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Abstract. Recently a series of expressive, secure and efficient Attribute-Based Encryption (ABE)
schemes, both in key-policy flavor and ciphertext-policy flavor, have been proposed. However, before
being applied into practice, these systems have to attain traceability of malicious users. As the decryp-
tion privilege of a decryption key in Key-Policy ABE (resp. Ciphertext-Policy ABE) may be shared by
multiple users who own the same access policy (resp. attribute set), malicious users might tempt to
leak their decryption privileges to third parties, for financial gain as an example, if there is no tracing
mechanism for tracking them down. In this work we study the traceability notion in the setting of
Key-Policy ABE, and formalize Key-Policy ABE supporting fully collusion-resistant blackbox trace-
ability. An adversary is allowed to access an arbitrary number of keys of its own choice when building
a decryption-device, and given such a decryption-device while the underlying decryption algorithm or
key may not be given, a Blackbox tracing algorithm can find out at least one of the malicious users
whose keys have been used for building the decryption-device. We propose a construction, which sup-
ports both fully collusion-resistant blackbox traceability and high expressiveness (i.e. supporting any
monotonic access structures). The construction is fully secure in the standard model (i.e. it achieves
the best security level that the conventional non-traceable ABE systems do to date), and is efficient
that the fully collusion-resistant blackbox traceability is attained at the price of making ciphertexts
grow only sub-linearly in the number of users in the system, which is the most efficient level to date.
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1 Introduction

Attribute-based encryption (ABE), as a promising tool for fine-grained access control on encrypted
data, has attracted much attention since its introduction by Sahai and Waters [24] in 2005, and
work has been done to achieve better expressivity, security and efficiency, in both key-policy flavor
[10,22,14,21,1,27,7,23] and ciphertext-policy flavor [6,9,26,15,21,11,16,23]. Due to their high expres-
sivity of access policy and efficient one-to-many encryption, both Key-Policy ABE (KP-ABE) and
Ciphertext-Policy ABE (CP-ABE) have extensive applications. For example, in a KP-ABE system
(CP-ABE proceeds the other way around), each private key is associated with an access policy over
descriptive attributes issued by an authority, each ciphertext is associated with an attribute set
specified by the encryptor, and if and only if the attribute set of a ciphertext satisfies the access
policy, the private key can decrypt the ciphertext. In a pay-TV system the television broadcaster
can encrypt the broadcast using the descriptive attributes, such as the name of the program (“The
Big Bang Theory”), the genre (“drama”), the season, the episode number, the year, the month,
etc. And a subscriber may determine and pay for his subscribing policy, such as “(The Big Bang
Theory OR Criminal Minds) AND 2014”.



Recently, the expressivity, security and efficiency of ABE have been relatively well developed.
The KP-ABE systems in [14,21] and the CP-ABE systems in [15,21,16]3 are highly expressive (i.e.
supporting any monotonic access structures), fully secure in the standard model, and satisfactorily
efficient. However, to apply these systems into practice, the traceability of malicious users is needed.
In an ABE system in general, as a decryption privilege could be possessed by multiple users who
own the same access policy (in KP-ABE) or attribute set (in CP-ABE), malicious users might
tempt to leak their decryption privileges to third parties, for financial gain as an example, if there
is no tracing mechanism for finding these malicious users out. For example, both user Alex with
access policy “(The Big Bang Theory OR Criminal Minds) AND 2014” and user Bob with access
policy “(The Big Bang Theory OR CSI) AND 2014” might be the malicious user who builds and
sells a decryption blackbox that can decrypt the ciphertexts generated under attributes {The Big
Bang Theory, 2014}.

While all the aforementioned ABE systems suffer from this problem, some recent attempts
[18,28,17,25,13,20,19] have been made to achieve traceability. Specifically, there are two levels of
traceability: (1) given a well-formed decryption key, a Whitebox tracing algorithm can find out the
original key owner; and (2) given a decryption-device while the underlying decryption algorithm
or key may not be given, a Blackbox tracing algorithm, which treats the decryption-device as an
oracle, can find out at least one of the malicious users whose keys have been used for building the
decryption-device. Furthermore, a system is said to support fully collusion-resistant blackbox trace-
ability if an adversary can access an arbitrary number of keys (in other words, when an arbitrary
number of malicious users collude) when building the decryption-device, and is said to support
t-collusion-resistant blackbox traceability, if an adversary is restricted from getting more than t de-
cryption keys when building the decryption-device. While the Blackbox Traceable CP-ABE scheme
in [19] is highly expressive, fully secure in the standard model, and efficient in achieving fully
collusion-resistant blackbox traceability at the expense of overhead sub-linear in the number of
users, there is no traceable KP-ABE scheme achieving comparable expressivity, security and effi-
ciency. In particular, (1) the blackbox traceability of [28] is 1-collusion-resistant (i.e. cannot resist
collusion attack); (2) [25] only supports single threshold policy and t-collusion-resistant blackbox
traceability; (3) the fully collusion-resistant blackbox traceable predicate encryption scheme in [13]
implies an expressive KP-ABE scheme (at the cost of converting monotonic access structure into
DNF, which will result in larger ciphertext size), but the overhead for traceability is linear in the
number of users; and (4) all the schemes in [28,25,13] are only selectively secure.

Adaptively Secure Highly Expressive Fully Collusion-Resistant Overhead for Traceability
Traceable

[28] ×
√

× O(logK)

[25] × × × O(t2 logK+ log(1/ε)) 1

[13] ×
√ √

O(K)

this paper
√ √ √

O(
√
K)

1 [25] is only t-collusion-resistant traceable and the large overhead O(t2 logK+ log(1/ε)) makes the
scheme impractical. Furthermore, to achieve fully collusion-resistant traceability (i.e., t = K, the
number of users in the system), the overhead of the scheme will be O(K2 logK + log(1/ε)). ε is
the probability of error that a colluder is not traced.

Table 1. Comparison with existing Traceable KP-ABE schemes

3 [14] is the full version of [15], where [15] proposed expressive, fully secure and efficient CP-ABE schemes, [14]
further proposed an expressive, fully secure and efficient KP-ABE scheme additionally.
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1.1 Our Results

In this paper, we first formalize the fully collusion-resistant blackbox traceability notions for ex-
pressive KP-ABE, then we formalize a simpler primitive called Augmented KP-ABE and show
that a secure Augmented KP-ABE can be directly transformed into a Traceable KP-ABE. With
such a transformation, to obtain a fully collusion-resistant blackbox traceable KP-ABE scheme, we
propose an Augmented KP-ABE construction, implying a traceable KP-ABE construction that is
fully secure in the standard model, highly expressive in supporting any monotonic access structures,
and efficient in achieving fully collusion-resistant blackbox traceability at the expense of having the
ciphertext size be sub-linear in the number of users in the system. In Table 1 we compare our
traceable KP-ABE scheme with existing traceable KP-ABE schemes in literature.

Paper Organization. In Sec. 2 we formalize the fully collusion-resistant blackbox traceability notions
for expressive KP-ABE. Then in Sec. 3, we propose a primitive called Augmented KP-ABE, and
show that an Augmented KP-ABE with message-hiding and index-hiding properties implies a secure
KP-ABE with traceability. Finally in Sec. 4, we propose a concrete construction of Augmented KP-
ABE and show that it is message-hiding and index-hiding.

2 KP-ABE with Traceability

We first review the definition of KP-ABE which is based on conventional (non-traceable) KP-ABE
(e.g. [10,14]) with the exception that in our ‘functional’ definition, we explicitly assign and identify
users using unique indices, and let K be the number of users in a KP-ABE system. Then we
introduce the fully collusion-resistant traceability definition against attributes-specific decryption
blackbox, which reflects most practical applications.

2.1 KP-ABE

Before defining KP-ABE system, we first provide some background about access policy in the
context of KP-ABE.

Definition 1. (Access Structure) [2] Let U = {a1, a2, . . . , an} be a set of attributes. A collection
A ⊆ 2U is monotone if ∀B,C : B ∈ A and B ⊆ C imply C ∈ A. An access structure (resp.,
monotone access structure) is a collection (resp., monotone collection) A of non-empty subsets of
U , i.e., A ⊆ 2U \ {∅}. The sets in A are called authorized sets, and the sets not in A are called
unauthorized sets. Also, for an attribute set S ⊆ U , if S ∈ A then we say S satisfies the access
structure A, otherwise we say S does not satisfy A.

Unless stated otherwise, by an access structure we mean a monotone access structure for the
rest of this paper.

For simplicity, for a positive integer, for example n, we use the notation [n] to denote the set
{1, 2, . . . , n}. A Key-Policy ABE (KP-ABE) scheme consists of the following four algorithms:

Setup(λ,U ,K) → (PP,MSK). The algorithm takes as input a security parameter λ ∈ N, the
attribute universe (i.e., the set of attributes) U , and the number of users K in the system, it
outputs a public parameter PP and a master secret key MSK.

KeyGen(PP,MSK,A) → SKk,A. The algorithm takes as input PP, MSK, and an access structure
A, and outputs a private key SKk,A, which is assigned and identified by a unique index k ∈ [K].
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Encrypt(PP,M, S) → CTS . The algorithm takes as input PP, a message M , and an attribute set
S ⊆ U , and outputs a ciphertext CTS such that only users whose access structures are satisfied
by S can decrypt CTS and recover M . S is implicitly included in CTS .

Decrypt(PP, CTS , SKk,A)→M or ⊥. The algorithm takes as input PP, a ciphertext CTS associated
with an attribute set S, and a private key SKk,A. If S satisfies A, the algorithm outputs message
M , otherwise it outputs ⊥ indicating the failure of decryption.

The security of the above KP-ABE scheme is defined using the following message-hiding game,
which is a typical semantic security game and is based on that for conventional KP-ABE [10,14]
security against adaptive adversaries, except that each key is explicitly identified by a unique index.

GameMH. The message-hiding game is defined between a challenger and an adversary A as
follows:

Setup. The challenger runs Setup(λ,U ,K) and gives the public parameter PP to A.
Phase 1. For i = 1 to Q1, A adaptively submits (index, access structure) pair (ki,Aki) to the

challenger. The challenger responds with SKki,Aki .
Challenge. A submits two equal-length messages M0,M1 and an attribute set S∗. The challenger

flips a random coin b ∈ {0, 1}, and and sends CTS∗ ← Encrypt(PP,Mb, S
∗) to A.

Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, access structure) pair (ki,Aki) to
the challenger. The challenger responds with SKki,Aki .

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that S∗ does not satisfy any of the queried access
structures Ak1 , . . . ,AkQ . The advantage of A is defined as MHAdvA = |Pr[b′ = b]− 1

2 |.
Definition 2. A K-user KP-ABE scheme is secure if for all probabilistic polynomial time (PPT)
adversaries A the advantage MHAdvA is a negligible function of λ.

It is worth noticing that: (1) although the index of each user private key is assigned by the KeyGen
algorithm, to capture the security that an attacker can adaptively choose keys to corrupt, the above
security model allows the adversary to specify the index when he makes a key query, i.e., for i = 1 to Q,
the adversary submits (index, access structure) pair (ki,Aki) to query a private key for access structure
Aki , and the challenger will assign ki to be the index of the private key, where Q ≤ K, ki ∈ [K], and
ki 6= kj ∀1 ≤ i 6= j ≤ Q (this is to guarantee that each user/key can be uniquely identified by an
index); and (2) for ki 6= kj we do not require Aki 6= Akj , i.e., different users/keys may have the same
access strcuture. We remark that these two points apply to the rest of the paper.

Remark: Compared with a conventional (non-traceable) KP-ABE [10,14], the above definition has
the same Encrypt and Decrypt functionality, and almost the same Setup and KeyGen with only
slight differences: predefining the number of users K in Setup and assigning each user a unique
index k ∈ [K]. Presetting the number of users is indeed a tradeoff but is also a necessary cost for
achieving blackbox traceability. We stress that in practice, this should not incur much concern, and
all the existing blackbox traceable systems (e.g. [4,5,8,25,13,19]) have the same setting. Also being
consistent with the conventional definition of KP-ABE, the user indices are not used in normal
encryption (i.e. the encryptors do not need to know the indices of any users in order to encrypt)
and different users (with different indices) may have the same access policy. In summary, a secure
KP-ABE system defined as above has all the appealing properties that a conventional KP-ABE
system [10,14] has, that is, fully collusion-resistant security, fine-grained access control on encrypted
data, and efficient one-to-many encryption. The unique index of each user/private key is to uniquely
identify the users and allow the traceability.
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2.2 KP-ABE Traceability

An attributes-specific decryption blackbox D in the setting of KP-ABE is viewed as a probabilistic
circuit that can decrypt ciphertexts generated under some specific attribute set. In particular, an
attributes-specific decryption blackbox D is described with an attribute set SD and a non-negligible
probability value ε (i.e. ε = 1/f(λ) for some polynomial f), and this blackbox D can decrypt the
ciphertexts generated under SD with probability at least ε. Such an attributes-specific decryption
blackbox reflects most practical scenarios. In particular, once a decryption blackbox is found being
able to decrypt some ciphertext with non-negligible probability (regardless of how this is found, for
example, an explicit description of the blackbox’s decryption ability is given, or the law enforcement
agency finds some clue), we can regard it as an attributes-specific decryption blackbox with the
corresponding attribute set (which is associated to the ciphertext).4 And for a decryption black-
box, if multiple attribute sets are found that corresponding ciphertexts can be decrypted by this
blackbox with non-negligible probability, we can regard the blackbox as multiple attributes-specific
decryption blackbox, each with a different attribute set.

We now define a tracing algorithm against an attributes-specific decryption blackbox as follows.

TraceD(PP, SD, ε)→ KT ⊆ [K]. This is an oracle algorithm that interacts with an attributes-specific
decryption blackbox D. By given the public parameter PP, an attribute set SD, and a probability
value ε, the algorithm runs in time polynomial in λ and 1/ε, and outputs an index set KT ⊆ [K]
which identifies the set of malicious users. Note that ε has to be polynomially related to λ, i.e.
ε = 1/f(λ) for some polynomial f .

The following tracing game captures the notion of fully collusion-resistant traceability
against attributes-specific decryption blackbox. In the game, the adversary targets to build a de-
cryption blackbox D that can decrypt ciphertexts generated under some attribute set SD with
non-negligible probability. The tracing algorithm, on the other side, is designed to extract the in-
dex of at least one of the malicious users whose decryption keys have been used for constructing
D.

GameTR. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(λ,U ,K) and gives the public parameter PP to A.
Key Query. For i = 1 to Q, A adaptively submits (index, access structure) pair (ki,Aki). The

challenger responds with SKki,Aki .
Decryption Blackbox Generation. A outputs a decryption blackbox D associated with an

attribute set SD and a non-negligible probability value ε.
Tracing. The challenger runs TraceD(PP, SD, ε) to obtain an index set KT ⊆ [K].

Let KD = {ki|1 ≤ i ≤ Q} be the index set of keys corrupted by the adversary. We say that the
adversary A wins the game if the following conditions hold:

1. Pr[D(Encrypt(PP,M, SD)) = M ] ≥ ε, where the probability is taken over the random choices of
message M and the random coins of D. A decryption blackbox satisfying this condition is said
to be a useful attributes-specific decryption blackbox.

2. KT = ∅, or KT 6⊆ KD, or (SD does not satisfy Akt ∀kt ∈ KT ).

4 Note that in the setting of predicate encryption [12], which can informally be regarded as a KP-ABE system with
attribute-hiding property, the decryption blackbox [13] is also modeled similarly, i.e., the tracing algorithm takes
as input an attribute I and a decryption blackbox D that decrypts ciphertexts associated with the attribute I.
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We denote by TRAdvA the probability that adversary A wins this game.

Remark: For a useful attributes-specific decryption blackbox D, the traced KT must satisfy (KT 6=
∅) ∧ (KT ⊆ KD) ∧ (∃kt ∈ KT s.t. SD satisfies Akt) for traceabililty. (1) (KT 6= ∅) ∧ (KT ⊆ KD)
captures the preliminary traceability that the tracing algorithm can extract at least one ma-
licious user and the coalition of malicious users cannot frame any innocent user. (2) (∃kt ∈
KT s.t. SD satisfies Akt) captures strong traceability that the tracing algorithm can extract at
least one malicious user whose private key enables D to have the decryption ability of decrypting
ciphertexts generated under SD. We refer to [13,19] on why strong traceability is desirable.

Definition 3. A K-user KP-ABE scheme is traceable if for all PPT adversaries A the advantage
TRAdvA is negligible in λ.

We say that a K-user KP-ABE scheme is selectively traceable if we add an Init stage before Setup
where the adversary commits to the attribute set SD.

We emphasise that that we are modelling public traceability, namely, the Trace algorithm does
not need any secrets and anyone can perform the tracing from the public parameters only. Also
note that we are modelling a stateless (resettable) decryption blackbox – the decryption blackbox
is just an oracle and maintains no state between activations.

3 Augmented KP-ABE

Following the routes of [19] where CP-ABE’s traceability is discussed, instead of constructing a
traceable KP-ABE directly, we define a simpler primitive called Augmented KP-ABE (or AugKP-
ABE for short) and its security notions (message-hiding and index-hiding) first, then we show
that an AugKP-ABE with message-hiding and index-hiding properties can be transformed to a
secure KP-ABE with traceability. In Sec. 4, we propose a AugKP-ABE construction and prove its
message-hiding and index-hiding properties in the standard model.

3.1 Definitions of Augmented KP-ABE

An Augmented KP-ABE (AugKP-ABE) has four algorithms: SetupA, KeyGenA, EncryptA, and
DecryptA. The setup algorithm SetupA and key generation algorithm KeyGenA are the same as that
of KP-ABE in Sec. 2.1. The encryption algorithm EncryptA takes one more parameter k̄ ∈ [K + 1]
as input, and is defined as follows.

EncryptA(PP,M, S, k̄) → CTS . The algorithm takes as input PP, a message M , an attribute set
S ⊆ U , and an index k̄ ∈ [K + 1], and outputs a ciphertext CTS . S is included in CTS, but
the value of k̄ is not.

The decryption algorithm DecryptA is also defined in the same as that of the KP-ABE in Sec. 2.1.
However, the correctness definition is changed to the following.

Correctness. for all access structures A ⊆ 2U \ {∅}, k ∈ [K], S ⊆ U , k̄ ∈ [K+ 1], and messages M :
if (PP,MSK) ← SetupA(λ,U ,K), SKk,A ← KeyGenA(PP,MSK,A), CTS ← EncryptA(PP,M, S, k̄),
and (S satisfies A) ∧ (k ≥ k̄), we have DecryptA(PP, CT,SKk,A) = M .

Remark: Note that during decryption, as long as S satisfies A, the decryption algorithm outputs
a message, but only when k ≥ k̄, the output message is equal to the correct message, that is, if
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and only if (S satisfies A) ∧ (k ≥ k̄), can SKk,A correctly decrypt a ciphertext under (S, k̄). If we
always set k̄ = 1, the functions of AugKP-ABE are identical to that of KP-ABE. In fact, the idea
behind transforming an AugKP-ABE to a blackbox traceable KP-ABE, that we will show shortly,
is to construct an AugKP-ABE with index-hiding property, and then always sets k̄ = 1 in normal
encryption, while using k̄ ∈ [N + 1] to generate ciphertexts for tracing.

Security. We define the security of AugKP-ABE in the following three games.

GameAMH1
. The first game is a message-hiding game, denoted by GameAMH1

, is similar to GameMH

except that the Challenge phase is

Challenge. A submits two equal-length messages M0,M1 and an attribute set S∗. The challenger
flips a random coin b ∈ {0, 1}, and sends CTS∗ ← EncryptA(PP,Mb, S

∗, 1) to A.

A wins the game if b′ = b under the restriction that S∗ cannot satisfy any of the queried access
structures Ak1 , . . . ,AkQ . The advantage of A is defined as MHA

1 AdvA = |Pr[b′ = b]− 1
2 |.

GameAMHK+1
. The second game is also a message-hiding game, denoted by GameAMHK+1

, is similar to
GameMH except that the Challenge phase is

Challenge. A submits two equal-length messages M0,M1 and an attribute set S∗. The challenger
flips a random coin b ∈ {0, 1}, and sends CTS∗ ← EncryptA(PP,Mb, S

∗,K + 1) to A.

A wins the game if b′ = b. The advantage of A is defined as MHA
1 AdvA = |Pr[b′ = b]− 1

2 |.

Definition 4. A K-user Augmented KP-ABE scheme is message-hiding if for all PPT adversaries
A the advantages MHA

1 AdvA and MHA
K+1AdvA are negligible functions of λ.

GameAIH. The third game, called index hiding game, requires that for any attribute set S∗ ⊆ U ,
no adversary can distinguish between an encryption using (S∗, k̄) and one using (S∗, k̄+ 1) without
a private key SKk̄,Ak̄ where S∗ satisfies Ak̄. The game takes as input a parameter k̄ ∈ [K] which is
given to both the challenger and the adversary A. The game proceeds as follows:

Setup. The challenger runs SetupA(λ,U ,K) and sends PP to A.

Key Query. For i = 1 to Q, A adaptively submits (index, access structure) pair (ki,Aki) to the
challenger. The challenger responds with SKki,Aki .

Challenge. A submits a message M and an attribute set S∗. The challenger flips a random coin
b ∈ {0, 1}, and sends CTS∗ ← EncryptA(PP,M, S∗, k̄ + b) to A.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that none of the queried pairs {(ki,Aki)} can satisfy
(ki = k̄) ∧ (S∗ satisfies Aki). The advantage of A is defined as IHAAdvA[k̄] = |Pr[b′ = b]− 1

2 |.

Definition 5. A K-user Augmented KP-ABE scheme is index-hiding if for all PPT adversaries A
the advantages IHAAdvA[k̄] for k̄ = 1, . . . ,K are negligible functions of λ.

We say that an Augmented KP-ABE scheme is selectively index-hiding if we add an Init stage
before Setup where the adversary commits to the challenge attribute set S∗.
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3.2 Reducing Traceable KP-ABE to Augmented KP-ABE

Let ΣA = (SetupA,KeyGenA, EncryptA,DecryptA) be an AugKP-ABE, define Encrypt(PP,M,A) =
EncryptA(PP,M,A, 1), then Σ = (SetupA,KeyGenA,Encrypt,DecryptA) is a KP-ABE derived from
ΣA.

Theorem 1. If ΣA is message-hiding in GameAMH1
, then Σ is secure.

Proof. Note that Σ is a special case of ΣA where the encryption algorithm always sets k̄ = 1. Hence,
GameMH for Σ is identical to GameAMH1

for ΣA, which implies that MHAdvA for Σ in GameMH is

equal to MHA
1 AdvA for ΣA in GameAMH1

, i.e., if ΣA is message-hiding in GameAMH1
, then Σ is secure.

Now we construct a tracing algorithm Trace for Σ and show that if ΣA is message-hiding in
GameAMHK+1

and (selectively) index-hiding, then Σ (equipped with Trace) is (selectively) traceable
against attributes-specific decryption blackbox.

TraceD(PP, SD, ε)→ KT ⊆ [K]: Given an attribites-specific decryption blackbox D associated with
an attribute set SD and probability ε > 0, the tracing algorithm works as follows: 5

1. For k = 1 to K + 1, do the following:
(a) The algorithm repeats the following 8λ(K/ε)2 times:

i. Sample M from the message space at random.
ii. Let CTSD ← EncryptA(PP,M, SD, k).
iii. Query oracle D on input CTSD , and compare the output of D with M .

(b) Let p̂k be the fraction of times that D decrypted the ciphertexts correctly.
2. Let KT be the set of all k ∈ [K] for which p̂k − p̂k+1 ≥ ε/(4K). Then output KT as the index

set of the private decryption keys of malicious users.

Theorem 2. If ΣA is message-hiding in GameAMHK+1
and index-hiding (resp. selectively index-

hiding), then Σ is traceable (resp. selectively traceable).

Proof. In the proof sketch below, we show that if the attributes-specific decryption blackbox output
by the adversary is a useful one then the traced KT will satisfy (KT 6= ∅) ∧ (KT ⊆ KD) ∧ (∃kt ∈
KT s.t. SD satisfies Akt) with overwhelming probability, which implies that the adversary can win
the game GameTR only with negligible probability, i.e., TRAdvA is negligible. The selective case is
similar.

Let D be the attributes-specific decryption blackbox output by the adversary, and SD be the
attribute set describing D. Define

pk̄ = Pr[D(EncryptA(PP,M, SD, k̄)) = M ],

where the probability is taken over the random choice of message M and the random coins of D.
We have that p1 ≥ ε and pK+1 is negligible (for simplicity let pK+1 = 0). The former follows from
the fact that D is useful, and the latter is because ΣA is message-hiding in GameAMHK+1

. Then there
must exist some k ∈ [K] such that pk − pk+1 ≥ ε/(2K). By the Chernoff bound it follows that with
overwhelming probability, p̂k − p̂k+1 ≥ ε/(4K). Hence, we have KT 6= ∅.

For any k ∈ KT (i.e., p̂k−p̂k+1 ≥ ε
4K), we know, by Chernoff, that with overwhelming probability

pk − pk+1 ≥ ε/(8K). Clearly (k ∈ KD) ∧ (SD satisfies Ak) since otherwise, D can be directly used
to win the index-hiding game for ΣA. Hence, we have (KT ⊆ KD) ∧ (SD satisfies Ak ∀k ∈ KT ).

5 The tracing algorithm uses a technique based on that in broadcast encryption by [4,5,8].
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4 An Efficient Augmented KP-ABE Scheme

We now propose an AugKP-ABE scheme which can be considered as combining the KP-ABE
scheme of [14] and the traitor tracing scheme of [8]. We stress that this work is not a trivial
combination of the two schemes, which may result in insecure or inefficient schemes, as discussed
in [19]. The proposed AugKP-ABE scheme is highly expressive in supporting any monotonic access
structures, and is efficient with ciphertext size O(

√
K + |S|), where K is the number of users in

the system and S is the attribute set of the ciphertext. We prove that the scheme is adaptively
message-hiding and selectively index-hiding in the standard model. Combining this AugKP-ABE
scheme with the result in Sec. 3.2, we obtain a fully secure and highly expressive KP-ABE scheme
which is simultaneously selectively traceable, and for a fully collusion-resistant blackbox traceable
system the resulting KP-ABE scheme achieves the most efficient level to date, with overhead linear
in
√
K.

4.1 Preliminaries

Linear Secret-Sharing Schemes. As shown in [2], any monotonic access structure can be realized
by a linear secret sharing scheme.

Definition 6. (Linear Secret-Sharing Schemes (LSSS)) [26] A secret sharing scheme Π over
attribute universe U is called linear (over Zp) if

1. The shares for each attribute form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π. The matrix A has l rows and

n columns. For i = 1, . . . , l, the ith row Ai of A is labeled by an attribute ρ(i)(ρ is a function
from {1, . . . , l} to U). When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp
is the secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of
l shares of the secret s according to Π. The share λi = (Av)i, i.e., the inner product Ai · v,
belongs to attribute ρ(i).

Also shown in [2], every LSSS as defined above enjoys the linear reconstruction property, which is
defined as follows: Suppose that Π is an LSSS for access structure A. Let S ∈ A be an authorized
set, and I ⊂ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}. There exist constants {ωi ∈ Zp}i∈I
such that if {λi} are valid shares of a secret s according to Π,

∑
i∈I ωiλi = s. Furthermore, these

constants {ωi} can be found in time polynomial in the size of the share-generating matrix A. For
any unauthorized set, no such constants exist. In this paper, as of previous work, we use an LSSS
matrix (A, ρ) to express an access structure associated to a private decryption key.

Composite Order Bilinear Groups [3]. Let G be a group generator algorithm, which takes a
security parameter λ and outputs (p1, p2, p3,G,GT , e) where p1, p2, p3 are distinct primes, G and
GT are cyclic groups of order N = p1p2p3, and e : G×G→ GT is a map such that: (1) (Bilinear)
∀g, h ∈ G, a, b ∈ ZN , e(ga, hb) = e(g, h)ab, (2) (Non-Degenerate) ∃g ∈ G such that e(g, g) has order
N in GT . Assume that group operations in G and GT as well as the bilinear map e are computable
in polynomial time with respect to λ. Let Gp1 , Gp2 and Gp3 be the subgroups of order p1, p2 and
p3 in G respectively. These subgroups are “orthogonal” to each other under the bilinear map e: if
hi ∈ Gpi and hj ∈ Gpj for i 6= j, e(hi, hj) = 1 (the identity element in GT ).

Complexity Assumptions. The message-hiding property of our AugKP-ABE scheme will be
based on three assumptions (Assumption 1, 2 and 3 in [15]) that are used by [15,14] to achieve full
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security of their ABE schemes, and the index-hiding property will be based on two assumptions
(Decision 3-Party Diffie-Hellman Assumption and the Decisional Linear Assumption) that are used
by [8] to achieve traceability in the setting of broadcast encryption. We refer to [15,8] for the details
of these assumptions.

Notations. Suppose the number of users K in the system equals m2 for some m.6 We arrange
the users in an m ×m matrix and uniquely assign a tuple (i, j) where 1 ≤ i, j ≤ m, to each user.
A user at position (i, j) of the matrix has index k = (i − 1) ∗ m + j. For simplicity, we directly
use (i, j) as the index where (i, j) ≥ (̄i, j̄) means that ((i > ī) ∨ (i = ī ∧ j ≥ j̄)). The use of
pairwise notation (i, j) is purely a notational convenience, as k = (i− 1) ∗m+ j defines a bijection
between {(i, j)|1 ≤ i, j ≤ m} and [K]. For a given vector v = (v1, . . . , vd), by gv we mean the vector
(gv1 , . . . , gvd). Furthermore, for gv = (gv1 , . . . , gvd) and gw = (gw1 , . . . , gwd), by gv · gw we mean
the vector (gv1+w1 , . . . , gvd+wd), i.e. gv · gw = gv+w, and by ed(g

v, gw) we mean
∏d
k=1 e(g

vk , gwk),

i.e. ed(g
v, gw) =

∏d
k=1 e(g

vk , gwk) = e(g, g)(v·w) where (v · w) is the inner product of v and w.
Given a bilinear group order N , one can randomly choose rx, ry, rz ∈ ZN , and set χ1 = (rx, 0, rz),
χ2 = (0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Let span{χ1,χ2} be the subspace spanned
by χ1 and χ2, i.e. span{χ1,χ2} = {ν1χ1 + ν2χ2|ν1, ν2 ∈ ZN}. We can see that χ3 is orthogonal
to the subspace span{χ1,χ2} and Z3

N = span{χ1,χ2,χ3} = {ν1χ1 + ν2χ2 + ν3χ3|ν1, ν2, ν3 ∈ ZN}.
For any v ∈ span{χ1,χ2}, we have (χ3 · v) = 0, and for random v ∈ Z3

N , (χ3 · v) 6= 0 happens
with overwhelming probability.

4.2 AugKP-ABE Construction

SetupA(λ,U ,K = m2) → (PP,MSK). Let G be a bilinear group of order N = p1p2p3 (3 distinct
primes, whose size is determined by λ), Gpi the subgroup of order pi in G (for i = 1, 2, 3),
and g, f ∈ Gp1 , g3 ∈ Gp3 the generators of corresponding subgroups. The algorithm randomly
chooses exponents α ∈ ZN , {αi, ri, zi ∈ ZN}i∈[m], {cj ∈ ZN}j∈[m], {ax ∈ ZN}x∈U . The public
parameter PP includes the description of the group and the following elements:(
g, f, E = e(g, g)α, {Ei = e(g, g)αi , Gi = gri , Zi = gzi}i∈[m], {Hj = gcj}j∈[m], {Ux = gax}x∈U

)
.

The master secret key is set to MSK = (α, α1, . . . , αm, r1, . . . , rm, c1, . . . , cm, g3 ). In addition,
a counter ctr = 0 is included in MSK.

KeyGenA(PP,MSK, (A, ρ)) → SK(i,j),(A,ρ). A is an l × n LSSS matrix and ρ maps each row Ak
of A to an attribute ρ(k) ∈ U . It is required that ρ would not map two different rows to the
same attribute7. The algorithm first sets ctr = ctr + 1 and computes the corresponding index
in the form of (i, j) where 1 ≤ i, j ≤ m and (i − 1) ∗m + j = ctr. Then it randomly chooses
u = (σi,j , u2, . . . , un) ∈ ZnN , w2, . . . , wn ∈ ZN , and {ξk ∈ ZN , Rk,1, Rk,2 ∈ Gp3}k∈[l]. Let w =
(α,w2, . . . , wn), the algorithms outputs a private key SK(i,j),(A,ρ) =

(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j ,

{Ki,j,k,1, Ki,j,k,2}k∈[l]

)
where

Ki,j = gαigricjfσi,j , K ′i,j = gσi,j , K ′′i,j = Z
σi,j
i ,

6 If the number of users is not a square, we add some “dummy” users to pad to the next square.
7 This restriction is inherited from the underlying KP-ABE scheme [14], and can be removed with the techniques

in [14] similarly, with some loss of efficiency. The similar restriction in CP-ABE has been efficiently eliminated
recently by Lewko and Waters in [16], but fully secure KP-ABE scheme without this restriction is not proposed
yet.
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{Ki,j,k,1 = f (Ak·u)g(Ak·w)U ξkρ(k)Rk,1, Ki,j,k,2 = gξkRk,2}k∈[l].

EncryptA(PP,M, S, (̄i, j̄))→ CTS . The algorithm randomly chooses

π, κ, τ, s1, . . . , sm, t1, . . . , tm ∈ ZN ,
vc, w1, . . . ,wm ∈ Z3

N .

In addition, the algorithm randomly chooses rx, ry, rz ∈ ZN , and sets χ1 = (rx, 0, rz), χ2 =
(0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Then it randomly chooses

vi ∈ Z3
N ∀i ∈ {1, . . . , ī},

vi ∈ span{χ1,χ2} ∀i ∈ {̄i+ 1, . . . ,m},

and creates the ciphertext 〈S, (Ri,R
′
i, Qi, Q

′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, P, {Px}x∈S〉 as follows:

1. For each i ∈ [m]:
– if i < ī: it randomly chooses ŝi ∈ ZN , and sets

Ri = gvi , R′i = gκvi , Qi = gsi , Q′i = fsiZtii f
π, Q′′i = gti , Ti = E ŝii .

– if i ≥ ī: it sets

Ri = Gsivii , R′i = Gκsivii ,

Qi = gτsi(vi·vc), Q′i = f τsi(vi·vc)Ztii f
π, Q′′i = gti , Ti = M · Eτsi(vi·vc)i · Eπ.

2. For each j ∈ [m]:

– if j < j̄: it randomly chooses µj ∈ ZN , and sets Cj = H
τ(vc+µjχ3)
j · gκwj , C ′j = gwj .

– if j ≥ j̄: it sets Cj = Hτvc
j · gκwj , C ′j = gwj .

3. It sets P = gπ, {Px = Uπx }x∈S .
DecryptA(PP, CTS , SK(i,j),(A,ρ)) → M or ⊥. For ciphertext CTS = 〈S, (Ri,R

′
i, Qi, Q

′
i, Q

′′
i , Ti)

m
i=1,

(Cj ,C
′
j)
m
j=1, P, {Px}x∈S〉 and secret decryption key SK(i,j),(A,ρ) =

(
(i, j), (A, ρ), Ki,j ,K

′
i,j , K

′′
i,j ,

{Ki,j,k,1, Ki,j,k,2}k∈[l]

)
, if S does not satisfy (A, ρ), the algorithm outputs ⊥, otherwise it

1. computes constants {ωk ∈ ZN} such that
∑

ρ(k)∈S ωkAk = (1, 0, . . . , 0), then computes

DP =
∏

ρ(k)∈S

( e(Ki,j,k,1, P )

e(Ki,j,k,2, Pρ(k))

)ωk =
∏

ρ(k)∈S

(
e(f (Ak·u)g(Ak·w), gπ)

)ωk = e(f, g)πσi,je(g, g)απ;

2. computes

DI =
e(Ki,j , Qi) · e(K ′′i,j , Q′′i )

e(K ′i,j , Q
′
i)

·
e3(R′i,C

′
j)

e3(Ri,Cj)
.

3. computes M ′ = Ti/(DP ·DI) as the output message.

Correctness. Assume the message is M and the encryption index is (̄i, j̄), Appendix A shows that

DI =

{
E
τsi(vi·vc)
i /e(g, f)πσi,j , : (i > ī) or (i = ī ∧ j ≥ j̄)

E
τsi(vi·vc)
i /

(
e(g, f)πσi,je(g, g)risicjτµj(vi·χ3)

)
, : (i = ī ∧ j < j̄).

Thus, we have (1) if (i > ī) ∨ (i = ī ∧ j ≥ j̄), then M ′ = M ; (2) if i = ī ∧ j < j̄, then M ′ =
M · e(g, g)τsiricjµj(vi·χ3); (3) if i < ī, then M ′ has no relation with M .
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4.3 AugKP-ABE Security

The following Theorem 3 and 4 show that our AugKP-ABE construction in Sec. 4.2 is message-
hiding, and Theorem 5 shows that our construction is selectively index-hiding.

Theorem 3. Suppose that Assumptions 1, 2, and 3 in [15] hold. Then no PPT adversary can win
GameAMH1

with non-negligible advantage.

Proof. The structure of the KP-ABE portion of our AugKP-ABE is similar to that of the KP-
ABE in [14], the proof of Theorem 3 is also similar to that of [14]. Here we prove the theorem by
reducing the message-hiding property of our AugKP-ABE scheme in GameAMH1

to the security of
the KP-ABE in [14]. The proof is given in Appendix B.1.

Theorem 4. No PPT adversary can win GameAMHK+1
with non-negligible advantage.

Proof. The argument for the message-hiding property in GameAMHK+1
is very straightforward since

an encryption to index K+1 = (m+1, 1) contains no information about the message. The simulator
simply runs actual SetupA and KeyGenA algorithms and encrypts the message Mb by the challenge
attribute set S∗ and index (m+ 1, 1). Since for all i = 1 to m, the values of Ti = e(g, g)ŝi contains
no information about the message, the bit b is perfectly hidden and MHA

K+1AdvA = 0.

Theorem 5. Suppose that the Decision 3-Party Diffie-Hellman Assumption and the Decisional
Linear Assumption hold (referring to [8] for the details of the two assumptions). Then no PPT
adversary can selectively win GameAIH with non-negligible advantage.

Proof. Theorem 5 follows Lemma 1 and Lemma 2 below.

Lemma 1. If the Decision 3-Party Diffie-Hellman Assumption holds, then for j̄ < m no PPT
adversary can selectively distinguish between an encryption to (̄i, j̄) and an encryption to (̄i, j̄ + 1)
in GameAIH with non-negligible advantage.

Proof. The proof of this lemma explores the techniques of combining a traitor tracing scheme
and a KP-ABE scheme. When the adversary queries a private key with the index (̄i, j̄), the game
restriction implies that the corresponding access structure must not be satisfied by the challenge
attribute set S∗. In other words, we have to use a restriction on “attributes and access structure” to
prove the index-hiding property on “index”, which are very uncorrelated structures. The ciphertext
components Ztii (in Q′i) and Q′′i = gti works like a “transmission gear” to intertwine the two
structures, securely combining the tracing part (f τsi(vi·vc) for i ≥ ī and fsi for i < ī) and the
KP-ABE part (fπ) together. The proof is given in Appendix B.2.

Lemma 2. Suppose that the Decision 3-Party Diffie-Hellman Assumption and the Decisional Lin-
ear Assumption hold. Then for 1 ≤ ī ≤ m no PPT adversary can selectively distinguish between an
encryption to (̄i,m) and one to (̄i+ 1, 1) in GameAIH with non-negligible advantage.

Proof. Similar to the proof of Lemma 6.3 in [8], to prove this lemma we define the following hybrid
experiments: H1: Encrypt to (̄i, j̄ = m); H2: Encrypt to (̄i, j̄ = m+1); and H3: Encrypt to (̄i+1, 1).
Lemma 2 follows Claim 1 and Claim 2 below.

Claim 1. If the Decision 3-Party Diffie-Hellman Assumption holds, then no PPT adversary can
selectively distinguish between experiment H1 and H2 with non-negligible advantage.
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Proof. The proof is identical to that of Lemma 1.

Claim 2. Suppose that the Decision 3-Party Diffie-Hellman Assumption and the Decisional Linear
Assumption hold. Then no PPT adversary can distinguish between experiments H2 and H3 with
non-negligible advantage.

Proof. The indistinguishability of H2 and H3 can be proven using the similar proof to that of
Lemma 6.3 in [8], which was used to prove the indistinguishability of similar hybrid experiments
for their Augmented Broadcast Encryption (AugBE) scheme. We will prove Claim 2 by a reduction
between our AugKP-ABE scheme and the AugBE scheme in [8, Sec.5.1]. The proof is given in
Appendix B.3.

5 Conclusion

We proposed an expressive and efficient KP-ABE scheme that simultaneously supports fully collusion-
resistant (and public) blackbox traceability and high expressiveness (i.e. supporting any monotonic
access structures). The scheme is proven fully secure in the standard model and selectively traceable
in the standard model. Compared with the most efficient conventional (non-traceable) KP-ABE
schemes in the literature with high expressiveness and full security, our scheme adds fully collusion-
resistant blackbox traceability with the price of adding only O(

√
K) elements in the ciphertext

and public key. Instead of directly building a traceable KP-ABE scheme, we constructed a sim-
pler primitive called Augmented KP-ABE, and showed that an Augmented KP-ABE scheme with
message-hiding and index-hiding properties is sufficient for constructing a secure KP-ABE scheme
with fully collusion-resistant blackbox traceability.
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A Correctness of Our AugKP-ABE Construction

Correctness. Assume the encryption index is (̄i, j̄). Note that for i ≥ ī we have

e(Ki,j , Qi) · e(K ′′i,j , Q′′i )
e(K ′i,j , Q

′
i)

=
e(gαigricjfσi,j , gτsi(vi·vc))e(Z

σi,j
i , gti)

e(gσi,j , f τsi(vi·vc)Ztii f
π)

=
e(gαi , gτsi(vi·vc))e(gricj , gτsi(vi·vc))

e(gσi,j , fπ)
,

– if i ≥ ī ∧ j ≥ j̄: e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(G
κsivi
i ,gwj )

e3(G
sivi
i ,Hτvc

j ·gκwj )
= 1

e3(grisivi ,gcjτvc )
= 1

e(g,g)risicjτ(vi·vc)
,

– if i > ī ∧ j < j̄: since vi ∈ span{χ1,χ2}, we have (vi · χ3) = 0. Then

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , H
τ(vc+µjχ3)
j · gκwj )

=
1

e3(grisivi , gcjτ(vc+µjχ3))
=

1

e(g, g)risicjτ(vi·vc)
,

– if i = ī ∧ j < j̄: since vi is randomly chosen from Z3
N (resp. Z3

p), we have that (vi · χ3) 6= 0
happens with overwhelming probability. Then

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , H
τ(vc+µjχ3)
j · gκwj )

=
1

e3(grisivi , gcjτ(vc+µjχ3))

=
1

e(g, g)risicjτ(vi·vc)e(g, g)risicjτµj(vi·χ3)
.
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B Proofs

B.1 Proof of Theorem 3

Proof. The Theorem 33 of [14] states that If Assumptions 1, 2, and 3 in [15] hold, then the KP-
ABE scheme in [14] is secure. To prove the Theorem 3, we do not build a direct reduction to
the underlying assumptions, instead, we build a reduction to attack the KP-ABE scheme in [14].
In particular, suppose there is a PPT adversary A that can break our AugKP-ABE scheme ΣA

in GameAMH1
with non-negligible advantage MHA

1 AdvA, we construct a PPT algorithm B to break
the KP-ABE scheme (denoted by Σkpabe) in [14] with advantage AdvBΣkpabe, which equals to
MHA

1 AdvA.
The game of B attacking Σkpabe is played in the bilinear group G of order N = p1p2p3. Let Gp1

and Gp3 be the subgroups of order p1 and p3 in G respectively.

Setup. B receives the public parameter PPkpabe = (N, g, E = e(g, g)α, {Ux = gax}x∈U ) from the
challenger, where g ∈ Gp1 is a generator of Gp1 , and α, ax(x ∈ U) ∈ ZN are random exponents.
B randomly chooses η ∈ ZN , {αi, ri, zi ∈ ZN}i∈[m], {cj ∈ ZN}j∈[m]. Then B gives A the
following public parameter PP:

g, f = gη, E, {Ei = e(g, g)αi , Gi = gri , Zi = gzi}i∈[m], {Hj = gcj}j∈[m], {Ux}x∈U .

Phase 1. A issues adaptive private key queries. To respond to a query for ((i, j), (A, ρ)), B submits
(A, ρ) to the challenger, and receives a decryption key

SKkpabe
(A,ρ) =

(
(A, ρ), {K̃k,1 = g(Ak·w)U ξkρ(k)Rk,1, K̃k,2 = gξkRk,2}lk=1

)
,

where w = (α,w2, . . . , wn) ∈ ZnN and {ξk ∈ ZN , Rk,1, Rk,2 ∈ Gp3}lk=1 are randomly chosen and
unknown to B.
B randomly chooses u = (σi,j , u2, · · ·un) ∈ ZnN , then gives A a private key SK(i,j),(A,ρ) =(
(i, j), (A, ρ), Ki,j , K

′
i,j , K

′′
i,j , {Ki,j,k,1,Ki,j,k,2}lk=1

)
where

Ki,j = gαigricjfσi,j , K ′i,j = gσi,j , K ′′i,j = Z
σi,j
i , {Ki,j,k,1 = f (Ak·u)K̃k,1, Ki,j,k,2 = K̃k,2}lk=1.

Challenge. A submits to B an attribute set S∗ and two equal-length messages M0,M1. B submits
(S∗,M0,M1) to the challenger. Note that S∗ satisfies the restriction on B in the KP-ABE security
game, i.e. none of the access structures that B submitted to the challenger in Phase 1 is satisfied
by S∗. B receives the challenge ciphertext in the form of

CT kpabe = 〈S∗, C̃ = Mb · Eπ, C̃0 = gπ, {C̃x = Uπx }x∈S∗〉,

where π ∈ ZN is randomly chosen and unknown to B.
B randomly chooses κ, τ, s1, . . . , sm, t1, . . . , tm ∈ ZN , vc, w1, . . . ,wm ∈ Z3

N . In addition, B
randomly chooses rx, ry, rz ∈ ZN , and sets χ1 = (rx, 0, rz), χ2 = (0, ry, rz), χ3 = χ1 × χ2 =
(−ryrz,−rxrz, rxry). Then it randomly chooses v1 ∈ Z3

N , vi ∈ span{χ1,χ2} ∀i ∈ {2, . . . ,m},
and creates the ciphertext 〈S, (Ri,R

′
i, Qi, Q

′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, P, {Px}x∈S〉 for (̄i =

1, j̄ = 1) as follows:

1. For each row i ∈ [m]: since ī = 1, it sets

Ri = Gsivii ,R′i = Gκsivii , Qi = gτsi(vi·vc), Q′i = f τsi(vi·vc)Ztii C̃
η
0 , Q

′′
i = gti , Ti = C̃ · Eτsi(vi·vc)i .
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2. For each column j ∈ [m]: since j̄ = 1, it sets Cj = Hτvc
j · gκwj , C ′j = gwj .

3. It sets P = C̃0, {Px = C̃x}x∈S∗ .
Phase 2. Same with Phase 1.
Guess. A gives B a b′. B gives b′ to the challenger.

Note that the distributions of the public parameter, private keys and challenge ciphertext that B
gives A are same as the real scheme, we have AdvBΣkpabe = MHA

1 AdvA.

B.2 Proof of Lemma 1

Proof. Suppose there exists a PPT adversary A that can selectively break the index-hiding game
with advantage ε. We build a PPT algorithm B to solve a Decision 3-Party Diffie-Hellman problem
instance as follows.
B receives a Decision 3-Party Diffie-Hellman problem instance from the challenger as (g,A =

ga, B = gb, C = gc, T ). The problem instance will be given in the subgroup Gp1 of prime order p1

in a composite order group G of order N = p1p2p3, i.e., g ∈ Gp1 , a, b, c ∈ Zp1 , B is given the factors
p1, p2, p3, and its goal is to determine whether T = gabc or a random element from Gp1

8.

Init. A gives B the challenge attribute set S∗ ⊆ U .
Setup. B chooses random exponents

η, α ∈ ZN , {αi ∈ ZN}i∈[m], {ri, z′i ∈ ZN}i∈[m]\{̄i}, {cj ∈ ZN}j∈[m]\{j̄}, r′ī, zī, c
′
j̄ ∈ ZN ,

{ax ∈ ZN}x∈S∗ , {a′x ∈ ZN}x∈U\S∗ .

B gives A the following public parameter PP:

g, f = Cη, E = e(g, g)α, {Ei = e(g, g)αi}i∈[m],

{Gi = gri , Zi = Cz
′
i}i∈[m]\{̄i}, {Hj = gcj}j∈[m]\{j̄}, Gī = Br′

ī , Zī = gzī , Hj̄ = C
c′
j̄ ,

{Ux = gax}x∈S∗ , {Ux = Ca
′
x}x∈U\S∗ .

Note that B implicitly chooses rī, zi(i ∈ [m] \ {̄i}), cj̄ , ax(x ∈ U \ S∗) ∈ ZN such that

br′ī ≡ rī mod p1, cz
′
i ≡ zi mod p1 ∀i ∈ [m] \ {̄i}, cc′j̄ ≡ cj̄ mod p1, ca

′
x ≡ ax mod p1 ∀x ∈ U \ S∗.

Key Query. To respond to a query from A for ((i, j), (A, ρ)) where A is an l × n matrix:
– If (i, j) 6= (̄i, j̄): B randomly chooses u = (σi,j , u2, . . . , un) ∈ ZnN , w2, . . . , wn ∈ ZN and {ξk ∈

ZN , Rk,1, Rk,2 ∈ Gp3}lk=1. Let w = (α,w2, . . . , wn), B creates the private key SK(i,j),(A,ρ)

=
(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j , {Ki,j,k,1,Ki,j,k,2}lk=1

)
as

Ki,j =


gαigricjfσi,j , : i 6= ī, j 6= j̄

gαiBr′
ī
cjfσi,j , : i = ī, j 6= j̄

gαiC
ric
′
j̄fσi,j , : i 6= ī, j = j̄.

K ′i,j = gσi,j , K ′′i,j = Z
σi,j
i ,

{Ki,j,k,1 = f (Ak·u)g(Ak·w)U ξkρ(k)Rk,1, Ki,j,k,2 = gξkRk,2}lk=1.

8 The situation is similar to that of the proof in [4,5] in the sense that the challenge is given in a subgroup of a
composite order group and the factors are given to the simulator. Actually, Lewko and Waters [16] use this case
explicitly as an assumption, i.e. the 3-Party Diffie-Hellman Assumption in a Subgroup.
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– If (i, j) = (̄i, j̄): B randomly chooses σ′
ī,j̄
, u′2, . . . , u

′
n, w2, . . . , wn ∈ ZN , {ξk ∈ ZN}k∈[l] s.t. ρ(k)∈S∗ ,

{ξ′k ∈ ZN}k∈[l] s.t. ρ(k)/∈S∗ , {Rk,1, Rk,2 ∈ Gp3}lk=1. Let u′ = (0, u′2, . . . , u
′
n),w = (α,w2, . . . , wn)

∈ ZnN . As (A, ρ) cannot be satisfied by S∗ (since (i, j) = (̄i, j̄)), B can efficiently find a vector
u′′ = (u′′1, u

′′
2, . . . , u

′′
n) ∈ ZnN such that u′′1 = 1 and Ak · u′′ = 0 for all k such that ρ(k) ∈ S∗.

Then implicitly setting σī,j̄ ∈ ZN , u ∈ ZnN , {ξk ∈ ZN}k∈[l] s.t. ρ(k)/∈S∗ as

σ′ī,j̄ − br
′
īc
′
j̄/η ≡ σī,j̄ mod p1, u = u′ + σī,j̄u

′′,

ξ′k + br′īc
′
j̄(Ak · u

′′)/a′ρ(k) ≡ ξk mod p1 ∀k ∈ [l] s.t. ρ(k) /∈ S∗,

B creates the private key SK(̄i,j̄),(A,ρ) =
(
(̄i, j̄), (A, ρ), Kī,j̄ ,K

′
ī,j̄
,K ′′

ī,j̄
, {Kī,j̄,k,1,Kī,j̄,k,2}lk=1

)
as:

Kī,j̄ = gαīf
σ′
ī,j̄ , K ′ī,j̄ = g

σ′
ī,j̄B

−r′
ī
c′
j̄
/η
, K ′′ī,j̄ = (g

σ′
ī,j̄B

−r′
ī
c′
j̄
/η

)zī ,

{Ki,j,k,1 = f (Ak·u′)g(Ak·w)U ξkρ(k)Rk,1, Ki,j,k,2 = gξkRk,2}ρ(k)∈S∗ ,

{Ki,j,k,1 = f
(Ak·u′)+σ′ī,j̄(Ak·u

′′)
g(Ak·w)U

ξ′k
ρ(k)Rk,1, Ki,j,k,2 = gξ

′
kB

r′
ī
c′
j̄
(Ak·u′′)/a′ρ(k)Rk,2}ρ(k)/∈S∗ .

Challenge. A submits a message M . B randomly chooses

π′, τ ′, s1, . . . , sī−1, s
′
ī, sī+1, . . . , sm, t

′
1, . . . , t

′
ī−1, t̄i, t

′
ī+1, . . . , t

′
m ∈ ZN ,

w1, . . . ,wj̄−1,w
′
j̄ , . . . ,w

′
m ∈ Z3

N .

B randomly chooses rx, ry, rz ∈ ZN , and sets χ1 = (rx, 0, rz),χ2 = (0, ry, rz),χ3 = χ1 × χ2 =
(−ryrz,−rxrz, rxry). Then B randomly chooses

vi ∈ Z3
N ∀i ∈ {1, . . . , ī},

vi ∈ span{χ1,χ2} ∀i ∈ {̄i+ 1, . . . ,m},
vc,p ∈ span{χ1,χ2}, vc,q = ν3χ3 ∈ span{χ3}.

B sets the value of π, κ, τ, sī, ti(i ∈ [m]\{̄i}) ∈ ZN , vc ∈ Z3
N , {wj ∈ Z3

N}mj=j̄ by implicitly setting

π′ − aτ ′s′ī(vī · vc,q) ≡ π mod p1, b ≡ κ mod p1, abτ ′ ≡ τ mod p1, s′ī/b ≡ sī mod p1,

t′i + ηaτ ′s′ī(vī · vc,q)/z
′
i ≡ ti mod p1 ∀i ∈ {1, . . . , ī− 1},

t′i − ηbτ ′si(vi · vc,p)/z′i + ηaτ ′s′ī(vī · vc,q)/z
′
i ≡ ti mod p1 ∀i ∈ {̄i+ 1, . . . ,m},

vc = a−1vc,p + vc,q,

w′j̄ − cc
′
j̄τ
′vc,p ≡ wj̄ mod p1,

w′j − acjτ ′vc,q ≡ wj mod p1 ∀j ∈ {j̄ + 1, . . . ,m}.

B creates the ciphertext 〈S∗, (Ri,R
′
i, Qi, Q

′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, P, {Px}x∈S∗〉 as follows:

1. For each i ∈ [m]:

– if i < ī: it randomly chooses ŝi ∈ ZN , then sets

Ri = gvi , R′i = Bvi , Qi = gsi , Q′i = fsiZ
t′i
i f

π′ , Q′′i = gt
′
iAητ

′s′
ī
(vī·vc,q)/z′i , Ti = E ŝii .
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– if i = ī: it sets

Ri = gr
′
ī
s′
ī
vī , R′i = Br′

ī
s′
ī
vī ,

Qi = gτ
′s′
ī
(vī·vc,p)Aτ

′s′
ī
(vī·vc,q), Q′i = Cητ

′s′
ī
(vī·vc,p)Z

t̄i
i f

π′ , Q′′i = gt̄i ,

Ti = M · e(gαi , Qi) · e(gα, g)π
′ · e(gα, A)−τ

′s′
ī
(vī·vc,q).

– if i > ī: it sets

Ri = grisivi , R′i = Brisivi ,

Qi = Bτ ′si(vi·vc,p), Q′i = Z
t′i
i f

π′ , Q′′i = gt
′
iB−ητ

′si(vi·vc,p)/z′iAητ
′s′
ī
(vī·vc,q)/z′i ,

Ti = M · e(gαi , Qi) · e(gα, g)π
′ · e(gα, A)−τ

′s′
ī
(vī·vc,q).

2. For each j ∈ [m]:

– if j < j̄: it randomly chooses µ′j ∈ ZN and implicitly sets the value of µj such that

(ab)−1µ′jν3 − ν3 ≡ µj mod N , then sets Cj = Bcjτ
′vc,p · gcjτ

′µ′jvc,q ·Bwj , C ′j = gwj .

– if j = j̄: it sets Cj = T
c′
j̄
τ ′vc,q ·Bw

′
j , C ′j = g

w′
j̄ · C−c

′
j̄
τ ′vc,p .

– if j > j̄: it sets Cj = Bcjτ
′vc,p ·Bw

′
j , C ′j = gw

′
j ·A−cjτ ′vc,q .

3. P = gπ
′
A−τ

′s′
ī
(vī·vc,q), Px = (gπ

′
A−τ

′s′
ī
(vī·vc,q))ax ∀x ∈ S∗.

If T = gabc, then the ciphertext is a well-formed encryption to the index (̄i, j̄). If T is randomly
chosen, say T = gr for some random r ∈ Zp1 , the ciphertext is a well-formed encryption to the
index (̄i, j̄ + 1) with implicitly setting µj̄ such that ( r

abc − 1)ν3 ≡ µj̄ mod p1.

Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger as its answer
to the Decision 3-Party Diffie-Hellman game.

Note that the distributions of the public parameter, private keys and challenge ciphertext are same
as the real scheme, B’s advantage in the Decision 3-Party Diffie-Hellman game will be exactly equal
to A’s advantage in selectively breaking the index-hiding game.

B.3 Proof of Claim 2

Proof. Garg et al. [8, Sec. 5.1] proposed an AugBE scheme ΣAugBE = (SetupAugBE,EncryptAugBE,
DecryptAugBE) and proved that it is index-hiding. In their proof of Lemma 6.3 in [8], two hybrid
experiments

– HAugBE
2 : Encrypt to (̄i,m+ 1), (corresponding to H2 in [8])

– HAugBE
3 : Encrypt to (̄i+ 1, 1), (corresponding to H5 in [8])

were defined and proven indistinguishable by a sequence of hybrid sub-experiments. It follows the
Lemma 6.3 in [8] that if the Decisional Linear Assumption and the Decision 3-Party Diffie-Hellman
Assumption hold, then for scheme ΣAugBE in [8, Sec. 5.1] no PPT adversary can distinguish between

experiments HAugBE
2 and HAugBE

3 with non-negligible advantage. To prove our Claim 2, we do not
build a direct reduction to the underlying assumptions, instead, we build a reduction to distinguish
between experiments HAugBE

2 and HAugBE
3 . In particular, suppose there is a PPT adversary A that

can distinguish between H2 and H3 for our AugKP-ABE scheme ΣA with non-negligible advantage,
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we construct a PPT algorithm B to distinguish between HAugBE
2 and HAugBE

3 for ΣAugBE with non-
negligible advantage.

The game of B distinguishing between HAugBE
2 and HAugBE

3 is played in the subgroup Gp1 of
order p1 in a composite order group G of order N = p1p2p3. B is given the values of p1, p2 and p3.
Since the game is played in the subgroup Gp1 , B chooses for itself everything in the subgroup Gp3 .

Setup. The challenger gives B the public key PKAugBE, and due to (̄i,m+1) /∈ {(i, j)|1 ≤ i, j ≤ m},
the challenger gives B all private keys in the set {SKAugBE

(i,j) |1 ≤ i, j ≤ m} as follows:9

PKAugBE =
(
g, {Ei = e(g, g)αi , Gi = gri}i∈[m], {Hj = gcj , fj}j∈[m]

)
,

SKAugBE
(i,j) =

(
K̃i,j , K̃

′
i,j , {K̃i,j,j̃}j̃∈[m]\{j}

)
=
(
gαigricjf

σi,j
j , gσi,j , {fσi,j

j̃
}j̃∈[m]\{j}

)
,

where g, f1, . . . , fm ∈ Gp1 and {ri, αi ∈ Zp1}i∈[m], {cj ∈ Zp1}j∈[m], σi,j(1 ≤ i, j ≤ m) ∈ Zp1 are
randomly chosen.
B randomly chooses α, z1, . . . , zm, a

′
x(x ∈ U) ∈ ZN , and gives A the public parameter PP:

g, f =
∏
j∈[m]

fj , E = e(g, g)α, {Ei, Gi, Zi = gzi}i∈[m], {Hj}j∈[m], {Ux = fga
′
x}x∈U .

Note that B implicitly chooses {ax ∈ ZN}x∈U such that η + a′x ≡ ax mod p1 where η satisfies
f = gη.

Key Query. A issues adaptive private key queries. To respond to a query for ((i, j), (A, ρ)),
where A is an l × n matrix, B randomly chooses u2, . . . , un, w2, . . . , wn ∈ ZN , and {ξ′k ∈
ZN , Rk,1, Rk,2 ∈ Gp3}lk=1. For k = 1 to l, let Ak = (Ak,1, . . . , Ak,n) ∈ ZnN be the kth row of A.
Let w = (α,w2, . . . , wn). B sets the value of u ∈ ZnN , {ξk ∈ ZN}k∈[l] by implicitly setting

u = (σi,j , u2, . . . , un), ξ′k − σi,jAk,1 ≡ ξk mod p1 ∀k ∈ [l].

B creates a private key SK(i,j),(A,ρ) =
(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j , {Ki,j,k,1,Ki,j,k,2}lk=1

)
from

SKAugBE
(i,j) as follows:

Ki,j = K̃i,j ·
∏

j̃∈[m]\{j}

K̃i,j,j̃ , K ′i,j = K̃ ′i,j , K ′′i,j = (K̃ ′i,j)
zi ,

{Ki,j,k,1 = f
∑n
d=2 udAk,dg(Ak·w)U

ξ′k
ρ(k)(K̃

′
i,j)
−a′

ρ(k)
Ak,1Rk,1, Ki,j,k,2 = gξ

′
k(K̃ ′i,j)

−Ak,1Rk,2}lk=1.

Challenge. A submits a message M and an attribute set S∗. B sets Y = {(i, j)|1 ≤ i, j ≤ m} and
submits (M,Y ) to the challenger. Note that Y satisfies the restriction on B in the index-hiding
game forΣAugBE, since (̄i,m+1) /∈ Y . The challenger gives B the challenge ciphertext CTAugBE =
〈(R̃i, R̃

′
i, Q̃i, Q̃

′
i, T̃i)

m
i=1, (C̃j , C̃

′
j)
m
j=1, Y 〉, which is encrypted to (i∗, j∗) ∈ {(̄i,m+ 1), (̄i+ 1, 1)}

and in the form of
1. For each i ∈ [m]:

– if i < i∗: R̃i = gvi , R̃′i = gκvi , Q̃i = gsi , Q̃′i = (
∏
ĵ∈Yi fĵ)

si , T̃i = E ŝii .

– if i ≥ i∗: R̃i = Gsivii , R̃′i = Gκsivii , Q̃i = gτsi(vi·vc), Q̃′i = (
∏
ĵ∈Yi fĵ)

τsi(vi·vc), T̃i =

M · Eτsi(vi·vc)i .

9 Note that we slightly changed the variable names in the underlying AugBE scheme to better suit our proof.
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2. For each j ∈ [m]:

– if j < j∗: C̃j = H
τ(vc+µjχ3)
j · gκwj , C̃ ′j = gwj .

– if j ≥ j∗: C̃j = Hτvc
j · gκwj , C̃ ′j = gwj .

Note that κ, τ, si(1 ≤ i ≤ m), ŝi(1 ≤ i < i∗), µj(1 ≤ j < j∗) ∈ Zp1 , vc,wj(1 ≤ j ≤ m),vi(1 ≤
i ≤ i∗) ∈ Z3

p1
, and vi(i > i∗) ∈ span{χ1,χ2} are randomly chosen, where χ1 = (rx, 0, rz),χ2 =

(0, ry, rz),χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry) for randomly chosen rx, ry, rz ∈ Zp1 , and Yi
denotes the set of all values j such that (i, j) in the set Y , i.e., Yi = {j|(i, j) ∈ Y }.
Note that Y = {(i, j)|1 ≤ i, j ≤ m} so that Yi = {1, . . . ,m} for all 1 ≤ i ≤ m, we have that
Q̃′i = (

∏
ĵ∈Yi fĵ)

si = f si for i < i∗ and Q̃′i = (
∏
ĵ∈Yi fĵ)

τsi(vi·vc) = f τsi(vi·vc) for i ≥ i∗.
B randomly chooses π, t1, . . . , tm ∈ ZN , then creates the ciphertext 〈S∗, (Ri,R

′
i, Qi, Q

′
i, Q
′′
i , Ti)

m
i=1,

(Cj ,C
′
j)
m
j=1, P, {Px}x∈S∗〉 as follows:

1. For each i ∈ [m]: Ri = R̃i, R
′
i = R̃′i, Qi = Q̃i, Q

′
i = Q̃′i · Z

ti
i f

π, Q′′i = gti , Ti = T̃i · Eπ.
2. For each j ∈ [m]: Cj = C̃j , C

′
j = C̃ ′j .

3. P = gπ, {Px = Uπx }x∈S∗ .
Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger as its answer

to distinguish between HAugBE
2 and HAugBE

3 for scheme ΣAugBE.

As the exponents are applied only to the elements in Gp1 , from the view of A, the distributions
of the public parameter, private keys and challenge ciphertext that B gives A are identical to that
in the real scheme. Thus B’s advantage in distinguishing between HAugBE

2 and HAugBE
3 for scheme

ΣAugBE will be exactly equal to A’s advantage in distinguishing between H2 and H3 for ΣA.
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