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Abstract

An encryption relation f ⊆ Z×Zwith decryption function f −1 is “group-homomorphic”
if, for any suitable plaintexts x1 and x2, x1+x2 = f −1( f (x1)+ f (x2)). It is “ring-homomorphic”
if furthermore x1x2 = f −1( f (x1) f (x2)); it is “field-homomorphic” if furthermore 1/x1 =

f −1( f (1/x1)). Such relations would support oblivious processing of encrypted data.
We propose a simple randomized encryption relation f over the integers, called

DoubleMod, which is “bounded ring-homomorphic” or what some call ”somewhat homo-
morphic.” Here, “bounded” means that the number of additions and multiplications that can
be performed, while not allowing the encrypted values to go out of range, is limited (any
pre-specified bound on the operation-count can be accommodated). Let R be any large in-
teger. For any plaintext x ∈ ZR, DoubleMod encrypts x as f (x) = x + au + bv, where a
and b are randomly chosen integers in some appropriate interval, while (u, v) is the secret
key. Here u > R2 is a large prime and the smallest prime factor of v exceeds u. With
knowledge of the key, but not of a and b, the receiver decrypts the ciphertext by computing
f −1(y) = (y mod v) mod u.

DoubleMod generalizes an independent idea of van Dijk et al. 2010. We present and
refine a new CCA1 chosen-ciphertext attack that finds the secret key of both systems (ours
and van Dijk et al.’s) in linear time in the bit length of the security parameter. Under a
known-plaintext attack, breaking DoubleMod is at most as hard as solving the Approximate
GCD (AGCD) problem. The complexity of AGCD is not known.

We also introduce the SingleMod field-homomorphic cryptosystems. The simplest
SingleMod system based on the integers can be broken trivially. We had hoped, that if
SingleMod is implemented inside non-Euclidean quadratic or higher-order fields with large
discriminants, where GCD computations appear difficult, it may be feasible to achieve a
desired level of security. We show, however, that a variation of our chosen-ciphertext attack
works against SingleMod even in non-Euclidean fields.
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1 Introduction

For decades, cryptographers have sought homomorphic encryption systems1 because of their
potential to support oblivious processing of encrypted data. In his dissertation, Gentry [18,
p. 6] views homomorphic encryption as “glove box” operations on digital data, wherein
an untrusted entity can perform useful calculations on data without touching (seeing) the
plaintext. The utility of the glove box depends on its efficiency, cryptographic strength, and
the types of operations it supports. We present and analyze two new symmetric-key ran-
domized encryption systems over the integers—DoubleMod and SingleMod—that enjoy
homomorphic properties, and in comparison with most previously-proposed homomorphic
encryption systems, are simpler. They support encryption of multiple bits without boot-
strapping. Unfortunately, they (and all other integer homomorphic systems we are aware
of) turn out to be insecure against CCA1 chosen-ciphertext attack2 that finds the secret key.

Phatak and Sherman discovered DoubleMod in spring 2011. By supporting the encryp-
tion of mulitple bits, DoubleMod generalizes an independent idea of van Dijk et al. [55]
published in 2010, which encrypts one bit at a time. Independently from us, Pisa et al. [39]
also discovered DoubleMod and published it in 2012. Our paper includes a new CCA1
chosen-ciphertext attack on DoubleMod.

An encryption relation f ⊆ Z×Zwith decryption function f −1 is “group-homomorphic”
if, for any plaintexts x1 and x2, x1 + x2 = f −1( f (x1) + f (x2)). It is “ring-homomorphic” if
furthermore x1x2 = f −1( f (x1) f (x2)). For an introduction to homomorphic encryption, see
Wikipedia [2] and Hayes [30].

In 2009, Gentry [19, 20, 21] proposed the first ring-homomorphic system, based on
ideal lattices. But many researchers, including Micciancio [36], noted serious practical ob-
stacles for this approach. Since then several variants—including that of van Dijk—have
been proposed that require less message expansion. For example, improvements over van
Dijk include techniques by Coron et al. [14, 15] and Cheon et al. [9]. These systems, how-
ever, are unattractive to implement from a practical engineering perspective. For example,
the system of van Dijk et al. [55] encrypts one bit at a time and, as is true for other ho-
momorphic systems, requires a cumbersome circuit translation that encodes the algebraic
relationships among the inputs. To encrypt multiple bits, these systems depend on Gentry’s
complex bootstrapping idea. By contrast, DoubleMod is attractive for its simplicity, even if
it does not accomplish its hope for lower bandwidth expansion.

Defined by its encryption relation f , DoubleMod adds random multiples of two secret
integers u and v to the plaintext. DoubleMod has bounded ring-homomorphicity, mean-
ing that it preserves a bounded number of additions and/or multiplications expressed as a
bounded-depth circuit (many authors call this property “somewhat homomorphic;” we pre-
fer our more descriptive terminology). Unbounded ring-homomorphicity would be nicer,
but given the maximum depth of such circuits in advance, the parameters of DoubleMod

1We avoid the ambiguous term “fully homomorphic.” Some authors have used this term to mean that both addition
and multiplication are preserved. Others have used this term to mean that arbitrary polynomials can be evaluated.

2CCA1 refers to a limited (“lunchtime”) adaptive chosen-ciphertext attack [1, 24], in which the adversary can
adaptively query a decryption oracle for a limited period of time. By contrast, in a CCA2 attack, the adversary has
unlimited access to the decryption oracle.
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can be chosen to accommodate any circuit of depth up to the specified maximum. Double-
Mod is remarkably simple and fast: Encryption uses just two integer multiplications and
two additions, while decryption is accomplished solely by two modular reductions.

Defined by its encryption relation g, SingleMod adds to the plaintext random multiples
of a secret integer u. SingleMod is field-homomorphic, meaning that it is ring-homomorphic
and, for any suitable plaintext x, 1/x = g−1(g(1/x)). When implemented over the integers,
SingleMod is even simpler and faster than DoubleMod, but SingleMod over the integers
can be trivially broken. We attempted to find an alternative algebraic setting in which Sin-
gleMod might offer significant cryptographic strength, exploring non-Euclidean number
fields, where GCD computations appear to be difficult. Although this strategy might work
for some other cryptosystem, we found an chosen-ciphertext attack that breaks SingleMod
even in non-Euclidean fields, without computing GCDs.

As randomized encryption systems [25, 45], our proposals inherit some advantages (e.g.,
cryptographic strength—including that separate encryptions of the same plaintext yield dif-
ferent ciphertexts) and disadvantages (e.g., bandwidth expansion) of this class of encryption
systems.

Skeptics may rightfully wonder whether such simple transformations can be secure.
Indeed, as is also true for all previously proposed ring-homomorphic systems over the inte-
gers, with a known-plaintext attack, breaking DoubleMod is at most as hard as solving the
AGCD problem—which perhaps might better be called the Noisy GCD problem. There are
promising lattice techniques for AGCD (e.g., Chen [8]).

Even worse, we present a refinement of a 2012 CCA1 chosen-plaintext attack by Tang
that breaks DoubleMod and all known integer homomorphic systems, by finding the se-
cret key without solving AGCD. This attack uses a decyption oracle to facilitate a binary
search foreshadowed in 1978 by Rivest, Adleman, and Dertouzos [43]. On the other hand,
insecurity against CCA1 attack is not surprising in light of the fact that most homomorphic
systems are at best CPA secure.

Insecurity against a chosen-ciphertext attack is a notably undesirable property (espe-
cially when the attack finds the secret key), but there might possibly be some applications
(e.g., outsourced computations in the cloud where the adversary does not have access to a
decryption oracle) for which this weakness is not necessarily a showstopper. Neither Gen-
try’s homomorphic system [20], its variation by Gentry and Halevi [22], nor the system
of Brakerski and Vaikuntanathan [7], is secure against such chosen-ciphertext attack. Fur-
thermore, no homomorphic system can be secure against a CCA2 chosen-ciphertext attack
that simply decrypts ciphertexts: Given any ciphertext y1 = f (x1), using one oracle call to
decrypt a ciphertext different from y1, the adversary can compute the unknown plaintext x1
as x1 = f −1(y1 +y2)− x2, where (x2, y2) is any matching plaintext-ciphertext pair y2 = f (x2).

Another limitation of DoubleMod is that operations on ciphertext further expand the
ciphertext length. As noted in Section 5.4, this expansion leaks some information about
which algebraic operations are performed. Van Dijk et al.’s system does not have these
limitations.

Although our security assessments of DoubleMod and SingleMod are mostly nega-
tive (especially against CCA1 chosen-ciphertext attack), the simple, natural, and intriguing
structure of our systems deserves examination, and we hope that our analyses will be helpful
to others in the understanding and pursuit of practical secure homomorphic systems.

Contributions of our paper include:

• Presentation and initial analysis of two randomized secret-key encryption systems
called DoubleMod and SingleMod.
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• DoubleMod has bounded ring-homomorphicity. In comparison with previous integer
homomorphic systems, DoubleMod is simpler and supports encryption of multiple
bits.

• SingleMod is field-homomorphic. SingleMod is weak when implemented over in-
tegers. Nevertheless, it is an intriguing proposition to base cryptography in non-
Euclidean number fields where GCD computations appear to be difficult, and it is
instructive to learn from our unsuccessful attempt to do so for SingleMod.

• New CCA1 chosen-ciphertext key-finding attacks against DoubleMod, SingleMod,
and the integer homomorphic system of van Dijk et al. [55]. Each attack exploits
the piecewise linearity of the encryption function by applying a decryption oracle to
facilitate a binary search for short vectors that form a nearly orthonormal basis for an
underlying lattice of low dimension. These attacks do not need GCD calculations.

The rest of this paper explains and analyzes our encryption systems. Section 2 moti-
vates homomorphic encryption by analogy with “glove box” operations. Section 3 reviews
additional previous and related work. Section 4 introduces the DoubleMod system with
bounded ring-homomorphicity. Section 5 discusses the security of DoubleMod, including
a new powerful chosen-ciphertext attack. Section 6 suggests some parameter choices for
DoubleMod. Section 7 introduces the field-homomorphic SingleMod system. Section 8 re-
visits SingleMod in alternative algebraic settings (e.g., non-Euclidean number fields) for the
purpose of finding an alternative setting in which it might have significantly higher levels
of cryptographic strength. Section 8 also presents a new chosen-ciphertext attack against
SingleMod. Section 9 summarizes our findings and outlines some open problems.

We assume the reader is familiar with the basics of cryptology and number theory, as
explained, for example, by Stinson [51], Goldreich [23, 24], Bach-Shallit [5], Hardy &
Wright [27], and Niven et al. [38]. Our companion paper [49] provides a short tutorial for
cryptologists on non-Euclidean number fields and related topics.

2 Homomorphic Encryption as “Glove Box” Operations

Homomorphic encryption is an information-processing analogue of the physical “glove
box” [18], a device enabling humans to manipulate lethal viruses and other biohazards
safely. With homomorphic encryption, untrusted data processing entities can carry out
computations by operating on encrypted data without gaining access to associated plain-
texts. Whereas a physical glove box aims to protect the handler from exposure to bio-
hazards, a homomorphic digital glove box aims to protect the privacy of manipulated data
from an untrusted handler. For example, in cryptographic voting systems using homomor-
phic encryption, an election authority can verifiably tally encrypted ballots without learning
or revealing how anyone voted. Similarly, with homomorphic encryption, processing ser-
vices in the cloud can analyze a database of medical records without revealing any personal
patient information. The more kinds of operations can thus be supported, and the more ef-
ficiently and securely they can be implemented, the more useful and interesting the digital
glove box becomes.

Efficiency. To be practical, a homomorphic digital glove box should introduce at most
reasonable performance penalties. Thus, operations on encrypted data should suffer at most
a polynomially-bounded performance penalty versus performing the corresponding opera-
tions on plaintext. We shall refer to this requirement as our “efficiency requirement.” In
addition, the encryption and decryption costs should be polynomially bounded, as should
be the costs of transporting the data to and from the glove box user.
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Security. For a digital glove box to be secure, we would like it to be super-polynomially
difficult for any attacker to break the encryption by determining plaintexts or secret keys,
starting from information to which the attacker might reasonably be expected to gain ac-
cess, including known-plaintext and chosen-ciphertext attacks. Unfortunately, we present
chosen-ciphertext attacks that break DoubleMod, SingleMod in non-Euclidean fields, and
other recently proposed plain-integer homomorphic encryption methods ([55] and their
derivatives).

Kinds of Operations. The more types of operations a digital glove box supports, the
more useful it can be, but there are fundamental limits on what kinds of operations can
be securely supported. It has been recognized since the 1970s that some public-key en-
cryption systems based on elliptic curve groups ([34]) or modular exponentiation ([44])
enjoy group-homomorphic properties. In 1978, Rivest, Adleman, and Dertouzos [43] ob-
served that secure group-homomorphic encryption is impossible, if encryption permits both
efficient comparisons and access to encrypted arbitrary constants, because this capability
would allow binary search on plaintext values. Thus, while the untrusted entity can perform
addition (and we shall show certain other operations such as multiplication can be adjoined
to the repertoire), we cannot permit “if-then-else” branching.

3 Additional Previous and Related Work

Our DoubleMod relation f grew out of Phatak’s [40] recent research on Residue Number
Systems (RNSs) [35],3 in which ring-homomorphic properties follow from the fact that addi-
tion and multiplication are performed component-wise, independently in each of the mod-
ular channels. We informally view the relation f as a dual construction of a two-moduli
RNS system. Initially, Phatak and Sherman thought of SingleMod, and then devised Dou-
bleMod as a more secure alternative for the plain integers. DoubleMod represents a dif-
ferent approach from our earlier method to approximate oblivious data processing in cloud
computing, based on splitting the moduli in an RNS system across multiple cloud service
providers [41].

After Phatak and Sherman discovered the relation f in spring 2011, we subsequently
became aware of the independent work of van Dijk et al. [55], who apply Gentry’s lattice
techniques to a simple relation E to construct an unbounded ring-homomorphic relation.
Their relation E, which they use to encrypt one bit, is the special case of our DoubleMod f
with u = 2 and v = p, where p is a large prime integer. Assuming an unproven computa-
tional hypothesis (the sparse subset sum hardness assumption of the bootstrapped scheme),
van Dijk et al. prove that breaking their system is as hard as solving AGCDs—but only un-
der a limited adversarial model that does not permit chosen ciphertext attacks. Van Dijk et
al. also review three prior variants of their relation mentioned by others. Some consider van
Dijk et al.’s single-bit system part of the “cryptographic folklore;” Halevi [26] mentioned it
in his 2011 tutorial. Pisa et al. [39] discovered DoubleMod independently from us.

The reductions of van Dijk et al. can also be viewed as a CCA1 chosen-ciphertext
key-finding attack against their system. They show that distinguishing plaintexts in their
ciphertext-only model implies breaking AGCD, and that breaking AGCD implies a key-
finding attack on their system. Because a CCA1 oracle can distinguish plaintexts in their
ciphertext-only model, their reductions establish a CCA1 key-finding attack on their system.

Cohn and Heninger [13] analyze a multivariate generalization of the Howgrave-Graham
[31] algorithm for computing AGCDs. Chen and Nguyen [8] present some faster algo-

3In a RNS, each integer is represented as a sequence of residues modulo some set of pairwise co-prime moduli.
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rithms. These lattice algorithms appear to be the currently best known known-plaintext
attacks against our and van Dijk et al.’s cryptosystems.

In early December 2012, the UMBC group learned of and refined a powerful chosen-
ciphertext attack against DoubleMod by Tang (see Section 5), which does not solve AGCD.
This attack also breaks the integer system of van Dijk et al. [55]. Independently, Zhang [57,
58], developed separate attacks on van Dijk et al., which also do not solve AGCD.

In 2011, Gentry and Halevi [22] proposed a variation of Gentry’s method, which bears
some similarities with SingleMod. Loftus [32] et al. show that this system is not IND-CCA1
secure but that a modification of it is. In 2013, Blass et al. [16] devised a system based on
the hidden modular group order and showed that it is IND-CPA secure; their system too has
similarities with DoubleMod.

Vaikuntanathan [54] surveys recent results in homomorphic encryption. For additional
references, see Goldwasser, Kalai, and Popa [48].

4 The DoubleMod Relation f

We define a randomized symmetric-key encryption relation f and its decryption mapping
f −1 and show that f is ring-homomorphic (preserves addition and multiplication). In this
system, f encrypts each plaintext by adding to it random multiples of secret integers u and v.
Decryption removes this random noise by moding out by v and then u.

The parameters v > u must satisfy certain bounds to be explained, and these bounds
depend on the “complexity” K (to be defined) of the multivariate polynomial computed by
glove box users on encrypted data. The complexity K is related to the maximum permit-
ted total degree κ of this polynomial, which establishes an upper bound on the number of
permitted cascaded multiplications.

We represent each plaintext message as an integer in ZR, where R is any large integer.
Thus, each plaintext can be represented with at most blg Rc + 1 bits.4 Each ciphertext is an
integer in ZT where the integer T depends on the system parameters (see Section 6).

Let u > R2 be any large prime, and let v > u be any integer whose smallest prime factor
exceeds u. These conditions force v to be relatively prime to u.

We define the encryption relation f ⊆ ZR × ZT in terms of an associated function
F : ZR × S→ ZT , where S = ZRa ×ZRb denotes the set of possible random choices made by
f , where Ra > 2 and Rb > 2 are bounds on the random choices a and b, respectively, to be
explained. For any x ∈ ZR, and for any (a, b) ∈ S, let

(x, F(x, a, b)) ∈ f , (1)

where
F(x, a, b) = x + au + bv. (2)

The relation f defines a randomized encryption system, say to be used from Alice to
Bob. To encrypt any plaintext x, Alice selects (a, b) ∈ S at random; computes f (x) =

F(x, a, b); and discards (a, b). The secret key is (u, v).
To decipher any ciphertext y ∈ ZT , Bob computes

f −1(y) = (y mod v) mod u. (3)

The injectivity of f follows from the facts that x < u and the fact that (due to demands about
v we have not yet described) x + au < v.

4lg denotes the function log2.
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A cost of the homomorphic and randomized properties is that f expands the message
length significantly: each ciphertext requires up to blg T c + 1 bits.

To prevent an adversary from exhaustively trying all possible values of a and b, we
require that they be drawn from a sufficiently large set. In Section 6 we suggest parameter
values for R, Ra, Rb and calculate the resulting ciphertext length.

We now prove that, with appropriate parameter choices, f is ring-homomorphic. We
begin with the case κ = 1, when only one glove box multiplication is permitted. Next, we
handle the case of more than one glove box multiplication. Finally, we outline strategies by
which the communicants can establish an appropriate parameter κ.

Earlier we had considered the possibility of reducing the size of ciphertexts by moding
out F by m = uv. Assuming factoring m is computationally infeasible, one could share the
modulus m with the glove box user enabling her to reduce the size of her computations by
working in Zm. We strongly oppose this possibility: working in Zm can invalidate the injec-
tivity condition, and exposing m facilitates certain attacks, including attacks that attempt to
compute u (see Section 5.2) and possibly lattice attacks.

However, a variation of DoubleMod that mods out by m = vw (where w > v is another
secret prime) may be worthy of consideration.

4.1 DoubleMod with at Most One Glove Box Multiplication

We assume the following condition to ensure the injectivity of f .

Injectivity Condition 1: u > R2 ≥ 4 and v > [RM(u + 1)]2, where RM = max {R,Ra}.

Proposition 1 proves that f is ring-homomorphic.

Proposition 1. Let f , R, u, v, Ra, Rb, RM be defined as above, and assume Condition 1. For
any x1, x2 ∈ ZR, and for any random choices made by f , x1 + x2 = f −1( f (x1) + f (x2)) and
x1x2 = f −1( f (x1) f (x2)).

Proof. Let x1, x2 ∈ ZR be any plaintexts. First, we prove the additive condition. By
definition, f (x1)+ f (x2) = (x1+x2)+(a1+a2)u+(b1+b2)v, where a1, a2 ∈ ZRa and b1, b2 ∈ ZRb

are the random choices made by f . It suffices to show that (x1 + x2) + (a1 + a2)u < v and
x1 + x2 < u. First, since R2 < u and R ≥ 2, it follows that x1 + x2 < R2 < u. Second,
by Condition 1, (x1 + x2) + (a1 + a2)u < u + R2

Mu = (R2
M + 1)u < v. Consequently,

[( f (x1) + f (x2)) mod v] mod u = [(x1 + x2) + (a1 + a2)u] mod u = x1 + x2.

Second, we prove the multiplicative condition. By definition of f , f (x1) f (x2) = x1x2 +

(a1x2 +a2x1)u+a1a2u2 +v(remaining terms). It suffices to show that x1x2 + (a1x2 +a2x1)u+

a1a2u2 < v and x1x2 < u. First, x1x2 < R2 < u. Second, by Condition 1, x1x2 + (a1x2 +

a2x1)u + a1a2u2 < R2
M + 2R2

Mu + R2
Mu2 = R2

M(u + 1)2 < v. Therefore, [ f (x1) f (x2) mod
v] mod u = [x1x2 + (a1x2 + a2x1)u + a1a2u2] mod u = x1x2. Q.E.D.

4.2 DoubleMod with More Than One Glove Box Multiplication

To handle more than one glove box algebraic operation, we require a constant upper bound
on the number of such operations to be specified. From this bound, we now derive lower
bounds on u and v sufficient to permit the specified number of operations to be performed
ring-homomorphically. In Section 4.3 we describe methods to establish the specified bound.
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About polynomial degree. The glove box user via +, −, and × operations will necessar-
ily compute a multivariate polynomial function of her inputs. Let κ be the total degree of
this polynomial. For example degree(xy2z3 + 3x5) = 6.

Unfortunately, κ can be as large as 2 j for a computation involving j multiplications—
consider repeated squaring. For a depth-1 arithmetic circuit with w internal “wires” inter-
connecting +, −, and × gates (unboundedly large fan-in and fan-out permitted), the degree
obeys κ ≤ w and this bound is achievable. More generally, for a depth-d (feed-forward
only) arithmetic circuit with w internal wires, the degree obeys κ ≤ (w/d)d and this bound
is achievable.

It is this potential exponential degree-growth with glove box circuit depth that causes
DoubleMod to disobey our efficiency requirement i.e., operations on encrypted data can
suffer exponentially great performance penalty versus the corresponding sequence of oper-
ations on plaintext data.

However, for bounded-depth circuits, wherein d is guaranteed never to exceed some
constant, κ enjoys an upper bound that is a polynomial function of the circuit size (described
by the number w of internal wires). Indeed, if d is small, the bound κ is a polynomial of low
degree, which as we shall see causes our efficiency requirement to be fully satisfied. This
enjoyable situation could still happen even for some (but not all) unbounded-depth circuits;
the “interval” and “simulation” approaches described in Section 4.3 exploit benefits of all
such cases.

Definition of “complexity” K. For any depth-d (feed-forward only) arithmetic circuit
with w internal wires, define its “complexity” to be K = (w/d)d.

Bounds on u and v in terms of K. We now derive bounds on u and v sufficient for
f to stay ring-homomorphic up through any glove box computation with complexity K.
Generalizing Condition 1, these bounds ensure that the DoubleMod encryption function f
remains injective. Assume the following.

Injectivity Condition 2: u > RK+1 and v > [Rm(u + 1)]K+1.

The requirement u > RK+1 ensures that u will exceed the product of any K +1 plaintexts
(using K multiplications). Additions could also be involved but are less destructive than are
multiplications.

Consider the expressions that can result from K cascaded multiplications of encrypted
plaintexts. The second part of Condition 2 ensures that v will be larger than the sum of all
the terms in the expansion of (x + au + bv)K+1 that do not contain v as a factor. Letting
ζ = x + au, these terms of interest are those in the binomial expansion of (ζ + bv)K+1 that do
not contain v as a factor—namely, ζK+1. Therefore, v > [Rm(u + 1)]K+1 ensures the desired
bound.

Thus, the number of bits required to represent a ciphertext computed with complexity
K is approximately lg v > (K + 1) lg RM + (K + 1)2 lg R. This polynomially-bounded bit-
count expansion yields a polynomially-bounded runtime expansion, verifying our efficiency
requirement.

4.3 Establishing Bounds

The encryptor and glove box user can negotiate bounds on u and v using a variety of meth-
ods. Underlying each method is the essential requirement, for unique decipherability, that
the encrypted value x + au + bv stay within the “permitted region” defined by x < u and
x + au < v, where x is an upper bound on x, and au is an upper bound on au.
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We now describe three methods for negotiating bounds. These methods differ mainly in
who performs certain bound calculations when. Alternatively, the encryptor could calculate
and tell the glove box user bounds on the number of multiplications and additions that may
be performed.

On-Line Interval Method. Along with the encrypted data, the encryptor provides to
the glove box user R, Ra, Rb, and interval bounds [uL, uH] and [vL, vH] for u and v, respec-
tively. As she manipulates the encrypted data, the glove box user also performs “interval
arithmetic” to keep track of upper bounds on the magnitudes of her calculations. While
these computed bounds stay within the permitted region defined above, the homomorphic
property remains valid (the glove box user is guaranteed that DoubleMod decryption will
restore the correctly-manipulated plaintext values). However, if the glove box user does
too many (or a bad choice of) arithmetic operations, causing her interval bounds to ex-
tend outside the permitted region, then it is possible that decryption will instead produce
garbage. In that case, the glove box user could complain to the encryptor, who could re-
spond by re-encrypting using suitably-larger u and v, hopefully large enough for the glove
box user then to be able to complete whatever computation she wanted to do. If not, a further
complaint could be issued. Because the interval arithmetic can likely be performed using
single-precision floating point arithmetic, the computational cost of the interval arithmetic
will likely be negligible.

Pre-Computed Simulation Method. Before receiving any encrypted data, the glove box
user simulates her desired calculations, performing the aforementioned interval calculations
without the encrypted data. If the simulation terminates successfully, then the glove box
user could announce that the proposed u and v intervals would be adequate for her needs;
otherwise, she could complain preemptively.

Pre-Specified Ciruit Bounds. The glove box user first informs the encryptor what sort
of computation she will be doing, for example by providing degree bounds, operation-count
bounds, or arithmetic-circuit size and depth bounds. The encryptor uses these bounds to
compute how large his u and v need to be, so that the glove box user will be assured of
never leaving the permitted region. The encryptor finds suitable u and v and encrypts the
data using them.

5 Attacks on DoubleMod

We now discuss some security properties of the relation f . After summarizing our adver-
sarial model, we discuss some attack strategies, beginning with a CCA1 chosen-ciphertext
attack by Tang (as refined by Phatak) for determining the secret key. We also discuss known-
plaintext attacks, including lattice attacks to solve the Approximate Greatest Common Divi-
sor (AGCD) problem [8, 13].

5.1 Adversarial Model

The main goal of the attacker is to determine the secret key (u, v). We assume the adversary
can mount adaptive chosen-plaintext and chosen-ciphertext attacks, requesting the cipher-
texts of some limited number of plaintexts of her choice, and requesting the plaintexts of
some limited number of ciphertexts of her choice. We say the system is secure if all such
successful attacks require at least Ω(2λ) steps, where λ is a security parameter.
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5.2 A Chosen-Ciphertext Attack that Finds u

In December 2012, Tang5 suggested the basic ideas of the following chosen-ciphertext at-
tack, which finds part of the key, u, with at most 1 + lg u calls to a decryption oracle. It does
so without solving AGCD. We now present a refinement of this attack.

First, by exhaustive seach using chosen plaintexts 21, 22, 23, . . ., find the smallest posi-
tive integer i such that f −1(2i) , 2i; let this minimal value be denoted t. Since 2i < u < v
implies f −1(2i) = 2i, it follows that 2t > u > 2t−1. It follows that 2t mod u = 2t − u. This
linear search requires at most lg u calls to the decryption oracle. If the adversary already
knows the approximate bit length of u (as Tang had originally assumed), then this search
takes even fewer steps.

Second, given any known and matching plaintext-ciphertext pair (x1, y1), where y1 =

x1 + a1u + b1v, the adversary computes the difference δ1 = y1 − x1 = a1u + b1v. Next, the
attacker asks for a decryption of y = 2t +δ1 and suppose that it is x. Then, u = 2t− x because

x = [(2t + δ1) mod v] mod u = [(2t + a1u + b1v) mod v] mod u (4)
= 2t − u.

Section 5.3 shows how to find v.

5.3 A Chosen-Ciphertext Attack that Finds v Given u

Tang also outlined how to find the rest of the secret key, v, from u. The idea is to represent
v as a polynomial in u, and to use the decryption oracle as a means of comparing plaintext
values to permit binary searches for the coefficients of this polynomial. The task is an easy
version of a knapsack problem similar to attacks on iterated knapsacks [3]. We now present
a slightly refined version of this process.

First, by exhaustive search using chosen ciphertexts u2, u3, u4, . . ., find the smallest posi-
tive integer i such that f −1(ui) , 0; let this minimal value be denoted k. Since ui < v implies
f −1(ui) = 0, it follow that uk > v > uk−1. Therefore, v can be represented as a polynomial
in u of degree at most k − 1; i.e., v = c0 + c1u + c2u2 + · · · + ck−1uk−1, for some nonnegative
integers c0, c1, . . . , ck−1 less than u. This “forward pass” search for k requires at most logu v
calls to the decryption oracle.

Second, in a “reverse pass,” determine the coefficients c j one at a time, in decreasing
value of j, from j = k− 1 downto j = 0. For each c j, perform a binary search in the interval
[0, u− 1]. At each step of this binary search, let CL denote the lower endpoint of the current
search interval, and let CH denote the upper endpoint. Let CM = b(CL + CH)/2c denote the
midpoint. Initially, CL = 0 and CH = u − 1.

We perform k “phases;” one for each value of j, where 0 ≤ j < k. In Phase j, we will
determine the coefficient ck− j. For each j, at the start of Phase j, we have already determined
the coefficient of each term with degree higher than k − j. Let this known “suffix” v̂ j of v’s
polynomial be v̂ j = c(k− j)+1u(k− j)+1 + · · · + ck−1uk−1. We seek the largest integer ck− j such
that ck− juk− j + v̂ j ≤ v. To this end, let y j = ck− juk− j + v̂ j, and let x j = f −1(y j). It is true that
x j = 0 if and only if ck− juk− j + v̂ j ≤ v.

Thus, in each step of Phase j of the binary search for ck− j, let y j = CMuk− j + v̂ j and
x j = f −1(y j). If x j = 0, then continue the search in the new interval [CM ,CH]; otherwise, if
x j , 0, then continue the search in the new interval [CL,CM].

5Personal correspondence dated December 6, 2012.
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In the reverse pass, there are k phases, each of which requires at most lg u calls to the
decryption oracle. Therefore, the total number of oracle calls in this attack is logu v + k lg u.
In the binary search, the oracle calls are adaptive in that the inputs to subsequent calls
depend on the answers returned from previous calls.

Because the underlying cryptographic transformation in van Dijk et al. [55] is a special
case of DoubleMod (with u = 2 and v = p, where p is a large integer), this attack also
breaks their system.

Finally, we note that adding a third secret prime-multiple addend (cw) in the encryption
computation of what we call TripleMod (x + au + bv + cw) would not mitigate the security
limitations of DoubleMod, as the attack described here would still apply. More generally, if
any number of additive secrets of this form are used, our attack can “peel off” these secrets
one-at-a-time, starting with the smallest value.

Even if in practice the enemy does not have access to a decryption oracle, we feel that
these chosen-ciphertext attacks reflect poorly on the security on DoubleMod (and the system
of van Dijk et al.): the existence of weaknesses under chosen-ciphertext attack increases the
likelihood that weaknesses also exist under other attacks.

5.4 Some Approaches for Known-Plaintext Attacks

A generic known-plaintext attack (that subsumes several other attacks) is to compute differ-
ences

δi = f (xi) − xi = biv + aiu (5)

for some 1 ≤ i ≤ t known or chosen plaintexts xi, and then to apply an algorithm (e.g., Chen
and Nguyen [8]) for solving the resulting AGCD problem to determine v, as we will explain
in Section 5.5. In this attack, for each 1 ≤ i ≤ t, let ri = aiu denote the “perturbations” of
the multiples biv of v. Once v is determined, it is easy to compute u, because u = gcd(ri, r j),
for any i , j, where ri = δi mod v, and r j = δ j mod v.

The attacker could, in principle, search over all possible values of v and test each candi-
date choice by checking the consistency of gcd(ri, r j), for i , j, with a sufficient number of
differences δi. Thus, the system offers only computational (and not information-theoretic)
security. It is important that v be large enough to make this attack computationally infeasi-
ble.

It is important that the adversary be unable to determine the coefficients ai or bi. (When
we said we wanted them to be “random uniform” and “discarded,” we meant it.) For ex-
ample, suppose the adversary learns the a1, a2, a3, a4 used to compute δ1 = b1v + a1u;
δ2 = b2v + a2u; δ3 = b3v + a3u; and δ4 = b4v + a4u. Then (a2δ1 − a1δ2) = (a2b1 − a1b2)v
and (a4δ3 − a3δ4) = (a4b3 − a3b4)v, when v = gcd(a2δ1 − a1δ2, a4δ3 − a3δ4). Similarly,
given b1, b2, b3, b4, the adversary could compute u. Therefore, it is important that Ra and Rb

be chosen large enough to make it infeasible for the adversary to determine their values by
exhaustive search.

A slight disadvantage of DoubleMod is that it leaks some information about the alge-
braic operations performed by the glove box user: multiplications expand ciphertext length
more than do additions. In this sense, and unlike van Dijk et al.’s method, DoubleMod does
not achieve Gentry’s [19] notion of “circuit privacy.”

Repeatedly encrypting some special value (e.g., zero) offers no advantage over using
Equation 5. Moreover, and unlike some other methods (e.g., [55]), in our system no special
steps are needed to encrypt zero.
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5.5 Lattice Attacks Computing Approximate GCDs

In this section we explain the approximate GCD problem, review the best known algorithm
for solving it, and explain how it can be applied to attack f . In Section 6 we make recom-
mendations for system parameters that aim to render this attack computationally infeasible.

A general version of the approximate GCD problem can be summarized as follows, as
explained by Cohn and Heninger [13].

Problem AGCD. Given t approximate multiples of an integer p which are of the form
αi = qi p+ri, for i = 1, · · · , t, where the “perturbations” ri satisfy the upper bounds |ri| ≤ Xi,
find p, which is the GCD of the αi with the perturbations removed.

In 2011 (after the work of van Dijk et al. [55]), Cohn and Heninger [13] analyzed a
multivariate generalization of the Howgrave-Graham [31] algorithm for computing AGCDs,
yielding the following observation. We now summarize this heuristic observation, which
Cohn and Heninger call “Heuristic Theorem 2.”

Semi-Empirical observation about computing approximate common divisors. Let N
and t be any positive integers, and let α1, · · · , αt be any positive integers such that, for
all 1 ≤ i ≤ t, αi ≈ N. Let X and β be bounds (that may depend on N) such that, as
N grows asymptotically, β � 1/

√
log N and lg X < (Cl + O(1))βt/(t−1) lg N, where, Cl ≈

1 − (log t)/t. For any fixed integer l, it is possible to find in polynomial time all r1, · · · , rt

such that gcd(α1 − r1, · · · , αt − rt) ≥ Nβ and |ri| ≤ X.

We can apply this heuristic to break f as follows. (1) Given any t matching plaintext-
ciphertext pairs (xi, yi), for each 1 ≤ i ≤ t, calculate the difference δi = yi − xi = biv + aiu,
as explained in Equation 5. (2) For each 1 ≤ i ≤ t, regard δi as a multiple biv of the secret
integer v to which a perturbation ri = aiu is added. (3) Apply Cohn and Heninger’s heuristic
observation to determine the secret v. (4) For each 1 ≤ i ≤ t, compute ri = δi mod v.
(5) Compute u = gcd(ri, r j), for any i , j.

Thus, under a known-plaintext attack, breaking f is at most as hard as solving AGCD.

6 Recommended Parameter Choices

We now recommend some parameter choices. In any cryptographic system, it is a crucial
engineering decision to select parameter values that yield an acceptable level of crypto-
graphic strength while not unduely increasing the time and memory costs to encrypt plain-
text and to represent the resulting ciphertext. In each of the proposed ring-homomorphic
systems, one of the major costs is bandwidth expansion—the increase in the number of bits
required to represent each ciphertext beyond those required to represent the corresponding
plaintext.

Following commonly-used notation (e.g., [55], [13], [15]), we shall adopt the following
symbols to denote certain important bit lengths:

γ denotes the length of each ciphertext in bits; that is, for any plaintext x, γ = blg f (x)c+1.

η denotes the length of v in bits; that is, η = blg vc + 1. (v corresponds to the solution to
the AGCD problem.)

ρ denotes the length of the perturbation term ri = aiu; that is, ρ = blg ric+1 = blg(aiu)c+1.
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We will now suggest values for the parameters R, Ra, Rb, γ, η, and ρ. We will do so
consistently for the choice of security parameter λ = 72, as selected by van Dijk et al. [55].
That is, we will select parameters with the goal of requiring the adversary to expend at least
Ω(272) work to determine the secret key (u, v). Using λ = 72 enables us easily to compare
the bandwidth expansion of our system with those of other ring-homomorphic systems for
comparable levels of cryptographic strength. We recognize, however, that this choice is
near the edge of what many adversaries may be able to compute today and hence does not
offer any significant margin of safety for the future. A similar decision process could be
made for larger security parameters. In what follows, we shall assume that the number of
cascaded multiplications is κ = 1.

Let R = 264, which means that each plaintext is a 64-bit integer. Select Ra = 272, so
that an exhaustive search of the coefficient space for the a’s would require Ω(2λ) steps.
These choices imply Rm = max(R,Ra) = 272. Condition 1 then implies the constraints
u > R2 = 2128 and v > [(RM + 1)u]2 > [(272 + 1)2128]2 ≈ 2400. Thus, the bit-length of v is
η ≈ 400 and the bit-length of the perturbation term aiu is ρ ≈ (128 + 72) + 1 = 200.

To select the parameter Rb which bounds the size of the coefficients b, we follow a
process used by van Dijk et al. [55, p. 15], which aims to ensure that the cryptanalytic effort
will be at least 2λ. Setting γ/η2 = λ = 72 yields γ = η2λ ≈ 4002(72) = 11, 520, 000 ≈
11.5 Mb (megabits) ≈ 1.4 MB (megabytes).6 Thus, the bit-length of b is approximately
lg Rb ≈ γ − η = 11, 520, 000 − 400 = 11, 519, 600 ≈ 11.5 Mb.

For these parameter choices our method needs only approximately 1.4 MB ≈ 11.5 Mb
of ciphertext when encrypting one 64-bit block of plaintext. Therefore, our system uses
approximately 11, 520, 000/64 = 180, 000 = 180 Kb = 22.5 KB of ciphertext per encrypted
plaintext bit.

The practical bandwidth expansion of DoubleMod (with multiple cascaded multiplica-
tions) is worse than suggested by these calculations because operations on encrypted data
further expand the ciphertext length. Previous systems with bootstrapping do not have this
limitation.

For possible additional strength, we suggest that the parameters be further adjusted in
two ways to violate the hypotheses of Cohn and Heniger’s heuristic observation from Sec-
tion 5.5. First, their observation requires that, for all 1 ≤ i ≤ t, αi ≈ N. The αi in Theorem 2
correspond to the terms biv in f . Varying the length of the coefficients bi will cause this
hypothesis to be violated. For example, one might vary the bit-length of the bi from about
11.5 Mb to 23 Mb.

Second, their observation also requires that β � 1/
√

log N to find v ≥ Nβ. For our sug-
gested parameter choices, since lg N ≈ γ, the inequality v ≥ Nβ implies β ≤ (lg v)/ lg N ≈
η/γ ≈ 400/11, 520, 000 ≈ 0.000034722. By contrast, 1/

√
log N ≈ 1/

√
11, 520, 000 ≈

1/3394.1125 ≈ 0.0002946. Thus, for our suggested parameter choices, the heuristic obser-
vation does not apply. We recognize, however, that violating the hypotheses of the heuristic
observation does not imply that the resulting cryptanalytic problem is hard.

7 Introducing the SingleMod Encryption System

We now introduce a simple and intuitive randomized secret-key encryption system, which
we call SingleMod. In this section we discuss its plain-integer version, which is the first sys-
tem we considered. The insecurity of this plain-integer version led us to devise the related

61 KB = 103 bytes, 1 MB = 106 bytes, and 1 GB = 109 bytes, where 1 byte = 8 bits. Similarly, 1 Kb = 103 bits,
1 Mb = 106 bits, and 1 Gb = 109 bits.
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DoubleMod system. In Section 8, we revisit SingleMod in alternative algebraic settings
(including non-Euclidean algebraic number fields, where GCD computations appear hard),
where we had hoped there might exist higher levels of security.

In the plain version of SingleMod, we represent each plaintext message x as an integer
in Zu, where u is any large secret prime. The secret key is (u, v), where v > u is a larger
secret prime. We publicize the product m = uv. The encryption relation g ⊆ Zu × Zm is
defined by

g(x) = (x + au) mod m, (6)

whenever x ∈ Zu, where a is chosen uniformly at random from Zm. After encrypting,
the sender Alice discards a. To decipher any ciphertext y ∈ Zm, the receiver Bob simply
computes

g−1(y) = y mod u. (7)

Insecurity. An attacker can determine the secret key using a GCD calculation in a
variety of ways. Given m and a plaintext-ciphertext difference δ = y − x, the attacker can
compute u = gcd(δ,m). With access to a few plaintext-ciphertext pairs (x j, y j), the attacker
can compute u as the GCD of the differences δ j = y j − x j. If she instead had access to
two ciphertexts y1, y2 arising from the same unknown plaintext x, then u = GCD(y2 −

y1,m). Finally, an attacker armed with a quantum computer could efficiently deduce (u, v)
by factoring m.

Field Homomorphism. Let x1, x2, x ∈ Zu. One may readily verify (x1 + x2) mod u =

g−1(g(x1) + g(x2) mod m) and (x1x2) mod u = g−1(g(x1)g(x2) mod m). Let “(1/x) mod u”
denote the multiplicative inverse of x modulo u. We have (1/x) mod u = g−1((1/g(x)) mod
m) subject to certain caveats. First, 1/0 does not exist. This issue arises in every field and
is not really an issue. Second, 1/x mod m fails to exist if x > 0 is divisible by either u or v.
This is a genuine problem because it can prevent the glove box user (i.e., the entity operating
on encrypted data) from dividing by x, even though if she were operating on plaintext she
could have performed that division. However, the only possible situations in which this
failure could occur have GCD(x,m) being a nontrivial factor (i.e., u or v) of m. Thus, the
user will never experience this kind of failure unless she could crack the cryptosystem by
factoring m anyhow, which we assume is so hard that this event will not happen during the
lifetime of the universe. So for practical purposes g is field homomorphic.

Efficiency. With SingleMod, encryption and operating on encrypted data are very fast,
requiring only a very small number of elementary modular operations. SingleMod encryp-
tion requires only one multiplication, one addition, and one modular reduction. Decryption
takes only one modular reduction. Performing addition on encrypted data requires only one
addition and one modular reduction, and the latter can be implemented as “subtract m if
value ≥ m” with only constant-factor slowdown. Performing multiplication on encrypted
data requires only a multiplication and a modular reduction, again with only constant factor
slowdown (division with remainder takes at most a constant times the amount of time re-
quired to multiply integers [4]). Finally, evaluating a multiplicative inverse 1/x on encrypted
data can be done via an extended GCD computation (e.g., Bach & Shallit [5]) for x and m,
whereas for plaintext it would be done for x and u. Using algorithms such as Schönhage-
Strassen multiplication and Schönhage’s fast extended GCD algorithm [4], these operations
run in O(N(log N)c) steps on N-bit data for various constants c < 2.01, i.e., optimal speedup
to log factors.
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8 SingleMod Revisited in Alternative Algebras

We now revisit the SingleMod encryption system in alternative algebras, with the ultimate
goal to find a suitable algebraic setting in which GCD computations are difficult, thereby
enhancing the security of SingleMod. First, to explore the essential algebraic structures
needed for SingleMod, we consider the Gaussian and Eisenstein Integers. Second, we
consider non-Euclidean quadratic number fields, where GCD computations seem difficult.
Also, we briefly consider necessary requirements to avoid possible factorization-based at-
tacks. Although we found a chosen-ciphertext attack against SingleMod in non-Euclidean
fields (see Section 8.4), we hope others may benefit from our explorations into the intrigu-
ing possibility of basing cryptography on the difficulty of computing GCDs in certain non-
Euclidean fields.

8.1 SingleMod Using Gaussian or Eisenstein Integers

SingleMod can be implemented in a variety of algebraic settings, including for example, the
Gaussian or Eisenstein complex 2-dimensional “integers” rather than plain integers.7 If one
would prefer the underlying field’s multiplication operation to be noncommutative (these
more commonly are called “division algebras”), then one could use the (4-dimensional, D4
lattice) Hurwitz quaternions. For a noncommutative and also nonassociative multiplication,
one could use the (8-dimensional, E8 lattice) “integral Cayley octaves” octonions. Each
of these algebras has a multiplicative nonnegative-integer-valued “norm,” “mod” opera-
tion, efficient GCD algorithm, and unique factorization theorem (up to certain equivalence
operations—see Rehm [42] and Coan and Perng [11]).

Abstractly, the essential structural ingredient that makes SingleMod work is any ring
containing a hard-to-find subfield. In each example above, the reason the subfield is hard
to find is because of the assumption that factoring integers is hard. For example, it is not
difficult to show that factoring quaternions is of equivalent hardness to factoring ordinary
integers since their integer norms automatically also get factored.8 In each of these cases,
however, the existence of an efficient GCD algorithm makes breaking the system easy for
any attacker with access either to plaintext-ciphertext pairs, or to two ciphertexts arising
from the same plaintext.

8.2 In Search of a More Secure SingleMod in Non-Euclidean Quadratic
Number Fields

Since the insecurity of plain-integer SingleMod stems from the existence of efficient GCD
algorithms, it is natural to consider the possibility of implementing SingleMod in an under-
lying number field that has no efficient GCD algorithm. This section summarizes our initial
thoughts along this quest. We begin with a review of some relevant algebra.

SingleMod readily generalizes to arbitrary algebraic number fields; for simplicity, here
we consider only quadratic fields. Hardy and Wright [27] give a nice introduction to
quadratic number fields, though they use the word “Euclidean” to describe what we nowa-
days call “norm-Euclidean.” For example, Q[

√
D] denotes the field of rational numbers Q

7The “Gaussian integers” are Z[i] where i =
√
−1. The “Eisenstein integers” are Z[ρ] where ρ = e2πi/3 =

(−1 +
√
−3)/2.

8E.g., use the well known fact that any integer n > 0 can be efficiently represented as a sum of four squares
n = a2 + b2 + c2 + d2 (Rousseau [46]), then to factor n, factor the quaternion a + ib + jc + kd. The other hardness
direction is trivial.
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extended by adjoining the irrational
√

D and then closing under field operations. If D < 0
this is an “imaginary quadratic field” but if D > 0 it is “real.” The “integer” subring within
this field, which we shall denote Z[

√
D], consists (by Theorem 238 in [27]) of the numbers

x + y
√

D if D ≡ 2 or 3 (mod 4) and of the numbers x + (
√

D − 1)(y/2) if D ≡ 1 (mod 4),
where x, y are integers. The “norm” of a field element ξ = r + s

√
D, where r and s are

rational, denoted N(ξ), is given by N(ξ) = r2 − Ds2. This norm is “multiplicative,” i.e.,
N(ξ)N(γ) = N(ξγ). For imaginary fields N(ξ) = |ξ|2 ≥ 0 but for real fields it can have either
sign.

A normed field F is “norm-Euclidean” if for α, β ∈ F there exist q, r ∈ F with α = βq+r
with |N(r)| < |N(β)|. Clark [10] defines it to be “Euclidean” if this is true with some
other integer-valued “fake norm” function φ(x) substituted for the usual multiplicative norm
|N(x)|; this fake norm must obey φ(0) = 0 and φ(x) > 0 if x , 0. Each such field has a
Euclid-style GCD algorithm running in time bounded by a polynomial function of the bit
lengths of the input field elements.

It is known that Q[
√

D] is norm-Euclidean (for a squarefree integer D) exactly for these
21 cases

D ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}. (8)

There are also at least two examples (Z[
√

69] and Z[
√

14]) of Euclidean, but not norm-
Euclidean, quadratic fields—see Clark [10], Niklasch [37], and Harper [28, 29].

All Euclidean number fields enjoy “unique factorization into primes” theorems. But an
infinite set of quadratic number fields (namely those with class number > 1) have nonunique
factorization: for example, 6 = 2 ·3 = (1+

√
−5)(1−

√
−5) in Z[

√
−5], and 81 = 3 ·3 ·3 ·3 =

(5+2
√
−14)(5−2

√
−14) in Z[

√
−14]. Interestingly, there are many quadratic number fields

that do not have a norm-Euclidean GCD algorithm but still enjoy unique factorization. For
example, it is known (from the Heegner-Stark-Baker Theorem [50] and Williams [56]) that,
for for D < 0, Q[

√
D] has unique factorization but no Euclidean GCD algorithm (whether

based on the norm or any fake-norm) exactly in the cases D ∈ {−19,−43,−67,−163}. For
D > 0, there is a conjecturally-infinite set of D beginning

14, 22, 23, 31, 38, 43, 46, 47, 53, 59, 61, 62, 67, 69, 71, 77, 83, 86, 89, 93, 94, 97, . . . , (9)

for which we have unique factorization but no norm-Euclidean algorithm.
Behrbohm and Redei [6] show that a real quadratic field can enjoy unique factorization

only if the radicand D > 0 has at most two different prime factors. The Cohen-Lenstra [12]
heuristics predict that about 75.45% of prime D yield unique factorization, a prediction con-
firmed by te Riele and Williams [53] through computer investigations. It has been conjec-
tured that each of these unique-factorable real cases is Euclidean for appropriate fake-norm
functions, though as far as we know, this has been proven only for D = 14 and 69. So far,
those fake-norms have been difficult to find and use.

Decryption requires the existence of a “mod u” operation, and one is readily defined
(and efficiently computable) by subtracting away the closest point within the “multiples of
u” sublattice of the 2D lattice that is the number field. It is well known that finding nearest
lattice points is fast and easy for 2D lattices [47]. We also need to be able to find prime field
elements u quickly. That is easily done using Theorem 241 of Hardy and Wright [27] that
u is prime in a quadratic number field if |N(u)| is a plain-integer prime.

For those who want a noncommutative multiplication, one can consider algebraic ex-
tensions of the quaternions. As a start in that direction, Fitzgerald [17] recently determined
every “norm-Euclidean quaternion order.”
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As cryptologists, we now face several puzzles:

1. That the norm-Euclidean GCD algorithm fails to exist might not rule out the existence
of some other kind of efficient GCD algorithm. Indeed, Kaltofen and Rolletschek [33]
construct a GCD algorithm in any quadratic number field (even ones with non-unique
factorization), with running time bounded by a polynomial function of the number
of bits describing the field-elements, provided D is fixed. But their running time
grows proportionally to a power of D, i.e., exponentially in the number of bits in D.
Therefore, to provide security, the underlying quadratic number field must have a
discriminant D that is a polynomially-large number of bits long.

2. It might be that only some quadratic fields yield security—in which case we want
to know which ones, how common they are, how to find them quickly, and how to
estimate their security levels.

3. There might still be some efficient way to break SingleMod even without having any
GCD algorithm, and as we show in Section 8.4, this is true under a chosen-ciphertext
attack.

We do not know the answers to puzzles 1–2.

8.3 Seeking Immunity to Factoring Attacks

The original plain-integer version of SingleMod can be broken by factoring m = uv. If
somebody built a quantum computer or found an efficient integer-factoring algorithm, Sin-
gleMod (and other cryptosystems including RSA) would fall to factoring attacks. It would
be interesting to explore the possibility of finding a suitable algebraic setting in which Sin-
gleMod might survive such attacks.

In 1989, Kaltofen and Rolletschek [33] showed that polynomial-time integer factoring
would automatically yield polynomial-time algorithms for factoring in arbitrary quadratic
number fields with unique factorization. Hence, to achieve immunity against integer factor-
ing, it is necessary to work in fields of degree greater than quadratic, or featuring highly-
non-unique factorization, or both.

8.4 A Chosen-Ciphertext Attack on SingleMod in Non-Euclidean Num-
ber Fields

We now summarize Smith’s chosen-ciphertext attack against SingleMod in non-Euclidean
number fields (NESM). Like Tang’s algorithm which finds the DoubleMod key without solv-
ing AGCD, Smith’s algorithm finds the SingleMod key without computing GCDs. Smith
devised this algorithm in early January 2013, originally as a possible attack against the 2011
bounded ring-homomorphic system of Gentry and Halevi [22].

Both the Gentry-Halevi (GH) system and NESM can be viewed in the context of lattices.
In GH, there is a (high) n-dimensional lattice, which creates an “ideal lattice” by regarding
each lattice point as the vector of coefficients of a high-degree univariate polynomial modulo
xn − 1. These polynomials form a ring. The secret key is a “nice” (e.g., near-orthonormal)
basis for the lattice. The plaintext is a not-too-long, not-too-short integer n-vector. To
encrypt, add a random lattice vector. To decrypt, subtract the nearest lattice vector. This
system can be viewed as based on the “cyclotomic” algebraic number field based on the nth
root of unity, and is of high algebraic degree n.
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By contrast, NESM is based on a low-degree algebraic number (degree 2 to 5) and
hence involves a lattice of dimension at most 5. Each response from the decryption oracle
returns a member of the “multiples of u” principal ideal, which may be regarded as a sub-
lattice of the entire algebraic number ring. The low dimension of NESM gives SingleMod
unbounded field homomorphicity, whereas the high dimension of GH may offer some in-
creased cryptographic strength. Generally speaking, lattice problems are hard only in high
dimensions. Furthermore, in low dimension lattices, it is known how to find nearest vectors
in polynomial time.

Smith’s probabilistic algorithm finds a nice basis for the underlying lattice. Both Tang’s
algorithm and Smith’s algorithm exploit the facts that DoubleMod and SingleMod are piece-
wise linear in some appropriate ring or field.

Smith’s Algorithm

1. Find the shortest nonzero vector, denoted L1, in the lattice. Do so by decrypting
random short vectors, expanding their length via “binary search,” until the nearest
lattice vector is no longer 0.

2. For k = 2, 3, . . . , n, find the shortest nonzero vector not in the sublattice generated by
the preceding vectors L1, L2, . . . , Lk−1. Do so by decrypting short random vectors in
the subspace orthogonal to the aforementioned sublattice.

3. The vectors L1, L2, . . . , Ln found in this way are probably a fairly nice lattice basis.

We believe there are many ways to extend Smith’s algorithm to perform other oracle-
aided searches.

9 Conclusion

We have proposed and analyzed SingleMod and DoubleMod—two new symmetric secret-
key randomized encryption systems that enjoy homomorphic properties: DoubleMod has
bounded ring homomorphicity; SingleMod is field homomorphic. Each system can be im-
plemented in a variety of algebraic settings. Although each system suffers from substantial
security weaknesses (plain-integer SingleMod can be easily broken with GCD calculations,
and DoubleMod can be broken under a CCA1 chosen-ciphertext attack that finds the secret
key), there is value in understanding the attractive properties and limitations of these sim-
ple, fast, intuitive systems as part of the quest to develop practical homomorphic encryption
transformations.

DoubleMod has a close relationship with the AGCD problem, and SingleMod has a
close relationship with the GCD problem. Coarsely speaking, DoubleMod is at most as hard
as AGCD, and SingleMod is at most as hard as GCD. The complexity of AGCD remains un-
known, but in light of known lattice techniques, many cryptologists consider AGCD a risky
problem on which to base cryptographic strength. Over the plain integers, GCD is easily
computed in logarithmic time (e.g., by Euclid’s algorithm), but in certain non-Euclidean
algebraic number fields with non-unique factorization, there is no known efficient GCD al-
gorithm. For these reasons, we returned to SingleMod seeking a possible algebraic setting
for which SingleMod might achieve higher levels of cryptographic strength. Unfortunately,
as explained in Section 8.4, we discovered a variation of the chosen-ciphertext attack against
DoubleMod that also works against SingleMod in non-Euclidean fields.
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Although we were unable to find a secure version of SingleMod, it remains an intrigu-
ing open problem to find new cryptographic functions that derive their security from the
apparent difficulty of computing GCDs in certain non-Euclidean number fields.

The precise relationships between breaking DoubleMod and solving AGCD, and be-
tween breaking SingleMod and solving GCD, are sensitive to the precise assumptions of
the adversarial model. For example, under a known-plaintext attack, breaking DoubleMod
is at most has hard as AGCD. Under an adaptive chosen-ciphertext attack, breaking Double-
Mod appears strictly much easier than AGCD. And under a ciphertext-only attack, it may
be that breaking DoubleMod is harder than AGCD. There are similar relationships between
SingleMod and GCD.

The CCA1 chosen-ciphertext attack against DoubleMod also defeats the integer ring-
homomorphic system of van Dijk et al. [55] and its derivates [36], [15]. This attack, which
does not appear to solve AGCD, does not necessarily contradict the proof by van Dijk et al.
that breaking their system is as hard as solving AGCD, since their adversarial model does
not permit chosen-ciphertext attacks. It is an open problem to work out these relationships
more precisely with mathematical proofs. In particular, the security proofs of van Dijk et al.
depend on transmitting one bit at a time, whereas DoubleMod encrypts a block at a time.

Currently we are exploring ideas suggested by Warren Smith for a possible bounded-
error polynomial-time quantum algorithm for solving AGCD, given an oracle for computing
DoubleMod. The approach is to compute the DoubleMod function with plaintext 0 using
the quantum superposition of the random integers a, b (wihtout revealing these random
choices to the adversary), and then to compute the period (i.e., the secret key u) of this
approximately periodic sequence by applying a quantum Fourier transform.

Chosen-ciphertext attacks can be very powerful attacks. The attack against DoubleMod
discovers the key by making calls to a decryption oracle to facilitate a binary search. In
particular, the attack exploits magnitude comparisons implicit in the remaindering operation
over the integers. It appears that variations of this attack will work in any algebraic setting in
which magnitude comparisons (or equivalent norm operations) are possible in the encrypted
domain. It is an open question whether there are general security limitations of all ring-
homomorphic systems under such chosen-ciphertext attacks.

DoubleMod suffers exponential space and time performance penalties in the worst case
(repeated squarings) for manipulating encrypted versus plaintext data. However, if the data-
manipulator agrees to perform only computations on encrypted data that are describable by
an arithmetic circuit with any fixed-depth bound (we permit unbounded fan-in and fan-
out), then each of these performance penalties becomes bounded by a low-degree poly-
nomial. While bounded-depth arithmetic circuits constitute a very limited class of algo-
rithms, they nevertheless might be expressive enough to allow some interesting applications.
For example, many neural nets (e.g., for optical character recognition), are describable as
bounded-depth feed-forward circuits. More generally, any three-layer network of threshold
or sigmoidal components (with unbounded fan-in and unbounded fan-out) can represent
any single-valued function [52].

Our work explores two new encryption systems with field-homomorphicity and bounded
ring-homomorphicity. While we conclude that each of these intuitive systems has substan-
tial cryptographic weaknesses, our exploration points out useful insights and raises intrigu-
ing open questions concerning homomorphic encryption.
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