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Abstract

We study the communication complexity of secure function evaluation (SFE). Consider
a setting where Alice has a short input xA, Bob has an input xB and we want Bob to learn
some function y = f(xA, xB) with large output size. For example, Alice has a small secret
decryption key, Bob has a large encrypted database and we want Bob to learn the decrypted
data without learning anything else about Alice’s key. In a trivial insecure protocol, Alice can
just send her short input xA to Bob. However, all known SFE protocols have communication
complexity that scales with size of the output y, which can potentially be much larger. Is
such “output-size dependence” inherent in SFE?

Surprisingly, we show that output-size dependence can be avoided in the honest-but-
curious setting. In particular, using indistinguishability obfuscation (iO) and fully homo-
morphic encryption (FHE), we construct the first honest-but-curious SFE protocol whose
communication complexity only scales with that of the best insecure protocol for evaluating
the desired function, independent of the output size. Our construction relies on a novel way
of using iO via a new tool that we call a “somewhere statistically binding (SSB) hash”, and
which may be of independent interest.

On the negative side, we show that output-size dependence is inherent in the fully ma-
licious setting, or even already in an honest-but-deterministic setting, where the corrupted
party follows the protocol as specified but fixes its random tape to some deterministic
value. Moreover, we show that even in an offline/online protocol, the communication of the
online phase must have output-size dependence. This negative result uses an incompress-
ibility argument and it generalizes several recent lower bounds for functional encryption and
(reusable) garbled circuits, which follow as simple corollaries of our general theorem.

1 Introduction

We study the communication complexity of secure function evaluation (SFE). For simplicity,
we focus on the case of a two-party functionality y = f(xA, xB), where Alice and Bob start
with inputs xA, xB respectively and we want Bob to learn the output y. Alice should not learn
anything about Bob’s input xB or the output y, and Bob should not learn anything about
Alice’s input xA beyond learning the output y = f(xA, xB).

Traditional approaches to SFE, for example based on Yao garbled circuits [Yao82a], have
communication complexity which is proportional to the circuit size of the function f . The
breakthrough results on fully-homomorphic encryption (FHE) by Gentry [Gen09] and follow-up
works (e.g., [BV11; BGV12; GSW13]) gave the first general SFE solutions whose communication
complexity is independent of the circuit size of f , and only scales with the input and output
size of f .1

∗Aarhus University. E-mail: hubacek@cs.au.dk. Research supported by ERC Starting Grant 279447 and the
CFEM and CTIC research centers. Part of this work was done while visiting the Northeastern University.
†Northeastern University. E-mail: wichs@ccs.neu.edu. Research supported by NSF grants 1347350, 1314722.
1Prior to FHE, it was known how to beat the circuit-size barrier in many interesting cases, but not in general.

See for example Naor and Nissim [NN01].
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Communication Complexity of SFE using FHE. Using FHE, we can get SFE solutions
whose communication complexity only scales with the input and output size of the function f
being computed. For example, in the honest-but-curious setting, we get a solution where Bob
encrypts his input xB to Alice via a compact and circuit-private FHE for which he knows the
secret key, Alice then runs the computation homomorphically on the received ciphertext and
her input xA to get an encryption of y which she sends back to Bob, and Bob decrypts and
learns y. This achieves communication complexity that scales with |xB|+ |y|. Alternatively, we
can get a similar protocol with communication complexity that scales with |xA|+ |y|.

More generally, we can take any insecure protocol evaluating a function f with low com-
munication complexity and convert it into a secure protocol as follows. Alice and Bob first run
a secure distributed key-generation protocol for an FHE scheme, which gives them a common
public-key pk and secret-shares skA, skB of the secret key sk = skA ⊕ skB. They then encrypt
their inputs under pk and execute the insecure protocol for evaluating f , by running it homo-
morphically under the FHE scheme, so that Bob eventually learns an encryption of the output
y. Alice and Bob can then run a secure distributed decryption procedure using their shares
skA, skB and the encryption of y so that Bob learns the decrypted output y (but nothing else).
The distributed key-generation and decryption protocols can be implemented generically using
an arbitrary SFE scheme.2 If CC(f) is the best communication complexity for an efficient pro-
tocol evaluating f without any security requirements and λ is the security parameter, then the
above approach yields an SFE with communication complexity poly(λ)(CC(f) + |y|) where the
poly(λ) term is some fixed polynomial independent of the function f . Moreover, using succinct
zero-knowledge arguments of Kilian [Kil92], we can even make the above protocols secure in
the fully malicious setting without asymptotically increasing the communication complexity.

However, in all known SFE protocols, including the above-described solutions, the commu-
nication complexity of the protocol exceeds the output size |y| of the computation. We say that
such protocols have “output-size dependence”. As the main question of the paper, we ask if
output-size dependence is inherent in SFE.

Is output-size dependence inherent in SFE? If we didn’t require any security, then there
is a trivial protocol where Alice just sends her input xA to Bob who computes y = f(xA, xB)
himself, with communication |xA| independent of the output size |y|. Can we achieve this type
of efficiency while maintaining security? For example, imagine that Alice has a short seed x
for a pseudorandom generator (PRG) G, Bob does not have any input, and we want Bob to
learn a huge PRG output y = G(x). Can we do this with communication complexity which
only depends on |x| but not on |y|? Alternatively, imagine Alice has a small secret decryption
key sk, Bob has a large encrypted database c = Encpk(DB) and we want Bob to learn the
plaintext database DB = Decsk(c) without learning anything else about sk. Can we do this
with communication complexity independent of |DB|? In all of these cases, we would like to
have an SFE protocol that avoids output-size dependence.

Our Results. On the negative side, we show that output-size dependence is inherent for SFE
in the fully malicious setting. In fact, it is already required even in an honest-but-deterministic
setting, where the corrupted party follows the protocol as specified but fixes its random tape
to some deterministic value (say, all 0s). More specifically, we show that in any honest-but-
deterministic SFE scheme, the communication from Alice to Bob must exceed the “Yao incom-
pressibility entropy” of Bob’s output conditioned on his input, and in general, this can be as large
as Bob’s output size. Moreover, we extend this result to protocols in the offline/online setting,

2Alternatively, there are much simpler and more efficient distributed key-generation and decryption procedures
using the algebraic structure of specific FHE schemes. See for example [AJL+12].
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where the parties can run an offline phase before knowing their inputs.3 We show that, no mat-
ter how much communication takes place in the offline phase, the communication of the online
phase must still satisfy output-size dependence. This negative result uses an “incompressibility
argument” which has been used in several recent works giving negative results and/or lower
bounds for functional encryption and garbled circuits [AIKW13; AGVW13; DIJ+13; GGJS13;
GHRW14]. Our main contribution is to give a (relatively straight-forward) generalization of
this technique to proving lower bounds on the communication complexity of general SFE, and
then show that all of the prior uses of this technique follow as simple corollaries of our general
theorem.

On the positive side, we show that output-size dependence can surprisingly be avoided in
the honest-but-curious setting. In particular, using indistinguishability obfuscation (iO) and
fully-homomorphic encryption (FHE), we construct the first general honest-but-curious SFE
protocols that avoid output-size dependence. We give two such protocols for evaluating an
arbitrary function f where Bob learns the output. The first protocol achieves communica-
tion poly(λ) + |xA|, where xA is Alice’s input. The second protocol achieves communication
poly(λ)CC(f) which only scales with the communication-complexity CC(f) of the most efficient
protocol for evaluating f without any security. In both cases, the poly(λ) term is some fixed
polynomial in the security parameter λ, independent of the function f . Since there is always a
simple insecure protocol where Alice sends her input to Bob, we have CC(f) ≤ |xA|, and there
are functions for which the gap is large CC(f) � |xA|. Therefore the latter protocol may be
better in some instances, although it incurs a multiplicative rather than additive overhead in
the security parameter. Using either of these protocols, we get an SFE solution to the problem
where Bob has a large encrypted database and wants to securely learn the decryption under a
short key held by Alice, using communication complexity which is independent of the database
size.

1.1 Our Techniques: Negative Result

Let us begin by describing the technique behind the negative result. For concreteness, consider
a two-party computation protocol where Alice has a secret key k for a pseudorandom function
(PRF) fk : N → {0, 1}, Bob does not have any input, and we want Bob to learn the PRF
outputs y1 = fk(1), . . . , yL = fk(L) for some large integer L. For contradiction, assume that
we had an SFE protocol for this task where the communication complexity from Alice to Bob
is L′ < L bits. Let’s look at the case where Alice is honest and has a uniformly random key k
as her input, while a corrupted Bob uses an “honest-but-deterministic” strategy, meaning that
he follows the specified protocol but fixes his random tape to some deterministic value (say, all
0s). The security of the SFE protocol implies that there is a simulator which gets Bob’s output
y1 = fk(1), . . . , yL = fk(L) and must simulate the view of Bob, denoted viewBob. The simulated
viewBob consists of messages from Alice to Bob (of size L′) that cause Bob to output y1, . . . , yL.
But this means that the simulator can efficiently compress the outputs y1, . . . , yL into a shorter
string viewBob of size L′ < L bits from which we can efficiently recover the output (by running
Bob’s protocol with the fixed randomness). This in turn contradicts the fact that the outputs
are pseudorandom and therefore incompressible, showing that such an SFE cannot exist.

As mentioned, our actual result generalize the above example in several ways. Firstly, we
show that the communication from Alice to Bob in any SFE for any function f must exceed
the “Yao incompressibility entropy” [Yao82b; HLR07] of Bob’s output given Bob’s input. In
the above example, the incompressibility entropy of the output is L bits. Secondly, we extend
this result to protocols in the offline/online setting, where we show that the same lower-bound

3We require the offline phase to be simulatable on its own, prior to the online inputs being specified.
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applies to the online phase, no matter how much communication takes place in the offline phase.
In this setting, we require that the simulator can simulate the offline phase before the online
inputs are chosen, and therefore without knowing the output of the computation.

Lastly, we show that the above negative result implies many prior lower-bounds on func-
tional encryption and/or (reusable) garbled circuits. In particular, all of these results follow by
showing that the desired primitive would immediately yield an SFE protocol (possibly in the
offline/online setting) whose communication complexity would beat our lower bound.

1.2 Our Techniques: Positive Result

Surprisingly, we show that the negative result can be avoided in the honest-but-curious setting.4

Before we describe our solution, it is instructive to see where the negative result fails. In the
negative result, we relied on the fact that the simulated view of an “honest-but-deterministic”
Bob, denoted viewBob, can be used to reconstruct the output of the function, which consists of
pseudorandom values y1 = fk(1), . . . , yL = fk(L). Since this view only contained the communi-
cation from Alice to Bob, which we assumed to be shorter than the output size L, this served
as a compression of the output leading to a contradiction. In the “honest-but-curious” setting,
the view of Bob also contains all of his random coins used during the protocol execution, which
may be arbitrarily long. Therefore, in this setting, viewBob is no longer compressing even if the
communication complexity is small, and the negative result fails.

At first it may appear that the above observation cannot help us. In the real protocol
execution, Bob’s coins are truly random and independent of the output; how can we use the
random coins to represent/reconstruct the output y1, . . . , yL? We rely on the fact that the
simulator can choose the “simulated random coins” for Bob in a way that is not truly random,
and in fact can somehow embed into the random coins information about the outputs y1, . . . , yL,
while still making the coins appear random to a distinguisher.

We now describe our positive result in several steps, focusing on the above example of PRF
evaluation for concreteness. This high-level overview doesn’t match the actual constructions in
the paper, but it elucidates the main ideas.

First Attempt: Just Obfuscate. As a first attempt, consider a protocol where Alice con-
structs a small circuit Ck(i) with a hard-coded key k which gets as input an index i ∈ {1, . . . , L}
and outputs fk(i). Alice obfuscates this circuit and sends it to Bob who then evaluates it on
the values 1, . . . , L to get his output. Since the size of the circuit is independent of L (ignoring
logarithmic factors), so is the communication complexity of this protocol. On the positive side,
the use of obfuscation might already hide some information about Alice’s input k. On the
negative side, there is no hope of simulating this protocol. Indeed, since Bob does not send any
communication to Alice, there is no difference between proving the security of this protocol for
an honest-but-curious Bob vs. a fully malicious Bob, and our negative result rules this out.

Second Attempt: Hash Randomness then Obfuscate. Our main idea for overcoming
the negative result is to incorporate the random coins of Bob into the protocol. Let’s consider
the following modification. Bob first chooses L random bits r1, . . . , rL and hashes them using
a Merkle Tree to derive z = H(r1, . . . , rL). A Merkle Tree has the property that Bob can
efficiently “open” any bit ri of the pre-image by providing a short opening πi. Bob sends the
hash z to Alice. Alice now constructs a small circuit Ck,z(i, ri, πi) that has k, z hard-coded, gets

4One surprising aspect of this result is that Bob’s randomness is needed for Alice’s security! We are not aware
of any previous protocol which would provide security for Alice when Bob is honest-but-curious yet would be
insecure if Bob is honest-but-deterministic.
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as input i ∈ {1, . . . , L}, ri ∈ {0, 1} and a short opening πi, verifies that πi is a valid opening
of the i’th pre-image bit to ri, and if so outputs fk(i) (if not outputs 0). Alice obfuscates this
circuit Ck,z and sends it to Bob, who then evaluates it on the values i ∈ {1, . . . , L} by also
providing the correct bit ri and the opening πi for each evaluation. The size of the circuit Ck,z
is independent of L and therefore so is the communication complexity of this protocol.

Notice that Bob commits himself ahead of time to providing some random bits ri to the
obfuscated circuit on each evaluation. The circuit checks that it gets the right bit, but then
essentially ignores it afterwards. The main idea of the simulation strategy is to choose the
random coins ri on behalf of Bob in a way that embeds information about the outputs yi and to
change the circuit being obfuscated so that it uses the inputs ri to compute the output without
knowing k. The simulator chooses his own PRF key k′ (unrelated to Alice’s key k which the
simulator does not know) and sets the simulated random coins to ri := fk′(i) ⊕ yi. Then it
creates an obfuscation of the circuit C ′k′,z(i, ri, πi) which checks the opening πi as before, and
if the opening is valid, it now outputs ri ⊕ fk′(i) instead of fk(i). In both cases, if the circuits
Ck,z and C ′k′,z get the correct inputs (i, ri, πi) they produce the same outputs yi.

The indistinguishability of simulation boils down to showing that one cannot distinguish
an obfuscation of Ck,z and C ′k′,z even given r1, . . . , rL, k and k′, where z = H(r1, . . . , rL).
Functionally, these circuits only differ on inputs of the form (i, r′i, π

′
i) where r′i 6= ri differs

from the bit that was hashed to create z and π′i is a valid opening. By the security of the
Merkle Tree, such inputs are hard to find. Therefore, we could already show the security of
the above construction by relying on differing-inputs obfuscation (diO) [BGI+01; ABG+13;
BCP14]. However, diO is a strong assumption and there is some evidence that it may not hold
in general [GGHW14]. Therefore, we would like a solution based on the weaker and better
studied notion of indistinguishability obfuscation (iO) [BGI+01; GGH+13].5

Final Attempt: Hash Carefully and Use iO. It turns out that we can also prove the
security of the above construction using only iO, by being more careful and relying on special
type of hash function. We believe that this technique may have broader applicability.

Abstracting out the above construction, we have two circuits C,C ′ which have a hard-coded
hash-output z = H(r1, . . . , rL) and they only differ on inputs of the type (i, r′i, π

′
i) where r′i 6= ri

differs from the hashed bit in position i, and π′i is a valid opening for r′i. Since the hash
is compressing, such inputs necessarily exist. However, we’d like to rely on iO to show that
obfuscations of C and C ′ are indistinguishable. We show that we can do this if the hash function
satisfies a new notion of security which we call a “somewhere statistically binding” (SSB) hash.

An SSB hash Hhk has a short public “hashing key” hk. Just like in a Merkle Tree, we can
take z = Hhk(r1, . . . , rL) and, for any position i, produce a short opening πi to certify ri as
the correct bit of the pre-image in that position. Moreover, there is now a method of choosing
the hash key hk with a special “binding index” i∗ and we require the following two security
properties:

• z = Hhk(r1, . . . , rL) is statistically binding for position i∗, meaning that there does not
exist a valid opening π′i∗ that would open position i∗ to the wrong bit r′i∗ 6= ri∗ .

• The hash key hk does not reveal anything about which index i∗ is the binding index.

We show how to construct such SSB hash functions by combining the idea of a Merkle Tree
with fully homomorphic encryption. We believe that this primitive may find other applications.

5In both notions of obfuscation, we want to ensure that the obfuscations of two different circuits C,C′ are
indistinguishable. For iO, we assume that C,C′ agree on all inputs, whereas for diO we only assume that it is
computationally infeasible to find an input on which they disagree.
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Using an SSB hash, we show that obfuscations of C and C ′ are indistinguishable via a careful
hybrid argument. We can define hybrid circuits Ci∗(i, ri, πi) that evaluate C ′ when i ≤ i∗ and
C otherwise, so that C0 = C and CL = C ′. For i∗ = 1, . . . , L we define a series of hybrid
distributions where we first change the way we choose hk to be binding on index i∗ and then we
change the circuit being obfuscated to Ci∗ . Each time we change the circuit being obfuscated
from Ci∗−1 to Ci∗ , the two circuits being considered are functionally equivalent since the SSB
hash is binding on index i∗. Therefore, we get a proof of security using only iO rather than diO.

General Result. So far, we described a specific example for our positive result where we
avoid output-size dependence in the concrete case of PRF evaluation. However, the above ideas
generalize to providing a general honest-but-curious two-party SFE protocol for any function
f , so as to achieve the positive results we described previously.

Can Obfuscation be Avoided? We do not know if iO can be avoided in the above positive
result but, in Section 3.4, we present some evidence that at least a weak flavor of obfuscation
is inherent. It remains an interesting problem to explore this further and to see what are the
minimal assumptions under which we can avoid “output-size dependence” in the honest-but-
curious setting.

2 Definitions for SFE

Let f : {0, 1}`A(λ) × {0, 1}`B(λ) → {0, 1}L(λ) be a function family. We consider the secure
function evaluation problem with two parties Alice and Bob, where Alice has a private input
xA ∈ {0, 1}`A , Bob has a private input xB ∈ {0, 1}`B , and Bob wishes to obtain the evaluation
y = f(xA, xB).

Honest-But-Curious SFE. For our positive result, we will rely on the notion of honest-
but-curious adversaries, where the adversarial party is assumed to follow the protocol specifi-
cation completely and hopes to learn some unintended information. For an honest-but-curious
Bob, we define a random variable denoting his view of the protocol by viewΠ

B(xA, xB, λ) =
(xB, rB,m1, . . . ,mt) where rB are the random coins used by Bob, and m1, . . . ,mt are the mes-
sages from Alice to Bob. We define the view of an honest-but-curious Alice, viewΠ

A(xA, xB, λ),
analogously.

Definition 2.1 (Honest-But-Curious SFE). We say that two-party protocol Π securely evaluates
f : {0, 1}`A×{0, 1}`B → {0, 1}L in the presence of honest-but-curious adversaries, if there exists
a ppt simulator S = (SA, SB) such that for all xA ∈ {0, 1}`A and xB ∈ {0, 1}`B it holds that

{simA,λ}λ∈N
c
≈ {viewΠ

A(xA, xB, λ)}λ∈N , (1)

{simB,λ}λ∈N
c
≈ {viewΠ

B(xA, xB, λ)}λ∈N , (2)

where simA,λ ← SA(1λ, xA) and simB,λ ← SB(1λ, xB, f(xA, xB)).
We sometimes consider “one-sided” security against honest-but-curious Bob, in which case

we only require (2) to hold.

Honest-But-Deterministic SFE. For our negative results, we will rely on a notion of
honest-but-deterministic adversaries, where the adversarial party follows the protocol speci-
fication, except that it refuses to choose truly random coins, and instead sets its random tape
to some fixed/deterministic value – say, the all 0 string. This adversarial model is much weaker
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than the fully malicious one, making our negative results stronger. We will also only consider
one-sided security against an honest-but-deterministic Bob, but not require any security against
an adversarial Alice. Again, this weakening of the security model makes our results stronger.
Lastly, we consider offline/online protocols Π = (Πoff ,Πon), comprising of two phases:

• The offline phase protocol Πoff is run independently of the inputs xA, xB and it allows
the parties to do some pre-processing. Both parties receive their respective inputs only
after the end of the offline phase.

• The online phase protocol Πon is run by the parties using their inputs xA, xB and any
state retained from the offline phase. It results in Bob outputting y = f(xA, xB).

We can think of standard SFE protocols as only containing an online phase. We will give a
lower-bound on the communication complexity of the online phase in an offline/online protocol,
no matter how much communication takes place in the online phase.

The execution of a protocol Π = (Πoff ,Πon) between Alice and honest-but-deterministic Bob
defines a random variable for Bob’s view of the protocol:

(detviewΠoff

B , detviewΠon

B )(xA, xB, λ) = ((moff
1 , . . . ,moff

s ), (xB,m
on
1 , . . . ,m

on
t ))

where the offline part consists of the protocol messages from Alice to Bob in the offline phase,
and the online part consists of Bob’s input and the protocol messages from Alice to Bob in the
online phase. The protocol messages chosen by Alice follow the protocol with true randomness,
while those from Bob follow the protocol with the random tape set to the all 0s string.6

Definition 2.2 (Offline/Online SFE Secure against Honest-But-Deterministic Bob). We say
that an offline/online two-party protocol Π = (Πoff ,Πon) evaluates f : {0, 1}`A × {0, 1}`B →
{0, 1}L with security against honest-but-deterministic Bob, if there exists a simulator S =
(Soff , Son) such that for all xA ∈ {0, 1}`A and xB ∈ {0, 1}`B it holds that

{simoff
B,λ, sim

on
B,λ}λ∈N

c
≈ {(detviewΠoff

B , detviewΠon

B )(xA, xB, λ)}λ∈N ,

where (simoff
B,λ, state)← Soff(1λ) and simon

B,λ ← Son(xB, f(xA, xB), state).

A crucial but subtle aspect of the above definition for offline/online SFE is that the simulator
Soff must simulate the offline phase without knowing Bob’s input xB or the output f(xA, xB).
For example, this is required if the inputs can be chosen (e.g., by the adversary/environment)
adaptively after the offline phase. In fact, our lower bound in Section 4.2 can be overcome
if the simulator is allowed to know the output when simulating the offline part. Indeed Yao
garbled circuits (discussed further in Section 4.4) give such an offline/online protocol with low
communication complexity in the online part if the offline simulator is given the output.

3 Positive Results in the Honest-But-Curious Setting

We now describe our positive results, giving general SFE protocols in the honest-but-curious
setting, whose communication-complexity is independent of the output size of the function being
computed. As explained in the introduction, we will rely on a new type of security for hash
functions and we begin by describing this new primitive.

6Our results would hold even if we modified the definition so that an honest-but-deterministic Bob uses true
randomness in the offline phase but is deterministic in the online phase. We choose to omit this for simplicity.
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3.1 Somewhere Statistically Binding Hash Functions

Definition. A somewhere statistically binding (SSB) hash function allows us to create a short
hash y = Hhk(x) of some long value x = (x[0], . . . , x[L − 1]) and later efficiently “prove” that
the i’th block of x takes on some particular value x[i] = u by providing a short opening π.
The size of the hash y = Hhk(x), the size of the opening π and the time to verify π should be
bounded by some fixed polynomials in the security parameter and unrelated to the potentially
huge size of x. So far, this problem can be solved using Merkle Trees, where such an opening
consists of the hash values of all the sibling nodes along the path from the root of the tree to
the i’th leaf. However, the definition of SSB hash has an additional statistical requirement: it
allows us to choose the hashing key hk with respect to some special “binding index” i in such
a way that the hash y = Hhk(x) is statistically binding on the i’th block of the input, meaning
that there only exists a valid opening for a single choice of x[i]. The index i on which the hash
is statistically binding should remain hidden by the hashing key hk. The formal definition is
below.

Definition 3.1 (SSB Hash). A somewhere statistically binding (SSB) hash consists of ppt
algorithms (Gen, H,Open,Verify) along with a block alphabet Σ = {0, 1}`blk , output size `hash
and opening size `opn, where `blk(λ), `hash(λ), `opn(λ) are some fixed polynomials in the security
parameter. The algorithms have the following syntax:

• hk← Gen(1λ, L, i) takes as input an integer L ≤ 2λ and index i ∈ {0, . . . , L− 1} (both of
these are in binary) and outputs a public hashing key hk.

• Hhk : ΣL → {0, 1}`hash is a deterministic polynomial time algorithm that takes as input
x = (x[0], . . . , x[L− 1]) ∈ ΣL and outputs Hhk(x) ∈ {0, 1}`hash.

• π ← Open(hk, x, j): Given the hash key hk, x ∈ ΣL and an index j ∈ {0, . . . , L − 1},
creates an opening π ∈ {0, 1}`opn.

• Verify(hk, y, j, u, π): Given a hash key hk and y ∈ {0, 1}`hash, an integer index j ∈
{0, . . . , L − 1}, a value u ∈ Σ and an opening π ∈ {0, 1}`opn, outputs a decision ∈
{accept, reject}. This is intended to verify that a pre-image x of y = Hhk(x) has x[j] = u.

We require the following properties:

Correctness: For any integers L ≤ 2λ and i, j ∈ {0, . . . , L − 1}, any hk ← Gen(1λ, L, i),
x ∈ ΣL, π ← Open(hk, x, j): we have Verify(hk, Hhk(x), j, x[j], π) = accept.

Index Hiding: We consider the following game between an attacker A and a challenger:

• The attacker A(1λ) chooses an integer L and two indices i0, i1 ∈ {0, . . . , L− 1}.
• The challenger chooses a bit b← {0, 1} and sets hk← Gen(1λ, L, ib).

• The attacker A gets hk and outputs a bit b′.

We require that for any ppt attacker A we have |Pr[b = b′] − 1
2 | ≤ negl(λ) in the above

game.

Somewhere Statistically Binding: We say that hk is statistically binding for an index i if
there do not exist any values y, u 6= u′, π, π′ s.t. Verify(hk, y, i, u, π) = Verify(hk, y, i, u′, π′) =
accept. We require that for any integers L ≤ 2λ, i ∈ {0, . . . , L − 1} the key hk ←
Gen(1λ, L, i) is statistically binding for i.
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Remarks. Notice that the output size and the opening size of SSB hash are bounded by
some fixed polynomials `hash, `opn and independent of the size of the input x. Also, we note
that an SSB hash function is necessarily collision resistant. Intuitively, if an attacker can find
x 6= x′ such that Hhk(x) 6= Hhk(x

′)then there must be some index i such that x[i] 6= x′[i] and
therefore the attacker knows with certainty that the key hk is not binding on index i. This
would contradict index hiding. We only make an informal note of this and do not explicitly rely
on this property.

Overview of Construction. Our construction combines the ideas behind Merkle Hash Trees
with fully homomorphic encryption (FHE, see Appendix B for a formal definition). Let’s assume
we want to hash some data x = x[0], . . . , x[L− 1] where L = 2α is a power-of-2. We construct
a full binary tree of height α sitting on top of the data x. Each node of the tree is associated
with a ciphertext under an FHE scheme. The L leaf nodes are associated with encryptions
of x[0], . . . , x[L− 1] respectively, where these ciphertexts are computed deterministically using
some fixed random coins. The hashing key hk ← Gen(1λ, L, i) consists of an encrypted path
in the tree going to a leaf i. Hashing will consist of homomorphically computing a ciphertext
for each node of the tree using the ciphertexts associated with its children and the ciphertexts
contained in hk. This is done in a way that ensures that all of the ciphertexts on the path
from the root to leaf i contain encryptions of x[i]. The output of the hash function is the
ciphertext associated with the root of the tree, which is an encryption of x[i] and therefore
statistically committing to this value. Analogously to Merkle Trees, opening the hash for some
particular block i consist of revealing the ciphertexts associated with all of the siblings along
the path from the root to i, which is sufficient to recompute the ciphertext associated with
the root. One difficulty is that an adversarial opening may consist of “incorrectly generated
ciphertexts” and we cannot guarantee the correctness of homomorphic evaluation over such
ciphertexts. Therefore, homomorphic evaluation will only operate on the honestly generated
ciphertexts provided as part of the hashing key hk, while the ciphertexts associated with the
nodes of the tree will only be used to define the function being evaluated.

Construction. Let E = (KeyGen,Enc,Dec,Eval) be an FHE scheme. For any polynomial
block-size `blk = `blk(λ), we construct an SSB hash function (Gen, H,Open,Verify) with alphabet
Σ = {0, 1}`blk as follows.

• hk ← Gen(1λ, L, i): Assume w.l.o.g. that L = 2α is a power-of-2 for some integer α ≤ λ.
For j = 0, . . . , α: create (pkj , skj)← KeyGen(1λ). Let (bα, . . . , b1) be the binary represen-
tation of the index i ∈ {0, . . . , 2α−1}.7 For j = 1, . . . , α, compute cj ← Encpkj ((skj−1, bj)).
Let hk = (pk0, . . . , pkα, c1, . . . , cα).

• y = Hhk(x): Let x = (x[0], . . . , x[L − 1]). Let T be a binary tree of height α with L
leaves. We think of the leaves as being at level 0 and the root of the tree as being at
level α. We inductively and deterministically associate a ciphertext ctv with each vertex
v ∈ T . Intuitively, the encrypted bits bj contained in hk will ensure that the data item
x[i] is propagated up the tree in encrypted form. Formally, we define the ciphertexts ctv
inductively as follows:

– If v is the j’th leaf, we associate to it the ciphertext ctv := Encpk0(x[j]; 0̄) to be a
deterministically computed encryption of x[j] using fixed randomness 0̄.

– Let v ∈ T be a non-leaf vertex at level j ∈ [α] with children v0, v1 having associ-
ated ciphertexts ct0, ct1, and let cj be the ciphertext contained in hk for level j. We

7It is useful to think of the bits bi as tracing out a path in a binary tree going from the root to the leaf i.
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associate with v the ciphertext ctv = Evalpkj (fct0,ct1 , cj) where we define the function:

fct0,ct1(sk, b) : { Compute: x0 = Decsk(ct0), x1 = Decsk(ct1). Output xb. }

Note that the function fct0,ct1 is homomorphically evaluated only over the ciphertext
cj = Encpkj ((skj−1, bj)) contained in hk, whereas the ciphertexts ct0, ct1 only serve
to define the function being evaluated. The output ciphertext ctv is an encryption
under the key pkj .

The above ensures that for any node v which lies on the path from the root to the leaf
at the statistically binding index i, the associated ciphertext ctv is an encryption of x[i].
The output of the hash is the ciphertext ctv where v is the root of the tree T .

• Open(hk, x, j): Perform the computation of Hhk(x) as described above and output the
ciphertexts ctv for each vertex v that’s a sibling of some vertex along the path from the
root to the leaf at position j.

• Verify(hk, y, j, u, π): Perform the computation of Hhk(x) as described above using only the
provided ciphertexts. In particular, for each vertex v along the path from the root of the
tree to leaf j, inductively compute a ciphertext ctv. In the base case, when v is the j’th
leaf, set ctv = Encpk0(u; 0̄). Otherwise, if v is not a leaf, than one of its children lies on the
path to leaf j in which case the corresponding ciphertext was computed in the previous
step, and the sibling ciphertex is provided in the opening π. Therefore, we can compute
ctv = Evalpkj (fct0,ct1 , cj) where ct0, ct1 are the ciphertexts associated with the children of
v and cj is contained in the hash key hk. Finally, compute the ciphertext ctv associated

with the root of the tree and check that y
?
= ctv.

Theorem 3.2. If E = (KeyGen,Enc,Dec,Eval) is an FHE scheme then, for any polynomial
block-size `blk(λ), the above construction (Gen, H,Open,Verify) is an SSB hash with block-
alphabet Σ = {0, 1}`blk .

Proof. Correctness of SSB hash follows clearly by observation.
For index hiding security, we rely on the semantic security of the FHE scheme. Let i0, i1 ∈

{0, . . . , L1} be the two indices chosen by the adversary A during the course of the index hiding
game, with binary representations i0 = (bα, . . . , b1) and i1 = (b′α, . . . , b

′
1) respectively. We define

a sequence of indistinguishable hybrids that take us from the challenger using the index i0 to
i1. First, we define a sequence of α hybrids where we change the ciphertexts contained in the
hashing key hk = (pk0, . . . , pkα, c1, . . . , cα) from cj ← Encpkj ((skj−1, bj)) to c∗j ← Encpkj (0̄) just
being an encryption of the all 0 string (starting from j = α and counting down to 1). Then
we do another sequence of α hybrids where we change the ciphertexts from c∗j ← Encpkj (0̄) to
c′j ← Encpkj ((skj−1, b

′
j)) (starting from j = 1 counting up to α). Each pair of successive hybrids

is indistinguishable by the semantic security of the FHE scheme with public key pkj and the
fact that skj is not being encrypted in the two hybrids in question.

Finally, for the somewhere statistically binding property, we just rely on the correctness of the
homomorphic evaluation of the FHE scheme. In particular, assume that hk← Gen(1λ, L, i) con-
sists of hk = (pk0, . . . , pkα, c1, . . . , cα) where (pkj , skj)← KeyGen(1λ) and cj ← Encpkj ((skj−1, bj))
where the binary representation of i is i = (bα, . . . , b1). Assume that Verify(hk, y, i, u, π) = accept
for some y, u, π. During the verification procedure, for each vertex vj at level j along the path
from the root of the tree to leaf i, we inductively compute a ciphertext ctvj . We claim, by
induction, that each such ciphertext satisfies Decskj (ctvj ) = u. For j = 0 (base case), the
computation sets ctv0 := Encpk0(u; 0̄), so the claim holds. For each successive j, the computa-
tion sets ctvj = Evalpkj (fct0,ct1 , cj) where ctbj = ctvj−1 lies on the path to leaf i at level j − 1
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while ct1−bj is provided as part of the opening π and we know nothing about it. By induction
Decskj−1

(ctbj ) = u. By the correctness of homomorphic evaluation, we therefore have

Decskj (ctvj ) = fct0,ct1(skj−1, bj) = Decskj−1
(ctbj ) = u.

This proves the claim. Therefore, the root ciphertext ctvα = y satisfies Decskα(y) = u. In
other word, u is uniquely fixed by y and there cannot exist any u′ 6= u and π′ such that
Verify(hk, y, i, u′, π′) = accept. This proves the somewhere statistically binding property.

3.2 One-Sided SFE for Multi-Decryption

In the introduction, we gave an example of a functionality where Alice has a short secret key,
Bob has a large encrypted database and we want Bob to learn the decryption without learning
anything else about Alice’s secret key. We now show how to do this in the honest-but-curious
setting with communication complexity indpendent of the database size. Then, in the next
section, we will leverage this protocol to build general SFE schemes.

Multi-Decryption. Let E = (KeyGen,Enc,Dec) be a bit-encryption scheme with ciphertext
size `ctx = `ctx(λ). We begin by describing an SFE protocol for the “multi-decryption” function-
ality where Alice has as input a secret key sk ∈ {0, 1}`sk and Bob has as input some “database”
of L ciphertexts c0, . . . , cL−1 ∈ {0, 1}`ctx where L is some polynomial in the security parameter.
The functionality gives Bob the decryptions m0 = Decsk(c0), . . . ,mL−1 = Decsk(cL−1) with
mi ∈ {0, 1}. In other words, we want an SFE for the function fE,Lmulti-dec(sk, (c0, . . . , cL−1)) =
(m0, . . . ,mL−1) where Bob gets the output. We only ask for one-sided security against an
honest-but-curious Bob and do not require any security against a corrupt Alice – she may learn
something about Bob’s ciphertexts c0, . . . , cL−1 during the course of the protocol.

Our protocol makes use of an SSB hash function H = (Gen, H,Open,Verify) with alphabet
Σ = {0, 1}`blk where `blk := `ctx + 1. Assume the SSB hash has some corresponding output size
`hash and opening size `opn (all polynomials in the security parameter λ). The protocol relies
on an indistinguishability obfuscation (iO) scheme O; see Appendix A for a definition of iO.
The protocol is given in Figure 1.

Protocol 1. SFE for multi-decryption fE,Lmulti-dec(sk, (c0, . . . , cL−1)) = (m0, . . . ,mL−1).

• Alice chooses hk← Gen(1λ, L, 0) and sends hk to Bob.

• Bob chooses randomness (r0, . . . , rL−1) ← {0, 1}L. Let x[i] = (ci, ri) ∈ Σ and x =
(x[0], . . . , x[L− 1]) ∈ ΣL. Bob computes y ← Hhk(x) and sends y to Alice.

• Alice creates a circuit C = C[hk, y, sk] as described below and obfuscates it by com-
puting C̃ ← O(1λ, C). She sends C̃ to Bob.

• For i = 0, . . . , L− 1, Bob computes πi = Open(hk, x, i) and mi := C̃(i, ci, ri, π).

Figure 1: Protocol for multi-decryption.

Given values hk (hash key), y (hash output) and sk (decryption key) define the circuit
C = C[hk, y, sk] as follows.
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C[hk, y, sk](i, c, r, π): // Hard-coded: hash key hk, hash value y, decryption key sk.

// Input: i ∈ {0, . . . , L− 1}, c ∈ {0, 1}`ctx , r ∈ {0, 1}, π ∈ {0, 1}`opn .
1. Check that Verify(hk, y, i, (c, r), π) = accept. If not, output 0.
2. Output Decsk(c).

In addition, we assume that the circuit C includes some polynomial-size padding to make it
sufficiently large. In particular, we also define an augmented circuit Caug = Caug[hk, y, sk, k, i∗]
below, which is not used in the protocol, but is used in the proof of security. We will need to
pad C so that its size matches that of Caug. For the definition of Caug, we assume that fk(x)
is a PRF with key k ∈ {0, 1}λ, input x ∈ {0, . . . , L− 1} and output fk(x) ∈ {0, 1}.

Caug[hk, y, sk, k, i∗](i, c, r, π): //New values: PRF key k, index i∗ ∈ {0, . . . , L− 1}.
1. Check that Verify(hk, y, i, (c, r), π) = accept. If not, output 0.
2. If i ≥ i∗ output Decsk(c), else output fk(i)⊕ r.

Theorem 3.3. If H is an SSB hash and O is an iO scheme then Protocol 1 is a secure
SFE for the functionality fE,Lmulti-dec with one-sided security against an honest-but-curious Bob.
Furthermore, for any choice of encryption scheme E, there is some polynomial p(λ) such that
for every polynomial L(λ) the communication complexity of the above protocol for fE,Lmulti-dec is
bounded by p(λ) and is independent of L(λ).

Proof. Firstly, we describe the simulator S which gets Bob’s inputs/outputs {ci,mi}L−1
i=0 and

creates a simulated view simB = ({ri}L−1
i=0 , hk, C̃) consisting of Bob’s simulated random coins

{ri} and the simulated protocol messages hk, C̃ from Alice. The simulator S chooses a random
PRF key k ← {0, 1}λ and sets the random coins to ri := fk(i)⊕mi for i = 0, . . . , L−1. It chooses
the hashing key hk ← Gen(1λ, L, L − 1), sets x := (x[0], . . . , x[L − 1]) with x[i] = (ci, ri) and
computes y := Hhk(x). Finally, it creates a circuit C ′ = Caug[hk, y,⊥, k, i∗ = L] (containing ⊥
in place of Alice’s secret key sk) and sets C̃ ← O(1λ, C ′). Note that, as a quick “sanity check”,
when πi = Open(hk, x, i) then C̃(i, ci, ri, πi) = fk(i)⊕ ri = mi.

Let’s fix some choice of Alice/Bob inputs: sk and c0, . . . , cL−1, which also fixes Bob’s outputs:
mi = Decsk(ci).

8 Let viewB be the real-world view of an honest-but-curious Bob in the protocol
when interacting with an honest Alice using the above inputs. Let simB ← S({ci,mi}L−1

i=0 ) be
the simulated view as described above. We need to show that the real and simulated views are
indistinguishable: viewB

c
≈ simB. We do so via a sequence of hybrid arguments.

Let Hybrid 0 be the distribution of the real-world view viewB. We define a sequence of
hybrids where we make small modifications and eventually arrive at the distribution of the
simulated view simB.

Let Hybrid 1 be the same as Hybrid 0, but instead of choosing Bob’s coins ri uniformly
at random, we choose a random PRF key k ← {0, 1}λ and we set ri = fk(i) ⊕mi. It’s clear
that Hybrid 0 and Hybrid 1 are indistinguishable by the security of the PRF.

Let Hybrid 2 be the same as Hybrid 1, but instead of obfuscating the circuit C =
C[hk, y, sk] on behalf of Alice, we obfuscate the augmented circuit Caug0 = Caug[hk, y, sk, k, i∗ :=

0] (containing Alice’s key sk), by setting C̃ ← O(1λ, Caug0 ). Note that C and Caug0 compute the
same function, and also C was padded to be of the same size as Caug0 . Therefore, these two
hybrids are indistinguishable by the iO security of the obfuscator O.

Let Hybrid 2.(i, j) for i, j ∈ {0, . . . , L} be the same as Hybrid 2 except that: (I) instead
of obfuscating Caug0 , we obfuscate Caugi = Caug[hk, y, sk, k, i∗ := i] by setting C̃ ← O(1λ, Caugi )
(II) instead of choosing hk ← Gen(1λ, L, 0) we choose hk ← Gen(1λ, L, j) to be statistically
binding at index j. It’s easy to see that Hybrid 2 and 2.(0, 0) are identical.

8These are “worst-case” inputs/outputs. We never rely on the security of the encryption scheme in our proof.
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We claim that:

Hybrid 2.(i, i)
c
≈ Hybrid 2.(i+ 1, i) i ∈ {0, . . . , L− 1} (3)

Hybrid 2.(i+ 1, i)
c
≈ Hybrid 2.(i+ 1, i+ 1) i ∈ {0, . . . , L− 2} (4)

To see (3), notice that Caugi and Caugi+1 only differ in how they evaluate inputs of the form
(i, c, r, π) for which Verify(hk, y, i, (c, r), π) = accept. By the “somewhere statistically binding”
property of the SSB hash which is selected to be binding at index i, such inputs must satisfy
(c, r) = (ci, ri) where ci is Bob’s i’th input and ri = fk(i) ⊕ mi. In this case Caugi outputs
Decsk(c) = mi and Caugi+1 outputs fk(i) ⊕ ri = mi, meaning that the circuits behave the same
way on all inputs. Therefore, (3) follows by the iO security of the obfuscation scheme. On the
other hand, (4) follows immediately from the index hiding property of the SSB hash function.
Together, this shows that Hybrid 2 is indistinguishable from Hybrid 2.(L,L− 1).

Let Hybrid 3 be the same as Hybrid 2.(L,L − 1) but instead of obfuscating the circuit
CaugL = Caug[hk, y, sk, k, i∗ = L] we obfuscate the circuit C ′ = Caug[hk, y,⊥, k, i∗ = L] (replacing
sk with ⊥). Since sk is never used in either circuit, their behavior is identical, and therefore
the indistinguishability of these hybrids follows from the iO security of the obfuscation scheme.

Hybrid 3 is the same as the simulate view simB. Therefore, putting everything together,

we showed that the real/simulated views are indistinguishable viewB
c
≈ simB, which proves the

theorem.

3.3 General SFE Constructions

We now leverage the protocol for multi-decryption from the previous section to get generic SFE
protocols in the honest-but-curious setting. Let

f = {fλ : {0, 1}`A(λ) × {0, 1}`B(λ) → {0, 1}L(λ)}λ∈N

be any efficiently computable function with `A, `B, L being some polynomials in the security
parameter λ. We focus on SFE schemes where Alice has input xA, Bob has input xB and Bob
learns the output y = f(xA, xB).

We give two constructions. The first one achieves communication complexity poly(λ)+`A(λ),
where poly(λ) is some fixed polynomial independent of the choice of f or its parameters. In
particular, the communication complexity only depends on Alice’s input size `A but is indepen-
dent of Bob’s input-size `B or output-size L. The second construction achieves communication
complexity poly(λ)CC(f, λ) where CC(f, λ) is the communication complexity of an arbitrary
insecure protocol for evaluating the function f and poly(λ) is some fixed polynomial independent
of the choice of f or its parameters. Since there is always a simple insecure protocol where Alice
sends her input to Bob, we have CC(f, λ) ≤ `A(λ) and in general, it may be much smaller than
Alice’s input size. Unfortunately, in this construction we pay with a multiplicative polynomial
overhead rather than an additive one as before.

First Construction. Let E = (KeyGen,Enc,Dec,Eval,Rerand) be an FHE scheme with reran-
domization (see Appendix B). As discussed in Appendix B, by relying on hybrid encryption we
can assume without loss of generality that a ciphertext produced by c ← Encpk(x) is of size
|x|+poly(λ), meaning that there is only an additive polynomial overhead. Our protocol is given
in Figure 2.

Theorem 3.4. Assuming that E = (KeyGen,Enc,Dec,Eval,Rerand) is an FHE scheme with
rerandomization, and that the conditions of Theorem 3.3 (Protocol 1) hold, Protocol 2 gives a
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Protocol 2. General SFE Protocol for f = {fλ : {0, 1}`A(λ) × {0, 1}`B(λ) → {0, 1}L(λ)}.
Alice has input xA, Bob has input xB and Bob learns y = f(xA, xB).

• Alice computes (pk, sk)← KeyGen(1λ), cA ← Encpk(xA) and sends pk, cA to Bob.

• Bob computes cout = Evalpk(f(·, xB), cA). Bob chooses a “one-time-pad” k ← {0, 1}L
and sets cpad = Evalpk(OTPk, cout) where OTPk(y) := y ⊕ k. Finally, Bob computes
cfrsh ← Rerandpk(cpad). Let cfrsh = (c0, . . . , cL−1) where ci are bit-encryptions.

• Alice and Bob execute Protocol 1 for the functionality fE,Lmulti-dec where Alice has input

sk and Bob has input cfrsh = (c0, . . . , cL−1). Bob receives the output z ∈ {0, 1}L and
sets y := k ⊕ z as the output of the protocol.

Figure 2: First Construction – general protocol for y = f(xA, xB).

secure SFE scheme for any polynomial-time computable functionality f . Furthermore, there is
some fixed polynomial p(λ) such that for every such functionality f where Alice’s input size is
`A(λ), the communication complexity of the protocol is given by p(λ) + `A(λ).

Proof. The communication complexity of the protocol follows by observation and relying on
the fact that we can take any FHE scheme and ensure that the ciphertext-size only incurs
an additive overhead, meaning that |cA| = `A(λ) + p(λ) for some fixed polynomial p(λ). See
Appendix B for details.

To simulate an honest-but-curious Bob, the simulator chooses (pk, sk) ← KeyGen(1λ) and
sets cA ← Encpk(0

`A) to be an encryption of the all 0 string on behalf of Alice. It then runs Bob’s
honest protocol with fresh randomness to compute cout, cpad, cfrsh as Bob would do. Finally it
simulates the execution of Protocol 1 using the one-sided simulator for that protocol, where Bob
has input cfrsh = (c0, . . . , cL−1) and output y = (y0, . . . , yL−1) ∈ {0, 1}L. It is clear that this
is indistinguishable by the semantic security of the FHE scheme and the simulation-security of
Protocol 1.

To simulate an honest-but-curious Alice, the simulator runs Alice’s protocol to produce the
first round messages pk, cA. It then chooses randomness z ← {0, 1}L and computes cpad ←
Encpk(z) and cfrsh ← Rerandpk(cpad). Finally, it runs a real execution of Protocol 1 between
Alice and Bob where it uses the input cfrsh on behalf of Bob. Notice that in the real protocol z =

y⊕ k has the same distribution as z ← {0, 1}L in the simulation. Furthermore, in both the real
protocol and the simulation, cfrsh is derived by running Rerandpk(cpad) on some ciphertext cpad
such that Decsk(cpad) = z. The only difference between the real execution and the simulation
is that cpad is computed completely differently. By the security of rerandomization, this is
indistinguishable.

Second Construction. Let πfinsec = (πA, πB) be any (insecure) protocol between Alice and
Bob that evaluates the function y = f(xA, xB) so that Bob learns y at the end of the protocol.
We assume that it has some fixed round complexity q = q(λ) and fixed communication-length
in each round, independent of the particular inputs. Without loss of generality, the protocol π
works as follows: Alice and Bob start out with a state that just consists of their inputs stateA0 =
xA, state

B
0 = xB. The protocol proceeds in q rounds where, in each round i, Alice computes

(msgAi , state
A
i ) = πA(msgBi−1, state

A
i−1), sends msgAi to Bob, and Bob computes (msgBi , state

B
i ) =
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πB(msgAi , state
B
i−1) and sends msgBi to Alice (we define msgB0 to be the empty string). At the

end of the protocol, Bob’s state stateBq = f(xA, xB) contains the output of the computation.
Our SFE protocol will rely on the idea of “double encryption” using two FHE public keys

pkA, pkB and ciphertexts of the form c = EncpkB (EncpkA(x)). To simplify notation, we let
EvalpkB ,pkA(f, c) denote EvalpkB (EvalpkA(f, ·), c). This corresponds to a homomorphic evaluation
of the function f on the message x hidden under two layers of encryption. In particular if c
is as above and c∗ = EvalpkB ,pkA(f, c) then DecpkB (DecpkA(c∗)) = f(x). The main idea of our
construction is to execute the protocol π under two layers of FHE encryption with public keys
pkA, pkB chosen by Alice and Bob respectively.9

Protocol 3. General SFE Protocol for f = {fλ : {0, 1}`A(λ) × {0, 1}`B(λ) → {0, 1}L(λ)}.
Alice has input xA, Bob has input xB and Bob learns y = f(xA, xB).

• Alice chooses (pkA, skA) ← KeyGen(1λ) and sends pkA to Bob. Bob chooses
(pkB, skB)← KeyGen(1λ) and sends pkB to Alice.

• Alice locally computes a double-encryption cAstate,0 ← EncpkB (EncpkA(xA)) and Bob

locally computes cBstate,0 ← EncpkB (EncpkA(xB)).

• For i = 1, . . . , q:

– Alice computes (cAmsg,i, c
A
state,i) = EvalpkB ,pkA(πA, (cBmsg,i−1, c

A
state,i−1)) and sends

cAmsg,i to Bob. (We define cBmsg,0 to be the empty string.)

– Bob computes (cBmsg,i, c
B
state,i) = EvalpkB ,pkA(πB, (cAmsg,i−1, c

B
state,i−1)) and sends

cBmsg,i to Alice.

• Bob computes cout = DecskB (cBstate,q).

Bob chooses a ‘one-time pad” key k ← {0, 1}L and sets cpad = EvalpkA(OTPk, cout)
where OTPk(y) := y ⊕ k.
Finally, Bob computes cfrsh ← RerandpkA(cpad). Let cfrsh = (c0, . . . , cL−1) where ci
are bit-encryptions.

• Alice and Bob execute Protocol 1 for the functionality fE,Lmulti-dec where Alice has input

skA and Bob has input cfin = (c0, . . . , cL−1). Bob receives the output z ∈ {0, 1}L and
sets y := k ⊕ z as the output of the protocol.

Figure 3: Second Construction– general protocol for y = f(xA, xB).

Theorem 3.5. Assume that E = (KeyGen,Enc,Dec,Eval,Rerand) is an FHE scheme with reran-
domization, and that the conditions of Theorem 3.3 (Protocol 1) hold. Let f be any polynomial-
time functionality and let πf be any (insecure) protocol correctly evaluating f with communi-
cation complexity CC(f, λ). Then Protocol 3 gives a secure SFE scheme for f . Furthermore,
there is some fixed polynomial p(λ) such that for every choice of f and πf as above, the com-
munication complexity of Protocol 3 is bounded by p(λ)CC(f, λ).

Proof. The communication complexity of the protocol follows by inspection.

9We note that an alternate approach avoiding double-encryption and instead using distributed key-generation
where Alice and Bob agree on a common FHE public key pk and get secret shares skA, skB of the corresponding
secret key sk = skA ⊕ skB for pk is also possible.
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To simulate an honest-but-curious Bob, the simulator runs the protocol between Alice and
Bob honestly up until the last step (execution of Protocol 1) with one difference: it now computes
Alice’s initial encrypted state as cAstate,0 ← EncpkB (EncpkA(0`A)) using a dummy value 0`A instead
of her input xA. Finally, it simulates the execution of Protocol 1 using the one-sided simulator
for that protocol, where Bob has input cfrsh = (c0, . . . , cL−1) and output y = (y0, . . . , yL−1) ∈
{0, 1}L. It is clear that this is indistinguishable by the semantic security of the FHE scheme
(with pkA) and the simulation-security of Protocol 1.

To simulate an honest-but-curious Alice, the simulator runs the protocol between Alice
and Bob honestly up until the last step (execution of Protocol 1) with one difference: it now
computes Bob’s initial encrypted state as cBstate,0 ← EncpkB (EncpkA(0`B)) using a dummy value

0`B instead of his input xB. In the last step, it chooses randomness z ← {0, 1}L and computes
cpad ← EncpkA(z) and cfrsh ← RerandpkA(cpad). Finally, it runs a real execution of Protocol 1
between Alice and Bob where it uses the input cfrsh on behalf of Bob. Notice that in the real

protocol z = y ⊕ k has the same distribution as z ← {0, 1}L in the simulation. Furthermore,
in both the real protocol and the simulation, cfrsh is derived by running RerandpkA(cpad) on
some ciphertext cpad such that DecskA(cpad) = z. Therefore, the only difference between the real
execution and the simulation is that (1) cBstate,0 is computed with a dummy value and (2) cpad is
computed differently but encrypts the same message. The first modification is indistinguishable
by the semantic security of the FHE scheme with public key pkB. The second modification is
indistinguishable by the re-randomization security of the FHE scheme with public key pkA.

Output for Alice. Note that our positive results also extend to the case where both Alice and
Bob get the same output y or where they get different outputs yA, yB respectively. In particular,
we can just run two sequential copies of our SFE where we reverse the roles of Alice and Bob.
Using the first construction, this results in communication complexity poly(λ) + |xA| + |xB|.
Using the second construction, this results in communication complexity poly(λ)CC(f, λ) where
CC(f, λ) is now the communication complexity of the best insecure protocol evaluating f where
both Alice and Bob get their correct outputs.

3.4 On The Necessity of Obfuscation

We show that some weak form of obfuscation is necessary to avoid “output-size dependence”
for general SFE in the honest-but-curious setting. It’s not clear if this weak form of obfuscation
implies iO (seems unlikely) but nevertheless it appears highly non-trivial to achieve.

Succinct Obfuscation with CRS. Consider a notion of obfuscation intended for circuits
C : [L] → {0, 1} where the domain size L is some large polynomial. In other words, we
would like to have an obfuscator C̃ ← O(1λ, 1L, C) that is allowed to run in time polynomial in
the domain size L. This is trivial to achieve: the obfuscator just outputs C̃ = [C(1), . . . , C(L)]
containing the evaluation of C on all points in its domain. Indeed, this satisfies a strong notion of

black-box (BB) obfuscation where the entire obfuscated circuit C̃
c
≈ SC(1λ, 1L) can be simulated

given black-box access to C.10 Can we get such BB obfuscation scheme which is also succinct,
meaning that the size of the obfuscated circuit C̃ is bounded by some polynomial poly(|C|, λ)
independent of L? It’s easy to see that this is impossible using the same incompressibility
argument as our main negative result - if the circuit C computes a PRF fk(i) for i ∈ [L] then a
succinct BB obfuscation scheme would need to compress the PRF outputs. Therefore, we add

10We use the term BB obfuscation to refer to this strong notion in contrast to the standard notion of “virtual
black-box” (VBB) obfuscation where an attacker only outputs 1-bit predicate of the obfuscated circuit.

16



one more relaxation allowing both the obfuscator and the evaluator to have access to a large
common random string (CRS) r, which is chosen uniformly at random. Although the size of r
can depend on L, the size of the obfuscated circuit cannot.

Definition 3.6 (Succinct BB Obfuscation with CRS). A succinct BB obfuscator consists of
a ppt obfuscator C̃ ← O(1λ, 1L, C, r) and a ppt evaluator b = Eval(C̃, i, r), where r ←
{0, 1}p(λ,L,|C|) for some polynomial p is a uniformly random CRS. For correctness, we require
that for all circuits C : [L] → {0, 1} and all i ∈ [L] we have Pr[Eval(O(1λ, 1L, C, r), i, r) =
C(i)] = 1. For security, we require that there exists a ppt simulator S such that for any
polynomial L(λ) and any circuit ensemble C = {Cλ : [L(λ)]→ {0, 1}} we have

(r, C̃)
c
≈ SC(1λ, 1L, |C|)

where r ← {0, 1}p(λ,L,|C|), C̃ ← O(1λ, 1L, C, r). In other words, we can simulate the obfuscated
circuit if the simulator is allowed to choose the CRS r.

Our positive result gives us such a succinct BB obfuscation scheme with a CRS using iO.
To obfuscate C we first compute an SSB hash z = Hhk(r) of the CRS r and then obfuscate the
circuit C[z](i, ri, πi) which verifies that ri is the correct value of the i’th bit of the pre-image
by checking the opening πi; if so, it outputs C(i). More generally, we claim that any honest-
but-curious SFE scheme with communication complexity poly(|xA|, λ) which only depends on
Alice’s input size but not Bob’s output size would give such obfuscation.

Theorem 3.7. Assume the existence of an SFE in the honest-but-curious setting for general
computation y = f(xA, xB) where Bob gets the output y, and where the communication com-
plexity from Alice to Bob is bounded by p(|xA|, λ) for some fixed polynomial p independent of the
function f or its output size L. Then there exists a succinct BB obfuscator in the CRS model,
where the size of the obfuscated circuit is p(|C|, λ) independent of the domain size L.

Proof. Consider an SFE protocol for the functionality f(C,⊥) = y = (C(1), . . . , C(L)) where
Alice gets as input some circuit C, Bob has no input, and Bob learns C(1), . . . , C(L). By as-
sumption, we have an honest-but-curious SFE protocol with communication complexity p(|C|, λ)
from Alice to Bob.

The CRS in the obfuscation scheme will be the randomness r for Bob. To obfuscate a circuit
C, the obfuscator O(1λ, 1L, C, r) runs an honest copy of the SFE protocol between Alice with
input C and Bob with the random coins r. It sets the obfuscated circuit C̃ to consist of the
protocol messages from Alice to Bob. Given C̃ and r, the Eval algorithm computes Bob’s output
y = (C(1), . . . , C(L)). The security of the obfuscation scheme follows directly from that of the
SFE protocol.

It remain an interesting open problem to explore the notion of succinct BB obfuscation in
the CRS further, and to see if it can be constructed under weaker assumptions than iO.

4 Lower Bounds in the Honest-But-Deterministic Setting

We now give a lower bound for communication complexity of offline/online SFE in the presence
of honest-but-deterministic adversaries. In particular, we show that the online communication
complexity in any such SFE protocol must exceed the Yao incompressibility entropy of the
output distribution of the evaluated function f .
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4.1 Yao Incompressibility Entropy

The traditional notion of Shannon entropy corresponds to how well a distribution can be com-
pressed (on average). The notion of Yao incompressibility entropy [Yao82b; HLR07] extends
this to the computational setting by measuring how well a distribution can be compressed when
the compressor and decompressor are required to be efficient. Roughly speaking, the Yao in-
compressibility entropy of a distribution X is at least k if X cannot be efficiently compressed
to fewer than k bits. We will rely on a version of conditional Yao incompressibility entropy
due to Hsiao, Lu and Reyzin [HLR07]. It was shown by [HLR07] that the (conditional) Yao
incompressibility entropy of a distribution X is always at least as large as its HILL pseudo-
entropy [HILL99], which is in turn at least as large as its min-entropy, and the gaps between
these entropies can be large. Therefore, giving a lower bound in terms of Yao entropy yields
the strongest results.

Definition 4.1 (Conditional Yao Incompressibility Entropy [HLR07]). Let k = k(λ) be an
integer-valued function of security parameter λ. A probability ensemble X = {Xλ}λ∈N has Yao
incompressibility entropy at least k conditioned on Z = {Zλ}λ∈N, denoted by HYao(X|Z) ≥ k,
if for every pair of circuit-ensembles C = {Cλ}, D = {Dλ} (called “compressor” and “decom-
pressor”) of size poly(λ) where Cλ has output-size at most k(λ) − 1, there exists a negligible
function ε(·) such that

Pr
(x,z)←(Xλ,Zλ)

[Dλ(Cλ(x, z), z) = x] ≤ 1

2
+ ε(λ) .

We note that the above definition is actually somewhat weaker than the one of [HLR07]. The
latter required that, if the output of the compressor has length `, then the success probability
of the compressor/decompressor should be at most 2`−k+ε(λ). In our case, we only require this
to hold for ` = k − 1. Since considering a weaker definition makes our lower bound stronger,
we will use our weaker variant which is also simpler to define and use.

Let f : {0, 1}`A(λ)×{0, 1}`B(λ) → {0, 1}L(λ). We define the Yao incompressibility entropy of
the function f as a natural extension of the concept of the above Yao incompressibility entropy
for probability ensembles (Definition 4.1). In particular, it measures the incompressibility of
Bob’s output Y = f(XA, XB) conditioned on Bob’s input XB, for the choice of distributions
XA, XB which maximizes this quantity.

Definition 4.2 (Yao Incompressibility Entropy of Function). We say that a function f :
{0, 1}`A(λ) × {0, 1}`B(λ) → {0, 1}L(λ) has Yao incompressibility entropy at least k, denoted
by k ≤ HYao(f), if there exist

• a probability ensemble XA = {XA,λ}λ∈N of distributions over {0, 1}`A(λ) and

• a probability ensemble XB = {XB,λ}λ∈N of distributions over {0, 1}`B(λ),

such that the ensemble Y = {Yλ}λ∈N defined via Y = f(XA, XB) satisfies k ≤ HYao(Y |XB);
i.e., the Yao incompressibility entropy of Y conditioned on XB is at least k.

4.2 Communication Complexity vs. Incompressibility Entropy

We now show a lower bound on the communication complexity of any (offline/online) SFE pro-
tocol evaluating f in the honest-but-deterministic setting in terms of the Yao incompressibility
entropy of f .
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Theorem 4.3. Let f : {0, 1}`A(λ) × {0, 1}`B(λ) → {0, 1}L(λ), and let Π = (Πoff ,Πon) be an
offline/online protocol evaluating f with one-sided security against honest-but-deterministic Bob.
If the Yao incompressibility entropy of f is HYao(f) ≥ k then the communication complexity
from Alice to Bob during the online phase of Π is at least k.

Proof. Assume, by contradiction, that the Yao incompressibility entropy of f is at least k but
the communication complexity from Alice to Bob during the online phase of Π is at most k− 1.
Since Π securely evaluates f in the presence of honest-but-deterministic Bob (Definition 2.2),
there exists an efficient simulator S = (Soff , Son) that satisfies the definition. Let XA, XB be
distributions of Alice’s and Bob’s inputs that maximize HYao(Y |XB) where Y = f(XA, XB),
so that HYao(Y |XB) ≥ k. We show how to use the simulator S to efficiently compress the
output distribution Y given XB to k − 1 bits, and successfully decompress with overwhelming
probability.

Let ρ = (ρoff , ρon) be any string of random coins used by the simulator S. On input
(y, xB) ← (Y,XB), the compressor Cρ runs S on (y, xB) using the randomness ρ to obtain
the simulated view (simoff

B , simon
B ) = ((moff

1 , . . . ,moff
s ), (xB,m

on
1 , . . . ,m

on
t )) of the honest-but-

deterministic adversary corrupting Bob. The compressor outputs (mon
1 , . . . ,m

on
t ), i.e., the sim-

ulated messages from Alice to Bob during the online phase of length at most k − 1.
On input ((mon

1 , . . . ,m
on
t ), xB), the decompressor Dρ runs the simulator Soff with random-

ness ρoff to create the simulated view simoff
B = (moff

1 , . . . ,moff
s ) of the honest-but-deterministic

Bob in the offline phase. The decompressor outputs the implicit output y′ of honest-but-
deterministic Bob given the complete view ((moff

1 , . . . ,moff
s ), (xB,m

on
1 , . . . ,m

on
t )).

Since the simulated transcript is computationally indistinguishable from the real transcript,
a random compressor/decompressor pair will output a correct y with overwhelming probability,
i.e., for all y, xB:

Pr
ρ

[Dρ(Cρ(y, xB), xB) = y] ≥ 1− µ(λ) ,

for a negligible µ. Hence, for all large enough λ there exists some fixed string ρλ and a pair
of circuits Cλ = Cρλ , Dλ = Dρλ of total size s(λ) ∈ poly(λ) with the output-size of Cλ being
k(λ)− 1 such that

Pr
(y,xB)

[Dλ(Cλ(y, xB), xB) = y] ≥ 1− µ(λ).

This contradicts HYao(Y |XB) ≥ k.

As an immediate corollary, we get that the communication complexity during the online
phase must be at least as large as the output-size for any functionality with pseudorandom
output. For example, we state the following for the example of PRF evaluation discussed in
Section 1.1.

Corollary 4.4. Let f = {fk : {0, 1}λ → {0, 1}}k∈{0,1}λ be a pseudorandom function. Consider

an SFE functionality for “L PRF Evaluations” where Alice has a key k ∈ {0, 1}λ, Bob has no
input, and Bob gets the output y = (fk(1), . . . , fk(L)) for some polynomial L = L(λ). In
any offline/online protocol Π = (Πoff ,Πon) for the above functionality, with one-sided security
against honest-but-deterministic Bob, the online communication from Alice to Bob must be at
least L bits.

Proof. Consider the uniformly random distribution of Alice’s input k. Then Bob’s output
y = (fk(1), . . . , fk(L)) is pseudorandom and therefore the HILL and Yao incompressibility
entropy of y is L. It follows from Theorem 4.3 that the communication complexity from Alice
to Bob during the online phase of Π is at least L.
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Extension to Multi-Party SFE. Our negative results also extend to multi-party SFE. In
particular, for an n-party functionality (y1, . . . , yn) = f(x1, . . . , xn) where party Pi has input
xi and output yi, we can define the i’th output entropy of f as being at least k if there exists
some distribution (X1, . . . , Xn) such that HYao(Yi|Xi) ≥ k where Y = f(X1, . . . , Xn). In that
case, in any offline/online n-party SFE protocol that has one-sided security against a single
honest-but-deterministic party Pi, the communication-complexity from all other parties to Pi
must be at least k bits. This simply follows by thinking of party Pi as Bob and thinking of all
of the other parties as Alice in a two-party SFE protocol.

4.3 Application: Lower Bounds for Functional Encryption

The impossibility of functional encryption with simulation based security for general circuits was
first shown by Agrawal et al. [AGVW13]. This result was later extended to prove lower bounds
for various related notions of functional encryption [DIJ+13; DI13; GGJS13]. In this section
we show that the above lower bounds for functional encryption follow from our lower bound on
communication complexity in offline/online SFE secure against honest-but-deterministic Bob.

Definition 4.5 (Functional Encryption). Let C = {Cλ}λ∈N be a function family, where each

circuit C ∈ Cλ takes as input a string x ∈ {0, 1}m(λ) and outputs C(x) ∈ {0, 1}. A functional en-
cryption scheme FE for a circuit family C consists of four algorithms FE = (Setup,KeyGen,Enc,Dec)
defined as follows:

• FE .Setup(1λ) is a ppt algorithm that takes as input the unary representation of the secu-
rity parameter and outputs the master public and secret keys (MPK,MSK).

• FE .KeyGen(MSK, C) is a ppt algorithm that takes as input the master secret key MSK
and a circuit C ∈ Cλ and outputs a corresponding secret key skC .

• FE .Enc(MPK, x) is a ppt algorithm that takes as input the master public key MPK and

an input message x ∈ {0, 1}m(λ) and outputs a ciphertext c.

• FE .Dec(skC , c) is a deterministic algorithm that takes as input the secret key skC and a
ciphertext c and outputs y.

We require:

Correctness: For all C ∈ Cλ and all x ∈ {0, 1}m(λ),

Pr

[
y 6= C(x)

∣∣∣∣ (MPK,MSK)← FE .Setup(1λ), skC ← FE .KeyGen(MSK, C),
c← FE .Enc(MPK, x), y ← FE .Dec(skC , c)

]
= negl(λ) ,

where the probability is taken over the coins of FE .Setup, FE .KeyGen, and FE .Enc.

L-SIM Security: For security, we require that there exists a simulator S = (S1, S2) such that

for every choice of the circuits C1, . . . , CL ∈ Cλ and every x ∈ {0, 1}m(λ) we have

( view1 = (MPK, skC1 , . . . , skCL) , view2 = c )
c
≈ ( sim1 , sim2 )

where (MPK,MSK)← FE .Setup(1λ), skCi ← FE .KeyGen(MSK, Ci), c← FE .Enc(MPK, x)
and (sim1, state)← S1(1λ, C1, . . . , CL), sim2 ← S2(C1(x), . . . , CL(x), state).

We can also consider a version where we want the scheme to satisfy L-SIM security for
every polynomial L(λ), and we call this as poly-SIM-secure functional encryption.
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Protocol 4. SFE for L PRF Evaluations: Alice holds a secret key k ∈ {0, 1}λ, Bob has
no input, and Bob learns evaluations fk(1), . . . , fk(L).

Offline phase:

• Alice generates (MPK,MSK)← FE .Setup(1λ) and for all i = 1, . . . , L(λ) Alice gener-
ates the circuit Ci ∈ Cλ defined as Ci(k) = fk(i), sets skCi ← FE .KeyGen(MSK, Ci)
and sends (MPK, skC1 , . . . , skCL) to Bob.

Online phase:

• Alice computes an encryption c ← FE .Enc(MPK, k) of her key k ∈ {0, 1}λ and sends
c to Bob.

• Bob outputs y = (FE .Dec(skC1 , c), . . . ,FE .Dec(skCL , c)).

Figure 4: Protocol for evaluating PRF fk on L inputs.

The above notion of L-SIM security is weaker and simpler to describe than usual notions
of simulation-based security for functional encryption, such as the 1-NA-SIM-secure functional
encryption from Agrawal et al. [AGVW13]. This makes our results stronger and simpler. In
particular, our notion corresponds to simulating an adversary A that makes L completely non-
adaptive FE .KeyGen queries prior to seeing the challenge ciphertext of message x. We require
the simulator to simulate MPK and the secret keys skCi before learning the outputs Ci(x) on the
chosen-message x. This models the fact that x is chosen by A later in the game (and perhaps
could adaptively depend on the secret keys skCi).

Offline/Online SFE from Functional Encryption. Let f = {fk : {0, 1}λ → {0, 1}}k∈{0,1}λ
be a PRF family, and define the two-party L PRF evaluations functionality where Alice holds
a secret key k ∈ {0, 1}λ, Bob has no input, and Bob learns evaluations fk(1), . . . , fk(L).
We show that any L-SIM-secure functional encryption scheme FE for the class of circuits
Cλ = {Ci(k) = fk(i) : i ∈ {0, 1}λ} gives an offline/online two-party protocol (described in
Figure 4) for this functionality. Note that the communication complexity in the online phase
of Protocol 4 is equal to the ciphertext-size in FE .

Theorem 4.6. Let f = {fk : {0, 1}λ → {0, 1}}k∈{0,1}λ be a pseudorandom function. For

any polynomial L = L(λ), let FE = (Setup,KeyGen,Enc,Dec) be any L-SIM secure functional
encryption scheme for circuit family Cλ = {Ci(k) = fk(i) : i ∈ {0, 1}λ}. Then Protocol
4 instantiated with FE is an offline/online protocol that evaluates the “L PRF Evaluations”
functionality with security against an honest-but-deterministic (or even fully malicious) Bob.

Proof. Since Bob does not send any messages to Alice in the protocol, there is no difference
between Bob being malicious, honest-but-deterministic, or honest-but-curious in this case.

To simulate view of Bob in Protocol 4 we need to construct an offline/online simulator
S = (Soff , Son) by relying on the functional-encryption simulator S′ = (S′1, S

′
2). We simply

define the offline simulator Soff(1λ) to run S′1(1λ, C1, . . . , CL) with the circuits Ci(k) = fk(i).
We define Son(C1(k), . . . , CL(k), state) to simply run S2(C1(x), . . . , CL(x), state). The security
of SFE simulation follows directly from the L-SIM security of functional encryption.

We can now use the above theorem and our lower-bound for the communication complexity
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of offline/online SFE to derive a lower bound of [AGVW13] for functional encryption.

Corollary 4.7 ([AGVW13] Corollary 1.2). There exists a circuit family C = {Cλ} such that for
every polynomial L = L(λ), every L-SIM-secure functional encryption scheme for C must have
ciphertext-size at least L bits. In particular there is no poly-SIM-secure functional encryption
scheme for C.

Proof. Let C = {Cλ} be the circuit family from Theorem 4.6. Assume, by contradiction, there
exists an L-SIM-secure functional encryption scheme FE for C with ciphertext-size L−1. It fol-
lows from Theorem 4.6 that Protocol 4 instantiated with FE evaluates the “L PRF Evaluations”
SFE functionality with security against honest-but-deterministic Bob, and the communication
complexity from Alice to Bob during the online phase is L−1 bits. However, such offline/online
SFE protocol contradicts Corollary 4.4 stating that the communication complexity during the
online phase must be at least L bits.

The above shows that if the ciphertext size of the scheme FE is L = L(λ) bits, then it
already cannot be (L+ 1)-SIM secure. Therefore no functional encryption scheme can be poly-
SIM-secure.

The technique of Agrawal et al. [AGVW13] was also used by De Caro et al. [DIJ+13] in
the case of fully non-adaptive adversaries (adversaries that must issue the ciphertext queries
and the secret key queries simultaneously), De Caro and Iovino [DI13] for simulators with
the additional power of rewinding the adversary, or Goldwasser et al. [GGJS13] for multi-
input functional encryption. All of the above results can easily be derived as corollaries of our
Theorem 4.3 by showing that the corresponding primitive can be used to get an SFE protocol in
the offline/online model with better online communication than what we showed to be possible.

4.4 Application: Lower Bounds for Garbled Circuits

In this section we discuss the known lower bounds for garbled circuits that follow from our lower
bound on communication complexity of offline/online SFE from Section 4.2.

Garbled circuits, introduced by Yao [Yao82a] in the context of secure two-party computation,
allow to evaluate circuit C on input x without revealing anything about C or x besides C(x).
A garbling scheme takes as input circuit C and outputs C̃, a garbled version of C, such that
C̃(x̃) = C(x) for any garbled input x̃ corresponding to x.

The standard notion of security requires existence of an efficient simulator that given C(x)
outputs C̃ and x̃ indistinguishable from real pair of a garbled circuit and a garbled input. A
stronger notion, usually referred to as adaptive security requires the simulator to simulate the
garbled circuit independently of the output – i.e., the simulator gets C and outputs C̃ then gets
C(x) and outputs x̃.11 This corresponds to the fact that the input x may be chosen adaptively
depending on the garbled circuit C̃.

Garbled Circuits with Adaptive Security. The work of Applebaum et al. [AIKW13] gives
a lower bound showing that (in general) the size of the garbled input must be at least as large
as the output of the circuit if the garbling scheme provides adaptive security. Indeed, it is easy
to see that an adaptively secure garbling scheme gives rise to an offline/online two-party SFE
protocol where Alice sends the garbled circuit C̃ to Bob during the offline phase and the garbled
input x̃ during the online phase, and finally Bob outputs C̃(x̃). Therefore, we can derive the
same lower bound from our Corollary 4.4 by noting that there exists a circuit family for which

11Since the simulator receives the circuit C, the security notions we consider in this section provide only input
privacy and not circuit privacy. This makes the negative results stronger.
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the garbled input (= online communication) must be at least as large as the output-size of the
garbled circuit.

Note that it is crucial for the lower bound of Applebaum et al. [AIKW13] that the security
notion is adaptive. The lower bound can be circumvented if one considers the standard non-
adaptive security, where the simulator receives the output of the circuit before outputting the
simulated garbled circuit, and for example the Yao’s construction of garbled circuits already
provides garbled inputs of size independent of the output of the circuit.

Reusable Garbled Circuits. Until recently, most of the constructions of garbled circuits
(including [Yao82a]) provided no security guarantee if used on multiple garbled inputs. Gold-
wasser et al. [GKP+13] put forward the notion of reusable garbled circuits and gave the first
construction. In this case the standard (non-adaptive) security would require that we can simu-
late a garbled circuit and a series of garbled inputs C̃, x̃1, . . . , x̃q given C and C(x1), . . . , C(xq).
The work of Gentry et al. [GHRW14] shows that for reusable garbled circuits, even if we con-
sider non-adaptive security, there exists a family of circuits for which the length of the garbled
inputs must be at least as long as the length of the output of the circuit. We show how this
follows as a simple corollary of our results.

Consider a circuit C(x) which evaluates a PRG with seed x and output size L. A reusable
garbled circuit scheme having garbled-inputs of size L − 1 would give an online-only protocol
for evaluating circuit C(x1), . . . , C(xq) on q different inputs by sending C̃, x̃1, . . . , x̃q. The

communication complexity would be |C̃|+ q(L−1). By choosing q > |C̃|, this would be smaller
than the total output size qL, contradicting Theorem 4.3.

5 Conclusions

We explored the communication complexity of SFE for functions with long output. We showed
that the honest-but-curious setting allows for general protocols whose communication is smaller
than the output size while the malicious or even honest-but-deterministic settings do not. There
are several interesting open problems left to explore. One interesting problem would be to
consider weaker security notions than simulation-based security. For example, perhaps we get
around “output-size dependence” in the malicious setting if we allowed for an unbounded or
super-polynomial simulator. We leave this question for future work.
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A Indistinguishability Obfuscation

Definition A.1 (Indistinguishability Obfuscator (iO)). A uniform ppt machine O is called
an indistinguishability obfuscator for a circuit class {Cλ}λ∈N if the following conditions are
satisfied:

Correctness: For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have that

Pr[C̃(x) = C(x) : C̃ ← O(1λ, C)] = 1 .

Security: For any (not necessarily uniform) ppt distinguisher D, there exists a negligible
function α such that the following holds: For all security parameters λ ∈ N, for all pairs
of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x,then∣∣∣Pr[D(O(1λ, C0)) = 1]− Pr[D(O(1λ, C1)) = 1]

∣∣∣ ≤ α(λ) .
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B Fully Homomorphic Encryption

An FHE scheme consists of ppt algorithms E = (KeyGen,Enc,Dec,Eval) and a fixed ciphertext
size `ctxt = `ctxt(λ) where:

• (pk, sk)← KeyGen(1λ) generates a public/secret key.

• c← Encpk(b) takes a bit b ∈ {0, 1} and creates a ciphertext c ∈ {0, 1}`ctxt .

• b← Decsk(c) decrypts c.

• c∗ = Evalpk(f, c1, . . . , cn) is a deterministic algorithm that takes a circuit representing a

function f : {0, 1}n → {0, 1} and n ciphertexts c1, . . . , cn ∈ {0, 1}`ctxt and outputs a
ciphertext c∗ ∈ {0, 1}`ctxt .

We require:

Encryption Correctness: For any choice of (pk, sk) ← KeyGen(1λ), any b ∈ {0, 1} and any
c← Encpk(b) we have Decsk(c) = b.

Evaluation Correctness: For any choice of (pk, sk)← KeyGen(1λ), any ciphertexts c1, . . . , cn{0, 1}`ctxt
such that Decsk(ci) = bi ∈ {0, 1}, and any circuit f : {0, 1}n → {0, 1}, if we set
c = Evalpk(f, c1, . . . , cn) then c ∈ {0, 1}`ctxt and Decsk(c) = f(b1, . . . , bn).

Security: The FHE scheme is semantically secure.

We will often abuse notation and write c← Encpk(m) for a longer message m = (b1, . . . , bn) ∈
{0, 1}n as shorthand for computing ci ← Encpk(bi) and setting c = (c1, . . . , cn) ∈ {0, 1}n·`ctxt .
If f : {0, 1}n → {0, 1}u is circuit with multi-bit output, we also write c∗ = Evalpk(f, c) where
c = (c1, . . . , cn) as shorthand for computing c∗i = Evalpk(fi, c1, . . . , cn) where fi computes the
i’th output bit of f , and setting c∗ = (c∗1, . . . , c

∗
u).

Additive Overhead Ciphertext-Size. The above definition is for a bit-encryption scheme.
When encrypting a long message m, it would result in large multiplicative overhead |c| =
|m|poly(λ). Fortunately, there is a generic trick which allows us to take any such FHE an
reduce the encryption overhead via hybrid encryption.

Let G be a PRG with λ-bit seed and variable length output. To encrypt a long message m we
select a random seed x← {0, 1}λ and use the FHE scheme to compute cFHE ← Encpk(x) and set
cPRG = G(x)⊕m. This results in ciphertext-size |m|+poly(λ) with an additive overhead. We can
take such ciphertexts (cFHE, cPRG) and convert them into the standard FHE bit-encryptions of
the message m. This is done by running c∗ = Evalpk(f(·, cPRG), cFHE) where f(x, y) = y⊕G(x).

In this case c∗ = (c1, . . . , c|m|) where ci ∈ {0, 1}`ctxt is an FHE bit-encryption of mi. Then we
can perform arbitrary homomorphic computation on the encrypted message m, by computing
on the ciphertext c∗.

Note that although the initial ciphertext created by the above hybrid encryption process
has additive overhead, after running a homomorphic evaluation we get a ciphertext with mul-
tiplicative overhead.

Rerandomization. Finally, we define a notion of rerandomization for FHE. This is a variant
of “circuit private FHE” which is easier to work with in our case.
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Definition B.1 (FHE with Rerandomization). An FHE scheme with rerandomization consists
of ppt algorithms E = (KeyGen,Enc,Dec,Eval,Rerand), where KeyGen,Enc,Dec, and Eval have
the usual syntax. The rerandomization procedure cfresh ← Rerandpk(cold) takes a ciphertext

cold ∈ {0, 1}`ctxt and outputs a ciphertext cfresh ∈ {0, 1}`ctxt such that Decsk(cold) = Decsk(cfresh).
For security, we require that for every fixed choice of (pk, sk) ← KeyGen(1λ) and every pair of
ciphertexts c, c′ such that Decsk(c) = Decsk(c

′), we have:

Rerandpk(c)
c
≈ Rerandpk(c

′)

where the randomness is only over the coins of the Rerand procedure. Note that pk, sk, c, c′ are
fixed in the above experiment, and we can therefore assume they are known to the distinguisher.

All known constructions of FHE support rerandomization with statistical security.

Note. One subtlety of the above definitions is that, for simplicity, we define the correctness
of homomorphic evaluation Eval and the correctness of rerandomization Rerand to work for any
ciphertext c subject to Decsk(c) taking on some particular value. In the usual FHE constructions,
the ciphertexts have some noise parameters and if the noise gets too large then correctness no
longer holds. However, there is a generic method using bootstrapping to convert any ciphertext
c such that Decsk(c) = m into a ciphertext with smaller noise. We can implicitly assume that
this is done prior to each Eval and Rerand procedure to make our correctness property hold.
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