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Abstract: The square map is one of the functions that is used in cryptography. For instance, the 

square map is used in Rabin encryption scheme, block cipher RC6 and stream cipher Rabbit, in 

different forms. In this paper we study a special case of the square map, namely the square 

function modulo a power of two. We obtain probability distribution of the output of this map as a 

vectorial Boolean function. We find probability distribution of the component Boolean functions 

of this map. We present the joint probability distribution of the component Boolean functions of 

this function. We introduce a new function which is similar to the function that is used in Rabbit 

cipher and we compute the probability distribution of the component Boolean functions of this 

new map.  

Key Words: Square map modulo a power of two, Vectorial Boolean function, Component 

Boolean function, Rabbit cipher  

 

1. Introduction 

    The square map, like the operator of multiplication, has various applications in cryptography. 

For instance in asymmetric cryptography, RSA encryption scheme [1] makes use of 

multiplication and Rabin encryption scheme [1] applies the square map. In symmetric 

cryptography, some symmetric ciphers have the operator of multiplication or the square map in 

their design. For example block cipher Mars [2] uses the operator of multiplication and in design 

of block cipher RC6 [3] the square map (the operator of multiplication) is used. In designing 



some stream ciphers, the operator of multiplication and the square map is also used. For instance, 

the stream cipher Sosemanuk [4] uses the operator of multiplication and the stream cipher Rabbit 

[5] uses the square map. In all the aforementioned cases the operator of multiplication and the 

square map is used in a variety of methods. In this paper we investigate a special case of the 

square map, i.e. the square map modulo a power of two and we study probability distribution of 

this map along with its component Boolean functions. In [6,7] we have studied some statistical 

and algebraic properties of the operator of multiplication modulo a power of two, but in this 

paper we study statistical properties of the square map modulo a power of two. 

    At first we consider the square map modulo a power of two as a vectorial Boolean function [8] 

and we obtain probability distribution of its output. Then, we investigate component Boolean 

functions of this map and we obtain the probability distribution of these component functions. 

After that, we consider the joint probability distribution of these component functions for the 

case of two component functions and we compute the joint probability distribution of these 

component functions. We introduce a new function similar to what is presented in Rabbit cipher 

and using joint probability distribution of component Boolean functions of the square map, we 

obtain the probability distribution of component Boolean functions of this new function. 

    In Section 2 we present the definitions and notations. Section 3 studies probability distribution 

of the output of the square map modulo a power of two as a vectorial Boolean function. In 

Section 4 we investigate probability distribution of the component Boolean functions of square 

map modulo a power of two. In Section 5 we obtain the joint probability distribution of the 

component Boolean functions of square map modulo a power of two for the case of two 

component Boolean functions and finally in Section 6 we conclude. 

 

2. Notations and Definitions 

    In this article, the number of elements or cardinality of a finite set 𝐴 is denoted by |𝐴|. For a 

function 𝑓: 𝐴 → 𝐵, the preimage of an element 𝑏 ∈ 𝐵 is denoted by 𝑓−1(𝑏) and is defined as 

{𝑎 ∈ 𝐴|𝑓(𝑎) = 𝑏}. The greatest power of 2 that divides a natural number 𝑎 is denoted by 𝑝2(𝑎)  

and the odd part of 𝑎 or 𝑎 2𝑝2(𝑎)⁄  is denoted by 𝒪2(𝑎). 

    Let 𝔽2 be the finite field with two elements. Each element of 𝔽2
𝑛 (The Cartesian product of 𝑛 

copies of 𝔽2) can be considered as a vector of length 𝑛. Each function 𝑓: 𝔽2
𝑛 → 𝔽2 is called a 

Boolean function and each function 𝑓: 𝔽2
𝑛 → 𝔽2

𝑚 with 𝑚 > 1 is called a vectorial Boolean 

function; such a function can be viewed as a vector (𝑓𝑚−1, … , 𝑓0) of 𝑓𝑖’s, 0 ≤ 𝑖 < 𝑚. Here, 𝑓𝑖’s 

are Boolean functions from 𝔽2
𝑛 to  𝔽2. These Boolean functions are called component Boolean 

functions of the vectorial Boolean function 𝑓. Also, if  𝑥 ∈ 𝔽2
𝑛, then the 𝑖-th bit of 𝑥 is denoted 

by 𝑥𝑖. Note that for each vectorial Boolean function 𝑓: 𝔽2
𝑛 → 𝔽2

𝑚 we have vectorial Boolean 

functions 



𝑓𝑖,𝑗: 𝔽2
𝑛 → 𝔽2

2,          𝑖 > 𝑗, 

𝑓𝑖,𝑗(𝑥) = (𝑓𝑖(𝑥), 𝑓𝑗(𝑥)) ,       𝑥 ∈ 𝔽2
𝑛. 

We call these vectorial Boolean functions joint Boolean functions of 𝑓. 

    In this paper, we consider the complete set of remainders modulo 2𝑛 as {0,1, … , 2𝑛 − 1} and 

denote it by ℤ2𝑛 . We define the inverse parity function ℯ𝑗 as follows: 

ℯ𝑗 = {
 0      𝑗   𝑜𝑑𝑑,
1    𝑗  𝑒𝑣𝑒𝑛.

 

    Let (𝐺,∗) be a group and 𝜑: 𝐺 → 𝐺 be a group endomorphism; we denote the kernel of 𝜑 by 

ker(𝜑) and the image of 𝜑 by 𝐼𝑚(𝜑).  

    In the sequel, by the square map (and its component Boolean functions) we mean the square 

map modulo a power of two. 

 

3. Probability Distribution of the Square Map as a Vectorial Boolean Function 

    In this section, we consider the square map as a vectorial Boolean function and we obtain 

probability distribution of the output of this map. In Theorem 1, we employ some facts from 

group theory [9] and number theory. One of the results of this theorem is identifying the square 

numbers modulo a power of two. 

    We note that the square of each odd natural number is in the form of 8𝑘 + 1, but not every 

natural number in the form of 8𝑘 + 1 is a square number. Lemma 1 shows that in ℤ2𝑛 the square 

of each odd element is in the form of 8𝑘 + 1; the interesting point is that, based on Theorem 1, 

in ℤ2𝑛  every element in the form of  8𝑘 + 1 is also a square element. 

 

Lemma 1: Let 𝑎 ∈ ℤ2𝑛 be an odd element; we have 𝑎2 = 1 𝑚𝑜𝑑 8. 

Proof: Since 𝑎 is odd, so there exists a 𝑞 ∈ ℤ2𝑛 such that 𝑎 = 2𝑞 + 1  𝑚𝑜𝑑 2𝑛. Therefore, 

                                                       𝑎2 = 4𝑞(𝑞 + 1) + 1 

                                                      = 8 (
𝑞(𝑞+1)

2
) + 1  𝑚𝑜𝑑  2𝑛  

                                                             = 1 𝑚𝑜𝑑 8.                                                                                          ∎ 

 



Theorem 1: Suppose that 𝑛 > 4 and 𝑓: ℤ2𝑛 → ℤ2𝑛 is defined as 𝑓(𝑥) =  𝑥2  𝑚𝑜𝑑  2𝑛; then we 

have: 

a)  For the case 𝑎 = 0, the case 𝑎 = 2𝑛−1 with ℯ𝑛 = 0, and the case 𝑎 = 2𝑛−2 with ℯ𝑛 = 1:                    

|𝑓−1(𝑎)| = 2
𝑛−1+ℯ𝑛

2 ; 

b)  For the case 𝑝2(𝑎) 𝑚𝑜𝑑 2 ≠ 0 and the case 𝑝2(𝑎) 𝑚𝑜𝑑 2 = 0 with 0 ≤ 𝑝2(𝑎) ≤ 𝑛 − 3 and 

𝒪2(𝑎) 𝑚𝑜𝑑 8 ≠ 1: 

|𝑓−1(𝑎)| = 0; 

c)  For the case 𝑝2(𝑎) 𝑚𝑜𝑑 2 = 0 with 0 ≤ 𝑝2(𝑎) ≤ 𝑛 − 3 and 𝒪2(𝑎) 𝑚𝑜𝑑 8 = 1: 

|𝑓−1(𝑎)| = 2
𝑝2(𝑎)+4

2 . 

Proof: a) Consider the equation 𝑥2 = 0  𝑚𝑜𝑑  2𝑛; on one hand, every 𝑥 ∈ ℤ2𝑛  with 𝑝2(𝑥) ≥ ⌈
𝑛

2
⌉ 

satisfies 𝑥2 = 0  𝑚𝑜𝑑  2𝑛. So, |𝑓−1(0)| is at least 2𝑛−⌈
𝑛

2
⌉ = 2⌊

𝑛

2
⌋ = 2

𝑛−1+ℯ𝑛
2  . On the other hand, 

for each  𝑥 ∈ ℤ2𝑛  with  𝑝2(𝑥) < ⌈
𝑛

2
⌉ we have 𝑥2 ≠ 0  𝑚𝑜𝑑  2𝑛. Thus, |𝑓−1(0)| = 2

𝑛−1+ℯ𝑛
2 . 

Suppose that 𝑛 is odd and 𝑝2(𝑎) = 𝑛 − 1. So 𝑎 equals to 2𝑛−1. Consider the equation                  

𝑥2 = 2𝑛−1  𝑚𝑜𝑑  2𝑛 ; let 𝑥 = 2𝑟𝑞 with 𝑞 odd. We have 

22𝑟𝑞2 = 2𝑛−1  𝑚𝑜𝑑  2𝑛. 

So 𝑟 =
𝑛−1

2
, 1 ≤ 𝑞 ≤ 2

𝑛+1

2 − 1 and 𝑞2 = 1 𝑚𝑜𝑑 2. Thus, only odd 𝑞’s satisfy the equation                           

𝑥2 = 2𝑛−1  𝑚𝑜𝑑  2𝑛; therefore, |𝑓−1(𝑎)| = 2
𝑛−1

2 = 2
𝑛−1+ℯ𝑛

2 .   

Now suppose that 𝑛 is even and 𝑝2(𝑎) = 𝑛 − 2. So 𝑝2(𝑎) = 𝑛 − 2 and 𝑎 = 𝑠2𝑛−2, where        

𝑠 ∈ {1,3}. If 𝑠 = 1, then we consider the equation 𝑥2 = 2𝑛−2  𝑚𝑜𝑑  2𝑛. Let 𝑥 = 2𝑟𝑞 with 𝑞 odd. 

We have 

22𝑟𝑞2 = 2𝑛−2  𝑚𝑜𝑑  2𝑛. 

Hence 𝑟 =
𝑛−2

2
, 1 ≤ 𝑞 ≤ 2

𝑛+2

2 − 1 and 𝑞2 = 1  𝑚𝑜𝑑  4. So only half of odd 𝑞’s satisfy the 

equation  𝑥2 = 2𝑛−1  𝑚𝑜𝑑  2𝑛; therefore, |𝑓−1(𝑎)| = 2
𝑛

2 = 2
𝑛−1+ℯ𝑛

2 . 

b) Continuing the proof of the Case a, if 𝑠 = 3, then considering the equation                         

𝑥2 = 2𝑛−2. 3  𝑚𝑜𝑑  2𝑛 and supposing that 𝑥 = 2𝑟𝑞 with 𝑞 odd, we have 

22𝑟𝑞2 = 2𝑛−2. 3  𝑚𝑜𝑑  2𝑛; 



so, 𝑟 =
𝑛−2

2
  and 𝑞2 = 3  𝑚𝑜𝑑  4. Thus, according to Lemma 1, we conclude that |𝑓−1(𝑎)| = 0. 

Suppose that 𝑝2(𝑎) = 1  𝑚𝑜𝑑  2. Consider the equation 𝑥2 = 𝑎  𝑚𝑜𝑑  2𝑛. Since the square of 

any odd element is an odd element, so only even elements 𝑥 ∈ ℤ2𝑛 can satisfy                        

𝑥2 = 𝑎  𝑚𝑜𝑑  2𝑛. Suppose that 𝑥 = 2𝑟𝑞 where 𝑟 ≠ 0 and 𝑞 is odd. We have 𝑝2(𝑥
2) = 2𝑟 which 

contradicts 𝑝2(𝑎) = 1  𝑚𝑜𝑑  2. Therefore, |𝑓−1(𝑎)| = 0. 

Now suppose that 𝑝2(𝑎) = 0  𝑚𝑜𝑑 2 and 𝒪2(𝑎)  𝑚𝑜𝑑 8 ≠ 1; then 𝑎 = 22𝑗𝑡, where 𝑝2(𝑎) = 2𝑗 

and 𝑡 = 𝒪2(𝑎). Consider the equation 𝑥2 = 𝑎  𝑚𝑜𝑑  2𝑛. Let 𝑥 = 2𝑟𝑞 with 𝑞 odd. We have 

22𝑟𝑞2 = 22𝑗𝑡  𝑚𝑜𝑑  2𝑛. 

Consequently, 𝑟 = 𝑗 and  𝑞2 = 𝑡  𝑚𝑜𝑑  2𝑛−2𝑗; therefore, regarding Lemma 1, we have 

|𝑓−1(𝑎)| = 0. 

c) We use Theorem 13.3 in [9] to prove this case. Suppose that 𝑝2(𝑎) = 0 and 𝑎 = 1 𝑚𝑜𝑑  8; the 

algebraic structure (𝐺,∗), where 𝐺 is the subset of odd elements in ℤ2𝑛 and ∗ is the operator of 

multiplication modulo 2𝑛 is a group structure. The function 𝜙: 𝐺 → 𝐺 with 𝜙(𝑔) = 𝑔 ∗ 𝑔 is a 

group endomorphism on 𝐺. To compute |𝑘𝑒𝑟(𝜙)| we must count the number of solutions for the 

equation 𝑥 ∗ 𝑥 = 1𝐺. In other words, we must count the number of solutions for the equation 

𝑥2 = 1  𝑚𝑜𝑑  2𝑛. We have 

(𝑥 − 1)(𝑥 + 1) = 0  𝑚𝑜𝑑  2𝑛. 

Since 𝑥 is odd, for some 𝑞 ∈ ℤ2𝑛 we have 𝑥 = 2𝑞 + 1. So, 

4𝑞(𝑞 + 1) = 0  𝑚𝑜𝑑  2𝑛. 

Consequently, we have 𝑞 = 0, 𝑞 = 2𝑛−2, 𝑞 = 2𝑛−1 or 𝑞 + 1 = 2𝑛−1, 𝑞 + 1 = 2𝑛−2,               

𝑞 + 1 = 2𝑛−1. Substituting the values of 𝑞, we have these solutions: 

𝑥1 = 1, 

𝑥2 = 2𝑛 − 1, 

𝑥3 = 2𝑛−1 + 1, 

𝑥4 = 2𝑛−1 + 1. 

Thus, |𝑘𝑒𝑟 (𝜙)| = 4 and since |𝐼𝑚(𝜙)| =
|𝐺|

|ker (𝜙)| 
 , we have 

|𝐼𝑚(𝜙)| =
2𝑛−1

4
= 2𝑛−3. 



On the other hand, according to Lemma 1 and since the number of elements in ℤ2𝑛  in the form of 

8𝑞 + 1 is equal to 2𝑛−3 and |𝐼𝑚(𝜙)| = 2𝑛−3, so every element in the form of 8𝑞 + 1 in ℤ2𝑛  is a 

square element. Therefore, the equation 𝑥2 = 𝑎  𝑚𝑜𝑑  2𝑛 at least has a solution 𝑥1 = 𝑡. It is not 

hard to verify that 

𝑥2 = 𝑡. (2
𝑛 − 1)  𝑚𝑜𝑑  2𝑛, 

𝑥3 = 𝑡. (2
𝑛−1 − 1)  𝑚𝑜𝑑  2𝑛, 

and 

𝑥4 = 𝑡. (2
𝑛−1 + 1)  𝑚𝑜𝑑 2𝑛, 

are the only other solutions for the equation. Consequently, we have 

|𝑓−1(𝑎)| = |𝑘𝑒𝑟 (𝜙)| = 4 = 2
𝑝2(𝑎)+4

2 . 

Now suppose that 𝑝2(𝑎) = 0  𝑚𝑜𝑑 2 with 2 ≤ 𝑝2(𝑎) ≤ 𝑛 − 3 and 𝒪2(𝑎) 𝑚𝑜𝑑 8 = 1. In this 

case, we have 𝑎 = 22𝑗𝑡 with 𝑝2(𝑎) = 2𝑗 and 𝑡 = 𝒪2(𝑎). Consider the equation                     

𝑥2 = 𝑎  𝑚𝑜𝑑  2𝑛. Let 𝑥 = 2𝑟𝑞  with 𝑞 odd. We have 

22𝑟𝑞2 = 22𝑗𝑡  𝑚𝑜𝑑  2𝑛; 

so, 𝑟 = 𝑗 and 𝑞2 = 𝑡  𝑚𝑜𝑑  2𝑛−2𝑗. Regarding Lemma 1 and the proof of Case b, this equation 

has four solutions with 0 ≤ 𝑞 ≤ 2𝑛−2𝑗 − 1. For each of these solutions we present 2𝑗 solutions 

𝑥 = 2𝑗(𝑠2𝑛−2𝑗+1 + 𝑞),     0 ≤ 𝑠 ≤ 2𝑗 − 1. 

We have 

𝑥2 = 22𝑗(𝑠222𝑛−4𝑗+2 + 𝑞2 + 2𝑠𝑞2𝑛−2𝑗+1) 

                                                 = 𝑠222𝑛−2𝑗+2 + 22𝑗𝑞2 + 𝑠𝑞2𝑛+2 

                                                       = 22𝑗𝑞2   𝑚𝑜𝑑   2𝑛. 

In fact, regarding the inequality 2𝑗 ≤ 𝑛 − 3, we have 2𝑛 − 2𝑗 ≥ 𝑛 + 3 . Thus,  

                                                      |𝑓−1(𝑎)| = 2
𝑝2(𝑎)

2
+2 = 2

𝑝2(𝑎)+4

2 .                              ∎ 

 

 

 

 



4. Probability Distribution of Component Boolean Functions of the Square Map  

    In this section, we study the component Boolean functions of square map and we find the 

probability distribution of these component functions. Theorem 2 has been proved in [10] with 

the help of some concepts in T-function theory. Here, we reprove this theorem using Theorem 1. 

 

Theorem 2: Suppose that 𝑛 > 4 and the function 𝑓: ℤ2𝑛 → ℤ2𝑛 is defined as                             

𝑧 = 𝑓(𝑥) =  𝑥2  𝑚𝑜𝑑  2𝑛; then we have 

𝑃(𝑧𝑖 = 0) =

{
 
 

 
 
1

2
                                        𝑖 = 0

1

2
+ 2−⌊

𝑖+2
2
⌋              1 ≤ 𝑖 < 𝑛

 

Proof: The cases 𝑖 = 0,1 are obvious. Suppose that 1 < 𝑖 < 𝑛 − 2 and 𝑖 is odd; the number of 

elements 𝑎 with 𝑝2(𝑎) = 2𝑗 is equal to 2𝑛−2𝑗−1 and the number of 𝑎’s with 𝑝2(𝑎) = 2𝑗 and 

𝒪2(𝑎) 𝑚𝑜𝑑 8 ≠ 1 is equal to 2𝑛−2𝑗−3. By Theorem 1, 

𝑃(𝑧𝑖 = 1) = ∑
|𝑓−1(𝑎)|

2𝑛
0≤𝑝2(𝑎)<𝑖

𝑝2(𝑎) 𝑚𝑜𝑑 2=0
𝑎𝑖=1

 

                                                                            = ∑
2𝑛−2𝑗−32𝑗+2

2𝑛. 2

𝑖−3
2

𝑗=0

 

                                                                            =
1

2
(1 − 2−

𝑖−1
2 ) 

                                                                        =
1

2
− 2−⌊

𝑖+2

2
⌋
 . 

 

Suppose that 1 < 𝑖 < 𝑛 − 2 and 𝑖 is even; the number of elements 𝑎 with 𝑝2(𝑎) = 2𝑗 is equal to 

2𝑛−2𝑗−1 and the number of 𝑎’s with 𝑝2(𝑎) = 2𝑗 and 𝒪2(𝑎) 𝑚𝑜𝑑 8 ≠ 1 is equal to 2𝑛−2𝑗−3. By 

Theorem 1, 

𝑃(𝑧𝑖 = 1) = ∑
|𝑓−1(𝑎)|

2𝑛
0≤𝑝2(𝑎)<𝑖

𝑝2(𝑎) 𝑚𝑜𝑑 2=0
𝑎𝑖=1

 



         = ∑
2𝑛−2𝑗−32𝑗+2

2𝑛. 2

𝑖−1
2

𝑗=0

  

                                                                  =
1

2
(1 − 2−

𝑖

2) 

                                                                  =
1

2
− 2−⌊

𝑖+2

2
⌋
 . 

Now suppose that 𝑖 = 𝑛 − 2 and 𝑖 is even; we have 

                   𝑃(𝑧𝑛−2 = 1) = ∑
|𝑓−1(𝑎)|

2𝑛0≤𝑝2(𝑎)<𝑛−2

𝑝2(𝑎) 𝑚𝑜𝑑 2=0
𝑎𝑛−2=1

 

                                        = |𝑓−1(2𝑛−2)|

2𝑛
+ ∑

2𝑛−2𝑗−32𝑗+2

2𝑛.2

𝑛−6

2

𝑗=0
 

                                              =
1

2
−
1

2
𝑛
2

 

                                              =
1

2
− 2−⌊

𝑖+2
2
⌋ . 

Now if 𝑖 = 𝑛 − 2 and 𝑖 is odd, then we have 

𝑃(𝑧𝑛−2 = 1) = ∑
|𝑓−1(𝑎)|

2𝑛
0≤𝑝2(𝑎)<𝑛−2

𝑝2(𝑎) 𝑚𝑜𝑑 2=0
𝑎𝑛−2=1

 

                 = ∑
2𝑛−2𝑗−32𝑗+2

2𝑛. 2

𝑛−5
2

𝑗=0

  

        =
1

2
− 2

−⌊
𝑖+2
2
⌋
 . 

Now if  𝑖 = 𝑛 − 1 and 𝑖 is even, then we have 

𝑃(𝑧𝑛−1 = 1) = ∑
|𝑓−1(𝑎)|

2𝑛
0≤𝑝2(𝑎)<𝑛−1

𝑝2(𝑎) 𝑚𝑜𝑑 2=0
𝑎𝑛−1=1

 



              = ∑
2𝑛−2𝑗−32𝑗+2

2𝑛. 2

𝑛−3
2

𝑗=0

 

    =
1

2
− 2−⌊

𝑖+2

2
⌋
 . 

Finally, if 𝑖 = 𝑛 − 1 and 𝑖 is odd, then we have 

𝑃(𝑧𝑖 = 1) = ∑
|𝑓−1(𝑎)|

2𝑛
0≤𝑝2(𝑎)<𝑖

𝑝2(𝑎) 𝑚𝑜𝑑 2=0
𝑎𝑖=1

 

        = ∑
2𝑛−2𝑗−32𝑗+2

2𝑛. 2

𝑛−4
2

𝑗=0

 

                                                                           =
1

2
− 2−⌊

𝑖+2
2
⌋                                                                        ∎ 

 

5. Joint Probability Distribution of Component Boolean Functions of the Square Map  

    In this section, we investigate the joint component Boolean functions of square map and we 

obtain the joint probability distribution of these component functions. Then, using these 

distributions, we introduce a new map similar to what is presented in Rabbit cipher and we find 

the probability distribution of component Boolean functions of this new map.  

 

Theorem 3: Suppose that 𝑛 > 4 and the function 𝑓: ℤ2𝑛 → ℤ2𝑛 is defined as                             

𝑧 = 𝑓(𝑥) =  𝑥2  𝑚𝑜𝑑  2𝑛; we have: 

a) For 𝑗 + 2 < 𝑖,  

𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 𝑎) =

{
 
 

 
 
1

4
+
(−1)𝑎

2⌊
𝑗
2
⌋+2

+ (1 − 𝑎)
(−1)𝑏

2⌊
𝑖
2
⌋+1

       𝑗 ≠ 0,

1

4
+ (1 − 𝑎)

(−1)𝑏

2⌊
𝑖
2
⌋+1

                        𝑗 = 0.

 

b) For 𝑗 < 𝑖 ≤ 𝑗 + 2 with 𝑗 > 2, 



𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 𝑎) =
1

4
− 

1

2
⌊
𝑗+3
2
⌋
+
ℯ𝑗(𝑎⊕𝑏)

2
⌊
𝑗+2
2
⌋
+

ℯ𝑎

2
⌊
𝑗+2
2
⌋
+
ℯ𝑎(−1)

𝑏

2
⌊
𝑖+2
2
⌋

. 

c) For the other cases,  

𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 𝑎) =

{
 
 
 
 
 

 
 
 
 
 
1

4
+ (1 − ℯ𝑎ℯ𝑖+𝑗)

(−1)𝑏

4
     𝑗 = 0, 𝑖 = 1,2

(1 − 𝑎) (
1

2
+
(−1)𝑏

4
)             𝑗 = 1, 𝑖 = 2,3

1

2𝑎+1
−
𝑏

4
                                      𝑗 = 2, 𝑖 = 3

3ℯ𝑎
8
+
𝑎ℯ𝑏
4
                                    𝑗 = 2, 𝑖 = 4.

 

Proof: At first, suppose that 𝑗 ≠ 0 is even; or 𝑗 = 2𝑟, 𝑟 > 0. We have 

𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟 = 1) = ∑ 𝑃(𝑧 = 𝑐)

𝑐𝑖=𝑏,𝑐2𝑟=1

 = ∑ 𝑃(𝑧 = 𝑐).

0≤𝑝2(𝑐)≤2𝑟

𝑝2(𝑐)  𝑚𝑜𝑑  2=0
𝑐𝑖=𝑏,𝑐2𝑟=1

                                  (1) 

In summation (1), if 𝑝2(𝑐) = 2𝑘, 0 ≤ 𝑘 ≤ 𝑟 − 2, then binary representation of 𝑐 is in this form: 

𝑐 = (∗,… ,∗, 𝑏⏟
𝑖

,∗, … ,∗, 1⏟
2𝑟

,∗, … ,∗, 0⏟
2𝑘+2

, 0⏟
2𝑘+1

, 1⏟
2𝑘

, 0, … ,0) . 

Consequently, 2𝑘 + 5 bits are determined and so we have 2𝑛−2𝑘−5 nonzero summands, the 

probability of each is equal to 
2
𝑝2(𝑐)+4

2

2𝑛
 , by Theorem 1. Thus, the contribution of this case in (1) is 

equal to 2− (𝑘+3). We note that the case 𝑘 = 𝑟 − 1 contradicts Theorem 1. For the case 𝑘 = 𝑟, 

2𝑟 + 4 bits are determined, and so we have 2𝑛−2𝑟−4 nonzero summands, the probability of each 

equals to 
2
𝑝2(𝑐)+4

2

2𝑛
 by Theorem 1. Therefore, the contribution of this case in (1) is equal to 

2− (𝑟+2). Hence, 

                                           𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟 = 1) = (∑2− (𝑘+3)
𝑟−2

𝑘=0

) + 2− (𝑟+2)  

                                                                      =
1

4
−

1

2𝑟+2
.                                                                      (2) 

Now, using basic probability theory and Theorem 2 and (2), we have 



𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟 = 0) = 1 − 𝑃(𝑧𝑖 = 𝑏⊕ 1) − 𝑃(𝑧2𝑟 = 1) + 𝑃(𝑧𝑖 = 𝑏⊕ 1, 𝑧2𝑟 = 1)  

                                              =
1

4
+

1

2𝑟+2
+
(−1)𝑏

2⌊
𝑖
2
⌋+1
 .          

So, 

𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟 = 𝑎) =
1

4
+
(−1)𝑎

2𝑟+2
+ (1 − 𝑎)

(−1)𝑏

2
⌊
𝑖
2
⌋+1

. 

At this point, suppose that 𝑗 ≠ 0 is odd; i.e. 𝑗 = 2𝑟 + 1, 𝑟 ≥ 0. We have 

                                𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟+1 = 1) = ∑ 𝑃(𝑧 = 𝑐)𝑐𝑖=𝑏,𝑐2𝑟+1=1
  

                                                                            = ∑ 𝑃(𝑧 = 𝑐).

0≤𝑝2(𝑐)≤2𝑟+1

𝑝2(𝑐)  𝑚𝑜𝑑  2=0
𝑐𝑖=𝑏,𝑐2𝑟+1=1

                                             (3) 

In (3), according to Theorem 1, 𝑝2(𝑐) can be 0,2, … ,2𝑟 − 2. Similar to the previous case, 

𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟+1 = 1) =
1

4
−

1

2𝑟+2
 , 

and 

𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟+1 = 0) =
1

4
+

1

2𝑟+2
+

(−1)𝑏

2
⌊
𝑖
2
⌋+1

 . 

So, 

𝑃(𝑧𝑖 = 𝑏, 𝑧2𝑟+1 = 𝑎) =
1

4
+
(−1)𝑎

2𝑟+2
+ (1 − 𝑎)

(−1)𝑏

2⌊
𝑖
2
⌋+1
 . 

Thus, in the case 𝑗 ≠ 0, we have 

𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 𝑎) =
1

4
+
(−1)𝑎

2⌊
𝑗
2
⌋+2

+ (1 − 𝑎)
(−1)𝑏

2⌊
𝑖
2
⌋+1
 . 

Now, suppose that 𝑗 = 0: 

                                          𝑃(𝑧𝑖 = 𝑏, 𝑧0 = 1) = ∑ 𝑃(𝑧 = 𝑐)

𝑐𝑖=𝑏,𝑐0=1

 

                                                                   = ∑ 𝑃(𝑧 = 𝑐).                                              𝑝2(𝑐)=0,𝑐𝑖=𝑏
(4) 



In (4), four bits are determined and so we have 2𝑛−4 summands, the probability of each is equal 

to 
22

2𝑛
 by Theorem 1. Hence, 

𝑃(𝑧𝑖 = 𝑏, 𝑧0 = 1) = 2
𝑛−4.

22

2𝑛
=

1

4
 , 

and similarly, 

𝑃(𝑧𝑖 = 𝑏, 𝑧0 = 0) = 1 − 𝑃(𝑧𝑖 = 𝑏⊕ 1) − 𝑃(𝑧0 = 1)  + 𝑃(𝑧𝑖 = 𝑏⊕ 1, 𝑧0 = 1) 

                                                 =
1

4
+
(−1)𝑏

2⌊
𝑖+2
2
⌋
 . 

So, for the case 𝑗 = 0, we have 

𝑃(𝑧𝑖 = 𝑏, 𝑧0 = 𝑎) =
1

4
+ (1 − 𝑎)

(−1)𝑏

2⌊
𝑖
2
⌋+1
 . 

b) For 2 < 𝑗 and 𝑖 = 𝑗 + 1 or = 𝑗 + 2 , we have 

                               𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 1) = ∑ 𝑃(𝑧 = 𝑐)

𝑐𝑖=𝑏,𝑐𝑗=1

    

= ∑ 𝑃(𝑧 = 𝑐)

0≤𝑝2(𝑐)≤2⌊
𝑗
2
⌋

𝑝2(𝑐)  𝑚𝑜𝑑  2=0
𝑐𝑖=𝑏,𝑐𝑗=1

 . 

According to the proof of Case a and regarding the binary representation of c, for the even and 

odd cases of 𝑗, we have 

𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 1) = 2𝑛−5
22

2𝑛
+ 2𝑛−7

23

2𝑛
+⋯+ 2𝑛−(2⌊

𝑗+1
2
⌋+1) 2

⌊
𝑗+1
2
⌋

2𝑛
 + ℯ𝑗ℯ𝑏2

𝑛−(𝑗+3)
2
𝑗+4
2

2𝑛
 

                                         =
1

4
− 

1

2⌊
𝑗+3
2
⌋
+
ℯ𝑗ℯ𝑏

2
𝑗+2
2

 . 

and 

𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 0) = 1 −  (𝑃(𝑧𝑖 = 𝑏 ⊕ 1) + 𝑃(𝑧𝑗 = 1) − 𝑃(𝑧𝑖 = 𝑏⊕ 1, 𝑧𝑗 = 1))  

                                              =
1

4
+
2⌊
𝑗+3
2
⌋ − 2⌊

𝑗+2
2
⌋

2𝑗+2
+
(−1)𝑏

2⌊
𝑖+2
2
⌋
+
𝑏ℯ𝑗

2
𝑗+2
2

 . 



So, for 𝑗 < 𝑖 ≤ 𝑗 + 2 and 𝑗 > 2, we have 

𝑃(𝑧𝑖 = 𝑏, 𝑧𝑗 = 𝑎) =
1

4
− 

1

2⌊
𝑗+3
2
⌋
+
ℯ𝑗(𝑎 ⊕ 𝑏)

2
𝑗+2
2

+
ℯ𝑎

2⌊
𝑗+2
2
⌋
+
ℯ𝑎(−1)

𝑏

2⌊
𝑖+2
2
⌋
 . 

c) All the cases are simple.                 ∎ 

    Now, we introduce a new function similar to what is presented in stream cipher Rabbit and we 

obtain the probability distribution of its component Boolean functions. 

 

Theorem 4: Suppose that 𝑛 ≥ 8 is an even natural number, the function 𝑓: ℤ2𝑛 → ℤ2𝑛 is defined 

as 𝑧 = 𝑓(𝑥) =  𝑥2  𝑚𝑜𝑑  2𝑛 and 𝑤 = 𝑔(𝑥) =  𝑥2⊕ (𝑥2 ≫
𝑛

2
)  𝑚𝑜𝑑  2𝑛. Here, ≫ is the bitwise 

right shift operator and ⊕ means the bitwise XOR. We have 

𝑃(𝑤𝑖 = 0) =
1

2
+ 2− ⌊ 

𝑖
2
 + 
𝑛
4
 (1− ⌊ 

2𝑖
𝑛
 ⌋ )⌋, 0 ≤ 𝑖 < 𝑛 . 

Proof: According to Theorem 3, we have 

                        𝑃(𝑤0 = 0) = 𝑃(𝑧0⊕ 𝑧𝑛 2⁄ = 0) 

= 𝑃(𝑧0 = 0, 𝑧𝑛 2⁄ = 0) + 𝑃(𝑧0 = 1, 𝑧𝑛 2⁄ = 1) 

                                        =
1

2
+ 2−⌊

𝑛+4

4
⌋ , 

and for 0 < 𝑖 <
𝑛

2
 , 

                      𝑃(𝑤𝑖 = 0) = 𝑃(𝑧𝑖⊕𝑧𝑖+(𝑛 2⁄ ) = 0) 

                                      = 𝑃(𝑧𝑖 = 0, 𝑧𝑖+(𝑛 2⁄ ) = 0) + 𝑃(𝑧𝑖 = 1, 𝑧𝑖+(𝑛 2⁄ ) = 1) 

                                           =
1

2
+ 2−⌊

2𝑖+𝑛+4

4
⌋
 . 

For ≥
𝑛

2
 , according to Theorem 2, we have 

𝑃(𝑤𝑖 = 0) =
1

2
+ 2−⌊

2𝑖+𝑛+4

4
⌋
. 

Therefore, 

                                           𝑃(𝑤𝑖 = 0) =
1

2
+ 2− ⌊ 

𝑖

2
 + 

𝑛

4
 (1− ⌊ 

2𝑖

𝑛
 ⌋ )⌋.                                                          ∎  



 

6. The Imbalance of Square Map 

   In this section, we study the imbalance of the square map and we prove that this map is a very 

imbalanced map. 

   Suppose that 𝑚, 𝑛 and 𝑑 are natural numbers with 𝑛 = 𝑑𝑚. The function 𝑓: 𝐴 → 𝐵 with   

|𝐴| = 𝑛 and |𝐵| = 𝑚 is called balanced if and only if 

∀𝑏 ∈ 𝐵, |𝑓−1(𝑏)| = 𝑑. 

   Now, using one of the definitions for measuring the distance of two probability distributions, 

we introduce a criterion for measuring the imbalance of maps. 

Definition 1 [11]: Suppose that 𝑃1 and 𝑃2 are two probability distributions on a finite sample 

space 𝒳; the distance between these two probability distributions is defined as, 

𝐷(𝑃1, 𝑃2) = ∑ |𝑃1(𝑥) − 𝑃2(𝑥)|𝑥∈𝒳 . 

   Now, for the function 𝑓: 𝐴 → 𝐵, with |𝐴| = 𝑛, |𝐵| = 𝑚 and  𝑛 = 𝑑𝑚  we define the 

probability distribution 𝑃1 on 𝐵  as 

∀𝑏 ∈ 𝐵,      𝑃1(𝑏) =
|𝑓−1(𝑏)|

𝑛
  ,                                                                  

and we define the probability distribution 𝑃2 on 𝐵 as the uniform distribution, 

∀𝑏 ∈ 𝐵,      𝑃2(𝑏) =
𝑑

𝑛
 .  

Definition 2: Using Definition 1, we define a criterion for measuring the imbalance 𝐷𝑓 for the 

function 𝑓: 𝐴 → 𝐵, with |𝐴| = 𝑛, |𝐵| = 𝑚 and  𝑛 = 𝑑𝑚,  as, 

𝐷𝑓 =
𝑚

2(𝑚 − 1)
𝐷(𝑃1, 𝑃2) =

∑ ||𝑓−1(𝑏)| − 𝑑|𝑏∈𝐵

2(𝑚 − 1)𝑑
 . 

Lemma 2: For each function 𝑓: 𝐴 → 𝐵 with |𝐴| = 𝑛, |𝐵| = 𝑚 and 𝑛 = 𝑑𝑚, we have, 

0 ≤ 𝐷𝑓 ≤ 1 . 

Proof: It’s obvious that for every balanced function 𝑓, we have 𝐷𝑓 = 0; on the other hand, 

according to definition 2, we have 0 ≤ 𝐷𝑓 for each 𝑓. So it suffices to prove that for each 𝑓, we 

have 𝐷𝑓 ≥ 1. Let 𝐶 = {𝑏 ∈ 𝐵 | |𝑓−1(𝑏)| ≥ 𝑑}, 

                                                    𝐷𝑓 =
1

2(𝑚−1)𝑑
( ∑ (|𝑓−1(𝑏)| − 𝑑)𝑏∈𝐶 + ∑ (𝑑 − |𝑓−1(𝑏)|) )𝑏∈𝐶̅ 



              =
1

2(𝑚−1)𝑑
(|𝐶̅|𝑑 − |𝐶|𝑑 + ∑ |𝑓−1(𝑏)|𝑏∈𝐶 − ∑ |𝑓−1(𝑏)|𝑏∈𝐶𝑐  ) 

                =
1

2(𝑚 − 1)𝑑
( (𝑚 − |𝐶|)𝑑 − |𝐶|𝑑 + |𝑓−1(𝐶)| − |𝑓−1(𝐶̅)| )  

                =
|𝑓−1(𝐶)| − |𝐶|𝑑

(𝑚 − 1)𝑑
 .           

Since |𝐶| = 0 is a contradiction, we have |𝐶| ≥ 1; on the other hand |𝑓−1(𝑐)| ≤ 𝑛. So, 

𝐷𝑓 =
|𝑓−1(𝐶)| − |𝐶|𝑑

(𝑚 − 1)𝑑
≤

𝑛 − 𝑑

(𝑚 − 1)𝑑
= 1. 

For each constant function 𝑓, we have, 

𝐷𝑓 =
(𝑚 − 1)𝑑 + (𝑛 − 𝑑)

2(𝑚 − 1)𝑑
=
(𝑚 − 1)𝑑 + (𝑚𝑑 − 𝑑)

2(𝑚 − 1)𝑑
=
2(𝑚 − 1)𝑑

2(𝑚 − 1)𝑑
= 1 .                ∎ 

Theorem 5: Suppose that the function 𝑓: ℤ2𝑛 → ℤ2𝑛 is defined as 𝑓(𝑥) =  𝑥2  𝑚𝑜𝑑  2𝑛; we have, 

𝐷𝑓 =

{
 
 

 
 
5 × 2𝑛 − 11

6 × 2𝑛 − 6
                     𝑛   𝑒𝑣𝑒𝑛

5 × 2𝑛 − 10

6 × 2𝑛 − 6
                    𝑛    𝑜𝑑𝑑

 

 Proof: In the proof of this theorem, we repeatedly use Theorem 1. We have, 

𝐷𝑓 =
∑ ||𝑓−1(𝑏)|−1|𝑏∈ℤ2𝑛

2(2𝑛−1)
.                                   (5) 

For even 𝑛’s, the contribution of 𝑓−1(0) in (5) is equal to 2
𝑛

2 − 1 and for odd 𝑛’s, the 

contribution of 𝑓−1(0)  in (5) is equal to 2
𝑛−1

2 − 1.                                  

For odd 𝑛’s, the contribution of 𝑎‘s with odd 𝑝2(𝑎) is equal to     

                            

∑ 1

1≤𝑝2(𝑎)<𝑛

𝑝2(𝑎)  𝑚𝑜𝑑  2=1

=∑2𝑛−2𝑖

𝑛−1
2

𝑖=1

= 2𝑛∑4−𝑖

𝑛−1
2

𝑖=1

=
1

3
(2𝑛 − 2). 

 

  For even 𝑛’s, the contribution of 𝑎’s with odd 𝑝2(𝑎) is equal to     



∑ 1

1≤𝑝2(𝑎)<𝑛

𝑝2(𝑎)  𝑚𝑜𝑑  2=1

=∑2𝑛−2𝑖

𝑛
2

𝑖=1

= 2𝑛∑4−𝑖

𝑛
2

𝑖=1

=
1

3
(2𝑛 − 1). 

For odd 𝑛’s, the contribution of 𝑎 = 2𝑛−1 is equal to 2
𝑛−1

2 − 1 and for even 𝑛’s, the contribution 

of 𝑎 = 2𝑛−1 is equal to 2
𝑛

2 − 1. 

For even 𝑛’s, the contribution of 𝑎’s with  𝒪2(𝑎) 𝑚𝑜𝑑 8 = 1 and 0 ≤ 𝑝2(𝑎) ≤ 𝑛 − 3 and              

 𝑝2(𝑎) = 0  𝑚𝑜𝑑 2  is equal to  

                         

∑2𝑛−2𝑖−3(2𝑖+2 − 1)

𝑛
2
−2

𝑖=0

=∑2𝑛−𝑖−1

𝑛
2
−2

𝑖=0

−∑2𝑛−2𝑖−3

𝑛
2
−2

𝑖=0

            

                                           = 2𝑛−1∑2−𝑖

𝑛
2
−2

𝑖=0

− 2𝑛−3∑4−𝑖

𝑛
2
−2

𝑖=0

 = (2𝑛 − 2
𝑛
2
+1) −

2

3
(2𝑛−2 − 1)  . 

For even 𝑛’s, the contribution of 𝑎’s with  𝒪2(𝑎) 𝑚𝑜𝑑 8 ≠ 1 and 0 ≤ 𝑝2(𝑎) ≤ 𝑛 − 3 and                

𝑝2(𝑎) = 0  𝑚𝑜𝑑 2  is equal to  

∑3× 2𝑛−2𝑖−3

𝑛
2
−2

𝑖=0

= 3 × 2𝑛−3∑4−𝑖

𝑛
2
−2

𝑖=0

= 2𝑛−1 − 2 . 

For odd 𝑛’s, the contribution of 𝑎’s with 𝒪2(𝑎) 𝑚𝑜𝑑 8 = 1 and 0 ≤ 𝑝2(𝑎) ≤ 𝑛 − 3 and                  

𝑝2(𝑎) = 0  𝑚𝑜𝑑 2  is equal to  

∑2𝑛−2𝑖−3(2𝑖+2 − 1)

𝑛−3
2

𝑖=0

=∑2𝑛−𝑖−1

𝑛−3
2

𝑖=0

−∑2𝑛−2𝑖−3

𝑛−3
2

𝑖=0

 

                                           = 2𝑛−1∑2−𝑖

𝑛−3
2

𝑖=0

− 2𝑛−3∑4−𝑖

𝑛−3
2

𝑖=0

= (2𝑛 − 2
𝑛+1
2 ) −

1

3
(2𝑛−1 − 1) .  

For odd 𝑛’s, the contribution of 𝑎’s with  𝒪2(𝑎) 𝑚𝑜𝑑 8 ≠ 1 and 0 ≤ 𝑝2(𝑎) ≤ 𝑛 − 3 and                    

𝑝2(𝑎) = 0  𝑚𝑜𝑑 2  is equal to  



∑3× 2𝑛−2𝑖−3

𝑛−3
2

𝑖=0

= 3 × 2𝑛−3∑4−𝑖

𝑛−3
2

𝑖=0

= 2𝑛−1 − 1 . 

So, for even 𝑛’s, we have, 

     

𝐷𝑓 =
(2

𝑛
2 − 1) +

1
3
(2𝑛 − 1) + (2

𝑛
2 − 1) + (2𝑛 − 2

𝑛
2
+1) −

1
3
(2𝑛−1 − 2) + (2𝑛−1 − 2)

2𝑛+1 − 2
 

             =

5
3
× 2𝑛 −

11
3

2𝑛+1 − 2
=
5 × 2𝑛 − 11

6 × 2𝑛 − 6
 . 

  And for for odd 𝑛’s, we have, 

  

𝐷𝑓 =
(2

𝑛−1
2 − 1) +

1
3
(2𝑛 − 2) + (2

𝑛−1
2 − 1) + (2𝑛 − 2

𝑛+1
2 ) −

1
3
(2𝑛−1 − 1) + (2𝑛−1 − 1)

2𝑛+1 − 2
 

    =

10
3 2

𝑛−1 −
10
3

2𝑛+1 − 2
=
5 × 2𝑛 − 10

6 × 2𝑛 − 6
 .                                                                                                ∎ 

   It's obvious that the asymptotic imbalance of the square map modulo 2𝑛 is equal to  
5

6
 ; so we 

can say that this map is very imbalance. 

Theorem 6: Suppose that the function 𝑓: ℤ2𝑛 → ℤ2𝑛 is defined as 𝑓(𝑥) =  𝑥2  𝑚𝑜𝑑  2𝑛; we 

have, 

𝐷𝑓𝑖 = {

0                            𝑖 = 0

2−⌊
𝑖
2
⌋             1 ≤ 𝑖 < 𝑛

 

Proof: The cases 𝑖 = 0,1 are obvious. According to Theorem 2, we have, 

𝐷𝑓𝑖 =
||𝑓𝑖

−1(0)| − 2𝑛−1| + ||𝑓𝑖
−1(1)| − 2𝑛−1|

2(1)(2𝑛−1)
= 2−⌊

𝑖
2
⌋ .                   ∎    
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