors used were generated by the semi-functional CRS generator sfK1.

The UC simulator S works as follows: It will generate the CRS for F̂pake using the semi-
functional CRS generator sfK1 for the Diffie-Hellman language. The next main difference is in the
simulation of the outgoing message of the real world parties: S uses a dummy message µ instead
of the real password which it does not have access to. Further, it postpones computation of W
till the session-key generation time. Finally, another difference is in the processing of the incoming
message, where S decrypts the incoming message R′2, S

′
2, T

′
2 to compute a pwd′, which it uses to

call the ideal functionality’s test function. It next generates a sk similar to how it is generated in
the real-world (recall the computation of server factor and client factor by LHS and RHS of (1))
except that it uses the equation (2) corresponding to the private verifier. It sends sk to the ideal
functionality to be output to the party concerned.

Note, S simulating the server factor computation can compute the LHS of equation (2), except
S does not have direct access to pwd and hence cannot get x2 from the modified Ŝ that it receives.
However, it can do the following: Use the TestPwd functionality of the ideal functionality F̂pake

with a pwd′ computed as Ŝ/xa1. If this pwd′ does not match the pwd recorded in F̂pake for this

session and party, then F̂pake anyway outputs a fresh random session key, which will then turn
out to be correct simulation (note, this case is same as x2 (= S/pwd) 6= xa1, which would also
have resulted in the same computation on the LHS). If the pwd′ matched the pwd, the simulator
is notified the same, and hence it can now do the following: if T = xd+ιe

1 then set ξ = 1T else set

ξ = ε(g1,g2)s
′
. Next, it calls F̂pake’s NewKey with session key e(x1, (v1v

ι
2))s · e(xa1, c)s · e(T,g2)s · ξ

(multiplied by a RHS computation of (2) in simulation of the client factor, which we will discuss
later).

The UC Simulator S must also simulate gr1,pwd · (ga1)r and the T component of the DSS-
QA-NIZK, as that is the message sent out to the adversary by the real party (“client” part of the
protocol). However, S does not have access to pwd. It can just generate a fake tuple gr1, µ ·(ga1)r ·gr′1
(for some constant or randomly chosen group element µ, and some random and independent r′ ∈
Zq). Now, the semi-functional (proof) simulator sfSim of the DSS-QA-NIZK of Section B.2 has
an interesting property that when the tuple 〈x1,x2〉 does not belong to the language (language
membership-bit zero), the T component of the simulated proof can just be generated randomly.

The simulator also needs W to compute the client factor, and we had postponed it till the
session-key computation phase. As mentioned above, if the password pwd′ “decrypted” from the
incoming message is not correct then the key is anyway set to be random, and hence a proper W
is not even required. However, if the pwd′ is correct, the simulator is notified of same, and hence it
can compute W component of the proof by passing x2 = µ · (ga1)r · gr′1 /pwd′ along with x1 (= gr1)
to sfSim.

Of course, fixing the above fake tuples employs one-time full-simulation property of the DSS-
QA-NIZK (and the DDH assumption).

24

6.5 Main Idea of the Proof of UC Realization

The proof that the simulator S described above simulates the Adversary in the real-world protocol,
follows essentially from the properties of the DSS-QA-NIZK, although not generically since the
real-world protocol and the simulator use the verifiers V and pV (resp.) in a split fashion. However,
as described above the proof is very similar and we give a broad outline here. The proof will
describe various experiments between a challenger C and the adversary, which we will just assume
to be the environment Z (as the adversary A can be assumed to be just dummy and following Z’s
commands). In the first experiment the challenger C will just be the combination of the code of the
simulator S above and F̂pake. In particular, after the environment issues a NewSession request with
a password pwd, the challenger gets that password. So, while in the first experiment, the challenger
(copying S) does not use pwd directly, from the next experiment on-wards, it can use the pwd.
Thus, the main goal of the ensuing experiments is to modify the fake tuples gr1, µ · (ga1)r · gr′1
by real tuples (as in real-world) gr1, pwd · (ga1)r, since the challenger has access to pwd. This is
accomplished by a hybrid argument, modifying one instance at a time using DDH assumption
in group G1 and using one-time full-ZK property (and using the otfSim proof simulator for that
instance). A variant of the one-time full-ZK semi-functional verifier sfV (just as the variants for pV
and V described above) is easily obtained. Note that in each experiment, whenever the simulator
invokes partial proof simulation it can provide the correct membership bit (with high probability)
as in each experiment it knows exactly which tuples are real and which are fake.

Once all the instances are corrected, i.e. R,S generated as gr1,pwd · (ga1)r, the challenger can
switch to the real-world because the tuples R,S/pwd are now Diffie-Hellman tuples. This implies
that the session keys are generated using the V variant described above, which is exactly as in the
real-world.

6.6 Adaptive Corruption

The UC protocol described above is also UC-secure against adaptive corruption of parties by the
Adversary in the erasure model. In the real-world when the adversary corrupts a party (with a
Corrupt command), it gets the internal state of the party. Clearly, if the party has already been
invoked with a NewSession command then the password pwd is leaked at the minimum, and hence
the ideal functionality Fpake leaks the password to the Adversary in the ideal world. In the protocol
described above, the Adversary also gets W and s, as this is the only state maintained by each
party between sending R,S, T, ρ̂, and the final issuance of session-key. Simulation of s is easy for
the simulator S since S generates s exactly as in the real world. For generating W , which S had
postponed to computing till it received an incoming message from the adversary, it can now use
the pwd which it gets from F̂pake by issuing a Corrupt call to F̂pake. More precisely, it issues the
Corrupt call, and gets pwd, and then calls the semi-functional simulator with x2 = µ ·(ga1)r ·gr′1 /pwd
along with x1 (= gr1) to get W . Note that this computation of W is identical to the postponed
computation of W in the computation of client factor of sk1 (which is really used in the output to
the environment when pwd′ = pwd).

References

[ABB+13] Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and David
Pointcheval. SPHF-friendly non-interactive commitments. In Kazue Sako and Palash

25

Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 214–234.
Springer, Heidelberg, December 2013. (document), 1.0.1, 2

[ABP15] Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash
proof systems: New constructions and applications. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 69–100.
Springer, Heidelberg, April 2015. 1, 1

[ACP09] Michel Abdalla, Céline Chevalier, and David Pointcheval. Smooth projective hashing for
conditionally extractable commitments. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of LNCS, pages 671–689. Springer, Heidelberg, August 2009. 1.0.1, 2

[BBC+13] Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for SPHFs and efficient one-round PAKE protocols. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS,
pages 449–475. Springer, Heidelberg, August 2013. 1.0.1, 2

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.
6

[CCS09] Jan Camenisch, Nishanth Chandran, and Victor Shoup. A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks.
In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 351–368.
Springer, Heidelberg, April 2009. 1, 1.0.1

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie.
Universally composable password-based key exchange. In Ronald Cramer, editor, EU-
ROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer, Heidelberg, May
2005. 1.0.1, 6

[CK02] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In Lars R. Knudsen, editor, EUROCRYPT 2002, volume 2332 of
LNCS, pages 337–351. Springer, Heidelberg, April / May 2002. 1.0.1, 6.2

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003. 6.1

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EURO-
CRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May
2002. 1, 4, C.1, C.1

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In Proc. 23rd ACM STOC, pages 542–552, 1991. 1

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976. 15

26

[EHO+13] Keita Emura, Goichiro Hanaoka, Go Ohtake, Takahiro Matsuda, and Shota Yamada.
Chosen ciphertext secure keyed-homomorphic public-key encryption. In Kaoru Kuro-
sawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 32–50.
Springer, Heidelberg, February / March 2013. 1.0.1, 5

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on computing, 18(1):186–208, 1989. 1

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups.
In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432.
Springer, Heidelberg, April 2008. 1, 1, 5

[Har11] Kristiyan Haralambiev. Efficient cryptographic primitives for non-interactive zero-
knowledge proofs and applications. PhD Dissertation, 2011. 3, 5

[JR12] Charanjit S. Jutla and Arnab Roy. Relatively-sound NIZKs and password-based
key-exchange. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors,
PKC 2012, volume 7293 of LNCS, pages 485–503. Springer, Heidelberg, May 2012.
1.0.1, 2, 3, 5

[JR13] Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear sub-
spaces. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume
8269 of LNCS, pages 1–20. Springer, Heidelberg, December 2013. 1, 1, 1.0.1, 2, 1, F, F

[JR14] Charanjit S. Jutla and Arnab Roy. Switching lemma for bilinear tests and constant-size
NIZK proofs for linear subspaces. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part II, volume 8617 of LNCS, pages 295–312. Springer, Heidelberg,
August 2014. 1, 4, 4, 6.3, B.1, B.1, B.2.1, F

[KV11] Jonathan Katz and Vinod Vaikuntanathan. Round-optimal password-based authenti-
cated key exchange. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages
293–310. Springer, Heidelberg, March 2011. 1.0.1, 2

[KW15] Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear subspaces revisited. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057
of LNCS, pages 101–128. Springer, Heidelberg, April 2015. 1, 1

[LPJY14] Benôıt Libert, Thomas Peters, Marc Joye, and Moti Yung. Non-malleability from mal-
leability: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption
from homomorphic signatures. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 514–532. Springer, Heidelberg, May
2014. 1, 1.0.1, 5

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Moti Yung, editor, CRYPTO 2002, volume
2442 of LNCS, pages 111–126. Springer, Heidelberg, August 2002. 1.0.1

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,
October 1999. 1

27

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Heidelberg, August 2009. 1, 1.0.1, F

28

A Proofs of Dual-System Lemmas

Lemma 4 (true-simulation-soundness) For a DSS-QA-NIZK, for all PPT adversaries A,

Pr[(ρ, σ, τ, η) ← sfK1(λ); (x, l , π) ← AsfSim(σ,τ,·,·,·) (σ, ρ) : (x 6∈ Lρ) ∧ V(σ, x, l , π) = 1] ≈ 0,
where the experiment aborts if A invokes the oracle with some (y, β, l) , s.t. y 6∈ Lρ or β = 0.

Let advpzk be the maximum (absolute value of) difference in probability (over all Adversaries) in
the composable partial-ZK property of the DSS-QA-NIZK, when the Adversary makes at most one
call to the third oracle.
Then, the maximum success probability above is advpzk + advpss.
Proof: Let the above probability be ∆. Then A produces a tuple (x, l , π), such that x 6∈ Lρ with
probability ∆1 ≥ ∆. Let ∆2 be the probability that A produces a tuple with x ∈ Lρ and yet V
rejects. Finally, let ∆3 be the probability that A produces a tuple with x ∈ Lρ and V accepts.
Thus, ∆2 = 1−(∆1 +∆2). Moreover, the probability that V accepts is ∆+∆3. Now, by unbounded
partial-simulation soundness, the probability that A produces a tuple with x 6∈ Lρ or V rejects, and
yet pV accepts the tuple is negligible. Thus, on A’s output, pV rejects with probability at least
∆1 + ∆2 − ε, where ε is negligible. Now we build an adversary A1, which emulates A and instead
of outputting the final tuple, calls an oracle with that tuple, and outputs the value returned by the
oracle. If the oracle is V, then A1 outputs 0 with probability (∆1 −∆) + ∆2. If the oracle is pV,
A1 outputs 0 with probability at least ∆1 + ∆2 − ε. Then, by partial-ZK (second part) property,
∆ must be negligible. � �

Lemma 11 For a DSS-QA-NIZK for a parameterized language, for distributions U of fake lan-
guage members (i.e. β = 0) such that with high probability no efficient adversary can distinguish
them from another witness-sampleable distribution E of real language members (i.e. β = 1), the
semi-functional proofs generated on such tuples by sfSim are accepted by V.

Proof: Let the probability in the following experiment be ∆.

Pr[(ρ, σ, τ, η)← sfK1(λ); x← U ;π ← sfSim(σ, τ, x, β = 0);V(σ, x, π) = 1] = ∆.

Then, since V is a polynomial time algorithm, and that does not need any trapdoors, it follows by
one-time full simulation, that the following probability is close to ∆.

Pr[ρ← Dλ; (σ, τ, τ1η)← otfK1(λ, ρ); x← U ;π ← otfSim(σ, τ1, x);V(σ, x, π) = 1] ≈ ∆.

Note V is not being used as an oracle. Next, the following probability is also close to ∆, by
computational indistinguishability of E and U , and noting that otfK1, otfSim and V are PPT, and
x← U (or x← E) can be sampled before otfK1 is invoked, and E is witness sampleable.

Pr[ρ← Dλ; (σ, τ, τ1η)← otfK1(λ, ρ); (x,w)← E ;π ← otfSim(σ, τ1, x);V(σ, x, π) = 1]

≈ ∆.

Again, by one-time full simulation we get,

Pr[(ρ, σ, τ, η)← sfK1(λ); (x,w)← E ;π ← sfSim(σ, τ, x, β = 1);V(σ, x, π) = 1] ≈ ∆.

29

Now, by composable partial-simulation (second part), we get

Pr[(ρ, σ, τ, η)← sfK1(λ); (x,w)← E ;π ← P(σ, x, w);V(σ, x, π) = 1] ≈ ∆.

Now, by composable partial-simulation (first part), we get

Pr[ρ← Dλ;σ ← K1(λ); (x,w)← E ;π ← P(σ, x, w);V(σ, x, π) = 1] ≈ ∆.

But, by completeness this probability is close to one, and hence ∆ is close to one. � �

Lemma 12 (simulation-soundness of semi-functional verifier) If the one-time full-simulation prop-
erty holds statistically, then in the one-time simulation world, the semi-functional verifier sfV is
sound for all inputs except the tuple corresponding to the one-time full-simulation. In other words,
for all PPT adversaries A3,A4,

Pr[ρ← Dλ; (σ, τ, τ1, η) ← otfK1(λ, ρ);

(x∗, l∗, β∗, s)← A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)
3 (σ, ρ);

π∗ ← otfSim(σ, τ1, x
∗, l∗); (x, l , π)← A sfSim(σ,τ,·,·,·), sfV(σ,η,·,·,·)

4 (π∗, s) :

(x 6∈ Lρ) ∧ sfV(σ, η, x, l , π) = 1] ≈ 0,

where the experiment aborts if either in the call to the first oracle, or in the (x∗, β∗) produced by
A3, the membership-bit provided is not the correct Lρ-membership-bit, or if 〈x∗, l∗, π∗〉 is queried
to sfV/pV, or is same as A4’s output.

Let advpss be the maximum success probability (over all Adversaries) in the partial-simulation
soundness experiment of the DSS-QA-NIZK.

Let distotzk be the maximum statistical distance between the views of the adversaries (A3,A4) in
the one-time full-ZK property of DSS-QA-NIZK Σ.

Then, the maximum success probability above is at most advpss + distotzk.
Proof: Let the probability of the above event be ∆. Consider an adversary A5 which is same
as A4 except that instead of outputting (x, l , π), it calls sfV on that same tuple, and returns
(γ, x, l , π) where γ is the bit returned by this final sfV call. Thus, the probability that A5 outputs
(1, x, l , π) with x 6∈ Lρ is ∆. Since, the one-time full-simulation property holds statistically, the
view of A3,A5 is (almost) identical in the partial-simulation world (i.e. with the one-time full-
simulation also replaced by sfSim and sfV replaced by pV). In particular, the probability that A5

outputs (1, x, l , π) with x 6∈ Lρ is negligibly close to ∆. But, the first component of A5’s output
equals pV invoked on (x, l , π), and hence pV outputs 1 on (x, l , π) produced by PPT adversary A5,
with x 6∈ Lρ, with probability close to ∆. But, by unbounded partial-simulation soundness this
probability is negligible, and hence ∆ is negligible. � �

B Proof of General DSS-QA-NIZK Construction

In this appendix, we prove theorem 6 about the general DSS-QA-NIZK construction of Section 4.
Let

- advsound(Q) be the maximum success probability of any adversary in the soundness experiment
of QA-NIZK Q.

30

- advwss(Q) be the maximum success probability of any adversary in the true-simulation-soundness
experiment of QA-NIZK Q (see Definition 5).

- advzk(Q) be the maximum (absolute value of) difference in probability (over all Adversaries)
in the composable-ZK property of QA-NIZK Q.

- advcomp(Q) be the maximum success probability of any adversary in the completeness exper-
iment of QA-NIZK Q. If the probability of completeness holding is 1 − y, then the Adversary’s
success probability is considered to be y.

- Let ε1 be the failure probability of algorithm E2.

- δ be the maximum probability that the simulator of Q does not generate unique acceptable
proofs (see Definition 5).

Recall ε is the approximation probability in the smoothness and universal2 properties of hash
function H.
We start with two simple technical lemmas.

Lemma 13 (Strong Composability) In the context of Theorem 6, for DSS-QA-NIZK Σ, for every
PPT adversary B (with access to trapdoor τ),

Pr[(ρ, σ, τ, η)← sfK1(λ) : BP(σ,·,·,·)(σ, ρ, τ) = 1] ≈
Pr[(ρ, σ, τ, η)← sfK1(λ) : BsfSim

∗(σ,τ,·,·,·)(σ, ρ, τ) = 1],
where the experiment aborts if B calls the oracle with some (x,w, l) s.t. (w, x) 6∈ Rρ.

The proof of the above lemma follows easily from the description of the construction, and the facts
that H is a projective hash function and QA-NIZK Q for L∗ρ,α(k) has composable ZK.
Proof: Suppose to the contrary a PPT adversary B can distinguish the two worlds above. Then,
the composable-ZK property of Q does not hold, as we show by building an adversary S that breaks
this property: given the CRS σ′ and trapdoor trap (generated by crs-sim of Q), S samples k from
Kλ, and outputs (σ′, α(k)) and (k, trap) as CRS σ and simulation trapdoor τ to B. By construction
of the DSS-QA-NIZK, this exactly simulates both the experiments for B so far. The oracles of B,
i.e. P and sfSim in the two worlds are also simulated easily using the oracle for S (i.e. prover and
sim resp.); B supplies an (x,w, l), with (x,w) ∈ Rρ, from which S calculates the T value using Hk,
and hence (x, T) ∈ L∗ρ,α(k). S calls its oracle (which is either prover or sim resp.) with (x, T, l) and
witness w and gets as a response a proof W . The oracle of B is simulated by replying on input
(x,w, l) with (T,W). Since x is in Lρ, the actual oracles of B are simulated perfectly. Finally,
S outputs a bit exactly as B does, and hence if B manages to distinguish the two worlds, then S
manages to break the composable ZK property of Q. � �

The difference in the probabilities above is at most advzk(Q).

Lemma 14 (true-simulation-soundness of V) Recall, in the DSS-QA-NIZK Σ, the CRS σ is of
the form (σ′, α(k)), and a proof π is of the form (T,W). In this context, for every PPT adversary
B,

Pr[(ρ, σ, τ, η)← sfK1(λ); (x, l , π)← BsfSim(σ,τ,·,·,·)(σ, ρ) = 1: (x 6∈ L∗ρ,α(k)) ∧ V(σ, x, l , π) = 1] ≈
0,
where the experiment aborts if B calls the oracle with some (x′, β′, l ′) with x′ 6∈ Lρ, or β′ 6= 1.

31

The proof follows easily from the fact that in the construction, the QA-NIZK Q is true-simulation-
sound.
Proof: Suppose there is an adversary B that has success probability ∆ in the above experiment.
We will show a PPT adversary S that has success probability at least ∆ in the true-simulation-
sound experiment of QA-NIZK Q. Given the CRS σ′ (generated by crs-sim of Q), S samples k from
Kλ, and outputs (σ′, α(k)) as CRS σ to B. Adversary S retains k. The oracle of B is simulated
by S as follows: On input (x′, β′, l ′) with x′ ∈ Lρ (note β′ is required to be 1 as well), S computes
T ′ = Hk(x

′), and calls its own oracle sim with (x′, T ′, l ′) (which is in the augmented language
L∗ρ,α(k)). This oracle returns a proof W ′, and S replies to the oracle call of B with (T ′,W ′). This
is exactly the same response of sfSim when membership-bit is 1, and hence simulation of the oracle
is perfect. Now note that V of DSS-QA-NIZK behaves as follows: on input CRS = (σ′, s), x, l ,
and proof (T,W), it returns the value ver(σ′, 〈x, T, l〉,W) (using ver of Q). Thus, if B outputs
x, l , (T,W), adversary S just outputs 〈x, T, l〉 and proof W . By assumption, the probability of
(x 6∈ L∗ρ,α(k)) and V((σ′, α(k)), x, l , (T,W)) = 1 is ∆. In that event, it follows trivially that ver of Q

outputs 1 on S’s output. and 〈x, T, l〉 6∈ L∗ρ,α(k). Thus, success probability of S is at least ∆. ��

The probability of success above is at most advwss(Q).
Let

- N1, N2, and N3 be the number of oracle calls (to the first, second and third oracle resp.) by A1

in the composable partial-ZK property.

- L1, L2 be the number of oracle calls (to the first and second oracle resp.) by A2 in the partial
simulation-soundness experiment.

- M1, M2 be the number of calls to the first oracle and second oracle resp. by A3 and A4 combined
in the one-time full-ZK experiments.

Also, let

- advcomp(Σ) be the maximum success probability of any adversary in the completeness experi-
ment of DSS-QA-NIZK Σ. If the probability of completeness holding is 1−y, then the Adversary’s
success probability is considered to be y.

- advsound(Σ) be the maximum success probability of any adversary in the soundness experiment
of DSS-QA-NIZK Σ.

- advpzk(Σ, N3) be the maximum (absolute value of) difference in probability (over all Adver-
saries) in the composable partial-ZK property of DSS-QA-NIZK Σ, with N3 calls to the third
oracle.

- advpss(Σ) be the maximum success probability of any adversary in the partial-simulation sound-
ness experiment of DSS-QA-NIZK Σ.

- distotzk(Σ) be the maximum statistical distance (over all Adversaries) between the views of
the adversaries (A3,A4) in the one-time full-ZK property of DSS-QA-NIZK Σ.

In the following proof of Theorem 6, we also show that

• advcomp(Σ) ≤ advcomp(Q),

32

• advsound(Σ) ≤ advsound(Q),

• advpzk(Σ, N3) ≤ N3 · advwss(Q) + advzk(Q),

• advpss(Σ) ≤ L2 ∗ ε1,

• distotzk(Σ) ≤ (ε+ δ) ∗ (1 +M2).

Proof: (Theorem 6)

Completeness: The verifier V is complete w.r.t. prover P, because if x is in Lρ with witness w,
then the prover P generates proof as (T, W) where T = Ĥ(s, x, w) and W = prover(σ, 〈x, T, l〉, w).
Thus, 〈x, T, l〉 is in L∗ρ,α(k) with witness w, because the public evaluation algorithm Ĥ computes

Hk(x, l) correctly when x ∈ Lρ. Completeness then follows by noting that verifier V is just the
verifier ver of Q, and by completeness of ver of Q w.r.t. prover prover of Q. If Q has perfect
completeness, then the DSS-QA-NIZK also has perfect completeness.

Soundness: Let the adversary generate a potential Lρ member x, a proof (T,W) and a label l
such that x 6∈ Lρ. We now show that the verifier V rejects with high probability. Indeed, V is
same as verifier ver of Q, and clearly 〈x, T, l〉 does not belong to the augmented language L∗ρ,α(k),
and the claim follows by soundness of ver of Q. The probability of success of an adversary in the
soundness experiment is at most adv(Q).

Composable Partial-ZK: For the first part of the definition, the language parameters are iden-
tically distributed in the two worlds since in the real-world ρ is sampled according to D, and in the
partial simulation world sfK1 generates ρ using algorithm E1 which samples from D as well. Now,
the CRS in the real-world is generated by first sampling k from Kλ, and then invoking crsgen of Q
on 〈ρ, α(k)〉. In the partial-simulation world crs-sim of Q is called on the same (i.e. k is sampled
from Kλ as well). Thus, indistinguishability follows from composable zero-knowledge property of
Q.

For the second part of the definition, for sake of exposition, we will continue to call the first
experiment as real-world, and the second as partial-simulation world (even though both have the
CRS generated using sfK1). We also define a hybrid experiment, where the first oracle is the
simulator sfSim and the third oracle is V (as opposed to pV).

We first show that A1 cannot distinguish between the real-world and the hybrid-world. Since
V only needs σ, which the adversary A1 already has access to, w.l.o.g. we can assume that the
adversary does not call the third oracle. Now, even if A1 is given the simulation trapdoor τ ,
then by lemma 13, A1 cannot distinguish between the real-world and the hybrid-world (since with
access to τ , the second oracle also becomes redundant).

Next, we show that the view of A1 in the hybrid-world and the partial-simulation world is statis-
tically indistinguishable. Note that for this purpose, the first oracle is redundant for A1 since it
can use the second oracle to get the same result. To start with, the CRS is identically generated
in the two worlds. We prove the claim by induction on the number of calls to the third oracle.
Let N be the total number of calls to the third oracle. Suppose, up to the (i − 1)-th such call,
the view of A1 is statistically indistinguishable in the two worlds. Now, consider the i-th call.
Let (x, l , (T,W)) be the input generated by A1 in the hybrid-world for the i-call. By induction,
w.h.p. the input generated is same in the partial-simulation world. Now, pV differs from V in that

33

it has three conjuncts (a), (b) and (c), where (c) is same as V. Recall, conjunct (a) is (x ∈ Lρ)
and conjunct (b) is (T = Hk(x, l). Thus, pV will differ from V only if V returns 1 and (a) or (b)
does not hold. By Lemma 14, w.h.p. the output of the oracle in the hybrid-world, generated as
V(σ, x, l , (T,W)) is 1 only if x ∈ Lρ and T = Hk(x), which implies (a) and (b) hold with high
probability when (c) is true. Thus, the output of pV in the partial-simulation world is same as
output of V in the hybrid world, w.h.p, which completes the induction step.

The difference in the probabilities in the real-world and the partial-simulation world is at most

N3 · advwss(Q) + advzk(Q).

Unbounded Partial-Simulation Soundness: This follows trivially, as pV directly verifies that
s is in Lρ using algorithm E2 and the auxiliary information ψ in the trapdoor, and moreover it
also checks that real-world verifier accepts as well.

One-Time Full-ZK: We will show that the one-time full-ZK property holds statistically. We
will define a sequence of experiments and show that the view of the adversary is statistically
indistinguishable in every two consecutive experiments. The first experiment H0 is identical to
the partial-simulation world. First, note that ρ is identically generated using D in both worlds.
Next, note that the CRS σ and trapdoors τ generated by sfK1 is identically distributed to the
CRS σ and both the trapdoors τ and τ1 generated by otfK1.

The next experiment H1 is identical to H0 except that on A3 supplied input (x∗, l∗, β∗) the proof
π∗ generated by sfSim is replaced by proof generated by otfSim. If β∗ provided by A3 is not
the valid membership bit for x∗ then both experiments abort. So, assume that β∗ is the correct
membership bit. In case β∗ = 1, both sfSim and otfSim behave identically. When β∗ = 0, the
random T ∗ produced by sfSim is identically distributed to the T ∗ generated by Hk(x

∗, l∗) since H
is assumed to be smooth.

The next experiment H2 is identical to H1 except that the second oracle is replaced by sfV (from
being pV). In order to show that the view of the adversary is indistinguishable in experiments H2

and H1, we define several hybrid experiments H1,i (for 0 ≤ i ≤ N , where N is the total number
of calls to the second-oracle by A3 and A4 combined). Experiment H1,0 is identical to H1, and
the intermediate experiments are defined inductively, by modifying the response of one additional
second-oracle call starting with the last (N -th) second-oracle call, and ending with the changed
response of the first second-oracle call. The last hybrid experiment H1,N will then be same as H2.
The second-oracle call response in experiment H1,i+1 differs only in the (N − i)-th second-oracle
call response in H1,i. In the latter experiment, this call is still served as in H1 (i.e. using pV).
In the former experiment H1,i+1, the (N − i)-th call is responded to as defined in H2 above (i.e.
using sfV).

To show that the view of the adversary is statistically indistinguishable in H1,i and H1,i+1, first
note that the view of the adversary (A3 and A4 combined) till it’s (N − i)-th call in both experi-
ments is identical. Moreover, as we next show, the dependence on k of this partial view (i.e. till
the (N − i)-th call) is limited to α(k) and at most one evaluation of Hk (by otfSim) on an input
that is not in Lρ. To start with, the CRS generated by sfK1 depends only on α(k). Next, the first
oracle sfSim produces T using Hk on its input only if the membership bitβ is 1 and correct, and
since H is projective this hash value is then completely determined by α(k). Finally, all calls to
the second oracle till the (N − i)-th call are still served using pV, and again using the projective

34

property of H, it is clear that the conjunct (b) in pV can be computed using only α(k), because
for non Lρ members, the conjunct (a) is already false, and hence (b) is redundant.

Now, the difference in the (N − i)-th call is that the conjunct (a) of pV is missing in sfV. Let
x, l , T,W be the input supplied by the Adversary to this call. If Hk(x, l) is not equal to the supplied
T , then both pV and sfV return 0. So, suppose Hk(x, l) is equal to T , and yet x is not in Lρ,
i.e. conjunct (a) of pV is false. First, if this input x, l , T,W is same as (x∗, l∗, T ∗,W ∗) associated
with the one-time call to otfSim, then the experiment aborts. Thus, we can assume that this is a
different input. If (x, l) is same as (x∗, l∗), then (T,W) 6= (T ∗,W ∗). Now, by construction (i.e.
by definition of otfSim) T ∗ = Hk(x

∗, l∗), and hence either T 6= Hk(x, l) which is not possible by
hypothesis, or (x, l , T) = (x∗, l∗, T ∗) and W 6= W ∗. But, W ∗ is proof generated by the simulator
of Q, and since the simulator of Q generates unique acceptable proofs (by assumption), the verifier
ver of Q rejects (x, l , T,W), and thus both pV and sfV return 0.

On the other hand, if (x, l) 6= (x∗, l∗) then by the ε-universal2 property of H, the probability of
T being same as Hk(x, l) is at most ε. Thus, both pV and sfV return 0. That completes the
induction step, and thus the view of the adversary in experiments H1 and H2 is statistically
indistinguishable.

The next experiment H3 is identical to H2 except that the CRS is generated using otfK1. The
only difference is that the (verifier) trapdoor does not include ρ, ψ. But, since the second oracle
is served by sfV and it does not need ρ, ψ, the experiment H3 is well-defined and statistically
indistinguishable from H2, Further, H3 is identical to the one-time simulation world, and that
completes the proof.

The statistical distance between the views of the adversaries (A3,A4) in H0 and H3 is at most
(ε+ δ) ∗ (1 +M2).

� �

B.1 DSS-QA-NIZK Instantiation for Linear Subspaces

Consider a bilinear group G of prime order q, supporting a pairing operation e : G × G2 → GT .
In this section we show that linear subspace languages of the form LA = {~x · A | ~x ∈ Ztq}, where
A is drawn from a robust witness samplable distribution D over Gt×n and LA (Gn, satisfy the
conditions enumerated in Section 4 and subsequently support the construction of DSS-QA-NIZKs.
We first describe the construction of a ε-smooth and ε-universal2 (labeled) projective hash proof
system for LA.

Projective Hash. We define the superset X) LA as Gn, where n is the column length of A.
The key set K is Znq × Znq and the set of projection keys S is Gt × Gt. The projection map α is
given as:

α(~u1×n, ~v1×n) := (A · ~u>,A · ~v>)

Let crhf be a collision resistant hash mapping from any domain to Zq. The keyed (labeled)
hash function Hk is:

H(~u,~v)(~l
1×n

, l) :=~l ·
(
~u> + t · ~v>

)
, where t = crhf(~l, l)

35

The projected hash computation for ~l = ~x · A is:

Ĥ(A·~u>,A·~v>)(~x · A, l) := ~x ·
(
A · ~u> + t · A · ~v>

)
, where t = crhf(~l, l)

We now prove that this construction is ε-smooth. We have to show that the following distri-
butions are indistinguishable for any ~l /∈ LA:(

A · ~u>, A · ~v>, ~l ·
(
~u> + t · ~v>

))
≈
(
A · ~u>, A · ~v>, r

)
,

where ~u,~v are uniform from Znq and r is uniform from G, independent of ~u and ~v.

Let the matrix Nn×(n−t) be a complete basis for the null-space of A. Since LA is a proper
subspace of Gn, N is guaranteed to be non-zero. Then the left distribution is the same as, given
random ~r from Zn−tq : (

A · (~u> + N · ~r>), A · ~v>, ~l ·
(
~u> + N · ~r> + t · ~v>

))
=
(
A · ~u>, A · ~v>, ~l · (~u> + t · ~v>) +~l · N · ~r>

)
Since~l /∈ LA, we have that~l ·N is a non-zero vector, and hence~l ·N ·~r> is uniformly distributed

in G, independent of ~u and ~v. Thus ε-smooth-ness follows.
We now prove that this construction is ε-universal2. To do that it is sufficient to prove that

the following distributions are indistinguishable for any ~l ∈ X and ~l
∗
∈ X\LA, with ~l

∗
6=~l:(

A · ~u>, A · ~v>, ~l ·
(
~u> + t · ~v>

)
, ~l
∗
·
(
~u> + t∗ · ~v>

))
≈(

A · ~u>, A · ~v>, ~l ·
(
~u> + t · ~v>

)
, r
)
,

where ~u,~v are uniform from Znq and r is uniform from G.
The left distribution is the same as, given random ~r from Zn−tq :(

A · (~u> + N · t · ~r>),A · (~v> − N · ~r>),
~l ·
(
~u> + t · ~v> + N · (t · ~r> − t · ~r>)

)
,~l
∗
·
(
~u> + t∗ · ~v> + N · (t · ~r> − t∗ · ~r>)

))
=
(
A · ~u>, A · ~v>, ~l ·

(
~u> + t · ~v>

)
, ~l
∗
·
(
~u> + t∗ · ~v>

)
+ (t− t∗) ·~l

∗
· N · ~r>

)
Since ~l

∗
/∈ LA, we have that ~l

∗
· N is a non-zero vector and also whp t∗ 6= t (since ~l

∗
6=~l), and

hence (t−t∗)·~l
∗
·N·~r> is uniformly distributed in G, independent of ~u and ~v. Thus ε-universal2-ness

follows.
Given the above Projective Hash construction, we note that the augmented language corre-

sponding to LA is L∗A,~s1,~s2
defined as follows:

L∗A,~s1,~s2
= {(~l, T, l) | ∃~x ∈ Ztq :~l = ~x · A, T = ~x · (~s>1 + t ·~s>2), t = crhf(~l, l)}

This is a tagged linear subspace language admitting a QA-NIZK proof consisting of k group ele-
ments [JR14] under the k-linear assumption. To fulfill the requirements of Section 4, we show that
in general the QA-NIZK of [JR14] is composable zero-knowledge and weakly simulation-sound. We
also note that the construction generates unique proofs as the prover is deterministic. Further, it is
easy to see that all proofs generated by simulator (even on fake tuples) are accepted by the verifier.
Since, the verification test is linear, it follows that simulator generates unique acceptable
proofs.

36

Composable ZK. The Real World CRS and the Simulation World CRS are information theoret-
ically indistinguishable by construction. Also the Real World prover and Simulator are information
theoretically identical as functions on distributions, when the input is a language member. So
no adversary, even given the simulation trapdoor, can distinguish between the oracles. Hence the
QA-NIZK construction is composable zero-knowledge.

Weakly Simulation-Sound. We give a proof intuition for this by hopping through a sequence
of games. Game G0 follows the statement of the requirement, that is, A has access to the proof
simulator, provided it calls with only valid language members, and wins if its output (x, l, π) passes
verification and x /∈ Lρ. Let the winning probability be denoted ∆. In game G1, the language
parameter ρ is generated from the witness samplable distribution D and its witness ψ is retained
by the challenger. The challenger then computes the simulation CRS along with the trapdoor and
instantiates the oracle proof simulator with them. Next, in game G2, the CRS is generated in a
statistically identical manner using the null space of the language parameter witness ψ, as in the
proof of soundness of the QA-NIZK in [JR14]. We note that G2 is statistically indistinguishable
from G0 via G1. Hence A’s probability to win in G2 is ∆ + ε, where ε is negligible in the security
parameter.

Consider an event where A wins in G2. In [JR14], it was shown that, with the challenger
possessing the language parameter witness ψ, this can enable construction of a k-linear adversary
with the same advantage as A. Therefore ∆ + ε ≤ advk-linear. Therefore, ∆ itself is negligible in
the security parameter.

Sampling Algorithms. We make the assumption that algorithms E1, E2 exist such that the
distribution D is efficiently witness samplable using (E1, E2). A simple example of such a D is the
uniform distribution on Gt×n. Then E1 is the algorithm which samples A uniformly from Zt×nq and

sets A = A · g. E2 is the algorithm which given language candidate ~l and A decides whether ~l is in
the language as follows: It computes N which is a complete basis for the nullspace of A and outputs

YES if ~l · N ?
= 0 and NO otherwise.

Finally, E3 is simply a sampler for the uniform distribution on Π = G.

B.2 DSS-QA-NIZK for Specific Languages

In this section we give examples of our DSS-QA-NIZK generic construction for popular linear
subspace languages which are used widely in the literature. We will consider bilinear groups
(G1,G2,GT), with an efficiently computable pairing e from G1 × G2 to GT . Each group will
be assumed to be cyclic with prime order q. We also switch to multiplicative notation for better
readability.

We consider Diffie-Hellman (DH) languages in group G1, assuming the DDH assumption holds
in G2. We first recap the assumption.

Definition 15 (DDH [DH76]) Assuming a generation algorithm G that outputs a tuple (q,G,g)
such that G is of prime order q and has generator g, the DDH assumption asserts that it is compu-
tationally infeasible to distinguish between (g,ga,gb,gc) and (g,ga,gb,gab) for a, b, c ← Zq. More
formally, for all PPT adversaries A there exists a negligible function ν() such that∣∣∣∣ Pr[(q,G,g)← G(1m); a, b, c← Zq : A(g,ga,gb,gc) = 1]−

Pr[(q,G,g)← G(1m); a, b← Zq : A(g,ga,gb,gab) = 1]

∣∣∣∣ < ν(m)

37

B.2.1 DSS-QA-NIZK for DH Languages.

We consider the following class of languages parametrized by g,a (∈ G1). The DH language
corresponding to one such parameter ρ = 〈g,a〉 is Lρ = {〈gx,ax〉 | x ∈ Zq}. The distribution D
under which the quasi-adaptive NIZK is obtained is defined by picking g1 as a generator for G1

according to a bilinear group (G1,G2,GT) generation algorithm for which the DDH assumption
holds for G2, and then choosing a randomly from Zq and letting g = g1,a = ga1. The components
are:

Projective Hash: We define the superset X) Lρ as G2
1. The key set K is Z4

q and the set of
projection keys S is G2

1. The projection map α is given as:

α(d1, d2, e1, e2) := (gd1ad2 ,ge1ae2)

Let crhf be a collision resistant hash mapping from any domain to Zq. The keyed (labeled) hash
function Hk is:

H(d1,d2,e1,e2)(x1,x2, l) := xd1+te1
1 xd2+te2

2 , where t = crhf(x1,x2, l)

The public hash computation for ~l = (gx,ax) is:

Ĥ(d,e)(g
x,ax, l) := (det)x, where t = crhf(gx,ax, l)

QA-NIZK: Given the above Projective Hash construction, we note that the augmented language
corresponding to Lρ is L∗

ρ,d,e defined as follows:

L∗
ρ,d,e = {(x1,x2, T, l) | ∃x ∈ Zq : x1 = gx,x2 = ax, T = (det)x, t = crhf(x1,x2, l)}

This is a tagged linear subspace language admitting a QA-NIZK proof consisting of 1 group
elements [JR14] under the DDH assumption. The augmented parameter distribution D′ is the
uniform distribution on G4

1, with the witnesses being the discrete logs w.r.t. g1.

• The algorithm K0 is just the group generation algorithm (it takes a unary string 1m as input),
and it also generates a collision-resistant hash function crhf. The CRS generation algorithm
K1 takes language parameter 〈g,a,d, e〉 and other bilinear group parameters as input and gen-
erates the CRS as follows: it picks c, b, u1, u2 randomly and independently from Zq and sets the
CRS to be (CRSp,CRSv,crhf):

CRSp =
{

w1 = gu1acb
−1

db
−1
, w2 = gu2eb

−1
}

CRSv =
{

g2, b = gb2, c = gc2, v1 = gbu12 , v2 = gbu22

}
.

• The prover P takes as input CRSp, a language member 〈x1,x2, T, l〉 and its witness x and
produces a proof π consisting of one G2 element W as follows: Compute ι = crhf(x1,x2, l).
Next, compute W = (w1w

ι
2)x.

• The verifier V takes as input CRSv, a potential language member 〈x1,x2, T, l〉, and a proof
π = W , computes ι = crhf(x1,x2, l), and outputs true iff

e(x1,v1v
ι
2) · e(x2, c) · e(T,g2)

?
= e(W,b)

38

B.2.2 Summary - DSS-QA-NIZK.

Thus, summing up, the DSS-QA-NIZK system is as follows - the real world components are as
follows:

CRS generators: The algorithm K0 is just the group generation algorithm (it takes a unary string
1m as input and outputs λ), and it also generates a collision-resistant hash function crhf. Then
ρ = (g,a) is sampled from Dλ. The CRS generation algorithm K1 takes language parameter ρ and
other bilinear group parameters as input and generates the CRS as follows: it picks d, e, c, b, u1, u2

randomly and independently from Zq and sets the CRS to be (CRSp,CRSv,crhf):

CRSp =
{

d = gd, e = ge,w1 = gu1acb
−1

db
−1
, w2 = gu2eb

−1
}

CRSv =
{

g2, b = gb2, c = gc2, v1 = gbu12 , v2 = gbu22

}
.

Prover: The prover P takes as input CRSp, a language member (x1,x2) and its witness x and
a label l and produces a proof π consisting of two G2 elements T,W as follows: Compute ι =
crhf(x1,x2, l). Next, compute T = (deι)x and W = (w1w

ι
2)x. Output π = (T,W).

Verifier: The verifier V takes as input CRSv, a potential language member 〈x1,x2〉, and a proof
π = (T,W), computes ι = crhf(x1,x2), and outputs true iff

e(x1,v1v
ι
2) · e(x2, c) · e(T,g2)

?
= e(W,b)

The partial simulation world components are as follows:

Semi-functional CRS simulator: The CRS generation algorithm sfK1 takes the bilinear group
parameters as input and samples a ← Zq and sets ρ = (g,a) = (g1,g

a
1). It then generates the

CRS as follows: it picks d1, d2, e1, e2, c, b, u1, u2 randomly and independently from Zq and sets the
CRS to be (CRSp,CRSv,crhf):

CRSp =
{

d = gd1ad2 , e = ge1ae2 ,w1 = gu1acb
−1

db
−1
, w2 = gu2eb

−1
}

CRSv =
{

g2, b = gb2, c = gc2, v1 = gbu12 , v2 = gbu22

}
.

Set the trapdoors as follows: τ = (b, c, d1, d2, e1, e2, u1, u2), η = (a, d1, d2, e1, e2).

Semi-functional Simulator: sfSim uses trapdoor τ to produce a (partially-simulated) proof for
a potential language member (x1,x2), a label l and a binary bit β as follows: Compute ι =
crhf(x1,x2, l).

If β = 1, output:
T = xd1+ιe1

1 xd2+ιe2
2 , W = xu1+ιu2

1 xcb
−1

2 T b
−1
,

else sample r uniformly at random from G1 and output:

T = r , W = xu1+ιu2
1 xcb

−1

2 T b
−1

Private Verifier: pV uses trapdoor η to check a potential language member (x1,x2), label l

and a proof (T,W) as follows: it outputs 1 iff (a) xa1
?
= x2, and (b) T

?
= xd1+ιe1

1 xd2+ιe2
2 , with

ι = crhf(x1,x2, l), and (c) e(x1,v1v
ι
2) · e(x2, c) · e(T,g2)

?
= e(W,b).

39

The one-time full simulation components are as follows:

One-time full-simulation CRS generator: The CRS generation algorithm otfK1 takes the bi-
linear group parameters as input and samples a ← Zq and sets ρ = (g,a) = (g1,g

a
1). It then

generates the CRS as follows: it picks d1, d2, e1, e2, c, b, u1, u2 randomly and independently from
Zq and sets the CRS to be (CRSp,CRSv,crhf):

CRSp =
{

d = gd1ad2 , e = ge1ae2 ,w1 = gu1acb
−1

db
−1
, w2 = gu2eb

−1
}

CRSv =
{

g2, b = gb2, c = gc2, v1 = gbu12 , v2 = gbu22

}
.

Set the trapdoors as follows: τ = τ1 = (b, c, d1, d2, e1, e2, u1, u2), η = (d1, d2, e1, e2).

One-time full simulator: otfSim uses trapdoor τ1 to produce a (partially-simulated) proof for a
potential language member (x1,x2) and a label l as follows: Compute ι = crhf(x1,x2, l). Output:

T = xd1+ιe1
1 xd2+ιe2

2 , W = xu1+ιu2
1 xcb

−1

2 T b
−1
,

Semi-functional verifier: sfV uses trapdoor η to check a potential language member (x1,x2), la-

bel l and a proof (T,W) as follows: it outputs 1 iff (a) T
?
= xd1+ιe1

1 xd2+ιe2
2 , with ι = crhf(x1,x2, l),

and (b) e(x1,v1v
ι
2) · e(x2, c) · e(T,g2)

?
= e(W,b).

Denoting this DSS-QA-NIZK as Σ, we instantiate the concrete parameters for it’s correctness
and security following Appendix B:

• advcomp(Σ) = 0,

• advsound(Σ) ≤ 2 · advDDH + 1/q,

• advpzk(Σ, N3) ≤ N3 · 2 · advDDH + 1/q,

• advpss(Σ) = 0,

• distotzk(Σ) = 0.

C Keyed-Homomorphic CCA Encryption

Definition 16 (KH-PKE Scheme) A KH-PKE scheme for a message space M with a binary
operation � defined from M2 →M is a tuple of algorithms (KeyGen,Enc,Dec,Eval):

KeyGen: This algorithm takes 1λ as input, and returns a public key pk, a decryption key skd, and
a homomorphic operation key skh.

Enc: This algorithm takes pk and a message M ∈M as inputs and returns a ciphertext C.

Dec: This algorithm takes skd and a ciphertext C as input, and returns M or ⊥.

Eval: This algorithm takes skh and two ciphertexts C1 and C2 as inputs, and returns a ciphertext
C or ⊥.

40

The scheme is said to be correct if (i) for Enc we have Dec(skd, C) = M and (ii) for Eval we have
Dec(skd, C) = Dec(skd, C1)�Dec(skd, C2), where if any operand of � is ⊥ then the result is ⊥.

Definition 17 (KH-CCA Security) A KH-PKE scheme (KeyGen,Enc,Dec,Eval) for a mes-
sage space M with a binary operation � defined from M2 →M is said to be KH-CCA secure if no
PPT adversary A has non-negligible advantage in winning the following game with a challenger:

KeyGen: The challenger takes 1λ as input, and computes a public key pk, a decryption key skd,
and a homomorphic operation key skh. It then gives pk to A. It also initializes a list D := ∅. It
also gives oracle access to A to the functions Enc(.), Eval(skh, .), RevHK and Dec(skd, .) defined
as follows:

Enc: This query is performed once. On A’s inputs m0,m1 ∈M, the challenger randomly samples
a bit b and computes C := Enc(pk,mb) and returns C. Further, it sets D := D ∪ {C}.

Eval: This oracle is not available after A has requested RevHK. On receiving ciphertexts C1, C2

from A, computes C := Eval(skh, C1, C2) and returns C. In addition if C1 ∈ D or C2 ∈ D, then
sets D := D ∪ {C}.

RevHK: Upon receiving this request, returns skh.

Dec: This oracle is not available after A has both requested RevHK and obtained the challenge
ciphertext C∗ in any order. When available, it returns ⊥ if C ∈ D and Dec(skd, C) on A’s query
C.

The adversary A outputs a bit b′ and wins if b′ = b. Its advantage is defined to be |Pr[A wins]−1/2|.

C.1 Proof of Theorem for KH-CCA Construction

We first prove that the construction in section 5 is secure assuming the Adversary does not invoke
RevHK. In appendix C.2 we extend the result to include RevHK.

Let M be the number of decryption queries, and let L be the nummber of Eval queries. Let
N ≤ L be the number of dependent Eval queries. We will use the notation from appendix B for the
various probabilities for DSS-QA-NIZK Σ. In the following we will assme that the Diffie-Hellman
language is parameterized by (g,ga), where g is chosen randomly from a DDH hard group of prime
order q. The maximum advantage of any adversary in the DDH security game over this group will
be denoted by advddh.

Theorem 8 [Security of KH-Enc Construction] The above algorithms P = (KeyGen,Enc,Dec,Eval)
(from section 5) constitute a KH-CCA secure Keyed-Homomorphic Public Key Encryption scheme
with multiplicative homomorphism, if Σ is a DSS-QA-NIZK for the parameterized Diffie-Hellman
language (with language parameters distributed randomly) and RevHK is not available. The Ad-
versary’s advantage in the KH-CCA security game is at most

(2 ∗ L) ∗ advpzk(Σ, 1) + advpzk(Σ, 2 ∗ L)+

O(L ∗ (M + 2 ∗ L)) ∗ (distotzk(Σ) + advpss(Σ)) + (N + 1) ∗ advddh +O(L/q).

41

Instantiating the DSS-QA-NIZK of the DH language as in Appendix B.2, we obtain that the
Adversary’ advantage above is at most (4 ∗ L) ∗ (1/q + 2advDDH) + (N + 1) ∗ advddh +O(L/q).
Proof: We will prove the theorem by going through a sequence of games, where the first game
G0 is identical to the game in the security definition, and the challenger uses the various KH-PKE
components of P above. The last game is a world where the challenger encrypts µ instead of mb,
for any constant µ, and hence the view of the adversary is independent of b. Note, in G0, the
decryption returns ⊥ if c ∈ D. We will call a call to Eval dependent if either c1 or c2 is in D.
Otherwise, it will be called independent. Note, ciphertexts generated by dependent Eval calls get
included in D.

Game G1 : Same as game G0, but now during decryption the challenger switches to the private
verifier pV. In all independent Eval calls, the verifier is switched to pV. Note, all dependent Eval
calls continues to use real-world verifier V. Also the challenge encryption is performed using sfSim
instead of P, with β set to 1 and with the witness w dropped.

Indistinguishability follows due to the partial-ZK property, but we need to prove that all calls
to sfSim by Eval are with language members. This is proven by induction over the order of in-
vocations of Eval, using the weak simulation-soundness lemma 4, and by using the multiplicative
homomorphism property of DH language. Thus, the probability of the adversary distinguishing G0

from G1 is at most 2 ∗ L ∗ (advpzk(Σ, 1) + advpss(Σ)) + advpzk(Σ, 2 ∗ L).

Game G2 : Same as game G1, but now all dependent Eval calls are changed as follows: It
continues to do the verification checks on input ciphertexts using V, but instead of computing π
using sfSim on the randomized product of ciphertexts, it just employs sfSim on a fresh random
tuple 〈ρ3, ρ̂3, γ3〉 (obtained by picking r at random and setting the tuple to be 〈gr, (ga)r, (gk)r〉) to
get π, and outputs c := (ρ3, ρ̂3, γ3, π).

Computational indistinguishability of games G2 and G1 is proven using a sequence of hybrid
games, where in each hybrid game an additional dependent call to Eval, going from last call to
first, is handled as in game G2. This is proven in Lemma 18 below. We also prove there that all
calls to sfSim are with language members. Note that all calls to sfSim in dependent Eval calls in
game G2 are made with fresh random language members.

Game G3 : Same as game G2, but now KeyGen generates k0, k1 randomly and sets k = k0 + ak1

and gives skd = (k0, k1). The challenge encryption is performed by letting γ := mb · gk0wgk1aw.
Decryption is performed as m := γ/(ρk0 ρ̂k1).

This step is indistinguishable from game G2, as unbounded partial-simulation soundness holds,
and therefore ρ̂ = ρa. All calls to sfSim continue to be with language members.

Game G4 : Same as game G3, but now KeyGen switches to the otfK1 to generate CRS σ and

trapdoors σ, τ, τ1, η. The public key is set as (g,ga,gk0(ga)k1 , σ). While dependent Eval continue
to use V , the pV in decryption and independent Eval is switched to sfV which uses σ, η. The
Challenge encryption is performed as c := (gw,gaw, γ, otfSim(σ, τ1, (g

w,gaw), l)), where l := γ :=
mb · (gk0(ga)k1)w.

As before, all calls to sfSim in dependent Eval in both games are with language members. For
independent Eval calls, this is proven by induction by noting that sfV is sound by lemma 12 (since
one-time full-ZK property holds statistically). Also, the tuple corresponding to otfSim invocation
is not invoked on pV (as the challenge ciphertext is in D). Thus, indistinguishability holds due to

42

the one-time full-ZK property.

Game G5 : Same as game G4, but now the challenge encryption is performed as follows: Generate
w,w′ ← Zq and compute:
c := (gw,gaw

′
, γ, otfSim(σ, τ1, (g

w,gaw
′
), l)), where l := γ := mb · gk0wgk1aw

′
.

Indistinguishability holds by DDH assumption. We also prove that all calls to sfSim in G5 are
with language members as before.

Game G6 : The decryption key is changed to skd = k = k0 +ak1, and the decryption is performed

as m := γ/ρskd .

This step is indistinguishable from game G5, since by soundness of sfV using lemma 12, ρ̂ = ρa.

Game G7 : Public key is set as (g,ga,gk0+ak1 , σ), with decryption key skd = k = k0 + ak1.

Decryption is performed as m := γ/ρk0+ak1 Now the challenge encryption is performed as c :=
(gw,gaw

′
, γ, otfSim(σ, τ, (gw,gaw

′
), l)), where l := γ := µ·gk0wgk1aw

′
, and µ is an arbitrary constant.

With a, k0, k1, w, w
′ chosen randomly and independently, it can be shown that the joint distri-

bution of (a, k0 + ak1, w, w
′, logmb + k0w + k1aw

′) is statistically indistinguishable from (a, k0 +
ak1, w, w

′, logµ+ k0w + k1aw
′), as is standard in Cramer-Shoup CCA2-encryption [CS02].

Now, noting that the view of the adversary in game G7 is completely independent of b, the
probability that it can predict b in G7 is at most half, and that completes the proof. � �

Lemma 18 Assuming all calls to sfSim in game G1 are with language members, then the view of the
adversary in games G1 and G2 is computationally indistinguishable, and all calls to sfSim in game

G2 are also with language members with probability at least 1−O(N∗L)∗(distotzk(Σ)+advpss(Σ)).
The Adversary’s probability of distinguishing the two games is at most

O(N ∗ (M + 2 ∗ L)) ∗ (distotzk(Σ) + advpss(Σ)) +N ∗ advddh +O(N/q).

Proof: Let N be the maximum number of dependent calls to Eval. Then hybrid games, called
game G1,j (for j = [0..N]), are defined inductively as follows. Game G1,0 is same as game G1.
For j ∈ [0..N − 1], game G1,j+1 differs from game G1,j , in that the (N − j)-th dependent call to
Eval is handled as in game G2 (i.e. by invoking sfSim on a random tuple). Thus, the changes in
the games are done in a backward fashion, with the first change in the last dependent call to Eval.
Note N can be set arbitrarily high, and if there are no more than n(< N) dependent calls, then
the hybrid games beyond game G1,n are trivially and perfectly indistinguishable. Computational
indistinguishability of games G1,j+1 and G1,j is proven in Lemma 19 below. � �

N ∗ lemma.

Lemma 19 For j ∈ [0..N − 1], if all calls to sfSim in game G1,j are with language members, then
games G1,j+1 and G1,j above are computationally indistinguishable, and all calls to sfSim in game

G1,j+1 are also with language members with probability at least 1−O(L)∗(distotzk(Σ)+advpss(Σ)).
The Adversary’s probability of distinguishing the two games is at most

O(M + 2 ∗ L) ∗ (distotzk(Σ) + advpss(Σ)) + advddh +O(1/q).

Proof: First note that in game G1,j , for k > (N − j), in the k-th dependent call to Eval, the
semi-functional simulator sfSim is invoked on a fresh random tuple. This is important to note

43

because, in contrast, this is not the case for earlier dependent calls to Eval, where sfSim is invoked
on a product of input ciphertexts and a random tuple. By employing the one-time full-simulation
property, the invocation of sfSim in the (N − j)-th dependent call to Eval (with say, input x, and
β) can be replaced with invocation of otfSim (with only x), as long as all other calls to sfSim
have correct membership bits. However, if these other calls depend on x, the correctness of their
membership bits cannot be guaranteed. Hence, it is important to make future calls to sfSim in
dependent Eval calls to be completely independent.

Define game H0 to be same as game G1,j .

Game H1 : Same as game H0, but now KeyGen switches to the otfK1 to generate CRS σ and

trapdoors σ, τ, τ1, η. The public key is set as (g,ga,gk0(ga)k1 , σ). The pV in decryption and
independent Eval calls is switched to sfV which uses σ, η. The proof π in the ciphertext in the
(N − j)-the dependent call to Eval is now generated using otfSim (with CRS σ, and trapdoor τ1)
instead of sfSim. Thus, no β is provided now for this call. All other calls to Eval, continue to use
sfSim with CRS and trapdoor σ, τ .

Note, the tuple corresponding to the otfSim invocation is not called to sfV as this ciphertext is
in D. Also, note that the membership bits β in the calls to sfSim in game H0 are 1 and are correct
membership bits by hypothesis. We also need to show that the membership bits in calls to sfSim
(and otfSim) are correct. This is proven by induction, noting that one-time full-ZK property holds
statistically, by showing that the view of the adversary is statistically indistinguishable from view
in the partial-simulation world (i.e. as in game H0), Thus, only language members are used in
calls to sfSim (and otfSim) in game H1 as well (and β = 1). Thus, probability that only language

members are called to sfSim in H1 is at least 1− 2 ∗ L ∗ (distotzk(Σ) + advpss(Σ)).

Thus, indistinguishability of H0 and H1 holds due to the one-time full-ZK property. The

statistical distance between Adversary’s view in H0 and H1 is thus at most distotzk(Σ) + 2 ∗ L ∗
(distotzk(Σ) + advpss(Σ)).

Game H2 : Same as game H1, but now KeyGen generates k0, k1 randomly and sets k = k0 + ak1

and gives skd = (k0, k1). Decryption is performed as m := γ/(ρk0 ρ̂k1). Further, the random
tuple in (N − j)-th Eval is generated as follows: Generate rZq and compute 〈ρ3, ρ̂3, γ3〉 to be
〈gr,gar,gk0rgk1ar〉.

This step is indistinguishable from game H1, since sfV is sound by Lemma 12, and hence ρ̂ = ρa

in all decryption queries. The statistical distance between the views of the adversay in H1 and H2

is at most (M + 2 ∗ L) ∗ (distotzk(Σ) + advpss(Σ)).

Game H3 : Same as game H2, but now the random tuple in (N − j)-th dependent call to Eval is

generated as follows: Generate r, r′ ← Zq and compute: 〈ρ3, ρ̂3, γ3〉 〈gr,gar
′
,gk0rgk1ar

′〉. Indistin-
guishability holds by DDH assumption. Thus, the probability of the adversary distinguishing H2

and H3 is at most advddh.

For later use, We also need to show that all calls to sfSim are with language members in H3. Now,
this was the case in H2, and hence up to the (N − j)-th dependent Eval call, nothing has changed.
Beyond that, all dependent calls to Eval use fresh random language tuples. All independent Eval
calls use sfV on their input ciphertexts, and hence by employing soundness of sfV inductively, they
are language members as well. The probability that all calls to sfSim are with language members

is thus at least 1− 2 ∗ L(distotzk(Σ) + advpss(Σ)).

44

Game H4 : The decryption key is changed to skd = k = k0 +ak1, and the decryption is performed

as m := γ/ρskd .

This step is indistinguishable from game H3, since sfV is sound by lemma 12, and hence ρ̂ = ρa.
The statistical distance between the view of the Adversary in the two games is at most (M + 2 ∗
L) ∗ (distotzk(Σ) + advpss(Σ)).

Game H5 : Public key is set as (g,ga,gk0+ak1 , σ), with decryption key skd = k = k0 + ak1.

Decryption is performed as m := γ/ρk0+ak1 . Now, the random tuple in (N−j)-th Eval is generated
as follows: Generate r, r′, r′′ ← Zq and compute 〈ρ3, ρ̂3, γ3〉 to be 〈gr,gar′ ,gr′′〉.

With a, k0, k1, r, r
′, r′′ chosen randomly and independently, it can be shown that the joint distri-

bution of (a, k0 +ak1, r, r
′, k0r+k1ar

′) is statistically indistinguishable from (a, k0 +ak1, r, r
′, r′′) (as

is standard in Cramer-Shoup CCA2-encryption [CS02]), by noting that (k0+ak1) and (k0r+ka1ar
′)

are random and independent, given a, r, r′, and a 6== 0 and r 6= r′. Thus, H4 and H5 are sta-
tistically indistinguishable with distance at most O(1/q), where q is the prime order of the Diffie-
Hellman groups.

Game H6 : Now, the ciphertext in the (N − j)-th dependent call to Eval is computed as follows:

Generate r, r′, r′′ ← Zq and compute 〈ρ3, ρ̂3, γ3〉 to be 〈gr,gar′ ,gr′′〉. Set (ρ, ρ̂, γ) = (ρ3, ρ̂3, γ3).
Call otfSim on (ρ, ρ̂, γ), to get π, and output c = (ρ, ρ̂, γ, π).

Indistinguishability from H5 follows because all three components of 〈ρ3, ρ̂3, γ3〉 are random and
independent, and also independent of input ciphertexts c1 and c2 (of this Eval call).

We now employ a series of games similar to the above games employed backwards, and change
the random tuple 〈ρ3, ρ̂3, γ3〉 back to being a valid language tuple, and this would correspond to
game G1,j+1. Moreover, the call to sfSim in the (N − j)-th dependent call to Eval is again with a
language member. � �

C.2 Revealing the Partial-Simulation Key

In some applications, the partial-simulation trapdoor τ can be revealed to the adversary, adaptively
on adversary’s demand. This event will be referred to as the Reveal event. In this case we would
like to have the property that partial-ZK and one-time full-ZK simulation is still possible under the
restriction that the adversary do not have access to the verifier oracle (i.e. third oracle in partial-ZK
and second oracle in one-time full ZK experiments) after the reveal event. However, this stronger
notion of security may not be easily obtainable (if at all).

For the general construction of Section 4, while the partial-ZK property with the above restric-
tion continues to hold, the one-time full ZK property holds only with another minor restriction.
The additional restriction is that the tuple (x∗, l∗, β∗) on which one-time full-simulation is required
must now have x ∈ Lρ (and β = 1). In other words, one cannot go back and forth between the
partial-simulation world and one-time full simulation world with fake tuples (the tuples invoked
on the first oracle sfSim can continue to be fake as long as their membership-bit is correct). But,
this restriction is remedied by the fact that we can show that the semi-functional verifier sfV con-
tinues to be sound. In other words, the statement of lemma 12 continues to hold for the general
construction.

Thus, we define the stronger notion of DSS-QA-NIZK as follows:

Definition 20 A dual-system non-interactive proof with (partial-simulation trapdoor) reveal oracle

45

is called a strong dual-system simulation-sound quasi-adaptive NIZK (strong DSS-QA-NIZK)
with the following changes to the DSS-QA-NIZK definition:

The composable partial-ZK property (part one) continues to hold.

The composable partial-ZK property (part two) holds under the additional restriction that the
adversary cannot call the third oracle after the reveal event.

The unbounded partial-simulation soundness continues to hold.

The trapdoors τ and τ1 output by otfK1 are same and statistically indistinguishable from τ output
by sfK1.

The one-time full-ZK holds under the additional restriction that (x∗, l∗, β∗) is such that x∗ ∈ Lρ
and β∗ = 1, and the second oracle is not invoked after the reveal event.

The soundness of sfV as in Lemma 12 statement holds under the additional restriction that the
second oracle is not invoked after the reveal event. Note, there is no restriction that (x∗, l∗, β∗) is
such that x∗ ∈ Lρ and β∗ = 1.

Theorem 21 For a parameterized class of languages {Lρ}ρ∈Lpar with probability distribution D,

if the four conditions (of Section 4) hold for projective hash family H, QA-NIZK Q, and efficient
algorithms E1, E2, E3, then the dual-system non-interactive proof system Σ (of Section 4) with adap-
tive adversarial access to reveal oracle is a strong DSS-QA-NIZK for {Lρ}ρ∈Lpar with probability
distribution D.

Proof: As a general consideration, suppose an Adversary makes multiple outputs. Note that
soundness conditions state that the probability of Adversary outputting a tuple satisfying some
relation is negligible. Thus, if the Adversary has not initiated the reveal event till a particular
output, then soundness continues to hold for that output.

The composable partial-ZK property (part one): by construction of sfK1, the language parameter
ρ are statistically indistinguishable in the real-world and the partial-ZK world. Further the α(k)
part of the CRS σ is identical. Finally, the CRS generated by the CRS generators of Q are
statistically indistinguishable by hypothesis.

The composable partial-ZK property (part two) under additional restriction mentioned above:
Recall in the proof of theorem 6, we defined a hybrid experiment, where the first oracle is the
simulator sfSim and the third oracle is V (as opposed to pV). Indistinguishability of the real-world
and the hybrid world continues to hold as it was proven there even with adversary given access to
τ .

For showing statistical indistinguishability of the hybrid-world and the partial-simulation world, we
first note that (by above general consideration) the QA-NIZK Q continues to be weakly-simulation
sound till the reveal event (note, revealing τ also reveals the simulation trapdoor generated by
crs-sim of Q). Thus lemma 14 also continues to hold till the reveal event. Hence, as in proof of
theorem 6, the statistical indistinguishability of the hybrid-world and the partial-simulation world
holds under the restriction that the third oracle is not invoked after the reveal event.

The unbounded partial-simulation soundness holds: This follows trivially.

46

The trapdoors τ and τ1 output by otfK1 are same and statistically indistinguishable from τ output
by sfK1: all three are generated identically, given that E1 samples from D.

The one-time full-ZK holds under additional restrictions mentioned above: We go through the
various experiments defined in proof of Theorem 6. For the indistinguishability of experiments
H1 and H2, note that we have now restricted β∗ to be one. Hence, if τ is revealed (in which case
the private hash key k would be revealed) sfSim and otfSim still behave the same. The rest of the
experiments are indistinguishable since they involve the verifier oracle (i.e. the second oracle),
and these oracles are not even allowed to be called after the reveal event.

The soundness of sfV as in Lemma 12 statement holds under the additional restriction mentioned
above: Since there is no restriction that (x∗, l∗, β∗) is such that x∗ ∈ Lρ and β∗ = 1, we cannot
now go back to the partial-simulation world as done in the general proof of lemma 12.

Define a hybrid experiment that is identical to the experiment H1 in the proof of Theorem 6.
In other words, it is same as the partial-simulation world, except that the proof π∗ on input
(x∗, l∗, β∗) is generated using otfSim (recall, the CRS and simulation trapdoors are identically
distributed). Now, note that as long as the second oracle is not invoked after the reveal event, the
proof that H1 is (almost) identically distributed to the one-time simulation world still holds (one
needs to go through all the intermediate experiments as in proof of theorem 6). But note that pV
is sound even in experiment H1. Thus, the argument in the proof of lemma 12 still holds, and
hence sfV is sound except for the the tuple (x∗, l∗, π∗).

�
Note that, the weak-simulation soundness of the verifier V holds (as in Lemma 14 statement) if

the Adversary has not initiated the reveal event: the proof is same as the proof of lemma 14 noting
that partial-zk property (second part) holds (as shown above) till the time that the adversary
outputs.

We are now ready to prove the stronger result for the KH-PKE construction of Section 5.

Theorem 22 (KH-CCA under Reveal Event) The algorithms P= (KeyGen, Enc, Dec, Eval)
constitute a KH-CCA secure Keyed-Homomorphic Public Key Encryption scheme with multiplica-
tive homomorphism, if Σ is a strong DSS-QA-NIZK for the parameterized Diffie-Hellman language
(with language parameters distributed randomly) and Dec and Eval after not available after reveal
event. The Adversary’s advantage in the KH-CCA security game is at most

(2 ∗ L) ∗ advpzk(Σ, 1) + advpzk(Σ, 2 ∗ L) +

O(L ∗ (M + 2 ∗ L)) ∗ (distotzk(Σ) + advpss(Σ)) + (N + 1) ∗ advddh +O(L/q).

The proof is essentially the same as the proof of Theorem 8.

Key-Reveal and CCA1 Security. We can easily extend the keyed-homomorphic scheme of
Section 5 to maintain CCA1-security when the key is revealed, but the construction requires use of
another group element. More specifically, a smooth projective hash (which need not be universal2)
of the Diffie-Hellman tuple is included, and the decryption key includes the keys to this smooth
projective hash. This way, the usual alternate decryption that is used in CCA-seurity can be
provided till the time of challange encyption using this hash proof. Further, since this smooth

47

projective hash is actually malleable, the Eval secret key skh need not include the key of this
smooth projective hash.

Again, given a dual-system non-interactive proof Σ, consider the following algorithms for the
more advanced KH-PKE scheme R:

KeyGen: Generate g and a, k, f1, f2 randomly. Use sfK1 of Σ to generate CRS σ and trapdoors τ
and η with language parameters ρ = (g,ga). Set pk = (g,ga,gk,gf1gaf2 , σ), skh := τ, skd :=
(k, f1, f2).

Enc: Given plaintext m, generate w ← Zq and compute (using P of Σ)
c := (gw,gaw, γ, h,P(σ, (gw,gaw), w, l)), where γ := m · gkw, h = (gf1gaf2)w and label l = (γ, h).

Dec: Given ciphertext c = (ρ, ρ̂, γ, h, π), first check if h = ρf1 ρ̂f2 . Next, check if V(σ, π, (ρ, ρ̂); (γ, h))
of Σ holds, then compute m := γ/ρk.

Eval (multiplicative): Given ciphertexts c1 = (ρ1, ρ̂1, γ1, h1, π1) and c2 = (ρ2, ρ̂2, γ2, h2, π2),
first check if V(σ, πi, (ρi, ρ̂i); (γi, h2)) of Σ holds for al i ∈ [1..2]. Then compute: ρ = ρ1ρ2ρ3,
ρ̂ = ρ̂1ρ̂2ρ̂3, γ = γ1γ2γ3, h = h1h2h3 where 〈ρ3, ρ̂3, γ3, h3〉 is a fresh random tuple obtained
by picking r at random and setting the tuple to be 〈gr, (ga)r, (gk)r, (gf1gaf2)r〉. Then compute
π := sfSim(σ, τ, (ρ, ρ̂), β = 1; (γ, h)) using sfSim of Σ. Output ciphertext c := (ρ, ρ̂, γ, h, π).

Theorem 23 The algorithms R = (KeyGen,Enc,Dec,Eval) above constitute a KH-CCA secure
Keyed-Homomorphic Public Key Encryption scheme with multiplicative homomorphism, if Σ is a
strong DSS-QA-NIZK for the parameterized Diffie-Hellman language (with language parameters
distributed randomly). The Adversary’s advantage in the KH-CCA security game is at most

(2 ∗ L) ∗ advpzk(Σ, 1) + advpzk(Σ, 2 ∗ L) +

O(L ∗ (M + 2 ∗ L)) ∗ (distotzk(Σ) + advpss(Σ)) + (N + 1) ∗ advddh +O(L/q).

The proof is similar to the proof of Theorem 22, but in addition it allows alternate decryption
till the time of generation of challenge ciphertext, even if the Eval key is revealed by using the
smooth projective hash of the DH language provided by h.

D Proof of Realization of the UC-PAKE Functionality

In this section we state and prove that the protocol in Fig. 6.2.1 realizes the multi-session ideal
functionality F̂pake, as long as the adversary does not corrupt a party such that its peer has already
issued the key in a session and the adversary has not delivied the message from the peer to the
party in that session.

Theorem 24 Assuming the existence of SXDH-hard groups, the protocol in Fig 6.2.1 securely
realizes the F̂pake functionality in the Fcrs hybrid model, in the presence of adaptive corruption
adversaries, , as long as an adversary does not corrupt a party after its peer has issued a key in a
session and the adversary has not delivered the message in the session from the peer to the party.

We start by defining the UC simulator in detail.

48

D.1 The Simulator for the UC Protocol.

We will assume that the adversary A in the UC protocol is dummy, and essentially passes back
and forth commands and messages from the environment Z. Thus, from now on we will use
environment Z as the real adversary, which outputs a single bit. The simulator S will be the ideal
world adversary for F̂pake. It is a universal simulator that uses A as a black box.

For each instance (session and a party), we will use subscript 2 along with a prime, to refer to
variables received in the message from Z (i.e A), and use subscript 1 to refer to variables computed
in the instance under consideration. We will call a message legitimate if it was not altered by Z,
and delivered in the correct session and to the correct party.

The simulator S picks the CRS just as the semi-functional CRS generator sfK1 picks the CRS
for the DSS-QA-NIZK. This is statistically same as the real-world CRS in the UC protocol, except
S sets d = d1 +a ·d2, and e = e1 +a ·e2, where d1, d2, e1, e2 are chosen randomly and independently
from Zq. It retains a, c, b, d1, d2, e1, e2, u1, u2 as trapdoors. We will denote u′1 = u1b − d − ac, and
u′2 = u2b− e.

The next main difference in the simulation of the real world parties is that S uses a dummy
message µ instead of the real password which it does not have access to. Further, it decrypts the
incoming message R′2, S

′
2, T

′
2 to compute a pwd′, which it uses to call the ideal functionality’s test

function. If the test succeeds, it produces a sk (see below) and sends it to the ideal functionality
to be output to the party concerned.

D.2 New Session: Sending a message to Z.

On message (NewSession, sid, ssid, i, j, role) from F̂pake, S starts simulating a new instance of
the protocol Π for party Pi, peer Pj , session identifier ssid, and CRS set as above. We will denote
this instance by (Pi, ssid). To simulate this instance, S chooses r1, r

′
1, r
′′
1 , s1 at random, and sets

R1 = gr11 , S1 = µ·ar1 ·gr
′
1

1 , ρ̂1 = bs1 . Next, it computes T1 = g
r1·(d1+ι1e1)
1 ·gr

′′
1

1 , where ι1 = H(sid, ssid,
Pi, Pj , R1, S1, ρ̂1) (note the use of µ instead of pwd). (Intuitively, this is what sfSim would compute
for T1 as well if membership-bit was set to false, which is the case here with high probability.)

It retains r1, r
′
1, r
′′
1 , s1 (and µ if chosen randomly). It then hands R1, S1, T1, ρ̂1 to Z on behalf

of this instance.

D.3 On Receiving a Message from Z.

On receiving a message R′2, S
′
2, T

′
2, ρ̂
′
2 from Z intended for this instance (Pi, ssid), the simulator S

makes the real world protocol checks, namely group membership and non-triviality. If any of these
checks fail, it issues a TestPwd call to F̂pake with the dummy password µ, followed by a NewKey
call with a random session key, which leads to the functionality issuing a random and independent
session key to the party Pi (regardless of whether the instance was interrupted or compromised).

Otherwise, if the message received from Z is same as message sent by S on behalf of peer Pj in
session ssid, then S just issues a NewKey call for Pi.

Else, it computes pwd′ by decrypting S′2, i.e. setting it to S′2/(R
′
2)a. S then calls F̂pake with

(TestPwd, ssid, Pi, pwd′). Regardless of the reply from F , it then issues a NewKey call for Pi with
key computed as follows (recall, R1, S1, ι1, r

′
1, r
′′
1 from earlier in this instance when the message was

49

sent to Z). Next,

ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v

ι′2
2)s1 ,

W1 = R
(u′1+ι1u′2)/b
1 · (S1/pwd′)c/b · T 1/b

1 .

if T ′2 = (R′2)d+ι′2e then set ξ1 = 1T else set ξ = ε(g1,g2)s
′
1 , where s′1 is a fresh random value. Call

F̂pake’s NewKey with session key

e(R′2, γ1) · e((R′2)a, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2) · ξ1.

Note that this is how sfSim would compute W1. By definition of F̂pake, this has the effect that
if the pwd′ was same as the actual pwd previously recorded in F̂pake (for this instance) then the
session key is determined by the Simulator as above, otherwise the session key is set to a random
and independent value.

D.4 Corruption

On receiving a Corrupt call from Z for instance Pi in session ssid, the simulator S calls the Corrupt
routine of F̂pake to obtain pwd. If S had already output a message to Z, and not output sk1 it
computes

W1 = R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1

and outputs this W1 along with pwd, and ρ1, θ1, γ1 as internal state of Pi. Note that this com-
putation of W1 is identical to the computation of W1 in the computation of sk1 (which is really
output to Z only when pwd′ = pwd).

Without loss of generality, we can assume that in the real-world if the Adversary (or Environ-
ment Z) corrupts an instance before the session key is output then the instance does not output
any session key. This is so because the Adversary (or Z) either sets the key for that session or can
compute it from the internal state it broke into.

D.5 Proof of Indistinguishability - Series of Experiments.

We now describe a series of experiments between a probabilistic polynomial time challenger C and
the environment Z, starting with Expt0 which we describe next. We will show that the view of Z
in Expt0 is same as its view in UC-PAKE ideal-world setting with Z interacting with F̂pake and
the UC-PAKE simulator S described above in Section D.1. We end with an experiment which is
identical to the real world execution of the protocol in Fig 6.2.1. We will show that the environment
has negligible advantage in distinguishing between these series of experiments, leading to a proof
of realization of Fpake by the protocol Π.

Here is the complete code in Expt0 (stated as it’s overall experiment with Z):

1. The challenger C picks the CRS just as in the real world, except it sets d = d1 + a · d2, and
e = e1 + a · e2, where d1, d2, e1, e2 are chosen randomly and independently from Zq. It retains
a, c, b, d1, d2, e1, e2, u1, u2 as trapdoors. Also, denote u′1 = u1b− d− ac, and u′2 = u2b− e.

2. On receiving NewSession, sid, ssid, Pi, Pj , pwd, role from Z, C generates R1, S1, T1, ρ̂11 by

choosing r1, r
′
1, r
′′
1 , s1 at random, and setting R1 = gr11 , S1 = µ ·ar1 ·gr

′
1

1 , T1 = g
r1·(d1+ι1e1)
1 ·gr

′′
1

1 ,
ρ̂1 = bs1 . It sends these values to Z.

50

3. On receiving R′2, S
′
2, T

′
2, ρ̂
′
2 from Z, intended for session ssid and party Pi (and assuming no

corruption of this instance)

(a) if the received elements are either not in their respective groups, or are trivially 1, output
sk1 chosen randomly and independently from GT .

(b) Otherwise, if the message received is identical to message sent by C in the same session

(i.e. same ssid) on behalf of the peer, then output sk1
$←− GT (unless the simulation of

peer also received a legitimate message and its key has already been set, in which case
the same key is used to output sk1 here).

(c) Else, compute pwd′ = S′2/(R
′
2)a. If pwd′ 6= pwd (note pwd was given in NewSession

request), then output sk1 randomly and independently from GT .

(d) Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v

ι′2
2)s1 ,

W1 = R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1 . if (T ′2 6= (R′2)d+ι′2e) then output a random value
in GT else Output

e(R′2, γ1) · e(S′2/pwd, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2).

4. On a Corrupt call, if step 2 has already happened then output s1, pwd and

W1 = R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1 .

All outputs of sk1 are also accompanied with sid, ssid (but are not mentioned above for ease of
exposition).

Note that each instance has two asynchronous phases: a phase in which C outputs R1, S1, ...
to Z, and a phase where it receives a message from Z. However, C cannot output sk1 until it has
completed both phases. These orderings are dictated by Z. We will consider two different kinds
of temporal orderings. A temporal ordering of different instances based on the order in which C
outputs sk1 in an instance will be called temporal ordering by key output. A temporal ordering
of different instances based on the order in which C outputs its first message (i.e. R1, S1, ...) will
be called temporal ordering by message output. It is easy to see that C can dynamically
compute both these orderings by maintaining a counter (for each ordering).

It is straightforward to inspect that the view of Z in Expt0 is identical to its view in its combined
interaction with F̂pake and S, as C has just combined the code of F̂pake and S (noting that in step
3(d), pwd = pwd′)

Expt1 : In this experiment step 3(c) is dropped altogether and step 3(d) is altered as follows: In step 3(d)
in Expt0, the condition T ′2 6= (R′2)d+ι′2e is replaced by if (S′2 6= pwd · (R′2)a) or (T ′2 6= (R′2)d+ι′2e).
Rest of the computation of sk1 in step 3(d) remains the same.

We claim that the view of Z is statistically identical in Expt0 and Expt1. This follows by noting that
S′2 6= pwd·(R′2)a is equivalent to the condition pwd′ 6= pwd in Expt0. The condition S′2 = pwd·(R′2)a

held in step 3(d) in Expt0, as that step was only reached if this condition held.
At this point, Expt1 can equivalently be written as follows:

1. The challenger C picks the CRS just as in the real world, except it sets d = d1 + a · d2, and
e = e1 + a · e2, where d1, d2, e1, e2 are chosen randomly and independently from Zq. It retains
a, c, b, d1, d2, e1, e2, u1, u2 as trapdoors.

51

2. On receiving NewSession, sid, ssid, Pi, Pj , pwd, role from Z, C generates R1, S1, T1, ρ̂11 by

choosing r1, r
′
1, r
′′
1 , s1 at random, and setting R1 = gr11 , S1 = µ ·ar1 ·gr

′
1

1 , T1 = g
r1·(d1+ι1e1)
1 ·gr

′′
1

1 ,
ρ̂1 = bs1 . It sends these values to Z.

3. On receiving R′2, S
′
2, T

′
2, ρ̂
′
2 from Z(and assuming no corruption of this instance),

(a) if the received elements are either not in their respective groups, or are trivially 1, output
sk1 chosen randomly and independently from GT .

(b) Otherwise, if the message received is identical to message sent by C in the same session

(i.e. same ssid) on behalf of the peer, then output sk1
$←− GT (unless the simulation of

peer also received a legitimate message and its key has already been set, in which case
the same key is used to output sk1 here).

(c) -

(d) Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v

ι′2
2)s1 ,

W1 = R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1 . if (S′2 6= pwd · (R′2)a) or (T ′2 = (R′2)d+ι′2e) then
output a random value in GT else Output

e(R′2, γ1) · e(S′2/pwd, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2).

4. On a Corrupt call, if step 2 has already happened then output s1, pwd and

W1 = R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1 .

Expt2 : In this experiment the challenger in step 2 computes S1 in each instance as pwd ·ar1 ·gr
′
1

1 . Note
the use of pwd instead of µ.

This is statistically the same, as in each instance the challenger picks a fresh and random r′1, and
it is not used anywhere else.

Expt3 : In each instance T1 is computed as follows: T1 = g
r1·(d+ι1e)
1 · gr

′′
1

1 .

This is statistically identical as T1 has a random factor g
r′′1
1 .

Expt4 : In this experiment the challenger C generates the CRS slightly differently. It picks u′1 and u′2 at
random, and sets u1 = (u′1+d+c·a)/b, and u2 = (u′2+e)/b. Rest of the CRS computation remains
the same. Note that a is not used anymore in the computation of group G2 CRS elements, in
particular v1.

The view of the adversary in Expt3 and Expt4 is statistically the same.

Expt5 : In each instance S1 is computed as follows: pwd · ar1 . Further, T1 is computed as follows:
T1 = Rd+ι1e

1 . Further, later on in the instance, on receiving a message from Z, W1 is computed

as W1 = R
(u1+ι1u2)
1 (also the same change in Corrupt; actually this change is just syntactic and

follows from the change in computation of S1 and T1). In other words, the computation of S1, T1

and W1 is as in the real-world (this can be seen from the definition of w1 and w2 in the CRS).

52

To show that Expt4 is computationally indistinguishable from Expt5, we define several hybrid
experiments Expt4,i inductively. Experiment Expt4,0 is identical to Expt4. If there are a total of N
instances, Expt4,N will be identical to Expt5. Experiment Expt4,1+1 differs from experiment Expt4,i
in only (temporally ordered by message output) the (i + 1)-th instance. While in Expt4,i, the
(i+ 1)-th instance is simulated by C as in Expt4, in Expt4,i+1 this instance is simulated as in Expt5.

Lemma 25 For all i : 0 ≤ i ≤ N , the view of Z in experiment Expt4,i+1 is computationally
indistinguishable from the view of Z in Expt4,i.

Proof: The proof will follow the proof of one-time full ZK in Appendix B, except that we will also
employ DDH to replace the fake tuples with real tuples.

We define several hybrid experiments. Experiment G0 is identical to Expt4,i.
In experiment G1, the CRS is picked differently by C. instead of picking d1, d2 at random (and

similarly e2, e2 at random), picks d and d2 randomly and independently and sets d1 = d − a · d2

(and e1 = e− a · e2). Rest of the CRS computation remains the same, and it retains a, c, b, d, d2,
e, e2, u′1, u′2. This is statistically the same distribution.

In G2, in the (i+ 1)-th instance T is computed differently:

T = R
d+ι1e−a·(d2+ι1e2)
1 · (S1/pwd)d2+ι1e2 (3)

This is statistically the same as d2 was chosen randomly and independently of d. All other
instances are only using d and e in their computation. Thus, the r′′1 in this instance can be replaced

by (d2 + ι1e2)r′1 (note S1 is computed as pwd · ar1 · gr
′
1

1 in previous experiments).
In the next experiment G3, in step 3(d) of each instance, the condition “if (S′2 6= pwd · (R′2)a) or

(T ′2 = (R′2)d+ι′2e)” is replaced by “if (T ′2 6= (R′2)d1+ι′2e1 · (S′2/pwd)d2+ι′2e2)”. Rest of the computation
of sk1 remains the same. This is the same as using sfV instead of pV, and the proof of G3 being
statistically indistinguishable from G2 is exactly the same as in proof of H1 and H2 in one-time
full-ZK property proof of theorem 6 (see lemma 7) noting that sid, ssid, P,Pj and ρ̂ are used as
label. Note that the proof of statistical indistinguishability of H1 and H2 itself requires a hybrid
argument.

In the next experiment G4, the computation of each of the instances (except the (i + 1)-th
instance undergoes the following change: in the j-th instance, if j < (i + 1), then set r′′1 = 0, else

choose r′′1 at random. Compute T1 = Rd1+ι1e1
1 · (S1/pwd)d2+ι1e2 · gr

′′
1

1 .
Experiments G4 and G3 are statistically identical, and the proof is same as for the proof of

indistinguishability of Expt2 and Expt3.
In the next experiment G5, the challenger produces the rest of the CRS using ρ = g1,g

a
1, where

a is chosen randomly from Zq. In particular, it chooses d1, d2, e1, e2, u
′
1, u
′
2, b, c at random, and

defines the CRS using ρ and these values. This is statistically the same.
In the next experiment G6, the challenger generates the S1 in the (i+ 1)-th instance as follows:

S1 = pwd·ar1 . That the view of Z in experiments G5 and G6 are computationally indistinguishable
follows from the DDH assumption in group G1.

Now, we unwind our way back to Expt4,i+1 following all of the above hybrid games back-wards,
and that completes the proof. � �

At this point, Expt5 can be described as follows:

1. The challenger C picks the CRS just as in the real world, except it sets d = d1 + a · d2, and
e = e1 + a · e2, where d1, d2, e1, e2 are chosen randomly and independently from Zq. It retains
a, c, b, d1, d2, e1, e2, u1, u2 as trapdoors.

53

2. On receiving NewSession, sid, ssid, Pi, Pj ,pwd, role from Z, C generates R1, S1, T1, ρ̂1 by
choosing r1, s1 at random, and setting R1 = gr11 , S1 = pwd · ar1 , T1 = (deι1)r1 , ρ̂1 = bs1 . It
sends these values to Z.

3. On receiving R′2, S
′
2, T

′
2, ρ̂
′
2 from Z(and assuming no corruption of this instance),

(a) if the received elements are either not in their respective groups, or are trivially 1, output
sk1 chosen randomly and independently from GT .

(b) Otherwise, if the message received is identical to message sent by C in the same session

(i.e. same ssid) on behalf of the peer, then output sk1
$←− GT (unless the simulation of

peer also received a legitimate message and its key has already been set, in which case
the same key is used to output sk1 here).

(c) -

(d) Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), if (S′2 6= pwd · (R′2)a) or (T ′2 6=

(R′2)d+ι′2e) then output a random value in GT ,

(e) else, compute ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v
ι′2
2)s1 , W1 = (w1w

ι2
2)r1 , and output

e(R′2, γ1) · e(S′2/pwd, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2).

4. On a Corrupt call, if step 2 has already happened then output s1, pwd and
W1 = (w1w

ι2
2)r1

D.5.1 Handling Legitimate Messages

Expt6 : In this experiment the step 3(b) is modified as follows:
Step 3(b): Otherwise, if the message received is identical to message sent by C in the same session
(i.e. same SSID) on behalf of the peer, and if simulation of peer also received a legitimate message
and its key has already been set, then output that same key here. Else, go to step 3(e).

To show that Expt6 is indistinguishable from Expt5 we need to go through several hybrid ex-
periments. In each subsequent hybrid experiment one more session (and possibly its peer) are
modified, and the order in which these sessions are handled is determined by temporal order of
message sending. In the hybrid experiment Expt5,i, the step 3(b) in the peer of the i-th temporally
ordered session is modified as required in Expt6 description above. Experiment Expt5,0 is same as
experiment Expt5, and experiment Expt5,N is same as experiment Expt7.

Lemma 26 For all i ∈ [1..N], experiment Expt5,i is computationally indistinguishable from Expt5,i−1.

Proof: The lemma is proved using several hybrid experiments of its own. The experiment H0 is
same as Expt5,i−1.

In experiment H1 the CRS is set by choosing u′1, u
′
2 at random and setting u1 = (u′1 +d+ ca)/b

and u2 = (u′2 + e)/b. Thus, a is not used in generation of G2 elements.
In experiment H2, in session i, the value W1 (in step 3(e) or corruption) is generated using R1,

S1/pwd and T1 using the trapdoors (as in Expt0), i.e. R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1 .
In experiment H3, in step 3(d) of every session, the condition “if (S′2 6= pwd · (R′2)a) or (T ′2 6=

(R′2)d+ι′2e)” is replaced by “if (T ′2 6= (R′2)d1+ι′2e1 · (S′2/pwd)d2+ι′2e2)”. This is the same as using sfV

54

instead of pV, and the proof of G3 being statistically indistinguishable from G2 is exactly the same
as in proof of H1 and H2 in one-time full-ZK property proof of theorem 6 (see lemma 7) noting
that sid, ssid, P,Pj and ρ̂ are used as label. Note that the proof of statistical indistinguishability of
H1 and H2 itself requires a hybrid argument.

In experiment H4, in session i, the values R1, S1 and T1 are generated as R1 = gr11 , S1 =

pwd · ar1 · gr
′
1

1 and T1 = g
r1·(d+ι1e)
1 · g(d2+ι1e2)r1

1 , where r1, r
′
1 are random and independent. This

follows by employing DDH on g1,g
r1
1 ,a and either gar11 or g

ar1+r′1
1 .

In experiment H5, the CRS is set as follows. The values u1 and u2 are chosen at random and
set u′1 = u1b − d − ca and u′2 = u2b − e. This is statistically the same as H4. Moreover, in every
step 3(d), the condition is changed back to as in H2. Further, in peer of session i, in step 3(e), the
value e(R′2, γ1) · e(S′2/pwd, θ1) · e(T ′2, ρ1) is instead computed as e((R′2)u1+ι′2u2 ,gbs12), as the message
received is in the language.

In experiment H6, in session i, change step 3(b) as follows: Step 3(b): Otherwise, if the message
received is identical to message sent by C in the same session (i.e. same SSID) on behalf of the
peer,

• if simulation of peer also received a legitimate message and its key has already been set, then
output that same key here. If peer is corrupted, output the key supplied by the Adversary.

• Else, compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v

ι′2
2)s1 , W1 =

R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1 . Pick c′2, s
′
2 at random and set θ1 = e(T1 · (S1/pwd)c

′
2 ,g2)s

′
2 ·

e(R1,g2)−(d+ι1e+c′2·a)s′2 . Output

e(R′2, γ1) · e(S′2/pwd, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2) · θ1.

(note: in all other cases step 3(d) and (e) are still being performed).
The experiments H6 and H5 are statistically indistinguishable by a simple information theoretic

argument, since S1/pwd 6= Ra1 (see experiment H4), and c′2 is chosen randomly, and thus θ1 is
random in target group GT .

In experiment H7, in the above step 3(b) in session i, the term e(W1, ρ̂
′
2) is replaced by

e(R
(u′1+ι1u′2)
1 · (S1/pwd)c · T1,g

s2
2), where s2 is the value chosen in the peer of session i (note session

i in step 3(b) received the message exactly as generated in its peer, and hence ρ̂′2 = gbs22 .
In experiment H8, in above step 3(b) of session i, in computation of the term θ1, the value c′2 is

replaced by c itself. Experiments H8 and H7 are indistinguishable follows by employing DDH on

g2,g
s′2
2 , c, and either g

cs′2
2 (real DDH challenge) or g

c′2s
′
2

2 (fake DDH challenge).
In experiment H9, the term θ1 is not computed at all, and is dropped from the computation of

the session key output. Again, experiments H9 and H8 are indistinguishable by employing DDH on

tuples g2,g
b
2,g

bs2
2 and either gs22 (yielding H9) or g

s2+s′2
2 (yielding H8). Note that u′1 = u1b−d− ca

and u′2 = u2b− e. Note that in session i, in step 3(e), computation of W1 uses 1/b. However, step
3(e) is identical in both H9 and H8. Thus, probability for a adversary to distinguish between H8

and H9 remains upper bounded by maximum distinguishing probability of DDH challenges.

In experiment H10, in step 3(b) of session i, the term e(R
(u′1+ι1u′2)
1 ·(S1/pwd)c ·T1,g

s2
2) is replaced

back by e(W1, ρ̂
′
2). Experiments H10 and H9 are identical by the same argument as employed for

experiments H6 and H7.

55

In experiment H11, the CRS is set by choosing u′1, u
′
2 at random and setting u1 = (u′1 +d+ca)/b

and u2 = (u′2 + e)/b. Thus, a is not used in generation of G2 elements. Further, in evert step 3(d)
the condition is changed to as in H3.

In experiment H12, in session i, R1, S1 and T1 are generated as R1 = gr1 , S1 = pwdar1 , and
T1 = (deι1)r1 , by employing DDH just as in experiments Expt3 and Expt2.

In experiment H13, in session i, in step 3(b), 3(e) and corruption step, W1 is computed as
(w1w

ι1
2)r1 . This is statistically the same, as R1, S1 and T1 are being correctly generated now.

In experiment H14, in step 3(d) of every session, the condition “if (T ′2 6= (R′2)d1+ι′2e1 ·(S′2/pwd)d2+ι′2e2)”
is replaced back by “if (S′2 6= pwd · (R′2)a) or (T ′2 6= (R′2)d+ι′2e)”. This is statistically the same for
efficieny adversaries as shown above for Expt2 and Expt1.

In experiment H15, the CRS is set as follows. The values u1 and u2 are chosen at random and
set u′1 = u1b− d− ca and u′2 = u2b− e. �

At this point, Expt6 can be described as follows:

1. The challenger C picks the CRS just as in the real world, except it sets d = d1 + a · d2, and
e = e1 + a · e2, where d1, d2, e1, e2 are chosen randomly and independently from Zq. It retains
a, c, b, d1, d2, e1, e2, u1, u2 as trapdoors.

2. On receiving NewSession, sid, ssid, Pi, Pj , pwd, role from Z, C generates R1, S1, T1, ρ̂1 by
choosing r1, s1 at random, and setting R1 = gr11 , S1 = pwd · ar1 , T1 = (deι1)r1 , ρ̂1 = bs1 . It
sends these values to Z.

3. On receiving R′2, S
′
2, T

′
2, ρ̂
′
2 from Z(and assuming no corruption of this instance) compute

ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), and

(a) if the received elements are either not in their respective groups, or are trivially 1, output
sk1 chosen randomly and independently from GT .

(b) Otherwise, if the message received is identical to message sent by C in the same session
(i.e. same SSID) on behalf of the peer, and if simulation of peer also received a legitimate
message and its key has already been set, then output that same key here. Else, let
ξ1 = 1T and go to step 3(e).

(c) -

(d) Else, if (S′2 6= pwd · (R′2)a) or (T ′2 6= (R′2)d+ι′2e) then let ξ1 be a fresh random value from
GT else let ξ1 = 1T . Go to step 3(e).

(e) compute ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v
ι′2
2)s1 , W1 = (w1w

ι2
2)r1 , and output

e(R′2, γ1) · e(S′2/pwd, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2) · ξ1.

4. On a Corrupt call, if step 2 has already happened then output s1, pwd and
W1 = (w1w

ι2
2)r1

56

D.5.2 Handling Adversarial Messages

Expt7 : In this experiment in step 3(d), in each instance C picks random values c′1, s
′
1 ∈ Zqm and

computes ξ1 differently as follows (all other values are computed as in Expt6):
ξ1 = e(T ′2 · (S′2/pwd)c

′
1 ,g2)s

′
1 · e(R′2,g2)−(d+ι′2e+c

′
1·a)s′1 .

This computation of ξ1 in step 3(d) is statistically indistinguishable by a simple information-
theoretic argument.

Expt8 : In this experiment, in each instance ξ1 is computed without using a fresh c′1, but instead using
c itself, i.e. ξ1 = e(T ′2 · (S′2/pwd)c,g2)s

′
1 · e(R′2,g2)−(d+ι′2e+ca)s′1 .

A standard hybrid argument. employing DDH assumption in group G2 on g2, gc2, g
s′1
2 and either

g
c·s′1
2 (real DDH tuple) or g

c′1·s′1
2 (fake DDH tuple), shows that Expt7 and Expt8 are computationally

indistinguishable by Z.

Expt9 : In this experiment, in each instance ξ1 is not computed at all and is not used as a factor in
computation of sk1 in step 3(e). Thus, the step 3(d) does not exist in this experiment.

First note that in Expt8, sk1 can be equivalently computed by C as follows:

ρ1 = g
s1+s′1
2 , θ1 = cs1+s′1 , γ1 = (v1v

ι′2
2)s1 · g−(d+ι′2e+ca)s′1

2 , W1 = (w1w
ι1
2)r1 ,

sk1 = e(T ′2, ρ1) · e(S′2
pwd

, θ1) · e(R′2, γ1) · e(W1, ρ̂
′
2). Note that if the message reseived was legitimate

then (S′2 = pwd · (R′2)a) and (T ′2 = (R′2)d+ι′2e). We also remark that if the instance has already
been corrupted (and s1 disclosed to Z) then this step never happens. Now, it is an easy matter to
show that Expt9 and Expt8 are computationally indistinguishable by employing DDH assumption
(multiple times using a hybrid argument) on g1, gb2, gbs12 and either gs12 (real DDH challenge yielding

experiment Expt13) or g
s1+s′1
2 (fake DDH challenge yielding experiment Expt12).

At this point, i.e. in Expt9, the computation of step 3(d) is as follows:

Step 3(d): Compute ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v
ι′2
2)s1 , W1 = (w1w

ι1
2)r1 and output sk1 =

e(T ′2, ρ1) · e(S′2, θ1) · e(R′2, γ1) · e(W1, ρ̂
′
2).

Expt10 : In this experiment the step 3(b) is dropped. In other words, the challenger code goes straight
from 3(a) to 3(e).

Experiments Expt10 and Expt15 produce the same view for Z, since if both peers (of a session)
received legitimate messages forwarded by Z, then step 3(e) computes the same session key in both
instances.

Expt11 : In this experiment, the challenger chooses d and e randomly and uniformly, i.e. without first
choosing d1, d2, e1, e2 and then computing d and e in terms of these and other variables.

It is straightforward to see that the view of Z is same in Expt10 and Expt11.
Finally, a simple examination shows that the view of Z in Expt11 is identical to the real world

protocol.

57

E Proof of Realization of the Non-information Oracle based UC-
RPAKE

Theorem 10 Assuming the existence of SXDH-hard groups, there exists a multi-session non-

information oracle N̂ such that the protocol in Fig 6.2.1 securely realizes the F̂
ˆN
rpake functionality

in the Fcrs hybrid model, in the presence of adaptive corruption adversaries.
We now describe the changes needed to the proof of section D. The multi-session non-information

oracle N̂ works as follows. In the first phase it expects from the adversary a message which
describes bilinear pairing groups, G1, G2, GT , with a bilinear pairing e from G1,G2 to GT , along
with generators g1, g2 of groups G1 and G2, and q (as the order of the generators g1, g2). N̂ checks
that g1 and g2 are indeed of order q, and q ≥ 2k. Otherwise, it and the functionality aborts.

It generates the CRS as in the real world, and sends the CRS to the adversary S′ (we will
reserve the name S for the simulator in the ideal world). It also saves the CRS as the state σ to
be the starting state of each spawned N .

On message (NewSession, sid, ssid, i, j, role) from adversary S′, N (which gets pwd from the
ideal functionality as auxiliary information) starts simulating a new instance of the protocol for Pi
just as in the real world. That is it generates R1, S2, T1, ρ̂1 just as in the real world using pwd, and
random r1 and s1.

On NewKey call, it generates the key as in the real world as well, i.e. as

e(R′2, γ1) · e((S′2/pwd), θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2),

where R′2, S
′
2, T

′
2, ρ̂2

′ were values generated by N in the peer session, and W1 is the QA-NIZK as
generated by the real world prover, i.e. (w1 ·wι1

2)r1 .

On NewKeySim call, it gets a message R′2, S
′
2, T

′
2, ρ̂
′
2 from S′, and generates a message for S′ as:

Compute ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), if (S′2 6= pwd · (R′2)a) or (T ′2 6= (R′2)d+ι′2e) then send a

random value in GT ,

else, compute ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v
ι′2
2)s1 , W1 = (w1w

ι2
2)r1 , and send the message

e(R′2, γ1) · e(S′2/pwd, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2).

On corruption, it outputs ρ1, θ1 and γ1 along with W1 just as in the real world.
We now show that there is an interacting Turing machine M̂ such that it does not use pwd in

generation of outgoing message for NewSession and for NewKey, and it generates the new session
key randomly and independently. Indeed, M̂ behaves like simulator S in the proof of theorem 9.

It generates the CRS as the simulator S using these generators, and sends the CRS to the
adversary S′. It also saves the CRS as the state σ to be the starting state of each spawned N .

On message (NewSession, sid, ssid, i, j, role) from S′, N starts simulating a new instance of the
protocol for Pi just as S does. Thus, To simulate this instance, N chooses r1, r

′
1, r
′′
1 , s1 at random,

and sets R1 = gr11 , S1 = µ · ar1 · gr
′
1

1 , ρ̂1 = bs1 . Next, it computes T1 = g
r1·(d1+ι1e1)
1 · gr

′′
1

1 , where
ι1 = H(sid, ssid, Pi, Pj , R1, S1, ρ̂1) (note the use of µ instead of pwd). It then sends R1, S1, T1, ρ̂1

to S′. It retains r1, r
′
1, r
′′
1 , s1 (and µ if chosen randomly).

On receiving (NewKey, sid, ssid, Pi) from S′, it generates a random and independent key.
On NewKeySim call, it gets a message R′2, S

′
2, T

′
2, ρ̂
′
2 from S′, and generates a message for S′ as:

It computes pwd′ by decrypting S′2, i.e. setting it to S′2/(R
′
2)a. S then generates the following key

58

for S′:

ι′2 = H(sid, ssid, Pj , Pi, R
′
2, S
′
2, ρ̂
′
2), ρ1 = gs12 , θ1 = cs1 , γ1 = (v1v

ι′2
2)s1 ,

W1 = R
(u′1+ι1u′2)/b
1 · (S1/pwd′)c/b · T 1/b

1 .

if T ′2 = (R′2)d+ι′2e then set ξ1 = 1T else set ξ = ε(g1,g2)s
′
1 , where s′1 is a fresh random value. Return

the following key to S′:

e(R′2, γ1) · e((R′2)a, θ1) · e(T ′2, ρ1) · e(W1, ρ̂
′
2) · ξ1.

On corruption, it outputs ρ1, θ1 and γ1, but W1 simulated as

R
(u′1+ι1u′2)/b
1 · (S1/pwd)c/b · T 1/b

1

Recall, during the corruption call M̂ is allowed to use the auxiliary information pwd.

Lemma 27 The view of an efficient and adaptive adversary S′ interacting with N̂ and M̂ is
computationally indistinguishable.

The proof of this lemma is same as the proof of Expt0 and Expt6 in Section D. This proves
that N̂ is a multi-session non-information oracle for password-based key exchange.

The proof of the theorem now starts with the UC simulator being at experiment Expt6 using
N̂ . Rest of the proof is same as proof of theorem 9 from Expt6toExpt11 which is the real world.

F Identity-Based Encryption

We demonstrate in this section that the concepts of DSS-QA-NIZK are ingrained in the fully secure
IBE construction in [JR13], which in turn was inspired by the dual system IBE of [Wat09]. As
in [JR13], the construction is not black-box but is better able to abstract the proof steps in the
security proof. We start off by introducing a specialization of DSS-QA-NIZK with the concept of
restriction-KeyGen.

DSS-QA-NIZK with Restriction KeyGen. We introduce the concept of a (PPT) restriction-
KeyGen rK, which on input a label l and a CRS σ, generates a new (labeled-) CRS σl meant just
for that label. The verifier is now required to be sound with respect to CRS σl , for all inputs
with labels l . We also require similar restriction-KeyGen algorithms rpK and rsfK for the partial-
simulation and one-time full-simulation worlds resp. The restriction-KeyGens rpK and rsfK also
take a trapdoor as input.

The new formulation will continue to have PPT components such as all the CRS generation
algorithms, P,V, as well as the proof simulators. But, in the security definitions, instead of the
adversary having oracle access to the verifiers V, pV and sfV, it will have oracle access to the
restriction-KeyGens rK, rpK and rsfK. In other words, the private verifiers are replaced by (private)
restriction-KeyGens and the actual verifier in the simulation worlds remains the same as the real-
world verifier V.

59

IBE Construction. We construct a DSS-QA-NIZK with restriction KeyGen for the following
affine language Lρ:

Lρ = {R,S | ∃r : R = gr2, S = gu2 · (ga2)r}

where the parameter ρ is (g2,g
a
2,g

u
2). To obtain a DSS-QA-NIZK, we attach an affine hash proof,

i.e. the normal hash proof shifted by u. This u is part of the prover CRS, so this affine hash proof
can be generated easily from the normal hash proof. Following [JR13, JR14] one can give a QA-
NIZK for affine languages in which the verifier CRS is independent of the affine constant, i.e., u.
Details of the construction are given in Appendix F.2. In addition to the standard DSS-QA-NIZK
components, we additionally give restriction-KeyGen algorithms in the real, semi-functional and
one-time full-simulation worlds. This construction is also strongly split.

We now give an IBE construction based on this strongly split DSS-QA-NIZK with restriction-
KeyGens. However, the construction does not use the DSS-QA-NIZK as a black-box. Specifically,
it uses a particular property of the construction for Lρ: A labeled-CRS σl can be split as (σ′, otp),

such that the verifier V((σ′, otp), x, l , π), can be framed as checking VL(σ′, x, l , π)
?
= otp, where

VL(·, ·, ·, ·) is an efficient algorithm. The construction is given in Appendix F.3. In the subsequent
sections, where we prove security of the scheme, we show that otp can be used as a one-time pad
for encrypting the plaintext.

F.1 DSS-QA-NIZK with Restriction Keygen

We now consider a stronger version of DSS-QA-NIZK which is relevant for obtaining dual system
IBE schemes. We introduce the concept of a restriction keygen which on input a “label” (and
trapdoors) returns a new private verifier CRS which is meant for all proofs generated for that
particular label.

In particular, a (PPT) restriction-KeyGen rK is required, which on input a label l and a crs
generates a new (labeled-) CRS crsl meant just for that label. The verifier is now required to be
sound with respect to crsl , for all inputs with labels l . We also require similar restriction-KeyGen
algorithms rpK and rsfK for the partial-simulation and one-time full-simulation worlds resp. The
restriction-KeyGens rpK and rsfK also take a trapdoor as input.

The new formulation will continue to have PPT components such as all the CRS generation
algorithms, P,V, as well as the proof simulators. But, in the security definitions, instead of the
adversary having oracle access to the verifiers V, pV and sfV, it will have oracle access to the
restriction-KeyGens rK, rpK and rsfK. In other words, the private verifiers are replaced by (private)
restriction-KeyGens and the actual verifier in the simulation worlds remains the same as the real-
world verifier V.

Such a proof system is called a DSS-QA-NIZK with restriction keygen for a collection of
witness relations Rλ = {Rρ}, with parameters sampled from a distribution D, if for all non-uniform
PPT adversaries A = (A0,A1,A2,A3,A4) all of the following properties are satisfied:

• restriction soundness:
Pr[crs← crsgen(λ, ρ); (x, l , π)← A0(crs, ρ) : x 6∈ Lρ ∧ ver(rK(crs, l), x, l , π) = 1] ≈ 0

• partial-ZK:

Pr[λ← K0(1m); ρ← Dλ; ψ ← K1(λ, ρ); AP(ψ,·,·,·), rK(ψ,·)
1 (ψ) = 1] ≈

60

Pr[λ← K0(1m); (ρ, σ, τ, η)← sfK1(λ); AsfSim
∗(σ,τ,·,·,·), rpK(σ,η,·)

1 (σ) = 1],
where the calls to P (with inputs a witness and a language member) are restricted to ones
satisfying Rρ, and sfSim∗(σ, τ, x, w, l) is defined to be sfSim (σ, τ , x, Rρ(w, x), l) (i.e. witness is
dropped, and membership bit β is just 1).

• unbounded partial-simulation soundness:

Pr[λ← K0(1m); (ρ, σ, τ, η)← sfK1(λ); (x, l , π)← AsfSim(σ,τ,·,·,·), rpK(σ,η,·)
2 (σ) :

¬∃w s.t. Rρ(w, x) = 1, and V(rpK(σ, η, l), x, π) = 1] ≈ 0.

• one-time full-ZK:

Pr[λ← K0(1m); (ρ, σ, τ, η)← sfK1(λ); (x, l , β, s)← AsfSim(σ,τ,·,·,·), rpK(σ,η,·)
3 (σ);

π ← sfSim(σ, τ, x, β; l) : AsfSim(σ,τ,·,·,·), rpK(σ,η,·)
4 (π, s) = 1] ≈

Pr[λ← K0(1m); ρ← Dλ; (σ, τ, τ1, η) ← otfK1(λ, ρ);

(x, l , β, s)← AsfSim(σ,τ,·,·,·), rsfK(σ,η,·)
3 (σ);

π ← otfSim(σ, τ1, x, l) : AsfSim(σ,τ,·,·,·), rsfK(σ,η,·)
4 (π, s) = 1],

where β is a correct Lρ-membership bit for x, and all calls to sfSim also have correct Lρ-
membership bits and label l is not invoked on rsfK/rpK. Here s is a state variable.

A DSS-QA-NIZK with restriction keygen is called a strongly split if in the partial simulation
world (1) the verifier CRS CRSv output by the semi-functional CRS simulator sfK1 is independent of
the language parameter ρ that sfK1 chooses, (2) the proof simulator trapdoor τ is also independent
of this language parameter ρ, and (3) the semi-functional simulator sfSim does not use CRSp (i.e.
only needs trapdoor τ).

In addition, for facilitating IBE constructions, A labeled-CRS σl can be split as (ψ′, otp), such

that the verifier V((ψ′, otp), x, l , π), can be framed as checking VL(ψ′, x, l , π)
?
= otp, where VL(·, ·, ·, ·)

is an efficient algorithm.

F.2 Construction for an Affine DDH Language

We construct a DSS-QA-NIZK with restriction keygen for the following affine language Lρ:

Lρ = {R,S | ∃r : R = gr2, S = gu2 · (ga2)r}

where the parameter ρ is (g2,g
a
2,g

u
2). This construction will also be strongly split.

We now describe the various components.

• The real world algorithms:

– The algorithm K0 is just the group generation algorithm (it takes a unary string 1m as input).
The CRS generation algorithm K1 takes language parameter ρ (as above) and the group
parameters as input and generates the CRS as follows: it chooses b, d1, d2, e1, e2, ∆′1,∆

′
2,∆

′
3,∆

′
4

at random from Zq and computes w1 = g
(∆′1+d1+ad2)/b
2 , w2 = g

(∆′2+e1+ae2)/b
2 , w3 = g

(∆′3+a)/b
2 ,

w4 = g
(∆′4+u)/b
2 , d = gd1+ad2

2 , e = ge1+ae2
2 , and publishes the prover CRS as

CRSp = {g2,g
a
2,g

u
2 ,d, e,w1,w2,w3,w4}.

61

As for the verifier CRS it computes v1 = g
−∆′1
1 , v2 = g

−∆′2
1 , v3 = g

−∆′3
1 , k = e(g1,g2)∆′4 , and

publishes
CRSv = {g1,g

b
1,v1,v2,v3,k}.

– The prover P takes as input CRSp, a language member 〈R,S〉 and its witness r and a label
i and produces a proof π consisting of three group G2 elements T , W1 and W2 as follows:
Compute T = (dei)r, W1 = (w1 ·wi

2)r, and W2 = w4 ·wr
3.

– The restriction keygen rK takes as input the verifier CRS and a label i and first picks a
random value s from Zq, and a tag from Zq and returns the CRS

{gs1,gbs1 , (v1v
i
2vtag

3)s,tag,ks}.

– The verifier V takes the CRS of the syntax returned by the restriction verifier, say z1, z2, z3,tag, otp,
and a potential language member R,S (i.e. no label or ignores label) and checks if(

e(z3, R) · e(z−1
1 , Stag · T) · e(z2,W1 ·W tag

2)
)1/tag ?

= otp

holds.

• The partial-simulation world PPT components:

– The semi-functional CRS simulator sfK1 takes group parameters as input and produces
a witness relation parameter ρ as (g2,g

a
2,g

u
2), by picking a, u at random from Zq. Next,

it produces the semi-functional CRS σ = (CRSp,CRSv) exactly as in the real world. Let
d = d1 + ad2 and e = e1 + ae2. It outputs b, d, e,∆′1,∆

′
2,∆

′
3,∆

′
4 as proof simulator trapdoors

τ , and outputs a, u, d, e as private-verifier trapdoors η.

– The semi-functional simulator sfSim ignores prover CRS and uses trapdoors {b, d, e,∆′1,∆′2,∆′3,∆′4}
to produce a proof for a potential language member 〈R,S〉 and a label i , and a membership bit

β as follows: if β = 0 let T = gy1, where y is a new random value from Zq else let T = Rd+ie,
and then compute:

W1 = R(∆′1+i∆′2)/b · T 1/b, W2 = g
∆′4/b
1 ·R∆′3/b · S1/b.

– The restriction private KeyGen rpK uses a verifier CRS and trapdoors {a, u, d, e}, and on
input i , outputs the following verifier-CRS : it first picks s.s′,tag randomly and independently
from Zq, and outputs the restriction verifier-CRS:

gs+s
′

1 , bs, (v1v
i
2v

tag
3)s · g(d+ie+tag·a)·s′

1 , tag, ks · e(g1, g2)u·s
′
.

• Finally, the one-time full simulation PPT components:

– The one-time full-simulation CRS simulator otfK1 takes group parameters and the lan-
guage parameters ρ (as above) as input and produces the CRS σ = (CRSp,CRSv) exactly as
in the real world It outputs gu2 , b, d1, d2, e1, e2,∆

′
1,∆

′
2,∆

′
3,∆

′
4 as all three trapdoors τ, τ1, η.

– The one-time full simulator otfSim uses trapdoors {gu2 , b, d1, d2, e1, e2, ∆′1, ∆′2, ∆′3, ∆′4} to
produce a proof for a potential language member 〈R,S〉 and label i as follows:

T = Rd1+ie1 · (S/gu2)d2+ie2 , W1 = R(∆′1+i∆′2)/b · T 1/b, W2 = g
∆′4/b
1 ·R∆′3/b · S1/b.

62

– The restriction semi-functional keygen rsfK uses a verifier CRS and trapdoors {gu2 , b,
d1, d2, e1, e2, ∆′1,∆

′
2.∆
′
3,∆

′
4}, and on input i , outputs the following verifier-CRS : it first picks

s.s′ randomly and independently from Zq, sets tag = −(d2 + ie2), and outputs the restriction
verifier-CRS

gs+s
′

1 , gbs1 , (v1v
i
2v

tag
3)s · g(d1+ie1)·s′

1 , tag, ks · e(g1,g2)u·s
′
.

F.3 IBE Construction Using DSS-QA-NIZK

We now give an IBE construction based on this strongly split DSS-QA-NIZK with restriction-
KeyGens.

• Setup: The trusted authority chooses language parameters ρ = {g2,g
a
2,g

u
2} by choosing the

bilinear group parameters according to a group generation algorithm for which the SXDH as-
sumption holds, and then picking a and u randomly and independently from Zq. Next it generates
CRSp and CRSv using the CRS generation algorithm K1. It publishes the public key as CRSv.
It retains ρ and the CRSp as the master secret key.

• KeyGen: For an identity i , the private key for that identity is generated using master secret key
as follows: Essentially, generate a fresh random pair 〈R,S〉 from the language Lρ. Next generate
a proof π with label i using the prover P and CRSp. The private key for identity i is output as
R,S, π.

• Encrypt: To encrypt message M ∈ GT , for identity i , call restriction-KeyGen rK with input i
to get a labeled-CRS, say (ψ′′, otp). The ciphertext is: (M · otp, ψ′′)

• Decrypt: Given a ciphertext 〈C0, C1〉 purportedly for identity i , decrypt using the private
key for i as follows: Use the verifier component algorithm VL on the ciphertext viewed as a
labeled-CRS, and output C0/VL(C1, 〈R,S〉 , i , π).

F.4 Proof of security of IBE Construction

We show that otp (as used in blinding the plaintext M) is distributed randomly in the view of an
adaptive Adversary, who after obtaining the public key, adaptively obtains private keys for multiple
identities i1, i2, ..., in, and a ciphertext for identity i (where all the identities are chosen adaptively
by the Adversary, and i is different from the secret key identities). The ciphertext can be obtained
by the Adversary at any stage. We prove this below, by going through a sequence of games, starting
by moving to the partial-simulation world. Moving to this world enables us to replace, one by one,
the private keys using a valid language member (with proof generated by calling sfSim with β = 1)
to ones using a fake language member (with proof generated by calling sfSim with β = 0), by
intermediately transitioning to the one-time full simulation world.
Proof: We will just show that otp (as used in blinding the plaintext M) is distributed randomly in
the view of an adaptive Adversary, who after obtaining the public key, adaptively obtains private
keys for multiple identities i1, i2, ..., in, and a ciphertext for identity i (where all the identities are
chosen adaptively by the Adversary, and i is different from the secret key identities). The ciphertext
can be obtained by the Adversary at any stage.

We will consider a sequence of games, and show that the Adversary’s view is either statistically
or computationally indistinguishable between any two consecutive games. Game G0 is same as the
actual adaptive security IBE game of the previous paragraph.

63

Game G1: In this game we emulate the partial-simulation world, but with all private keys gen-
erated properly. More precisely, the setup is done using semi-functional CRS simulator sfK1, and
the challenger retains the simulation trapdoor τ and the private-verifier trapdoor η. The KeyGen
on input an identity i is done using semi-functional simulator sfSim and trapdoor τ (note, since
our construction is strongly split, CRSp is not required for this simulated proof generation). The
membership bit β is 1 in all such calls to sfSim, as indeed each of the pairs R,S is honestly gener-
ated. The message is encrypted (for identity i) using the restriction-CRS returned by rpK (which
used trapdoors η and CRSv). The decryption is as before using rV.

By partial-ZK property of the DSS-QA-NIZK, the Adversary’s view in Games G0 and G1 is
computationally indistinguishable.
Game G2: This game is identical to G1 except that the pairs R,S in each KeyGen is generated
differently. More precisely, for the j-th KeyGen, say for identity i j , the R,S are chosen as follows:

choose rj and r′j randomly and independently from Zq, and let R = g
rj
2 and S = g

r′j
2 . Of course,

the proof simulator sfSim is now invoked with membership bit β set to zero.
We now prove that the view of the Adversary in games G1 and G2 is computationally indistin-

guishable. This is proven by induction over j via several hybrid games where in each subsequent
hybrid game (say j-th hybrid game) we alter the generation of R,S in the j-th KeyGen from honest
(i.e. as in game G1) to fake as described in game G2. Computational indistinguishability of two
such consecutive hybrid games is shown by first switching to the one-time full simulation world
and generating proof in the j-th KeyGen using the one-time full simulator otfSim. This one-time

full -simulation allows us to employ DDH to replace an honest S (i.e. gu · garj2) by gu2 · g
ar′j
2 . Next,

we switch back to the partial simulation world (and this time supply β = 0 to the proof simulator

sfSim in the j-th KeyGen). S can also be just made g
r′j
2 , as r′j is not used anywhere else.

Now, lets analyze the view of the Adversary in game G2. The public key CRSv is independent
of u since by the strongly split property (1) of the DSS-QA-NIZK CRSv is independent of ρ. Next,
the private keys for all the identities sought by the Adversary are independent of u: each R,S for
the j-th key is independent of u, and further the proof generated on such R,S uses trapdoor τ and
does not use CRSp (again by the strongly split property (3)), and τ itself is independent of ρ by
strongly split property (2). Thus, the only elements which the Adversary gets which could depend
on u maybe from the ciphertext (i.e. the verifier CRS output by rpK). Indeed, a simple examination
shows that otp = ks · e(g1,g2)u·s

′
, and all the other elements in the verifier CRS returned by rpK

are independent of u. Since otp was used as the one-time pad in the encryption of M , it follows
that this one-time pad is random and independent of the Adversary’s view (because u is chosen
randomly, and s′ is non-zero with high probability). That completes the proof. � �

64

