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Abstract

A randomized encoding allows to represent a “complex” function f(x) by a “simpler” randomized
function f̂(x; r) whose output distribution encodes f(x), while revealing nothing else regarding x. Ex-
isting randomized encodings, geared mostly to allow encoding with low parallel complexity, have proven
instrumental in various strong applications such as multiparty computation and parallel cryptography.

This work focuses on another natural complexity measure: the time required to encode. We construct
succinct randomized encodings where a computation given by a (Turing or random-access) machine M ,
and n-bit input x, requiring time t and space s, can be encoded roughly in time (n+ s) · polylogt, thus
inducing significant savings in time when s � t. The scheme guarantees computational input-privacy
and is based on indistinguishability obfuscation for a relatively simple circuit class, which can in turn be
based on a polynomial version of the subgroup elimination assumption on multilinear graded encodings.
We then invoke succinct randomized encodings to obtain several strong applications, including:

• Indistinguishability obfuscation for uniform (Turing or random-access) machines, where the ob-
fuscated machine iO(M) computes the same function as M for inputs x of apriori-fixed maximal
size n, and is computed in time (n+ s) · polylogt.

• Functional encryption for uniform machines, where a functional decryption key corresponding
to M allows decrypting M(x) from encryptions of x. As in the previous case, inputs x are of
apriori-fixed maximal size n, and key derivation time is roughly (n+ s) · polylogt.

• Publicly-verifiable 2-message delegation where verification time is roughly (n+ s) ·polylogt. We
also show how to transform any 2-message delegation scheme to an essentially non-interactive
system where the verifier message is reusable.

For the first application, we also require subexponentially-secure indistinguishability obfuscation for
circuits, and for the second polynomial indistinguishability obfuscation, which can be replaced by more
concrete polynomial hardness assumptions on multilinear graded-encodings. Previously, both applica-
tions were only known based on various non-standard knowledge assumptions.
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1 Introduction

The notion of a randomized encoding, pioneered by Ishai and Kushilevitz [IK00], aims to trade the com-
putation of a “complex” function f(x) for the computation of a “simpler” randomized function f̂(x; r)
whose output distribution encodes f(x), but hides anything else regarding the input x. The “complexity” of
computing f is shifted to the decoding procedure that should extract f(x) from f̂(x, r).

The privacy of the input x is naturally captured by an efficient simulator Sim(f(x)), who given only
the output f(x), produces a simulated encoding indistinguishable from f(x; r); privacy can be perfect,
statistical, or computational, according to the attained indistinguishability. Capturing what it means to
“simplify the computation of f(x)” may take quite different forms according to the complexity measure
of interest. Most previous work have focused on computing the randomized encoding f̂(x; r) with lower
parallel-time complexity than required for computing the original function f , and has been quite successful.
In particular, all log-space computations (and NC1 computations) were shown to have perfectly-private
randomized encodings in NC0 [IK00, IK02]. When settling for privacy against computationally bounded
adversaries, the latter extends to arbitrary poly-time computations [AIK06] (this is also known as Yao’s
garbled circuit method [Yao82]). The constructed randomized encodings were in turn shown to have various
strong applications to parallel cryptography, secure computation, verifiable delegation, and more (most of
these are surveyed in [App11b]).

Succinct randomized encodings. In this work, we focus on yet another natural complexity measure: the
time required to compute f(x). Specifically, given the description of f and the input x, we would like to
compute the encoding f̂(x; r) in time t̂ that is significantly smaller than the time t required to compute f(x).
Decoding, in contrast, may already be as large as t, perhaps with some tolerable overhead. For this goal to
be achievable, f has to be given in some succinct representation that is smaller than t, and cannot be given
by, say, a size-t circuit. Concretely, we restrict attention to the natural case that f is represented by a uniform
(deterministic) machine M , e.g., a Turing machine (TM) or a random-access machine (RAM).

Besides being interesting from a purely complexity-theoretic perspective, such succinct randomized
encodings may have powerful applications analogous to those of the known randomized encodings. One
such immediate application is private delegation of computation: a weak client that wishes to use the aid of
a server to run a long computationM on a short private input x, may quickly compute a succinct randomized
encoding M̂(x), and have the server decode the resultM(x), without the server learning anything regarding
x (with a little more effort, we can even ensure privacy of the output, and be able to verify that the server
computed correctly).

Beyond shifting computation from weak parties to strong parties, succinct randomized encodings may
sometimes save in computation altogether. For instance, one of the first demonstrated applications of ran-
domized encodings [IK00, IK02] was in multi-party computation (MPC). Indeed, most known MPC solu-
tions explicitly utilize the circuit Cf (x1, . . . , xm) representing a function f(x1, . . . , xm), and the overhead
they incur, e.g. in communication, may depend on the circuit size |C|. When the function f is succinctly
represented by a machine M , we may have the parties compute first a succinct randomized M̂(x1, . . . , xm),
and only decode at the end, thereby making communication overhead proportional to the smaller circuit
that computes M̂ . Furthermore, the effort of decoding (proportional to M ’s running time) falls only on the
parties that obtain the output.

Do succinct randomized encodings exist? Under commonly believed complexity-theoretic assumptions,
perfectly-private randomized encodings for say all of P are unlikely to be computable too fast, e.g. in fixed
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polynomial time.1 In contrast, restricting attention to privacy against computationally-bounded adversaries,
no lower bounds or barriers are known. Still, all the constructions introduced so far were based on consider-
ably strong computational assumptions such as extractable witness encryption and succinct non-interactive
arguments in [GKP+13a], and (a strong variant of) differing-inputs obfuscation in [GHRW14]. For once,
in the language of [Nao03] these assumptions are not efficiently-falsifiable; furthermore, in some cases they
are subject to impossibilities [BCPR14, GGHW14].

In light of the above, we focus on two main questions:

Can we base succinct randomized encodings on more standard assumptions?
What are the applications of succinct randomized encodings?

1.1 Contributions

Our core contribution is a new construction of succinct randomized encodings based on assumptions that
are considered more standard (and in particular are efficiently falsifiable). Concretely, we show

Theorem 1.1 (informal). Assuming indistinguishability obfuscation (IO) and one-way functions, there exist
randomized encodings where for a (Turing or random-access) machine M with running time t and space s
on input x, it holds that for some fixed polynomial poly(·), independent of M and t:

• encoding takes time (|x|+ s) · poly(log t, |M |, λ),

• decoding takes time t · s · poly(log t, |M |, λ) and space s · poly(log t, |M |, λ),

where privacy holds against adversaries of arbitrary polynomial size in the security parameter λ.

Furthermore, IO is only required for a relatively simple class of circuits. First, assuming puncturable pseu-
dorandom functions (PRFs) in NC1, the obfuscated circuits are also in NC1. Second, and regardless of
depth, the obfuscated circuits only have O(log t)-size inputs. Puncturable PRFs in NC1 are constructed in
[BLMR13] based on decision linear assumptions on multilinear maps, and in [HKW14] based on a standard
variant of decision Diffie Hellman assumption. Further more Gentry et al. [GLSW14] construct indistin-
guishability obfuscation for NC1 under a subgroup elimination assumption on composite-order multilinear
graded encodings [GGH13a, CLT13], where the security of the assumption scales exponentially with the
circuit input length. Thus, to get randomized encodings for P, we only need to rely on polynomial assump-
tions.

We then demonstrate the power of succinct randomized encodings in several applications, some new, and
some analogous to previous applications of randomized encodings, but with new succinctness properties.
We now overview these applications.

Succinct indistinguishability obfuscation. Typically obfuscation (and in particular IO) operates on circuits
and outputs circuits of polynomially related size. Naturally, we may also want to consider obfuscation in
uniform models of computation such as Turing or random-access machine. Here, given a machine M ,

1Specifically, it can be shown that, for a language L, recognized by a given T (n)-time Turing machineM , succinct randomized
encodings with perfect-privacy computable in time t(n) � T (n), would imply that L has 2-message interactive proofs with an
O(t(n))-time verifier, which already suggests that verification time should at least depend on the space (or depth) of the computa-
tion. Furthermore, under commonly believed derandomization assumptions (used to show that AM ⊆ NP [Kv99, MV99, SU01]),
the above would imply that L can be non-deterministically decided in time poly(t(n)), for some fixed polynomial poly. Thus, any
speedup in encoding would imply related speedup by non-determinism, whereas significant speedup is believed to be unlikely.
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and a bound n on input-length, we would like to produce an obfuscated machine O(M) that has the same
functionality on all inputs of size at most n. Crucially, the obfuscation procedure should be done much
faster then the machine’s maximal running time T (n) (and corresponding circuit size).2 As in succinct
randomized encodings, evaluating O(M)(x) may be proportional to the running time of M(x). We call
such obfuscators succinct.

Our first (and perhaps the most surprising) application of succinct randomized encodings is for succinct
indistinguishability obfuscation (succinct IO in short). Indistinguishability here means that the (succinct) ob-
fuscations of two machines that agree on all inputs x ∈ {0, 1}≤n, will be computationally indistinguishable.
Differently from (non-succinct) IO for circuits, any form of succinct IO realized so far [ABG+13, BCP14]
assumes differing-inputs obfuscation in conjunction with succinct non-interactive arguments (which already
entail strong succinctness properties); as mentioned before, these are considered very strong up to implau-
sible in certain settings.

Relying on succinct randomized encodings, we show a construction based on essentially different as-
sumptions (which are typically considered more standard). Concretely, we show:

Theorem 1.2 (informal). Assuming succinct randomized encodings, one-way functions, and IO for circuits
that are all 2λ

ε
-secure, there exists succinct IO where for machine M and input bound n ≤ λε/2:

• obfuscating M takes roughly the same time as encoding M(x),

• evaluating the obfuscated O(M) takes roughly the same time and space as decoding.

As a corollary of Theorems 1.1,1.2, we obtain, from subexponentially-secure IO and one-way functions,
succinct IO where the time to obfuscate depends only on the space of M , and is essentially independent of
the running time of M . Here also, by assuming puncturable PRFs in NC1, we can rely on (subexponential)
IO only for NC1.

We note that this theorem is somewhat analogous to a bootstrapping theorem by Applebaum [App13]
who showed, for a strong notion of virtual black-box obfuscation [BGI+01], how (non-succinct) randomized
encodings and pseudo-random functions in NC1, together with obfuscation for NC1 circuits, imply virtual
black-box obfuscation for P/poly. Using the technique used to prove Theorem 1.2, and subexponentially-
secure pseudo-random functions in NC1, we can extend this bootstrapping theorem to also hold for the
weaker notion of IO.

Succinct functional encryption. The goal of functional encryption (FE) [O’N10, BSW11] is to allow
fine-grained access control to encrypted data. Concretely, in an FE scheme for a class of functions F , the
trusted holder of the (master) secret key SK can derive a special key SKf for any function f ∈ F . Given an
encryption of some m, anyone that holds SKf can learn f(m), but should not learn anything else about m.

The recent leap in the study of obfuscation [GGH+13b], has brought with it a corresponding leap in
functional encryption. Today, functional encryption for all circuits can be constructed from IO [GGH+13b,
Wat14], or even from concrete (and efficiently falsifiable) assumptions on composite order multilinear
graded-encodings [GGHZ14]. Considering function families in uniform models of computation, we may
hope to have succinct FE, where the secret key SKM corresponding to machine M can be computed faster
than the running time ofM . However, here the state is similar to succinct randomized encodings, or succinct
IO, requiring essentially the same non-standard assumptions.

One can replace IO in the above constructions for circuits with the succinct IO from Theorem 1.2, and
obtain FE where computing SKM is comparable to (succinctly) obfuscating M . This, however, will incur

2One can think of a stronger model where M and accordingly O(M) can deal with inputs of a-priori unbounded length. We
will restrict attention to the simpler bounded-input model described above.
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the same subepxonential loss as in the construction of succinct IO. We show, however, that we can directly
construct succinct FE, while circumventing this loss:

Theorem 1.3 (informal). Assuming succinct randomized encodings, one-way functions, and IO for circuits,
there exists succinct functional encryption where for machine M and input bound n:

• deriving a corresponding secret key SKM takes roughly the same time as encoding M(x).

• decrypting takes roughly the same time and space as decoding.

Assuming puncturable PRFs in NC1, IO can be restricted to NC1, or replaced with the same (efficiently-
falsifiable) assumptions on composite order multilinear graded encodings made in [GGHZ14].

As a corollary of Theorems 1.1,1.3, we obtain succinct FE where the key-derivation time depends only
on the space of M , and is essentially independent of the running time of M . We note that the alternative
construction based on [GGHZ14], the resulting scheme is fully secure as in [GGHZ14].

We also note that, given succinct FE, we can somewhat enhance our basic succinct randomized encod-
ings to make them reusable. Such reusability was previously studied in [GKP+13b, GHRW14] and means
that encoding is now split into two parts: the first part M̂ is independent of the specific input x and only
depends on the machine M . The first part can then be “reused” together with a second part x̂ that includes
an encoding of input x. The gain is in efficiency: while encoding M depends on the space in our solution, it
is only done once, and subsequent encodings of inputs depend only on the input size |x| and not on space.

Publicly-verifiable delegation. In the basic setting of delegation, a weak client would like to delegate a
long computation succinctly represented by a machine M , and input x to a server, and be able to later
verify the result claimed by the server. Verification is required to be significantly faster than running the
computation from scratch, and ideally we also want the corresponding protocol to only involve one message
in each direction, a verifier message σ and a prover message including M(x) and a proof π of correctness.

Recently, Kalai, Raz, and Rothblum [KRR14] gave a general solution to the problem, under the subex-
ponential learning with errors assumption, where verification is essentially linear in the input x. Other
solutions [GLR11, BCCT12, DFH12, BCCT13] rely on non-standard knowledge assumptions.

Based on the succinct randomized encodings from Theorem 1.1, we obtain a solution that has two ad-
ditional desired features. The first is public-verifiability, meaning that given the (public) message σ anyone
can verify the proof π, without requiring any secret verification state. The second is input-privacy, meaning
that the server does not learn anything regarding the verifier’s input.

Assuming in addition, indistinguishability obfuscation, we can turn the system into what is known as a
succinct non-interactive argument (SNARG), where the verifier’s message σ is reusable; namely, the verifier
can send one message σ, and then get proofs for multiple different computations. (This is, in fact, a generic
transformation the can be applied to any delegation scheme.)

Theorem 1.4 (informal). Assuming succinct randomized encodings and one-way functions, there exists
publicly-verifiable 2-message delegation with input-privacy where for machine M and input bound n:

• verification takes roughly the same time as encoding M(x).

• proving takes roughly the same time and space as decoding.

Assuming also IO for NC1 and one-way functions, the verifier message can be made reusable.
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Invoking the succinct randomized encodings constructed here, we obtain a system as above where verifica-
tion time only depends on the space of the computation, but not its time. Also, like the succinct randomized
encoding, the solution can also be based on a polynomial version of the subgroup elimination assumption
(rather than subexponential hardness assumptions).

Other applications. We reinspect other previous applications of (non-succinct) randomized encodings and
note the resulting succinctness features.

One application, already mentioned above, is to multiparty computation [IK00, IK02], where we can
reduce the communication overhead from depending on the circuit size required to compute a multiparty
f(x1, . . . , xm) to depending on the space required to compute f , which can be much smaller. While focusing
merely on communication this problem has by now general 1-round solutions based on (multi-key) fully-
homomorphic encryption [Gen09, AJL+12, LTV12, GGHR14], succinct randomized encodings also allow
to shift the work load to one party (the decoder), without inducing extra rounds or strong computational
assumptions (such as succinct non-interactive arguments of knowledge).

Another application is to amplification of key-dependent message security (KDM). In KDM encryption
schemes we want semantic security to hold, even when the adversary obtains encryptions of functions of the
secret key taken from a certain class F . Applebaum [App11a] essentially shows that given a scheme that is
KDM-secure with respect to some class of functions F , can be made resilient to a bigger class F ′ ⊇ F , if
functions inF ′ can be randomly encoded inF . Using succinct randomized encodings, we can roughly show
that given KDM-security for circuits of some fixed polynomial size s (such as the scheme of [BHHI10]),
can be amplified to KDM-security for functions that can be computed by machines with space � s, but
could potentially have much larger running time.

1.2 Overview of Techniques

We now overview the main ideas behind our results, focusing on the construction of succinct randomized
encodings from IO. We then sketch how the main applications are obtained.

The basic idea: obfuscating a Yao gate garbler. Our starting point is a good old non-succinct randomized
encoding — Yao’s garbled circuit scheme [Yao82]. The scheme takes an arbitrary circuit C and input x
and computes a randomized encoding Ĉ(x), usually referred to as the garbled circuit. While the garbled
circuit is known to be computable in NC0 (under reasonable assumptions), the resulting Ĉ(x) is as large
as the circuit C. Nevertheless, the fact that garbling is done in NC0 implies that the computation of each
output bit is very local, and can be done by a circuit of fixed size. At a very high-level, the basic idea is,
given a uniform machine, to cram all the corresponding local computations into one small obfuscated circuit
that can internally generate randomness and produce each of the small pieces of Ĉ(x). Intuitively, strong
enough obfuscation would guarantee that this circuit leaks nothing beyond Ĉ(x) and can be published as
the succinct randomized encoding. We next sketch in more detail how this is done.

Looking into how Yao garbling is done, note that the garbling of the large circuit C consists of gar-
bling each gate separately; furthermore, this garbling is local in the sense that, for each gate, it involves a
small amount of randomness that will only be used in the garbling process of the few neighbouring gates.
A bit more concretely, in Yao’s scheme, each wire w in the circuit is associated with two random keys
K0
w,K

1
w ∈ {0, 1}λ, whose length depends only on the security parameter λ. The gate garbling procedure

G(�,
{
K0
w,K

1
w : w ∈ g

}
) takes as input a binary operation � corresponding to a gate g, and the constant

number of keys corresponding to the gate’s input and output wires. The procedure then generates a gar-
bled gate ĝ, and the garbled computation Ĉ(x) consists of all the garbled gates {ĝ : g ∈ C}, and the keys
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{Kxi
i : i ∈ [n]} corresponding to input wires [n] and their value according to the input x.3

This gives rise to the following natural approach: given a uniform (say, Turing) machine M that for
inputs of length n runs in time t and space s, we consider the circuit C of size O(t · s), with bounded fan-in
and fan-out, that representsM ’s computation (for simplicity of exposition, we assume thatM has a constant
size description). The circuit C, in turn, can be represented by a small circuit Csc of size O(log t), which
given a label i ∈ [O(t · s)] for any gate gi in the circuit, outputs the corresponding gate operation � and
the labels of its corresponding wires {w ∈ gi}. We can then obfuscate an augmented gate garbling circuit
GM,K that will garble any given gate gi, using (pseudo) random keys internally generated by a pseudo-
random function FK . That is, GM,K is given a label i ∈ [O(t ·s)], invokes Csc(i) to learn the corresponding
operation � and wires {w ∈ gi}, internally derive the required keys (K0

w,K
1
w) = FK(w), and invoke G to

create the garbled ĝi. We then publish the obfuscatedO(GM,K) together with the input keys {Kxi
i }, derived

consistently using FK .
In terms of functionality and succinctness this seems like a promising solution. The size of the resulting

randomized encoding, and more generally the time it takes to compute it, is polynomial in the size ofGM,K ,
which is in turn polynomial in the circuit size of G and FK , which are both poly(λ), and the size of Csc,
which isO(log t); thus, the overall time of encoding is poly(λ, log t). Decoding involves runningO(GM,K)

on each i ∈ [O(t · s)], thus deriving the garbled Ĉ(x) and then running the decoding procedure for garbled
circuits; in total this takes time t · s ·O(log t+ poly(λ)).

Intuitively, to prove that the above succinct randomized encoding is secure, we would like to rely on the
security of the underlying circuit garbling and that of the obfuscator O. The question is

what kind of security do we have to require from O?

To answer this question, let us first recall the security guarantee of Yao, which says that an efficient simulator
Sim(C, y), given only the output y = C(x), but nothing about input x, can generate a simulated garbled
circuit Ĉsim that is computationally indistinguishable from Ĉ(x). Furthermore, similarly to the real garbling
process, also the simulated one is local; namely, there exists a small circuit Gsim(�,

{
K0
w,K

1
w : w ∈ g

}
, y)

that is also given the output y, and creates simulated garbled gates. In addition, the real garbled keys {Kxi
i }

are replaced with simulated keys
{
K0
i : i ∈ [n]

}
that can correspond to the all zero input 0n (or any other

string for that matter). Thus, a natural simulation strategy is to produce an obfuscation O(Gsim
M,K,y) of a

simulated gate garbler Gsim
M,K,y that is defined just like GM,K , only that it invokes Gsim rather than G.

We would now like to argue that the real encoding {Kxi
i } ,O(GM,K) is computationally indistinguish-

able from the simulated
{
K0
i

}
,O(Gsim

M,K,y). If the obfuscation was “ideal” and equivalent to a black-box
computing the underlying function, this would follow easily. Specifically, looking just at the output distri-
butions of the real and simulated obfuscations, we know that:

{Kxi
i } , {GM,K(i)}i∈[O(t·s)] ≈c Ĉ(x) ≈c Ĉ

sim ≈c
{
K0
i

}
,
{
Gsim
M,K,y(i)

}
i∈[O(t·s)] ;

indeed, the two inner distributions are indistinguishable just by the garbled circuit security guarantee, and
are each identical to the corresponding outer distribution, except for the fact that the outer distributions use
pseudorandom keys rather than truly random keys.

This intuition can be quite directly transformed into a proof relying on the virtual black-box definition of
Barak et al. [BGI+01], which says that whatever predicate can be learned from an obfuscation can also be
learned by a simulator, given only black-box access to the circuit. However, the virtual black-box definition

3The reader who is familiar with Yao may identify ĝ with the encryptions table corresponding to g. Here, we will not need to
dive in to how ĝ is computed, and will be more interested the guaranteed security properties. Details may be found in [LP09].
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is rather strong, and in some settings impossible altogether [BGI+01, GK05, BCC+14]; moreover, as argued
above it seems that we only need the obfuscation to satisfy some sort of indistinguishability requirement,
rather than a strong simulation requirement. Instead, we attempt to base the scheme on the much weaker
notion of indistinguishability obfuscation (IO), for which we have candidate constructions, under different
assumptions on multilinear graded encodings [GGH+13b, PST14, GLSW14].

The notion of IO only guarantees that for any two circuits C0, C1 of the same size and which compute
the same function, their two obfuscation iO(C0) and iO(C1) are computationally indistinguishable. Is IO
enough for recovering the above argument? For once, had we taken the circuit GM,K (and accordingly
GM,K,y) and had simply padded it to be large enough, then we could simply replace it with a circuit that has
O(t · s) hardcoded values GM,K(i), each returned given the corresponding input i. Clearly, this results in
the same functionality, and thus we can rely on IO and the same argument as above. However, this beats the
purpose of achieving a succinct randomized encoding.

The question is whether this padding is necessary. We typically think of IO as the best-possible obfusca-
tor [BGI+01, GR07]; however, what we really mean is that iO(C) is as good as the best possible obfuscation
bO(C), when the circuit C is padded to be of size bO(C). In contrast, virtual black-box obfuscation is truly
best-possible, without having to pad, because when the circuit is regarded as an oracle, the size doesn’t mat-
ter. One can naturally try to formulate a notion of best-possible obfuscation that does not require padding,
but only satisfies an indistinguishability guarantee and is not as strong as virtual black-box. In Section 3.5,
we explore such a notion which we call padding-free indistinguishability obfuscation.

Relying on (plain) IO, and its cost. Aiming to avoid additional (arguably strong) assumptions, we show
that, by replacing arbitrary pseudo-random functions (PRFs) with what is known as puncturable PRFs [SW14],
we can rely on plain IO, while padding proportionally to the space s of the computation rather than the time
t. We now explain the rough ideas behind this, as well as where the space comes up.

In puncturable PRFs, it is possible to efficiently puncture a given keyK at any polynomial set of points S
in the domain of the function. The punctured function FKS , with punctured key KS , preserves functionality
at any other point, but hides any information on {FK(x) : x ∈ S}; namely, these values are pseudo-random,
even given (S,KS). As shown in several recent works [BW13, BGI14, KPTZ13], such puncturable PRFs
follow from the GGM construction [GGM84].

Recall, that we would like to prove that the real {Kxi
i } ,O(GM,K ◦ 0`) is computationally indistin-

guishable from the simulated
{
K0
i

}
,O(Gsim

M,K,y ◦0`sim), where this time the two circuits are padded with an
appropriate number of zeros, which is bounded by s · poly(λ). To show this, we will closely follow the way
that Garbled circuit security is usually proven (described in detail in [LP09]). Specifically, we will show
how to move from the real randomized encoding to the simulated one by a sequence of O(t · s) hybrids,
each time making only local changes to the underlying obfuscated program. In hybrid i, we shall obfuscate
a hybrid circuit GiM,K ◦ 0`i that for all gates j < i generates simulated garbled gates using Gsim, and for
gates i and beyond creates real garbled gates using G. In the first n hybrids, we shall also gradually change
the choice of keys from {Kxi

i } to
{
K0
i

}
.

The standard garbled simulation argument shows that in step i we can change the real garbled gate ĝi to
a simulated one ĝsimi , provided that: (a) all the gates below i were already simulated, and (b) we know the
real value corresponding to the wire going out from gi. The first condition, can be guaranteed by looking
at a topological order of the gates. For simplicity, we consider a O(t)-layered circuit, where each layer is
of size O(s) is connected only to the one below and above. The second condition is also not a problem
in the standard garbled circuit setting; indeed, the process generating the current hybrid distribution may
“remember” the intermediate wire values for the current layer.

Trying to carry a similar hybrid argument to our setting, requires a more careful reasoning. Indeed, the

8



major different in our setting is that the adversary doesn’t see only the resulting garbled circuit, but actually
sees the circuit that computes it, which internally includes a the PRF key used to generate the randomness.
Not surprisingly, if this PRF key is leaked in full, the scheme is completely broken. We show, however,
that IO in conjunction with a puncturable PRF guarantee sufficient hiding. Specifically, the place where the
above difference kicks in is exactly when replacing a real garbled gate with a simulated one. In the standard
garbled setting both are generated using true (rather than pseudo) randomness, which is completely hidden
from the adversary. This is exactly where we use the puncturing property: when dealing with gate gi in the
ith hybrid, we will puncture the PRF in the constant number of corresponding wires, and instead directly
hardcode the garbled gate ĝi (or ĝsimi ) into the circuit. This change is indistinguishable, because we did not
change the functionality of the circuit. Furthermore, now we can invoke the guaranteed pseudorandomness
in punctured points, and generate the garbled gate using true randomness, just as in the standard setting,
allowing us to replace the real gate by a simulated gate. Importantly, before moving to the next hybrid we
unpuncture the PRF, to guarantee that the key doesn’t grow as the number of punctured points increases.4

The reason for blowing up the obfuscated circuit proportionally to the space is that we still need to
remember the intermediate wires values for the currently simulated layer. Unlike the standard garbling
setting where this wasn’t an issue, as the adversary anyhow sees only the resulting garbled circuit, here it is
since the adversary actually sees the (obfuscated) circuit that generates the garbled circuit. In our setting,
the intermediate values for the current layer will be hardwired into the circuit, and each one of them can
only be “forgotten” once all the connected gates in the layer above are simulated (inducing new values to
remember). As long as we simulate layer by layer, we can guarantee that the overall blowup does not exceed
s · poly(λ).
IO for a simple class of circuits, and randomized encodings in NC1. Finally, we note that the obfuscated
circuits in our constructions are of a special kind. First, input size of the obfuscated circuits is log ts =
O(log t). Second, assuming puncturable PRFs in NC1 (constructed in [BLMR13, HKW14]), the obfuscated
circuits can also be computed in NC1. Another thing to note is that the constructed succinct randomized
encodings can be made to be in NC1. This is similar to the simple observation that randomized encodings
can be composed [AIK06]; that is we can consider an outer later of an NC1 randomized encoding (like Yao),
that computes the inner succinct randomized encoding.

1.2.1 Main Ideas behind the Applications

We now briefly sketch the main ideas behind our three main applications.

Succinct IO. We start by the construction of succinct IO from succinct randomized encodings. The basic
scheme is a natural instantiation of the bootstrapping approach of Applebaum [App13]. There the goal is
to reduce obfuscation of general circuits to obfuscation of NC1 circuits; our goal is to reduce obfuscation
of uniform machines with large running time to obfuscation of significantly smaller circuits. To obfuscate a
machine M with respect to inputs of size at most n, the idea is to obfuscate a small circuit CM,K that has a
hardwired key for a PRF, and given input x, applies the PRF to x to derive randomness, and then computes
a succinct randomized encoding of Ux(M), where Ux is a universal machine that runs the input machine M
on x. The obfuscated O(M), given input x uses the obfuscated circuit O(CM,K) to compute the encoding
Ûx(M), and then decodes the result.

The analysis in [App13] would imply security in case thatO has virtual black-box security, for arbitrary
PRFs. We show that if O has 2λ

ε
-security for security parameter λ > n2/ε, and the PRF is a puncturable

4In the body, and for a simpler technical exposition, we handle an entire layer consisting of O(s) gates each time.
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with a similar level of security, then a similar result holds for IO, rather than virtual black-box. The idea is
simple, given two machines M0,M1 that compute the same function on all inputs x ∈ {0, 1}≤n, we show
how to move from an obfuscation of M0 to an obfuscation of M1 with a sequence of O(2n) hybrids. In
the ith hybrid we obfuscate a threshold circuit CiM0,M1,K

that for inputs x < i computes the randomized
encodings using M0, and for larger inputs using M1 (here we naturally think of the x as the corresponding
number according to its lexicographic place in {0, 1}≤n). Each circuit CiM0,M1,K

is larger than the original
CM0,K but only on a factor of O(n); to invoke IO, we will need to pad them accordingly.

It is easy to see that the first and last circuits CiM,K , compute the exact same function as CiM0,K
and

CiM1,K
, respectively. To show indistinguishability of two consecutive hybrids, we simply puncture at the

current point i, hardwire the succinct randomized encodings, and rely on the fact that Ûi(M0) ≈c Ûi(M0),
since Ui(M0) = M0(i) = M1(i) = Ui(M1). Subexponential security of the circuit IO is required due to
the subexponential number of hybrids. (We note that using a puncturable PRF in NC1 and the fact that the
succinct randomized encoding can be computed in NC1, we can rely on IO for NC1.)

Succinct FE. We now move on to discuss the construction of succinct functional encryption, which follows
rather directly from succinct randomized encodings and previous work. Roughly speaking, the idea is to
start from an FE scheme for randomized circuits, rather than deterministic ones, and then in order to derive
a key for a machine M , use the randomized circuit FE to derive a key for the circuit that given x, computes
a randomized encoding of M(x). One construction of such FE schemes was shown by [GJKS13] based on
IO. Another construction was shown by [GGHZ14] only for circuits in NC1, under concrete assumptions
on composite-order multilinear graded encodings; this is sufficient for us since the succinct randomized
encoding can be computed in NC1. The latter construction, in fact, satisfies a strong notion of adaptively-
secure FE (for randomized circuits).5.

Publicly-verifiable delegation. Finally, we sketch the ideas behind our delegation scheme and SNARGs.
The delegation scheme is pretty simple and similar in spirit to previous delegation schemes (in a weaker
processing model) [AIK10, GGP10, GKP+13b]. To delegate a computation, given by M and x, the verifier
simply sends the prover a randomized encoding M̂ ′(x, r), where M ′ is a machine that returns r if and only
if it accepts x, and r is a random string. The security of the randomized encoding implies that the prover
learns nothing of r, unless the computation is accepting. The scheme can be easily made publicly verifiable
by publishing f(r) for some one-way function f . Furthermore, the scheme ensures input-privacy for the
verifier.

We then propose a simple transformation that can be applied to any delegation scheme in order to make
the first verifier message reusable. The idea is natural: we let the verifier’s first message be an obfuscation
of a circuit CK that has a hardwired key K for a pucturable PRF, and given a computation (M,x), applies
the PRF to derive randomness and generates a first message for the delegation scheme. Thus for each new
computation, a first message is effectively sampled afresh. Relying on IO and the security of the puncturable
PRF, we can show that (non-adaptive) soundness is guaranteed. (Again, using puncturable PRFs in NC1, we
can rely on IO for NC1.) The transformation can also be applied to privately-verifiable delegation schemes,
such as the one of [KRR14] and maintains soundness, even if the prover has a verification oracle.

Organization

In Section 2 we go over preliminiaries and primitives we will be using. In Section 3 we define succinct
randomized encoding schemes (Section 3.1) and present our main construction (Section 3.3). We present

5Eventually, we rely on a restricted version of FE for randomized circuits, restricted to the setting of randomized encodings.
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our fully-succinct construction in Section 3.4. In Section 4 we present some applications of our randomized
encoding schemes, particularly those of succinct indisitnguishability obfuscation (Section 4.1), succinct
functional encryption (Section 4.2), publicly verifiable delegation and SNARGS for P (Section 4.3).

2 Preliminaries

We review basic concepts and definitions used throughout the paper.

2.1 Standard Computational Concepts

We rely on the standard notions of Turing machines and Boolean circuits. We say that a (uniform) Turing
machine is PPT if is probabilistic and runs in polynomial time. A polynomial-size (or just polysize) circuit
family C is a sequence of circuit C = {Cλ}λ∈N, such that each circuit Cλ is of polynomial size λO(1) and
has λO(1) inputs and outputs bits.

We follow the standard habit of modeling any efficient adversary strategy as a family of polynomial-
sized circuits. For an adversary A corresponding to a family of polysize circuits {Aλ}λ∈N, we often omit
the subscript λ, when it is clear from the context.

2.2 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (IO) recently realized in [GGH+13b] using candidate
multilinear maps[GGH13a].

Definition 2.1 (Indistinguishability Obfuscator (IO)). A PPT machine iO is an indistinguishability obfus-
cator for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

• Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1 .

• Indistinguishability: for any polysize distinguisher D, there exists a negligible function α such that
the following holds: For all security parameters λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of the
same size, we have that if C0(x) = C1(x) for all inputs x, then∣∣∣Pr [D(iO(C0)) = 1

]
− Pr

[
D(iO(C1)) = 1

]∣∣∣ ≤ α(λ) .
2.3 Puncturable Pseudo-Random Functions

Puncturable PRFs defined by Sahai and Waters [SW14], are PRFs for which a key can be given out that
allows evaluation of the PRF on all inputs, except for a designated polynomial-size set of inputs.

Definition 2.2 (Puncturable PRFs). A puncturable pseudo-random functionF is given by a triple of efficient
algorithms (KeyF ,PunctureF , and EvalF ), and a pair of computable functions n(·) and m(·), satisfying the
following conditions:
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- Functionality preserved under puncturing: For every polynomial size set S ⊆ {0, 1}n(λ) and for
every x ∈ {0, 1}n(λ)\S, we have that:

Pr[EvalF (K,x) = EvalF (KS , x) : K ← KeyF (1
λ),KS = PunctureF (K,S)] = 1

- Pseudorandom at punctured points: For every polynomial size set S ⊆ {0, 1}n(λ) we have that for
every polysize adversary A we have that:

|Pr[A(KS ,EvalF (K,S)) = 1]− Pr[A(KS ,EvalF (K,Um(λ)·|S|)) = 1]| = negl(λ)

where K ← KeyF (1
λ) and KS = PunctureF (K,S) and EvalF (K,S) denotes the concatenation of

EvalF (K,x1)), . . . ,EvalF (K,xk) where S = {x1, ..., xk} is the enumeration of the elements of S in
lexicographic order, U` denotes the uniform distribution over ` bits.

The GGM tree-based construction of PRFs [GGM84] from one-way functions are easily seen to yield
puncturable PRFs where the size of the punctured key grows polynomial in the size of the set S being
punctured, as recently observed by [BW13, BGI14, KPTZ13]. Thus we have:

Lemma 2.1 ([GGM84, BW13, BGI14, KPTZ13]). If one-way functions exist, then for all efficiently com-
putable functions n(λ) and m(λ), there exists a puncturable PRF family that maps n(λ) bits to m(λ) bits.

3 Succinct Randomized Encodings

In this section, we define fully succinct and semi-succinct randomized encodings. We then present two
constructions: the first obtains semi-succinct randomized encodings based on IO for P/poly; the second
obtains fully succinct randomized encodings from a new notion called padding-free indistinguishability
obfuscation .

3.1 Definitions

We now define the basic concepts of succinct and semi-succinct randomized encodings. The definitions nat-
urally generalize the standard definition of randomized encodings for circuits [IK00, AIK06]; the essential
difference is that the computations to be encoded are succinctly represented by a Turing machine or a RAM
M and input x, and the goal is that the running time of the encoding procedure would be proportional to
its succinct description, i.e. |M | + |x| rather than depend on the running time of M . In a semi-succinct
randomized encoding the encoding time is allowed to depend on the space s of M .

Definition 3.1 (Succinct Randomized Encoding). A succinct randomized encoding (SRE) scheme sRE con-
sists of two algorithms (sRE.enc, sRE.dec) that work as follows:

• M̂x,t ← sRE.enc(M,x, t, 1λ): takes as input a machine M , input x, time bound t, and a security
parameter 1λ. The algorithm outputs a randomized encoding M̂x,t.

• y ← sRE.dec(M̂x,t): takes as input a randomized encoding M̂x,t and (deterministically) computes
the output y.

The scheme should satisfy the following three requirements:
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1. Functionality: for every input x and machine M such that M halts on x within t steps,it holds that
y =M(x) with overwhelming probability over the coins of sRE.enc.

2. Security: there exists a PPT simulator Sim satisfying: for any poly-size distinguisher D, there exists
a negligible α(·), such that for any λ ∈ N, machine M , input x, and time bound t:∣∣∣Pr[D(M̂x,t) = 1]− Pr[D(Sim(y,M, t, 1|x|, 1λ)) = 1]

∣∣∣ ≤ α(λ) · p(t) ,
where M̂ ← sRE.enc(M,x, t, 1|x|, 1λ), y is the output of M(x) after t steps, and p(·) is a fixed
polynomial that does not depend on (M,x, t). 6

3. Full-succinctness: The running time of sRE.enc and the size of the encoding M̂x,t are poly(|M |, |x|, log t, λ),
depending only polylogarithmically on the computation time t. The running time of sRE.dec is
poly(t, λ).

3’. Semi-succinctness: The randomized encoding is semi-succinct if encoding complexity may also de-
pend on space; concretely: the running time of sRE.enc and the size of the encoding M̂x,t are
poly(|M |, |x|, log t, s, λ), where s is the maximum space used by M in t steps. (The running time
of sRE.dec is poly(t, λ) as above.)

Remark 3.1 (Reusability). Reusable randomized encodings are such where encoding is split into two parts:
the first part M̂ is independent of the specific input x and only depends on the machine M . This first part
can then be “reused” together with a second part x̂ that includes an encoding of input x. Such reusable
randomized encodings were previously studied in [GKP+13b, GHRW14], in the context of reusable garbled
circuits or RAMs. There, first encoding part is as large as the time if the computation, which can be much
larger than the input; accordingly, the goal of reusability is to reuse and thus amortize the first expensive
part, for many encoded inputs, where the each encoding takes time proportional only to the input size and
not the time of the computation.

For fully succinct randomized encodings this is typically insignificant, because encoding is in any case
independent of the time of the computation; however, for semi-succinctness this may be meaningful as now
encoding depends on the space, which may be much larger than the input size. We can obtain also reusable
semi-succinct randomized encodings, as a direct corollary of the succinct FE constructed in Section 4.2.

Remark 3.2 (Sub-exponential security). Currently the security definition of (semi) succinct randomized en-
codings addresses polynomial security. We can naturally strengthen the definition to require sub-exponential
security, e.g. for constant ε < 1, we may require 2−Ω(λε) ·p(t)-indistinguishability holds against 2O(λε)-size
distinguishers.

Remark 3.3 (Relaxed security). In our applications, we in fact settle for schemes with a relaxed security,
where the simulator Sim is allowed to be inefficient.

Remark 3.4 (Multi-bit output). The above description only allows for randomized encodings of machines
that output a single bit. In some our applications, we will require a randomized encoding for machines with
multiple output bits. This is easily achievable by providing a separate randomized encoding for each output
bit. Accordingly, the running time of both sRE.enc and sRE.dec increases by a multiplicative factor of the
output length.

6We shall mostly be interested in settings where t is also polynomially bounded by λ, in which case the above probability is
simply negligible in λ.
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3.2 Succinct Circuits and Circuit Garbling

We now describe two main tools that will be utilized by our construction. The first is the known reduction
between Turing or random-access machines to succinctly represented circuits. The second is Yao’s Garbled
circuit method.

Succinct circuits. We consider two models of succinctly represented circuits. In the first, a possibly large
circuit C is represented by a succinct circuit Csc that can generate each of the gates in the circuit C along
with pointer to their neighbours. In the second model, we focus on layered circuits C, where each layer is
connected only to its predecessor and successor. Here C will be represented by a succinct circuit Csc that
outputs a layer (rather than a gate).

Definition 3.2 (Succinct Circuit). Let C : {0, 1}n → {0, 1} be a circuit with ` binary gates. The gates are
topologically ordered and labeled by 1, . . . , ` so that if an output of gate i ∈ [`] is an input to gate j ∈ [`]
then i < j. We assume that the gates corresponding to {1, . . . , n} are input gates with fan-in one, the gate
corresponding to ` is the output gate with fan-out one, and {n+ 1, . . . , `− 1} are intermediate gates with
fan-in and fan-out at most two.

We say that C is succinctly represented by a circuit Csc, if Csc given a gate label g ∈ [`] as input,
outputs the labels of the neighbouring gates of gate g in C, and the corresponding binary operation �.
Furthermore, |Csc| < |C|.

Definition 3.3 (Layered Succinct Circuit). Let C : {0, 1}n → {0, 1} be a circuit composed of d circuit
layers C1, . . . Cd, where the output of each layer C1, . . . , Cd−1 consists of w output wires that are the input
for the next, and Cd outputs the output bit.

We say thatC is succinctly represented by a layered circuitCsc, ifCsc given a layer label i ∈ [d], outputs
Ci. Furthermore, |Csc| < |C|.

It is known that Turing and random-access machines can be reduced to either a succinct circuit or to a
layered succinct circuit (paying in efficiency). Here we state a simple case of such a reduction.

Lemma 3.1 (From uniform machines to succinct circuits [PF79]). Any (Turing or Ram) machine M , which
for inputs of size n, requires maximal running time t(n) and space s(n),

1. can be reduced in time O(|M |+log t(n)) to a circuit CMsc that succinctly represents CM : {0, 1}n →
{0, 1}, where CM computes the same function as M (for inputs of length n), and is of size Õ(t(n)s).

2. can be reduced in time O(|M | + log t(n) + s(n)) to a layered circuit CMsc that succinctly represents
a layered CM : {0, 1}n → {0, 1}, where CM computes the same function as M (for inputs of length
n), and is of size O(t(n) · s(n)).

Yao’s garbled circuit. We rely on Yao’s garbled circuit method [Yao82]. A circuit garbling scheme takes
as input a circuit C and a pair of keys for every input wire and every output wire, and encodes the circuit
into a garbled circuit Ĉ. Given the keys corresponding to some input x it is possible to decode, and obtain
the keys corresponding to the output y = C(x), without revealing any other information about the input x.

Definition 3.4 (Garbled Circuit). A circuit garbling scheme consists of two algorithms (Garb.enc,Garb.dec)
that work as follows:

• Ĉ ← Garb.enc(C,Ki,Ko1
λ): takes as input a circuit C : {0, 1}n → {0, 1}n, a security parameter

1λ, input keys Ki =
{
K0

i,j ,K
1
i,j

}
j∈[n]

, and output keys Ko =
{
K0

o,j ,K
1
o,j

}
j∈[n]

, where each key is of

length λ. The algorithm outputs a garbled circuit Ĉ.
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• Kyout ← Garb.dec(Ĉ,Kxin): takes as input a garbled gate Ĉ, and input keys Kxin =
{
K
xj
in,j

}
j∈[n]

,

corresponding to an input x ∈ {0, 1}n. The algorithm produces output keys Kyout =
{
K
yj
out

}
j∈[n]

.

The scheme should satisfy the following two requirements:

1. Functionality: for every input x ∈ {0, 1}n, the decoding procedure Garb.dec produces the keys
corresponding to the output, namely y = C(x).

2. Security: there exists a PPT simulator Garb.Sim satisfying: for any poly-size distinguisher D, there
exists a negligible α(·), such that for any λ ∈ N, circuit C, inputs x, x′ ∈ {0, 1}n, and keys Kout ={
K0

out,j ,K
1
out,j

}
j∈[n]

:

∣∣∣Pr[D (Kxin, Ĉ) = 1]− Pr[D
(
Kx′in , Ĉsim

)
= 1]

∣∣∣ ≤ α(λ) ,
where Kin =

{
K0

in,j ,K
1
in,j

}
j∈[n]

← {0, 1}λ×2n, Kxin =
{
K
xj
in,j

}
j∈[n]

, Ĉ ← Garb.enc(C,Kin, 1
λ),

Ĉsim ← Garb.Sim(C,Kin,Kyout, 1λ), y = C(x), and Kyout =
{
K
yj
out,j

}
j∈[n]

.

Circuit garbling schemes are known to exist assuming one-way functions.

Theorem 3.1 (Garbled circuits from OWFs [Yao82, LP09]). Assuming the existence of one-way functions,
there exist circuit garbling schemes.

3.3 Semi-Succinct Randomized Encodings from Indistinguishability Obfuscation

We now describe a semi-succinct randomized encoding scheme based on IO. An overview is given in Sec-
tion 1.2

Notation: We introduce notation that will be used in the description of the construction and its proof of
security. We shall consider a layered circuit CM (corresponding to some machine M ) with d layers and at
most w input wires per layer. We label every wire in CM with a pair (i, j) that identifies it as the jth input
wire to the ith layer of CM . The output wire is labelled as (d+ 1, 1), and the input wires by {(1, j)}j∈n; to
be more explicit, we shall often denote them instead by (out, 1) and {(in, j)}j∈n. In the construction below,
there will be a pair of keys (K0

i,j ,K
1
i,j) associated with every wire (i, j). Consistently with the notation

in Definition 3.4, we shall denote by Ki all the keys
{
K0
i,j ,K

1
i,j

}
j∈[w]

corresponding to the input wires to

layer i, where w is the number of such wires. Also, for a possible assignment xi ∈ {0, 1}w to these values,
we denote by Kxii the keys

{
K
xi,j
i,j

}
j∈[w]

corresponding to the bits of xi.

3.3.1 The Scheme

Let iO be an indistinguishability obfuscator for P/poly and (Garb.enc,Garb.dec) be a circuit garbling
scheme. Let (KeyF ,PunctureF ,EvalF ) be a puncturable PRF with input length λ and output length 2λ. We
describe the encoding and decoding algorithms.

The encoder sRE.enc(M,x, t, 1λ):
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1. sRE.enc first reduces the machineM , input length |x| and time bound t to a layered circuit CMsc which
is a succinct representation of circuit CM as per Lemma 3.1. Let d be the number of layers in CM

and w be the maximum number of input wires in any layer.

2. Next, sRE.enc samples a puncturable PRF keyK ← KeyF (1
λ), and derives input keysKin and output

keys Kout, by running EvalF (K, (in, j)) for every wire (in, j), and EvalF (K, (out, 1)).1

3. Let pad`(L[C
M
sc ,K]) be the layer garbling circuit from Figure 1 padded to size ` ≤ |CMsc | · poly(λ),

which will be specified exactly in the analysis. sRE.enc outputs (iO(pad`(L[CMsc ,K])),Kxin,Kout),
where Kxin are the keys corresponding to the input layer and concrete input x.

Layer garbling circuit L[CMsc ,K]

Hardwired: a succinct representation CMsc of the circuit CM which has d layers and at most w input
wires per layer, and a puncturable PRF key K ∈ {0, 1}λ.

Input: a label i ∈ [d] for a layer in the circuit CM .

1. Compute Ci ← CMsc (i), the ith layer of CM .

2. Generate wire keysKi andKi+1 for the input and output wires forCi, by running (K0
i,j ,K

1
i,j)←

EvalF (K, (i, j)) and (K0
i+1,j ,K

1
i+1,j)← EvalF (K, (i+ 1, j)), for every j ∈ [w].1

3. Output a garbled Ci:
Ĉi ← Garb.enc(Ci,Ki,Ki+1, 1

λ) .

Figure 1: Circuit L[CMsc ,K]

The decoder sRE.dec(M̂x,t):

1. Parse M̂x,t as a circuit L̃ and wire keys Kxin,Kout.

2. For each layer i = 1 . . . d,

• Compute the garbled ith layer Ĉi = L̃(i).

• Using the input keysKxii for the ith layer, generate input keysKxi+1

i+1 for the i+1st layer. That is,
compute Kxi+1

i+1 = Garb.dec(Ĉi,Kxii ), where xi+1 is a string of length at most w, representing
the values of the wires at layer i (the first input x1, also denoted as xin, is x).

3. Obtain a key for the output wire Kb
out,1, and according to Kout = (K0

out,1,K
1
out,1), output the bit b.

We show

Theorem 3.2. The randomized encoding scheme described above is a (semi-succinct) secure randomized
encoding.

1Throughout, we assume WLOG that w ·d ≤ 2λ, and thus wires can be represented as inputs to the puncturable PRF in {0, 1}λ.
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Remark 3.5 (On the IO assumption). We note here that in the our construction we rely on indistinguishability
obfuscation for circuits that take short inputs i.e. the circuit we obfuscate takes inputs of length log t when
encoding with time bound t. Indistinguishability obfuscation for such circuits is a falsifiable assumption, and
using the result of [GLSW14], can be based on polynomial hardness of multilinear group based assumptions.
We also note that assuming puncturable PRFs in NC1 (in particular, EvalF is in NC1), the class of circuits
we require IO for is in NC1.

Remark 3.6 (Encoding in NC1). We can modify our randomized encoding scheme so that the encoder
sRE.enc is computed by a NC1 circuit. We simply compose the above construction with a randomized
encoding scheme for circuits with encoding in NC1 (e.g. Yao’s circuit garbling). That is, the encoder
for the composed scheme computes a randomized encoding for the circuit sRE.enc (as described in our
construction) on input (M,x, t). This will be useful for some of our applications.

Correctness and Succinctness: Correctness follows directly from the correctness of the circuit garbling
scheme. Furthermore, the running time of sRE.enc and the size of the encoding M̂x,t are poly(|CMsc |, λ)
which by Lemma 3.1 is bounded by poly(|M |, |x|, log t, s, λ), where s is the space used by M ; hence, the
encoding scheme is semi-succinct.

3.3.2 Proof of Security

In this section, we prove Theorem 3.2.

Remark 3.7. We note that the following proof also works for achieving sub-exponential security for our
randomized encoding scheme, assuming sub-exponential security for the indistinguishability obfuscator,
puncturable PRF and garbled circuits.

Proof. Our goal is to construct a PPT simulator Sim satisfying, for any poly-size distinguisher D, machine
M , input x, and time bound t:∣∣∣Pr[D(M̂x,t) = 1]− Pr[D(Sim(y,M, t, 1|x|, 1λ)) = 1]

∣∣∣ ≤ α(λ) · p(t) ,
for some negligible α(·), where M̂x,t ← sRE.enc(M,x, t, 1|x|, 1λ), y is the output of M(x) after t steps,
and p(·) is a fixed polynomial that does not depend on (M,x, t).

Recall that M̂x,t = (L̃,Kxin,Kout) contains an obfuscation L̃ of a layer garbling circuit, input wire keys
Kxin, and output wire keys Kout. At high-level, Sim simulates M̂x,t by producing an obfuscation of a circuit
that applies the garbled circuit simulator to simulate fake garbled layers, and fake input keys.

Simulator Sim(y,M, t, 1|x|, 1λ) (differs from sRE.enc in the third of three steps):

1. Sim first computes the succinct representation CMsc of the layered circuit CM .

2. Next, Sim samples a puncturable PRF key K ← KeyF (1
λ), and derives input keys Kin and output

keys Kout, by running EvalF (K, (in, j)) for every wire (in, j), and EvalF (K, (out, 1)).

3. Let pad`(L
sim[y, CMsc ,K]) be the layer simulating circuit from Figure 2 padded to size ` ≤ |CMsc | ·

poly(λ), which will be specified later on. Sim outputs (iO(pad`(Lsim[y, CMsc ,K])),K0n

in ,Kout),
where K0n

in are the keys corresponding to the input layer and input 0n.
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Layer simulating circuit Lsim[y, CMsc ,K]

Hardwired: a succinct representation CMsc of the circuit CM which has d layers and at most w input
wires per layer, a puncturable PRF key K ∈ {0, 1}λ, and an output bit y ∈ {0, 1}.
Input: a label i ∈ [d] for a layer in the circuit CM .

1. Compute Ci ← CMsc (i), the ith layer of CM .

2. Generate wire keys Ki and Ki+1 for the input and output wires for Ci, by running
EvalF (K, (i, j)) and EvalF (K, (i+ 1, j)), for every j ∈ [w].

3. Simulate a garbled Ci as follows:

• for i < d, Ĉsim
i ← Garb.Sim(Ci,Ki,K0w

i+1, 1
λ),

• for i = d, Ĉsim
i ← Garb.Sim(Ci,Kd,Kyout, 1λ).

4. Output Ĉsim
i .

Figure 2: Circuit Lsim[y, CMsc ,K]

We show that the (real) randomized encoding is indistinguishable from the simulated one by a hybrid
argument. Informally, we will consider d hybrid distributions, where in the kth distribution we shall obfus-
cate a hybrid layer garbling circuit that simulates all the garbled layers up to layer k, and truly garbles the
layers above layer k.

Formally, for k ∈ [d + 1] and xk ∈ {0, 1}≤w, the hybrid simulated distribution Hyb(k, xk, C
M
sc , 1

λ) is
defined as follows.

Hybrid simulator Hyb(k, xk, C
M
sc , 1

λ) (differs from sRE.enc and Sim in the third of three steps):

1. Hyb first computes the succinct representation CMsc of the layered circuit CM .

2. Next, Hyb samples a puncturable PRF key K ← KeyF (1
λ), and derives input keys Kin and output

keys Kout, by running EvalF (K, (in, j)) for every wire (in, j), and EvalF (K, (out, 1)).

3. Let pad`(L
Hyb[k, xk, C

M
sc ,K]) be the hybrid layer garbling circuit from Figure 3 padded to size ` ≤

|CMsc | · poly(λ), which will be specified later on. Hyb outputs:

• for k > 1: (iO(pad`(LHyb[k, xk, C
M
sc ,K])),K0n

in ,Kout)

• for k = 1: (iO(pad`(LHyb[1, x1, C
M
sc ,K])), Kx1in ,Kout).

First, note that for any machine M , input x and time bound t, M̂x,t has the same distribution as the one
generated by Hyb(1, x, CMsc , 1

λ), and Sim(y,M, t, 1|x|, 1λ) has the same distribution as the one generated
by Hyb(d+ 1, y, CMsc , 1

λ) where y is the output of M on x in t steps.
From hereon, for some fixed (CM , x) we denote by xk ∈ {0, 1}≤w the bit string corresponding to

the values of the input wires to the kth layer of CM when computed with input x. That is, x1 = x and
xk+1 = Ck(xk), where Ck = CMsc (k). In particular, xd+1 = y = CM (x).
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Hybrid layer garbling circuit LHyb[k, xk, C
M
sc ,K]

Hardwired: a succinct representation CMsc of the circuit CM which has d layers and at most w input
wires per layer, a puncturable PRF key K ∈ {0, 1}λ, and xk ∈ {0, 1}≤w, representing the values of
the wires going into layer k.

Input: a label i ∈ [d] for a layer in the circuit CM .

1. Compute Ci ← CMsc (i), the ith layer of CM .

2. Generate wire keys Ki and Ki+1 for the input and output wires for Ci, by running
EvalF (K, (i, j)) and EvalF (K, (i+ 1, j)), for every j ∈ [w].

3. Simulate a garbled Ci as follows:

• for i < k − 1, Ĉsim
i ← Garb.Sim(Ci,Ki,K0w

i+1, 1
λ),

• for i = k − 1, Ĉsim
i ← Garb.Sim(Ck−1,Kk−1,Kxkk , 1

λ),

• for i ≥ k, Ĉi ← Garb.enc(Ci,Ki,Ki+1, 1
λ).

4. Output the resulting garbled result.

Figure 3: Circuit LHyb[k, xk, C
M
sc ,K]

Since the number of hybrids is d + 1, which is in turn bounded by O(t) the running time of M(x), it
suffices to prove the following lemma, in order to complete the proof of the theorem.

Lemma 3.2. For any poly-size distinguisher D, there exists a negligible α(·), such that for any λ ∈ N,
machineM , input x, and time bound t, the following is satisfied: letCMsc be the layered circuit that succinctly
represents CM corresponding to (M,x, t) steps. Let d be the number of layers in CM . Then, for every
k ∈ [d], ∣∣∣Pr[D(Hyb(k, xk, CMsc , 1λ)) = 1]− Pr[D(Hyb(k + 1, xk+1, C

M
sc , 1

λ)) = 1]
∣∣∣ ≤ α(λ) .

Proof. The lemma is proved via yet another hybrid argument. Concretely, we consider the following hybrid
distributions.

- H0 : This distribution is identical to Hyb(k, xk, C
M
sc , 1

λ).

- H1 : This distribution is obtained changing Hyb(k, xk, C
M
sc , 1

λ) as follows. Instead of obfuscating the
circuit pad`(L

Hyb[k, xk, C
M
sc ,K]), Hyb obfuscates a circuit pad`(L

Hyb
1 [k, xk, C

M
sc ,Kk×[w],Kxkk , Ĉk]),

that differs from the latter in the following ways:

1. LHyb
1 uses a PRF key Kk×[w] that is punctured at the set of inputs {(k, j)}j∈[w] corresponding to

the input wires to the kth layer of CM ; that is, Kk×[w] ← PunctureF (K, {k} × {1, . . . , w}).

2. for inputs i /∈ {k − 1, k}, LHyb
1 proceeds as LHyb, only that it uses the punctured key Kk×[w]

instead of K.
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3. for i = k − 1, LHyb
1 does not explicitly derive Kk using K, but rather has only the keys Kxkk

hardwired to it, and uses them as before to compute Ĉsim
k−1.

4. for i = k, LHyb
1 does not explicitly compute Ĉk using the keys Kk derived from K, as in LHyb,

but rather LHyb
1 has Ĉk hardwired, and outputs it given input k.

- H2 : This distribution is identical toH1 except that the keysKk are not derived pseudorandomly from
K, but rather are sampled truly at random Kk ← U2λ×w. Accordingly, the hardwired values Kxkk and
Ĉk are now with respect to this (random) choice of Kk.

- H3 : This distribution is identical toH1 with the following two changes:

1. The hardwired Ĉk in LHyb
1 is now replaced with a simulated one:

Ĉsim
k ← Garb.Sim(Ck,Kk,K

xk+1

k+1 ), 1λ) ,

where Ck ← CMsc (k), Kk is sampled uniformly as in the previous hybrid, and Kxk+1

k+1 is obtained
by computing {EvalF (Kk×[w], (k + 1, j)) : j ∈ [w]} and xk+1 = Ck(xk).

2. Instead of having Kxkk hardwired in it, LHyb
1 has K0w

k hardwired.

- H4 : This distribution is identical to Hyb(k + 1, xk+1, C
M
sc , 1

λ).

Let ` be the maximal of L,Lsim, LHyb, LHyb
1 , for any possible k ∈ [d+ 1], and note that

` ≤ (|Ck|+ |xk|) · poly(λ) ≤ 2|Ck| · poly(λ) .

To prove the lemma, we show that the above hybrids are computationally indistinguishable; that is, for
any poly-size distinguisher D, there exists a negligible α(·), such that for any λ ∈ N, i ∈ [4],

|Pr[D(Hi−1) = 1]− Pr[D(Hi) = 1]| ≤ α(λ)

.

- H0 andH1: follows from the IO guarantee. Specifically, the only difference between the two is in the
the circuit they obfuscate pad`(L

Hyb), or pad`(L
Hyb
1 ); however, by the definition of LHyb

1 these two
circuits compute exactly the same function, and we can invoke the IO guarantee.

- H1 and H2: follows from pseudorandomness at punctured points. Specifically, any distinguisher
between the two hybrids directly translates to a distinguisher between

Kk×[w], (EvalF (K, (k, j)) : j ∈ [w]) and Kk×[w], U2λ×w .

Indeed, the two distributionsH1,H2 can be perfectly simulated from Kk×[w] and Kk, which results in
H1 if Kk are chosen according to K, and inH2, if Kk are chosen uniformly at random.

- H2 andH3: follows from the security of the circuit garbling scheme. Indeed, we are guaranteed that

Kxkk , Ĉk ≈c K
0w

k , Ĉsim
k ,

for Kk ← U2λ×w, Ĉk ← Garb.enc(Ck,Kk,Kk+1, 1
λ), and Ĉsim

k ← Garb.Sim(Ck,Kk,K
xk+1

k+1 , 1
λ),

assuming xk+1 = Ck(xk), and any choice ofKk+1, in particularKk+1 = EvalF (Kk×w, (k + 1, j))j∈[w].
Moreover, given Kk×w, it is possible to simulate the rest ofH2 orH3.
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- H3 and H4: this follows as in the indistinguishability of H0 and H2, but in reverse order. That is, we
first invoke pseudorandomness at punctured points, to go from sampler Kk at random, to sampling it
according to K, and then “unpuncture” K at k × [w], and invoke IO.

This completes the proof of the lemma.

This completes the proof of the theorem.

3.4 Fully-Succinct Randomized Encodings from Padding-Free IO

In this section, we introduce padding-free indistinguishability obfuscation (padding-free IO ). Then we
construct (fully) succinct randomized encodings from padding-free IO .

In what follows, we shall say that a PPT algorithm O is function-preserving if for any circuit C, O(C)
computes the same function as O. (In particular, any obfuscator O is function-preserving).

Definition 3.5 (padding-free IO ). Let O be a function-preserving PPT algorithm. We say that O is
a padding-free indistinguishability obfuscation with respect to two distribution ensembles (C0, C1) =
{(Cλ,0, Cλ,1)}, if for any function-preserving PPT O′, if O′(C0) ≈c O′(C1), then O(C0) ≈c O(C1).

Before showing how to construct full-succinct randomized encodings from padding-free IO, a couple
of remarks are in place. First, we note that crucially, the padding-free indistinguishability obfuscation ob-
fuscator O has some fixed polynmoial blowup, whereas the obfuscator O′ may blowup the circuit to an
arbitrary poly-size. Second, we note that while this definition is implied by VBB, and may seem weaker, it
is also seems unlikely to hold for general distributions.7 Nevertheless, the notion may be satisfied for certain
distributions, such as the one we are interested in here.

3.4.1 The Scheme

Let O be a padding-free indistinguishability obfuscation for P/poly and (Garb.enc,Garb.dec) be a circuit
garbling scheme. Let (KeyF ,EvalF ) be a PRF with input length λ and output length 2λ. We describe the
encoding and decoding algorithms.

Notation: We introduce notation that will be used in the description of the construction and its proof of
security. As before, we shall consider a circuit CM corresponding to some machine M . Let s be the size
of the circuit and w be the number of wires in the circuit. We label every gate with i ∈ [s] and every wire
with j ∈ [w]. Let in(i) and out(i) denote the set of input wires and output wires to gate i respectively. In
the construction below, there will be a pair of keys (K0

j ,K
1
j ) associated with every wire j ∈ [w]. Adding

to the notation in Definition 3.4, we shall denote by Kin,i all the keys
{
K0
j ,K

1
j

}
j∈in(i)

corresponding to

7More accurately, we mean that for any candidate padding-free indistinguishability obfuscationO, there exists two distributions
C0, C1, andO′ such thatO(C0) ≈c O(C1), butO(C0) 6≈c O(C1). To get a sense of why this is unlikely, consider Cb which compute
a pseudorandom function only on T values, where T is a large enough polynomial related to the blowup of O. In addition they
output a succinct obfuscation of a program that given a small circuit, checks whether it computes the PRF correctly on the T values
and if so, outputs b. O′ is simply an obfuscator that doesn’t have the key for the PRF, but rather has the PRF values hardwired.
Using an incompressibility argument we can then show thatO′(C0) ≈c O′(C1); indeed, had we replaced the pseudo-random values
with truly random values, a small circuit computing them wouldn’t exist. On the other hand, O(Cb) will already be itself such a
small circuit, and thus will allow learning b. For this to actually work, the succinct obfuscation needs to also be independent of the
input size and not just the running time and hide the its own representation of the PRF. So this should be seen as a “barrier” rather
than an actual impossibility.
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the input wires to gate g. Similarly, Kout,i denotes the keys
{
K0
j ,K

1
j

}
j∈out(i)

corresponding to the output

wires to gate g. Kin and Kout denote the set of wire keys for the input and output wires of CM respectively.
Also, for a possible assignment x ∈ {0, 1}|in(i)| to these wires, we denote by Kxin,i the keys

{
K
xj
j

}
j∈in(i)

corresponding to the bits of x. Kxout,i, Kxin and Kxout are defined similarly.

The encoder sRE.enc(M,x, t, 1λ):

1. sRE.enc first reduces the machine M , input length |x| and time bound t to a circuit CMsc which is a
succinct representation of circuit CM as per Lemma 3.1.

2. Next, sRE.enc samples a puncturable PRF key K ← KeyF (1
λ).

3. Let pad`(G[x,C
M
sc ,K]) be the gate garbling circuit from Figure 4 padded to size ` ≤ poly(|CMsc |, |x|, λ),

which will be specified exactly in the analysis. sRE.enc outputs O(pad`(G[x,CMsc ,K])).

Gate garbling circuit G[x,CMsc ,K]

Hardwired: a succinct representation CMsc of the circuit CM of size s, a PRF key K ∈ {0, 1}λ and
input x to CM

Input: either of the following labels: (i) inputkeys for the keys of the input wires corresponding to
input x, (ii) outputkeys for the keys of the output wire, or (iii) i ∈ [s] for a gate in the circuit CM .

Case (i): input is inputkeys
Generate and output wire keys Kxin for the input wires of CM corresponding to input x, by running
(K0

j ,K
1
j )← EvalF (K, j) and picking Kxj

j for every input wire j of CM .

Case (ii): input is outputkeys
Generate and output wire keys Kout for the output wire of CM , by running (K0

j ,K
1
j )← EvalF (K, j)

for the output wire j of CM .

Case (iii): input is i ∈ [s]

1. Compute gi ← CMsc (i), the ith gate of CM .

2. Generate wire keysKin,i andKout,i for the input and output wires for gi, by running (K0
j ,K

1
j )←

EvalF (K, j) and for every j ∈ in(i) and out(i).1

3. Output a garbled gi:
g̃i ← Garb.enc(Ci,Kin,i,Kout,i, 1

λ) .

Figure 4: Circuit G[x,CMsc ,K]

The decoder sRE.dec(M̂x,t):

1. Generate wire keys Kxin ← M̂x,t(inputkeys) and Kout ← M̂x,t(outputkeys).

1Throughout, we assume WLOG that w ≤ 2λ, and thus wires can be represented as inputs to the puncturable PRF in {0, 1}λ.
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2. For every i ∈ [s], compute the garbled gate g̃i ← M̂x,t(i). Let G̃ = {g̃i}i∈[s].

3. Compute Kbout ← Garb.dec(G̃,Kxin) and according to Kout which contains the keys of both K0
out and

K1
out, output the bit b.

Correctness and Succinctness: Correctness follows directly from the correctness of the circuit garbling
scheme. Furthermore, the running time of sRE.enc and the size of the encoding M̂x,t are poly(|CMsc |, |x|, λ)
which by Lemma 3.1 is bounded by poly(|M |, |x|, log t, λ); hence, the encoding scheme is succinct.

3.4.2 Proof of Security

In this section, we prove

Theorem 3.3. The randomized encoding scheme described above is a (succinct) secure randomized encod-
ing.

Proof. Our goal is to construct a PPT simulator Sim satisfying, for any poly-size distinguisher D, machine
M , input x, and time bound t:∣∣∣Pr[D(M̂x,t) = 1]− Pr[D(Sim(y,M, t, 1|x|, 1λ)) = 1]

∣∣∣ ≤ α(λ) · p(t) ,
for some negligible α(·), where M̂x,t ← sRE.enc(M,x, t, 1|x|, 1λ), y is the output of M(x) after t steps,
and p(·) is a fixed polynomial that does not depend on (M,x, t).

Recall that M̂x,t = (G̃,Kxin,Kout) contains an obfuscation G̃ of a gate garbling circuit, input wire keys
Kxin, and output wire keys Kout. At high-level, Sim simulates M̂x,t by producing an obfuscation of a circuit
that applies the garbled circuit simulator to simulate fake garbled gates, and a fake input keys.

Simulator Sim(y,M, t, 1|x|, 1λ) (differs from sRE.enc in the third of three steps):

1. Sim first reduces the machineM , input length |x| and time bound t to a circuitCMsc which is a succinct
representation of circuit CM as per Lemma 3.1.

2. Next, Sim samples a PRF key K ← KeyF (1
λ).

3. Let pad`(G
sim[|x|, y, CMsc ,K]) be the gate simulating circuit from Figure 5 padded to size ` which is

the maximum size of Gsim[|x|, y, CMsc ,K] and G[x,CMsc ,K]. Note that ` ≤ poly(|CMsc |, |x|, λ). Sim
outputs O(pad`(Gsim[|x|, y, CMsc ,K])).

Therefore, to complete the proof it suffices to show that for any poly-size distinguisher D, machine M ,
input x and time bound t, D can’t distinguish between the distribution ensembles

{O(pad`(G[x,CMsc ,K])) : K ← KeyF (1
λ}λ∈N

and
{O(pad`(Gsim[|x|, y, CMsc ,K])) : K ← KeyF (1

λ)}λ∈N
.

Subsequently, we will assume that G and Gsim are padded to size ` and drop the pad` notation. Since O
is a padding-free indistinguishability obfuscation , it suffices to show that there exists a function-preserving
PPT O′ such that {O′(G[x,CMsc ,K])} and {O′(Gsim[|x|, y, CMsc ,K])} are indistinguishable. We describe
O′ as follows

Function-preserving PPT O′:
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Gate simulating circuit Gsim[|x|, y, CMsc ,K]

Hardwired: a succinct representationCMsc of the circuitCM which has size s, a PRF keyK ∈ {0, 1}λ,
input length |x| and an output bit y ∈ {0, 1}.
Input: either of the following labels: (i) inputkeys for the keys of the input wires, (ii) outputkeys for
the keys of the output wire, or (iii) i ∈ [s] for a gate in the circuit CM .

Case (i): input is inputkeys
Generate and output wire keys K0|x|

in for the input wires of CM corresponding to input 0|x|, by running
(K0

j ,K
1
j )← EvalF (K, j) and picking K0

j for every input wire j of CM .

Case (ii): input is outputkeys
Generate and output wire keys Kout for the output wire of CM , by running (K0

j ,K
1
j )← EvalF (K, j)

for output wire j of CM .

Case (iii): input is i ∈ [s]

1. Compute gi ← CMsc (i), the ith gate of CM .

2. Generate wire keysKin,i andKout,i for the input and output wires for gi, by running (K0
j ,K

1
j )←

EvalF (K, j) and for every j ∈ in(i) and out(i)

3. Simulate a garbled gi as follows:

• if gi is the output gate (i.e. the output wire of gi is the output wire of CM ) then g̃i ←
Garb.Sim(gi,Kin,i,Kyout,i, 1λ).

• Otherwise, g̃i ← Garb.Sim(gi,Kin,i,K0|out(i)|
out,i , 1λ),

4. Output g̃i.

Figure 5: Circuit Gsim[|x|, y, CMsc ,K]

1. O′ gets as input a circuit C and generates the truth table for C for inputs inputkeys, outputkeys and
i ∈ [s] where s is the size of CM . That is, it generates the output of C on each of these inputs and
stores the outputs in a table T .

2. O′ outputs a circuit C ′[T ] that has the table T hardwired in. C ′[T ] on an input simply looks up the
corresponding entry in T and outputs it.

We observe that the table hardwired in the circuit C ′ ← O′(G[x,CMsc ,K]) consists of

• the input wire keys Kxin corresponding to input x and the output wire keys Kout where the wire keys
for any wire j come from EvalF (K, j)

• the garbled circuit C̃ ← Garb.enc(CM ,Kin,Kout, 1
λ) where the randomness used by Garb.enc also

comes from EvalF (K, ·).

Relying on the pseudorandomness of EvalF , we can replace the output of EvalF (K, ·) by uniformly random
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values. That is, the following distributions are indistinguishable.

{O′(G[x,CMsc ,K]) : K ← KeyF (1
λ}λ∈N (1)

≈c{C ′[(Kxin,Kout,Garb.enc(C
M ,Kin,Kout, 1

λ))] : Kin,Kout ← {0, 1}2λ(|x|+1)}λ∈N (2)

where in the second distribution ensemble, the randomness used by Garb.enc is uniformly random.
Similarly, the table hardwired in the circuit C ′ ← O′(Gsim[|x|, y, CMsc ,K]) consists of

• the input wire keys Kxin corresponding to input 0|x| and the output wire keys Kout where the wire keys
for any wire j come from EvalF (K,w)

• the simulated circuit C̃ ← Garb.Sim(CM ,Kin,Kyout, 1λ) where y = CM (x) and the randomness used
by Garb.Sim also comes from EvalF (K, ·).

Relying on the pseudorandomness of EvalF , we have that the following distribution ensembles are indistin-
guishable.

{O′(Gsim[|x|, y, CMsc ,K])) : K ← KeyF (1
λ)}λ∈N (3)

≈c{C ′[(K0|x|
in ,Kout,Garb.Sim(CM ,Kin,Kyout, 1λ))] : Kin,Kout ← {0, 1}2λ(|x|+1)}λ∈N (4)

where in the second distribution ensemble, the randomness used by Garb.Sim is uniformly random. By
the security of the circuit garbling scheme we have that the distribution ensembles (2) and (4) are indis-
tinguishable. Therefore, by a hybrid argument, it follows that the distribution ensembles (1) and (3) are
indistinguishable. This completes the proof of the theorem.

4 Applications

In this section we will provide applications of succinct randomized encodings.

Remark 4.1. Recall that a succinct randomized encoding consists of an obfuscated program. Looking ahead,
in our application we will be considering obfuscations of circuits that output succinct randomized encodings.
In other words if were to open up the abstraction we’re actually double obfuscating, i.e. one obfuscated
program generates another obfuscated program. We note that this is done just for the sake of clean exposition
and modular analysis; we could obfuscate everything together at the level of the application itself.

4.1 Succinct Indistinguishability Obfuscation

In this section we will provide our construction for succinct obfuscating. We will start by presenting our
definition of what it means to obfuscate a machine succinctly and then provide our construction for it.

Definition 4.1. [Succinct Indistinguishability Obfuscator] A succinct indistinguishability obfuscator for a
machine class {Mλ}λ∈N consists of a uniform PPT machine iOM that works as follows:

• iOM takes as input the security parameter 1λ, the machine M to obfuscate, and an input length n
and time bound T for M .

• iOM outputs a machine obM which is an obfuscation of M corresponding to input length n and time
bound T . obM takes as input x ∈ {0, 1}n and t ≤ T .
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The scheme should satisfy the following three requirements.

• Correctness: For all security parameters λ ∈ N, for all M ∈ Mλ, for all inputs x ∈ {0, 1}n, time
bounds T and t ≤ T , let y be the output of M on t steps, then we have that:

Pr[obM(x, t) = y : obM ← iOM(1λ, 1n, 1log T ,M)] = 1

• Security: For any (not necessarily uniform) PPT distinguisher D, there exists a negligible function
α such that the following holds: For all security parameters λ ∈ N, time bounds T , and pairs of
machines M0,M1 ∈ Mλ of the same size such that for all running times t ≤ T and for all inputs x,
M0(x) =M1(x) when M0 and M1 are executed for time t, we have that:∣∣∣Pr [D(iOM(1λ, 1n, 1log T ,M0)) = 1

]
− Pr

[
D(iOM(1λ, 1n, 1log T ,M1)) = 1

]∣∣∣ ≤ α(λ)
• Efficiency and Succinctness: We require that the running time of iOM and the length of its output,

namely the obfuscated machine obM , is poly(|M |, log T , n, λ). We also require that the obfuscated
machine on input x and t runs in time poly(|M |, t, n, log T , λ) (or poly(t, λ) for short).
Semi-Succinctness: The requirement for semi-succinctness is very similar to succinctness except that
all the parameters are now additionally allowed to grow in s, the maximum space used by M in t
steps.

Remark 4.2 (Succinctness vs Semi-Succinctness). We will only present our construction for the succinct
case and note that it naturally extends to the semi-succinct setting.

Remark 4.3 (Input Specific Running Time). In the definition above the obfuscated program takes as the
parameter t as an additional input, which specifies the time the machine M is to be executed. This allows us
to achieve input specific running times for our construction whereby on an input x the obfuscated program
runs in time proportional to the running time of M on input x. Specifically, this can be achieved by first
executing the obfuscated program with input time parameter 2 and then doubling it each time, till the output
is obtained.

Remark 4.4 (Multi-bit Output). The obfuscation definition and construction that we present in this section
only consider machines that output single bit outputs. This result can easily be extended to multi-bit output
setting by providing a separate obfuscation for each output bit. This increases the running time of both iOM
and actual evaluation of the obfuscated machines by a multiplicative factor of the output length.

Remark 4.5 (Different size machines). The security requirement above requires that the two machines M0

and M1 to be of the same size. We note that this is not a strict requirement. The security definition can be
equipped to handle machines of different sizes but at the cost of additional padding.

4.1.1 Our Construction

Our succinct obfuscator iOM is very simple and we describe it formally in Figure 6. Our construction uses
a succinct randomized encoding scheme, an Indistinguishability Obfuscator for P/poly and a Puncturable
Pseudo-Random function.
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Let (sRE.enc, sRE.dec) be a succinct randomized encoding scheme (satisfying Definition 3.1),
iO be an Indistinguishability Obfuscator for P/poly (satisfying Definition 2.1) and a
(KeyF ,PunctureF ,EvalF ) be a Puncturable Pseudo-Random function (satisfying Definition 2.2).

• Obfuscation: iOM(1λ, 1n, 1log T ,M): The obfuscation algorithm iOM on input a security
parameter λ, an input size n, a time bound log T and a machine M ∈ M, samples K ←
KeyF (1

λ+n+log T ) and outputs obM = iO(1λ+n+log T , pad`(C[K,M, λ + n + log T ])) where
pad`(C[K,M, λ + n + log T ]) is the circuit C[K,M, λ + n + log T ] described below, padded
to size ` (where ` is the maximum size of {C,C1,C2,C3} and C1,C2,C3 are described in the
proof):

1. C[K,M, λ + n + log T ] on input x, ta first generates rx,t = EvalF (K,x||t), where ||
denotes the concatenation operation.

2. Next output sRE.enc(UM, (M,x), t, 1λ+n+log T ) using rx,t as the random coins. Here
UM is a Universal Machineb that takes as input a Machine M and value x. UM when
executed for time t outputs the output of M on input x when executed for time t.

- Evaluation: Given an obfuscated machine obM , an evaluator can evaluates obM on input (x, t)
obtaining M̂x,t. It then outputs sRE.dec(M̂x,t).

aWe implicitly assume that the program does not take as input a time vale greater than T .
bNote that depending on whether we are interested in Turing Machines or a Random Access Machine we can use a

Universal Turing Machine or a Universal RAM Machine.

Figure 6: Succinct Indistinguishability Obfuscator.

4.1.2 Correctness and Succinctness

We start by describing the correctness of the scheme from Figure 6. Let M be any machine that is obfus-
cated. Note that on an input (x, t), by correctness of iO, obM outputs a randomized encoding M̂x,t. Next
by the correctness of succinct randomized encoding scheme we have that sRE.dec(M̂x,t) evaluates to the
output of M on input x for time t.

Note that the obfuscation procedure from from Figure 6 basically outputs an obfuscation of circuit of
size ` and succinctness follows by bounding this value. Recall that ` is the maximum size of circuits C, C1,
C2 and C3 as described in the following security proof. The size of these circuits depend on the running
time of the sRE.enc procedure on inputs of length n with time bound log T . Therefore, by the succinctness
property of sRE.enc, we have that ` ≤ poly(|M |, log T , n, λ) which gives us succinctness for iOM.

4.1.3 Proof of Security

Theorem 4.1. Assuming that a sub-exponentially secure succinct randomized encoding scheme, a sub-
exponentially secure Indistinguishability Obfuscator forP/poly and a sub-exponentially secure Puncturable
Pseudo-Random function exist, then the obfuscator iOM in Figure 6 satisfies the security Definition 4.1.
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Proof. We need to prove that no (possibly non-uniform) PPT distinguisher can distinguish between the two
distributions generated by iOM(1λ, 1n, 1log T ,M0) and iOM(1λ, 1n, 1log T ,M1), where M0 and M1 are of
the same size; and for every x ∈ {0, 1}n and t ≤ T we have that, the outputs M0 and M1 on input x when
executed for time t are the same. We prove this by a sequence of 2n+log T hybrids. Assuming exponentially
hardness8 for all the underlying computational primitives, we can claim that the distinguishing advantage
among any two consecutive hybrids will be exponentially small and hence cumulative distinguishing prob-
ability can still be bounded by negligible.

- HM0 : In this hybrid, we execute iOM on input M0 as described in Figure 6. Namely sample K,
the key for puncturable PRF, and output the obfuscation of C[K,M0, λ + n + log T ] (described in
Figure 6) padded to size `.

- Hi: For i ∈ {0, . . . , 2n+log T }, in hybrid Hi we generate the obfuscation as follows. Sample K, the
key for puncturable PRF, and output the obfuscation of C1[K,M0,M1, λ + n + log T , i] described
below, padded to size `.

1. C1[K,M0,M1, λ+ n+ log T , i] on input x, t first generates rx,t = EvalF (K,x||t).

2. Next if x||t > i then output sRE.enc(UM, (M0, x), t, 1
λ+n+log T ) and sRE.enc(UM, (M1, x),

t, 1λ+n+log T ) otherwise, using rx,t as the random coins in either case.

Note that HM0 and H0 obfuscate functional equivalent circuits and therefore are computationally
indistinguishable based on Indistinguishability Obfuscation property of iO.

- Hi,1: Roughly Hi,1 is same as Hi except that in Hi,1 we puncture the key K at point i + 1 and
hardcode the output on input i+1. More formally, sampleK, the key for puncturable PRF, and obtain
K ′ = PunctureF (K, {i+1}) and output the obfuscation of C2[K ′,M0,M1, λ+n+log T ,outi+1, i]

described below, padded to size `. Here outi+1 := sRE.enc(UM, (M0, x
∗), t∗, 1λ+n+log T ) using

random coins EvalF (K, i+ 1), where x∗||t∗ = i+ 1.

1. If x||t = i+ 1 then output outi+1. Otherwise proceed to the next step.

2. C2[K ′,M0,M1, λ+ n+ log T , i] on input x, t first generates rx,t = EvalF (K,x||t).

3. Next if x||t > i then output sRE.enc(UM, (M0, x), t, 1
λ+n+log T ) and sRE.enc(UM, (M1, x),

t, 1λ+n+log T ) otherwise, using rx,t as the random coins in either case.

Note that the only change in Hi,1 from Hi is that the output obfuscation on input i + 1 outputs the
hardcoded value outi+1. The same value was computed inside Hi. In other words, Hi,1 and Hi
obfuscate functional equivalent circuits and therefore are computationally indistinguishable based on
Indistinguishability Obfuscation property of iO.

- Hi,2: Just as in previous hybrid, output obfuscation of C2[K ′,M0,M1, λ + n + log T ,outi+1, i]
padded to size `. However use fresh randomness to generate outi+1 instead of using the randomness
generated using seed K. More formally generate outi+1 := sRE.enc(UM, (M0, x

∗), t∗, 1λ+n+log T )
using fresh random coins, where x∗||t∗ = i+ 1.

8We give the construction assuming exponential hardness on the underlying computational assumptions. The same result can
be obtained assuming only sub-exponential hardness by setting the security parameter of the underlying primitives appropriately
larger.
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Note that the indistinguishability of Hi,2 from Hi,1 follows from the pseudorandom at punctured
points property described in Definition 2.2.

- Hi,3: Just as in previous hybrid, output obfuscation of C2[K ′,M0,M1, λ + n + log T ,outi+1, i]
padded to size `. However use machineM1 to generate outi+1 instead ofM0. More formally generate
outi+1 := sRE.enc(UM, (M1, x

∗), t∗, 1λ+n+log T ) using fresh random coins, where x∗||t∗ = i+ 1.

The indistinguishability between Hi,3 from Hi,2 follows from the security property of succinct ran-
domized encoding in Definition 3.1.

- Hi,4: Just as in previous hybrid, output obfuscation of C2[K ′,M0,M1, λ + n + log T ,outi+1, i]
padded to size `. However we go back to using randomness generated using seed K in order to
generate outi+1, instead of using fresh randomness. More formally generate outi+1 := sRE.enc(UM,

(M1, x), t, 1
λ+n+log T ) using random coins EvalF (K, i+ 1) , where x∗||t∗ = i+ 1.

Note that the indistinguishability of Hi,4 from Hi,3 follows from the pseudorandom at punctured
points property described in Definition 2.2.

- Hi,5: Hi,5 is same as Hi,4 except that we do not hardcode outi+1 and use the circuit to com-
pute it. More formally sample K, the key for puncturable PRF, and output the obfuscation of
C3[K,M0,M1, λ+ n+ log T , i] described below, padded to size `.

1. C3[K,M0,M1, λ+ n+ log T , i] on input x, t first generates rx,t = EvalF (K,x||t).

2. Next if x||t > i+1 then output sRE.enc(UM, (M0, x), t, 1
λ+n+log T ) and sRE.enc(UM, (M1, x),

t, 1λ+n+log T ) otherwise, using rx,t as the random coins in either case.

Note that the only change in Hi,5 from Hi,4 is that the output obfuscation on input i + 1 does not
output the hardcoded value outi+1. The same value is computed inside Hi,5. In other words, Hi,4
and Hi,5 obfuscate functional equivalent circuits and therefore are computationally indistinguishable
based on the Indistinguishability Obfuscation property of iO.

Note that the circuits C3[K,M0,M1, λ + n + log T , i] and C2[K,M0,M1, λ + n + log T , i + 1]
are functionally equivalent and the computational indistinguishability betweenHi,5 andHi+1 follows
based on the Indistinguishability Obfuscation property of iO.

- HM1 : In this hybrid, we execute iOM on input M1 as described in Figure 6.

Note that H
2n+log T and HM1 obfuscate functionally equivalent circuits and therefore are computa-

tionally indistinguishable based on Indistinguishability Obfuscation property of iO.

4.2 Succinct Functional Encryption

In this section we will provide our construction of succinct functional encryption. Our construction is
based on randomized functional encryption for a particular class of NC1 circuits. Goyal et al. [GJKS13]
provide a selectively secure construction of such a randomized functional encryption scheme for all NC1

circuits based on indistinguishability obfuscation. Using their scheme, we get a selectively secure, succinct
functional encryption scheme. In recent results Garg et al. [GGHZ14] have shown that a fully secure variant
of their construction can be based on polynomial hardness of relatively natural computational assumptions,
thus giving us a succinct functional encryption scheme with full security.
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We will start by presenting our definition of succinct functional encryption and the intermediate special
functional encryption that we need. We then provide our construction for succinct functional encryption.

4.2.1 Definitions

We use (taken verbatim) the definition of functional encryption for Turing Machines in Ananth et al. [ABG+13],
also defined in [BCP14], and adapt it to the setting of general succinct machines.

Definition 4.2. [Succinct Functional Encryption] A functional encryption scheme defined for a family of
machines {Mλ}λ∈N consists of four algorithms {Setup,KeyGen,Encrypt,Decrypt}:

• Setup(1λ, 1n) - a polynomial time algorithm that takes as input the security parameter λ, message
size n and outputs a public parameters PP and a master secret key MSK. (We assume that PP and
MSK implicitly contain 1λ and 1n.)

• KeyGen(MSK, 1log T ,M) - a polynomial time algorithm that takes as input the master secret key
MSK, a time bound T and a machine M ∈M and outputs a corresponding private key SKM .

• Encrypt(PP, x) - a polynomial time algorithm that takes the public parameters PP and a message
x ∈ {0, 1}n as input and outputs a ciphertext CT.

• Decrypt(SKM ,CT, 1
t) - a polynomial time algorithm that takes a private key SKM , a ciphertext CT

encrypting message x ∈ {0, 1}n and a time t ≤ T as input and outputs the output of M on input x
after running it for time t.

We require the following properties:-

- Correctness: A functional encryption scheme for family {Mλ}λ is said to be correct if for all λ, n ∈ N,
machines M ∈M, messages x ∈ {0, 1}n, time bounds T and running times t ≤ T :

Pr[(PP,MSK)← Setup(1λ, 1n);Decrypt(KeyGen(MSK, 1log T ,M),Encrypt(PP, x), 1t) = y)] = 1,

where y is the output of M when executed for time t on input x.

- Efficiency and Succinctness: We require that the running time of Setup and Encrypt is poly(λ, n). We
also require that the running time of KeyGen and its output is poly(|M |, log T , n, λ). Finally we
require that Decrypt runs in time poly(|M |, t, n, log T , λ) (or poly(t, λ) for short).
Semi-Succinctness: The requirement for semi-succinctness is very similar to succinctness except that
all the parameters are now additionally allowed to grow in s, the maximum space used byM in t steps.

- Security: We now define the full security definition for succinct functional encryption which is described
in form of an indistinguishability game between an adversary A and a challenger, parameterized by a
polynomial T (·).

• Setup: The challenger runs (PP,MSK)← Setup(1λ, 1n) and gives PP to A.

• Query I: A submits queries Mi ∈ M for i ∈ 1, . . . , q1 and to each one of them the challenger
responds with SKMi ← KeyGen(MSK, 1log T (λ),Mi).

• Challenge: The adversary generates two messages (x0, x1) and provides them to the challenger.
We require that for every query Mi (i ∈ [q1]) we have that for all t ≤ T (λ) it is the case that
Mi(x0) and Mi(x1) output the same value when executed for time t.
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• Query II: A submits queries Mi ∈ M for i ∈ q1, . . . , q and to each one of them the challenger
responds with SKMi ← KeyGen(MSK, 1log T (λ),Mi). We require that for every query Mi (i ∈
q1, . . . , q) we have that for all t ≤ T (λ) it is the case that Mi(x0) and Mi(x1) output the same
value when executed for time t.

• Guess: A outputs a bit b′ in {0, 1}.

The advantage of an adversary A is defined to be |Pr[b′ = b]− 1
2 |.

Definition 4.3. A functional encryption scheme for machine family M is said to be fully secure if
for any PPT adversary A and polynomial time bound T , the advantage of A in the above game is
negligible.

Remark 4.6 (Fully-secure vs Selectively-secure). The security requirement in the definition presented above
is for the setting of fully secure functional encryption. We can also define a weaker selectively secure
variant in which the adversary is required to specify the challenge messages (x0, x1) prior to the public key
is provided to it.

Remark 4.7 (Succinctness vs Semi-Succinctness). We will only present our construction for the succinct
case and note that it naturally extends to the semi-succinct setting.

Remark 4.8 (Multi-bit Output). Just like for obfuscation we present our functional encryption result for a
setting where machines output a single bit. This result can easily be extended to multi-bit output setting
by providing a separate private key for each output bit. This increases the running time of both private key
generating and decryption procedures by a multiplicative factor of the output length.

Remark 4.9 (Separate time bound T for each private key). We note that the definition above (and also the
construction) each private key can be generated parameterized by a key specific time-bound. However we
assume that each of these time bounds in polynomial in λ.

Remark 4.10 (Input Specific Running Time). In our construction we change the KeyGen to issue secret keys
for specific running times. Secret keys that allow for arbitrary running time up to a time bound T can be
implemented by giving out a sequence of log T secret keys, one for each power of 2 that is less than T . This
allows us to achieve input specific running times for our construction whereby on an input x the decryption
process takes time proportional to the running time of M on input x. Specifically, this can be achieved by
first executing SKM,t for t = 2 and then doubling it each time, till the output is obtained.

Special Functional Encryption Scheme. We will use a special functional encryption that builds on a
arbitrary randomized encoding scheme (RE.enc,RE.enc) (as defined in Definition 3.1) that is not necessarily
succinct. Special Functional Encryption is a special case of a randomized functional encryption defined by
Goyal et al. [GJKS13]. Very roughly this special functional encryption scheme has the property that the
secret key evaluation instead of doing the computation outputs the randomized encoding of the computation
being performed.

Definition 4.4. [Special Functional Encryption] A special functional encryption scheme is defined by a
randomized encoding scheme (RE.enc,RE.dec) and consists of four algorithms (Setup,KeyGen,Encrypt,
Decrypt):

• Setup, KeyGen and Encrypt behave exactly as in Definition 4.2.

• Decrypt(SKM ,CT) - a polynomial time algorithm that takes a private key SKM and a ciphertext CT
encrypting message x ∈ {0, 1}n as input and outputs a value sampled from RE.enc(M,x, T , 1λ).
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We require the following properties. The Correctness and Security properties are similar to those defined
in Definition 4.2. We also require that the running times of the above algorithms are related to those of the
underlying randomized encoding scheme, as described in the Efficiency Preserving property.

- Correctness: A special functional encryption scheme is said to be correct if for all λ, n ∈ N, y ∈
{0, 1}p(λ,n), all messages x ∈ {0, 1}n.

Pr[(PP,MSK)← Setup(1λ, 1n);RE.dec(Decrypt(KeyGen(MSK, y),Encrypt(PP, x))) = y(x)] = 1.

We note that Goyal et al. [GJKS13] needed to define correctness in a more involved manner because
they considered general randomized functionalities. But however since in our case the final output is
deterministic we can avoid that here.

- Security: Exactly as in Definition 4.2.

- Efficiency preserving: A special functional encryption is efficiency preserving if it satisfies the following
conditions:

• The running time of Setup and Encrypt is poly(λ, n)

• The running time of KeyGen(MSK, 1log T ,M) is polynomial in λ (implicit in MSK) and the
running time of RE.enc(M,x, T , 1λ) on inputs x of length n (implicit in MSK).

• The running time of Decrypt also meets the above bound.

As elaborated in Remark 4.6 we can also define a selectively secure variant of the above definition.
Note that if the underlying randomized encoding scheme is succinct then, the corresponding special

functional encryption scheme meets the succinctness condition in Definition 4.2.

Proposition 4.1. Fully-secure special functional encryption (as in Definition 4.4) for all randomized encod-
ing schemes with encoding circuits in NC1 exist assuming polynomial hardness of appropriate computa-
tional assumptions on composite order multilinear maps as in [GGHZ14].

Proposition 4.2. Selectively-secure special functional encryption (as in Definition 4.4) for all randomized
encoding schemes exist assuming indistinguishability obfuscation and other appropriate computational as-
sumptions as in [GJKS13].

We would like to note here that in the special functional encryption schemes constructed by [GGHZ14]
and [GJKS13], KeyGen gets as input a randomized circuit C and outputs a secret key corresponding to
C. The result of Decrypt outputs a value sampled from the output of C. However, in our setting KeyGen
gets as input a machine M and time bound T , and at first it may seem their construction can’t be used
directly. However, we stress that, in our setting, KeyGen outputs a secret key corresponding to the circuit
that computes the randomized encoding of M and T . Therefore, we can use their constructions directly.

4.2.2 Our Construction

In this section we will provide our fully-secure (resp., selectively secure) construction of succinct functional
encryption using a fully-secure (resp., selectively secure) special functional encryption scheme. We note
that since we already have access to a special functional encryption scheme all we need to do is instantiate
it with a randomized encoding that is both succinct and has encoding in NC1 (we will also need to modify
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the decryption procedure of the special functional encryption scheme to include decoding the randomized
encoding). We explain how to obtain such a scheme next.

In order to construct such a succinct randomized encoding scheme we give a transformation from an
arbitrary succinct randomized encoding scheme (sRE.enc, sRE.dec) to a succinct randomized encoding
scheme (sRE.enc′, sRE.dec′) which additionally has the property that sRE.enc′ can be computed by an
NC1 circuit. Let (RE.enc,RE.enc) be a randomized encoding scheme as in Definition 3.1 but without the
succinctness requirement. Additionally RE.enc does not take a time parameter t as input. Constructions of
such a randomized encoding scheme, with RE.enc in NC1 are known, e.g, Yao’s garbled circuits [Yao82].
Let CsRE.enc be the circuit for evaluating the function sRE.enc. Our succinct randomized encoding scheme
(sRE.enc′, sRE.dec′) is as follows:

- ĈM,x,t ← sRE.enc′(M,x, t, 1λ): Output RE.enc(CsRE.enc, (M,x, t, 1λ, r), 1λ) where r is fresh ran-
domness sampled for CsRE.enc.

- y ← sRE.dec′(ĈM,x,t): Generate M̂x,t ← RE.dec(ĈM,x,t) and output sRE.dec(M̂x,t).

Note that in the above scheme the sRE.enc′ can be computed in NC1 due to the fact that RE.enc can be
computed in NC1. The succinctness of the (sRE.enc′, sRE.dec′) scheme follows from the fact that the
circuit CsRE.enc is succinct. Finally security follows form the security of the two randomized encoding
schemes. This allows us to claim.

Theorem 4.2. A fully-secure (resp., selectively-secure) special FE scheme instantiated with a succinct ran-
domized encoding scheme yields a fully-secure (resp., selectively-secure) succinct FE scheme.

Corollary 4.1. Fully secure succinct functional encryption exists assuming appropriate polynomial hard-
ness of assumptions on composite order multilinear maps as in [GGHZ14, GLSW14].

Corollary 4.2. Selectively secure succinct functional encryption exists assuming indistinguishability obfus-
cation and other appropriate computational assumptions as in [GJKS13].

A folklore corollary of FE is reusable randomized encodings; accordingly, succinct FE implies succinct
reusable randomized encodings, where encoding complexity is the same as key derivation complexity. In-
deed, succinct FE directly gives a reusable randomized encoding with an indistinguishability guarantee: the
encoded machine M̂ is just the functional secret key for the machine, an encoded input x̂ is just an en-
cryption of x. FE security directly implies that one cannot distinguish two encoded computations M̂, x̂0

and M̂, x̂1, given that M(x0) = M(x1). To get simulation, we can use a standard transformation from
[DIJ+13].

4.3 Publicly-Verifiable Delegation and SNARGs for P

4.3.1 P-delegation

A delegation system for P is a 2-message protocol between a verifier and a prover. The verifier consists
of two algorithms (G,V), given a machine, input, time bound, and security parameter z = (M,x, t, λ), G
generates a message σ. The prover, given (z, σ), produces a proof π attesting that M accepts x within t
steps. V then verifies the proof. In a privately-verifiable system, the G produces, in addition to the (public)
message σ, a secret verification state τ , and verification by V requires (z, σ, τ, π). In a publicly-verifiable
scheme, τ can be published (together with σ), without compromising soundness.

We shall require that the running time of (G,V) will be significantly smaller than t, and that the time to
prove is polynomially related to t.
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Definition 4.5 (P-Delegation). A prover and verifer (P, (G,V)) constitute a delegation scheme for P if it
satisfies:

1. Completeness: for any z = (M,x, t, λ), such that M accepts x within t steps:

Pr

[
V (z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(z)
π ← P (z, σ)

]
= 1 .

2. Soundness: for any poly-size prover P∗, polynomial T (·), there exists a negligible α(·) such that for
any z = (M,x, t, λ), such that t ≤ T (λ), and M does not accept x within t steps:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(z)
π ← P∗(z, σ)

]
≤ α(λ) .

3. Fast verification and relative prover efficiency: There exists a (universal) polynomial p such that
for every z = (M,x, t, λ):

• the verifier algoritms (G,V) run in time p(λ, |M |, |x|, log t);
• the prover P runs in time p(λ, |M |, |x|, t).

3’. Semi-fast verification: The scheme is semi-succinct if the running time of the (G,V) may also depend
on space; concretely: there exists a (universal) polynomial p such that for every z = (M,x, t, λ):

• the verifier algoritms (G,V) run in time p(λ, |M |, |x|, log t, s), where s is the maximal space
used by M(x) in t steps.

The system is said to be publicly-verifiable if soundness is maintained when the malicious prover P∗ is also
given the verification state τ .

Remark 4.11 (Input Privacy). Our construction achieves an additional property of input privacy which states
that the first message of the delegation scheme σ leaks no information about the input x on which the
computation of M is being delegated, beyond the output M(x). This ensures that, in the outsourcing
computation application, the server performing the computation learns no more than is necessary about the
input to the computation. For this to make sense, we also require that completeness holds even when the
honest prover P is not given the input z.

We next present a publicly-verifiable delegation with fast (or semi-fast) verification based on any suc-
cinct (or semi-succinct) randomized encoding, and one-way functions.

The scheme. Let f be a one-way function and (sRE.enc, sRE.dec) be a randomized encoding scheme. We
describe (P, (G,V)) as follows. Let z = (M,x, t, λ) be a tuple consisting of a machine, input, time bound
and security parameter.

Generator G(z):
For r ← {0, 1}λ, let M ′(x, r) be the machine that returns r if M(x) = 1 and ⊥ otherwise. G generates

and outputs σ ← sRE.enc(M ′, (x, r), t′, 1λ) and τ = f(r) where t′ = t+O(λ) is the bound on the running
time of M ′.

Prover P(z, σ):
P simply runs π ← sRE.dec(σ) and outputs π.
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Verifier V(z, σ, τ, π):
V outputs 1 if and only if f(π) = τ .

We prove that (P, (G,V)) is a P-delegation scheme as follows.

Theorem 4.3. If (sRE.enc, sRE.dec) is a succinct (resp. semi-succinct) randomized encoding scheme, then
(P, (G,V)) as described above is a publicly verifiable P-delegation scheme with fast verification (resp.
semi-fast verification)

Proof. The completeness of (P, (G,V)) follows directly from the correctness of (sRE.enc, sRE.dec). Also,
note that the running time of the verifier algorithms (G,V) is related to the running time of sRE.enc. There-
fore, it also follows directly that if (sRE.enc, sRE.dec) is succinct (resp. semi-succinct) then (G,V) sat-
isfies the property of fast verification (resp. semi-fast verification). It remains to show the soundness of
(P, (G,V)).

To show soundness, we will rely on the security of (sRE.enc, sRE.dec) and the one-wayness of f .
Assume for contradiction there exists poly-size prover P∗ and polynomial p(·) such that for infinitely many
z = (M,x, t, λ) where M does not accept x within t steps, we have that

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(z)
π ← P∗(z, σ, τ)

]
≥ 1

p(λ)
.

LetZ be the sequence of z = (M,x, t, λ) whereM does not accept xwithin t steps and consider any z ∈
Z . Recall that G(z) samples r ← {0, 1}λ and outputs σ ← sRE.enc(M ′, (x, r), t′, 1λ) and τ ← f(r). Since
M does not accept x in t steps, we have that M ′(x, r) outputs ⊥. By the security of (sRE.enc, sRE.dec),
there exists a PPT simulator Sim such that the ensembles {sRE.enc(M ′, (x, r), t′, 1λ)}r∈{0,1}λ,z∈Z and
{Sim(⊥,M ′, t′, 1|x|+|r|, 1λ)}r∈{0,1}λ,z∈Z are indistinguishable. Therefore, given a simulated σ ← Sim(⊥
,M ′, t′, 1|x|+|r|, 1λ) we have that P∗ still convinces V with some noticeable probability. More formally, for
infinitely many z ∈ Z , we have that

Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣∣∣
r ← {0, 1}λ

σ ← Sim(⊥,M ′, t′, 1|x|+|r|, 1λ)
τ ← f(r)

π ← P∗(z, σ, τ)

 ≥ 1

p(λ)
− α(λ) .

for some negligible function α(·).
Recall that V outputs 1 if and only if f(π) = τ . Therefore V(z, σ, τ, π) = 1 implies that P∗ when given

τ = f(r) outputs π which is in the pre-image of f(r). Hence P∗ can be used to break the one-wayness of
f and we have a contradiction. This completes the proof of the theorem.

4.3.2 SNARGs

A succinct non-interactive argument system (SNARG) for P is a delegation system where the first message
σ is reusable, it is independent of any specific computation, and can be used to verify an unbounded number
of computations. In a privately-verifiable SNARG, soundness might not be guaranteed if the prover learns
the result of verification on different inputs, which can be seen as certain leakage on the private state τ (this
is sometimes referred to as the verifier rejection problem). Accordingly, in this case, we shall also address a
strong soundness requirement, which says that soundness holds, even in the presence of a verification oracle.

35



Definition 4.6 (SNARG). A SNARG (P, (G,V)) is defined as a delegation scheme, with the following
change to the syntax of G: the generator G now gets as input a security parameter, time bound, and in-
put bound λ, T , n ∈ N, and does not get M,x as before. We require that

1. Completeness: for any z = (M,x, t, λ), such that t ≤ T and |M,x| ≤ n, and M accepts x within t
steps:

Pr

[
V (z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T , n)
π ← P (z, σ)

]
= 1 .

2. Soundness: for any poly-size prover P∗, polynomials T (·), n(·), there exists a negligible α(·) such
that for any z = (M,x, t, λ), where t ≤ T (λ), |M,x| ≤ n(λ), and M does not accept x within t
steps:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T (λ), n(λ))
π ← P∗(z, σ)

]
≤ α(λ) .

2∗. Strong soundness: for any poly-size oracle-aided prover P∗, polynomials T (·), n(·), there exists a
negligible α(·) such that for any z = (M,x, t, λ), where t ≤ T (λ), |M,x| ≤ n(λ), and M does not
accept x within t steps:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T (λ), n(λ))
π ← P∗V(·,σ,τ,·)(z, σ)

]
≤ α(λ) .

3. Fast verification and relative prover efficiency: There exists a (universal) polynomial p such that
for every z = (M,x, t, λ):

• the verifier algorithms (G,V) run in time p(λ, n(λ), log T );

• the prover P runs in time p(λ, |M |, |x|, t).

As before, the system is said to be publicly-verifiable if soundness is maintained when the malicious
prover is also given the verification state τ . (In this case, strong soundness follows from standard soundness.)
Also, we can naturally extend the definition for the case of semi-succinctness, in which case, G will also get
a space bound S, and the running time of algorithms (G,V) may also depend on S

Remark 4.12 (Non-adaptive soundness). Note that in the definition above and in our construction, we will
consider only non-adaptive soundness, as opposed to adaptive soundness where the malicious prover P∗d
can pick the statement z after seeing the first message σ.

We now show a simple transformation, based on IO, that takes any 2-message delegation scheme (e.g.,
the one constructed above), and turns it into a SNARG for P. The transformation works in either the public
or private verification setting. Furthermore, it always results in a SNARG with strong soundness, even the
delegation we start with does not have strong soundness (such as the scheme of [KRR14]).

The scheme. Let (Pd, (Gd,Vd)) be a P-delegation scheme, (KeyF ,EvalF ,PunctureF ) be a puncturable
PRF scheme, and iO be an indistinguishability obfuscator. We describe a SNARG (P, (G,V))) as follows.

Let z = (M,x, t, λ) be a tuple consisting of a machine, input, time bound and security parameter such
that |M,x| ≤ n and t ≤ T . For notational convenience, we decompose Gd into (Gσd ,Gτd) where Gσd(z)
only outputs the message σd and Gτd(z) only outputs the secret verification state τd.

Generator G(λ, T , n):
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1. G samples a puncturable PRF key K ← KeyF (1
λ).

2. Let Cσ[K] be a circuit that on input z, runs r ← EvalF (K, z) and outputs σd ← Gσd(z; r). That
is, Cσ runs Gσd to generate a first message of the delegation scheme, using randomness from the
PRF key K. Similarly, Cτ [K] on input z runs r ← EvalF (K, z) and outputs τd ← Gτd(z; r). G
generates the circuits Cσ[K] and Cτ [K], and pads them to be of size `σ and `τ respectively which
will specified exactly later in the analysis. For now, we mention that if we use a delegation scheme
with fast verification then `σ, `τ ≤ poly(λ, n, log T ). We subsequently assume the circuits Cσ and
Cτ are padded.

3. G runs σ ← iO(Cσ[K], 1λ), τ ← iO(Cτ [K], 1λ) and outputs (σ, τ).

Prover P(z, σ):
P runs σ on input z to get σd ← σ(z). Note that σd is a first message of the underlying delegation

scheme (Pd, (Gd,Vd)). Next, P generates the corresponding proof of the delegation scheme π ← Pd(z, σd)
and outputs π.

Verifier V(z, σ, τ, π):
V runs σd ← σ(z), τd ← τ(z), and outputs the result of Vd(z, σd, τd, π).

Theorem 4.4. If (Pd, (Gd,Vd)) is a privately verifiable (resp. publicly verifiable) P-delegation scheme,
then (P, (G,V))) as described above is a privately verifiable (resp. publicly verifiable) SNARG with strong
soundness.

Remark 4.13 (SNARGs for NP with a short witness). The above SNARGs are for deterministic computa-
tions. We can also deal with a restricted case of NP where the witnesses are of bounded size, using standard
leveraging. Namely, we will assume that all the underlying primitives are 2−O(`)-secure for the witness
length ` considered. Verification time and the proof length will accordingly scale with `, but not with the
time of the computation.

Proof. The completeness of (P, (G,V)) follows directly from that of (Pd, (Gd,Vd)) and the correctness of
iO. The running time of G(λ, T , n) is polynomial in λ and the maximum running time of Gd on inputs
z = (M,x, t, λ) where |M,x| ≤ n and t ≤ T . Similarly, the running times of P and V are polynomial in
λ and the running times of Pd and Vd respectively. Therefore, the fast verification and prover efficiency of
(Pd, (Gd,Vd)) implies that the same properties hold for (P, (G,V)).

To show strong soundness of (P, (G,V)), we will rely on the soundness of (Pd, (Gd,Vd)), and the secu-
rity of iO and the punctured PRF (KeyF ,EvalF ,PunctureF ). We will first consider the privately verifiable
setting. Assume for contradiction there exists poly-size oracle-aided prover P∗, polynomials T (·),n(·),p(·)
such that for infinitely many z = (M,x, t, λ), where t ≤ T (λ), |M,x| ≤ n(λ), and M does not accept x
within t steps:

Pr

[
V(z, σ, τ, π) = 1

∣∣∣∣ (σ, τ)← G(λ, T (λ), n(λ))
π ← P∗V(·,σ,τ,·)(z, σ)

]
≥ 1

p(λ)
.

We will refer to the above probability as the advantage Adv(z,P∗). We will now construct a malicious
prover P∗d to break the soundness of the delegation scheme. P∗d gets as input z and σd which is some first
message of the delegation scheme. P∗ runs a subroutine D described in the following paragraph, on input
(z, σd), to obtain a “fake” SNARG message and verification state (σ, τ) which it will then use to run P∗

37



and answer its queries. That is, P∗d runs (σ, τ) ← D(z, σd), π ← P∗V(·,σ,τ,·)(z, σ) and outputs π. The
subroutine D is defined as follows:

Subroutine D(z, σd):

1. D samples a puncturable PRF keyK ← KeyF (1
λ) and punctures it at the input z to obtain a punctured

key Kz ← PunctureF (K, {z}).

2. Let C∗σ[Kz, σd] be a circuit that on input z∗ behaves as follows: if z∗ = z then C∗σ simply outputs the
hardwired value σd. Otherwise, C∗σ runs r ← EvalF (Kz, z

∗) and outputs the result of Gσd(z∗; r).

3. Similarly, let C∗τ [Kz] be a circuit that on input z∗ behaves as follows: if z∗ = z then C∗τ simply
outputs ⊥. Otherwise, C∗τ runs r ← EvalF (Kz, z

∗) and outputs the result of Gτd(z∗; r).

4. D generates the circuits C∗σ[Kz∗ , σd] and C∗τ [Kz∗ ] and pads them to sizes `σ and `τ respectively,
where `σ is the maximum size of the circuits C∗σ[Kz∗ , σ

∗
d] and Cσ[K] and `τ is the maximum size of

the circuits C∗τ [Kz∗ ] and Cτ [K]. We subsequently assume the circuits C∗σ and C∗τ are padded.

5. D generates σ ← iO(C∗σ[Kz, σd], 1
λ), τ ← iO(C∗τ [Kz], 1

λ) and outputs (σ, τ).

Note that when P∗d uses τ , as generated by D above, to answer P∗’s verification oracle queries on the
input z then, unlike a “real” verification state, τ simply outputs ⊥. In this case, P∗d answers the query with
the bit 0 (rejecting the proof submitted in the query).

We now analyze the success probability of P∗d . We want to show there exists a polynomial p′ such that
for infinitely many z = (M,x, t, λ) where M does not accept x within t steps the following holds:

Advd(z,P∗d) = Pr

[
Vd(z, σd, τd, π) = 1

∣∣∣∣ (σd, τd)← Gd(z)
π ← P∗d(z, σd)

]
≥ 1

p′(λ)
.

Let Z be the sequence of z = (M,x, t, λ) such that t ≤ T (λ), |M,x| ≤ n(λ), and M does not accept
x within t steps.

To show P∗d succeeds with noticeable probability, we will consider a hybrid malicious prover PHyb
d that

is very similar to P∗d except that it also gets the secret verification state τd as input and uses it in a different
subroutine DHyb. We will first show that for every z ∈ Z , Advd(z,P∗d) = Advd(z,PHyb

d ). Next, we show
that relying on the security of the indistinguishability obfuscator and the puncturable PRF, Advd(z,PHyb

d ) is
negligibly close to Adv(z,P∗) for all z ∈ Z . By assumption, Adv(z,P∗), is noticeable and hence we have
that Advd(z,P∗d) is noticeable, contradicting the soundness of the P-delegation scheme.

We now describe the hybrid malicious prover PHyb
d . PHyb

d gets as input z and both σd and τd. It uses
the hybrid subroutine DHyb on input (z, σd, τd) to generate a hybrid “fake” (σ, τ) to run P∗ and answer its
queries. However, unlike P∗d , it uses τ to answer all of P∗’s queries (including those on input z). DHyb is
defined as follows.

Subroutine DHyb(z, σd, τd):

1. DHyb samples Kz and generates σ exactly as in D. The only difference is in the generation of τ .

2. Let C∗τ [Kz, τd] be a circuit that on input z∗ behaves as follows: if z∗ = z then C∗τ simply outputs the
hardwired value τd. Otherwise, C∗τ runs r ← EvalF (Kz, z

∗) and outputs the result of Gτd(z∗; r).

3. DHyb generates C∗τ [Kz, τd], pads it to the maximum size of C∗τ [Kz, τd] and Cτ [K] and generates
τ ← iO(C∗τ [Kz, τd], 1

λ). DHyb outputs (σ, τ).
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We now observe that that for every z ∈ Z , Advd(z,P∗d) = Advd(z,PHyb
d ). The only difference in the

two experiments is in the view of P∗: when run by P∗d then its oracle responses are answered using τ as
generated by D and when run by PHyb

d , its oracle responses are answered using τ as generated by DHyb.
However, we claim that the responses are distributed identically in both cases. They could only potentially
differ on queries on the input z, but since z is a “false” input, i.e. M does not accept x in t steps, in both
cases, the verification oracle response on such queries is 0 (reject).

Next we show that there is a negligible function α(·) such that for every z ∈ Z ,

|Advd(z,PHyb
d )− Adv(z,P∗)| ≤ α(λ)

. We first observe that in the experiment corresponding to Advd(z,PHyb
d ), the event Vd(z, σd, τd, π) = 1 is

equivalent to the event V(z, σ, τ, π) = 1 where (σ, τ) ← DHyb(z, σd, τd). This follows directly from the
construction of V and the fact that σ and τ are hardwired to output σd and τd on input z. Hence we have that

Advd(z,PHyb
d ) = Pr

V(z, σ, τ, π) = 1

∣∣∣∣∣∣
(σd, τd)← Gd(z)

(σ, τ)← DHyb(z, σd, τd)

π ← P∗V(·,σ,τ,·)(z, σ)

 .

Now viewed this way, we can observe that the only difference between the above experiment and that
of Adv(z,P∗) is in how (σ, τ) are generated. In the above experiment, (σ, τ) comes from DHyb and Gd
whereas in the experiment for Adv(z,P∗), (σ, τ) comes from G. It suffices to show the following claim:

Claim 4.1. The following ensembles are computationally indistinguishable.

{(σ, τ) : (σ, τ, π)← DHyb(z, σd, τd), (σd, τd)← Gd(z)}z∈Z (5)

≈c{(σ, τ) : (σ, τ)← G(λ, T (λ), n(λ))}z∈Z (6)

Proof. Recall that in ensemble (5), σ ← iO(C∗σ[Kz, σd]) where Kz is a PRF key punctured at input z
and C∗σ on all input z outputs σd and on all other inputs z∗ outputs Gd(z∗;EvalF (Kz, z

∗)). However, in
ensemble (6), σ ← iO(Cσ[K]) where C on input z∗ outputs Gd(z∗;EvalF (K, z∗)). The difference between
τ in ensembles (5) and (6) is the same. Indistinguishability follows from the security of iO and that of
(KeyF ,EvalF ,PunctureF ) in the standard way. We provide a brief overview.

Consider a hybrid ensemble that is identical to ensemble (5) except that instead of uniform randomness
Gd uses randomness from EvalF (K, z) where K is a PRF key. K is then punctured at input z and given to
DHyb to use as Kz . By the security of the punctured PRF, this hybrid ensemble is indistinguishable from
ensemble (5). Furthermore, the circuits obfuscated as σ and τ in this hybrid ensemble and in ensemble (6)
are functionally equivalent. Hence, by the security of iO, ensemble (6) is indistinguishable from the hybrid
ensemble. A hybrid argument completes the proof of the claim.

This completes the proof of strong soundness in the privately-verifiable setting. Proving strong sound-
ness in the publicly-verifiable setting is very similar . The malicious prover for the SNARG P∗ now also
requires τ as input to generate the convincing proof π. On the other hand the prover we want to construct
for the delegation scheme P∗d gets τd as input from the challenger. P∗d uses the same strategy as PHyb

d to
generate τ and simply gives it to P∗. Using the same proof as above, we have that if P∗ succeeds with
noticeable probability then so does P∗d .
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