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Abstract. We show that the plaintext of some of the proposed CCA2 conversions of McEliece cryp-
tosystem with a public key in systematic form can be recovered faster than with a general linear
decoding. This is due to the fact that an attacker only needs to recover a part of the cleartext to
decrypt the relevant plaintext.

1 Introduction

McEliece cryptosystem [8] is one of the oldest public-key systems. In its basic form, its security
is based on the hardness of the NP-hard general decoding problem. A classical system is not
cryptographically secure (resend attack [3], partially known plaintext attack [5]...). Many of these
problems can be avoided by using CCA2-secure conversion of the McEliece cryptosystem [7].

Bernstein et.al. in [1] state that

If we secure McEliece encryption against chosen-ciphertext attacks then we can use a sys-
tematic generator matrix as a public key.

Biswas and Sendrier use systematic public key in their Hybrid McEliece scheme [4], again stating
that it has no impact on security. Overbeck and Sendrier in [11] go into more detail, stating that if
the plaintext m is uniformly distributed, both versions (systematic and non-systematic generator
matrix, respectively) are equally secure. Strenzke in [15] states

Given such a CCA2-conversion is used, it is also possible to choose the matrix T in such a
way that Gp is in systematic form.

Due to its many advantages, the systematic form of public key is used in many published imple-
mentations [4,13,16,6], relying on the CCA2 conversions for protecting the message.

In this paper we show that some of the proposed implementations, which use a public key
in a systematic form and particular forms of CCA2 conversions can, under a specific choice of
parameters, lead to a weaker system than their proposed security level based on the hardness of
the general decoding problem. Specifically, we focus on the implementation from Shoufan et.al. [13]
with their adaptation of Kabara-Imai scheme, and on the implementation FLEA from Strenzke [14]
using the proposed CCA2-scheme from Overbeck [10]. In fact, both of the implementations use the
same conversion based on Pointcheval’s generic scheme [12].

The presented attack does not work with schemes presented by Kobara and Imai [7] (including
their version of Pointcheval’s conversion). However, the attack is applicable in general for any MECS
conversion where the attacker can verify a part of the cleartext by other means than decoding the
whole cleartext (for a relevant range of parameters).
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2 Preliminaries

Let G be a k × n generating matrix of a code C, for which there is an efficient algorithm DecodeC
that can decode any codeword with up to t errors. Let S be a random non-singular k×k matrix, and
let P be a random n × n permutation matrix. Generic McEliece cryptosystem (MECS) is defined
as follows:

Secret key (DecodeC , S, P )

Public key Ĝ = S ·G · P
Encryption Let m be a k-bit message, and let e be an random n-bit vector with wH(e) ≤ t. Then

ciphertext is computed as c = mĜ + e.

Decryption Decryption is given by the following algorithm:

1: c′ ← cP−1

2: m′ ← DecodeC(c
′)

3: m← m′S−1

Typically, MECS is implemented by using irreducible binary Goppa codes. Our attack is inde-
pendent of the code used, it depends only on the choice of parameters (n, k, t), and the parameters
of the CCA2 conversion. In the latter text, we will suppose that matrix S is not random, but chosen
in such a way that Ĝ is in a systematic form. I.e., Ĝ = (Ik||R), where Ik is a k× k identity matrix,
and R is a public k × (n− k) matrix (but indistinguishable from a random matrix).

We will focus on MECS with CCA2 conversion used in [13,14]. Let us assume that message m
is an l bit string. The encryption algorithm works as follows:

1: ke ← a random k − l bit string
2: ki ← a random l bit string
3: e← a random n-bit string with wH(e) = t
4: m̃← ke||hash(m||ki)
5: c← m̃ · Ĝ
6: y ← c⊕ e||m⊕ hash(ke)||ki ⊕ hash(e)

Here, ke is a session key used to mask the original message m, and ki is a key used for protecting
the integrity of the ciphertext. We note that the attacker only requires the key ke, which can be
used to decrypt the original message from the second part of the ciphertext.

3 Attack description and complexity

If the McEliece public key is in a systematic form Ĝ = (Ik||R), we can rewrite the CCA2-protected
ciphertext y as follows:

y1|| y2|| y3|| y4|| y5 =

ke ⊕ e1|| hash(m||ki)⊕ e2|| m̃ ·R⊕ e3|| m⊕ hash(ke)|| ki ⊕ hash(e)

The legitimate recipient will use his private key to decode the y1||y2||y3, extract m̃, and e, de-
crypt message m from m̃ and y4, decrypt integrity key ki, and check the integrity using hash(m||ki).
The attacker can compromise the message, if he can decode y1||y2||y3 without the private key of
the MECS. Typically, the security level is given by the complexity of the generalized information



set decoding, which is supposed to be the most efficient attack the attacker has for a properly
implemented system.

However, the attacker is really only interested in a (k−l)-bit string y1 = ke⊕e1. If he can correct
errors in e1 part, he can recover ke, and from y4 = m⊕hash(ke) compute the hidden message. The
attacker can guess e1, and compute m = y4 ⊕ hash(y1 ⊕ e1). If the guess was incorrect, he gets a
random string (property of the hash function). Otherwise he gets the original message, which we
can assume is distinguishable from a random string. Even if the message is just a random session
key for some subsequent symmetric encryption, attacker can always try to decrypt the symmetric
message as well (or verify MAC, etc.).

The attack can thus be summarized as follows: Instead of decoding whole m̃ with t errors in n
bits, the attacker only needs to locate errors in the first (k − l)-bits to compute ke. He can verify
the correctness of the decoded ke and recover m by computing m = y4 ⊕ hash(y1 ⊕ e1).

We do not know whether generalized information set decoding can be used to recover just
a part of the error vector more efficiently than the whole error vector. However, even a simple
brute-force attack can be more efficient than the prescribed security level, if the parameters are
chosen incorrectly. Suppose that security level is s. Choose the encryption key of size k − l = s
(if it is shorter, the system is trivially broken just by guessing hash(ke)). The attacker needs only
to enumerate s-bit vectors within a certain Hamming distance (approximately s · dt/ne) of y1
to uncover ke, instead of enumerating all 2s vectors. Thus the attack is more efficient than the
prescribed security level s.

If the attacker needs to recover k − l bits of the cleartext, the complexity of the attack is
approximately

dt/ne·(k−l)∑
i=0

(
k − l

i

)
≤ 2H(t/n)(k−l).

The security of the system thus depends not only on the system parameters (n, k, t), but also on
the choice of l. Usually, the selection of l is based on the typical length of the hash function output.
However, larger values of l decrease a relative overhead of the analysed encryption scheme, thus
it may seem more attractive for implementers to use longer messages and larger hash functions.
Thus, we get a very counter-intuitive property of the system: Using a hash function with longer
output decreases the overall security instead of increasing it.

Overbeck in [10] introduces a specific conversion for small messages (k − 3l ≥ l), where

m̃← ke||m⊕ hash(ke)||ki ⊕ hash(e)||hash(m||ki)
In this case, the ciphertext is just encoded m̃ with the added errors.

Similarly to the previous attack, if the public key is in a systematic form, attacker tries to
correct errors in the ke part of size k − 3l, and verify them using m ⊕ hash(ke) part. As the size
of ke is much smaller than in the previous case, it is easier to recover ke. However, the verification
part is now also corrupted by approximately l · dt/ne errors. The success rate thus depends on the
entropy of the message m. If m is a random session key used for further encryption, the attacker
must correct errors in both parts. In this case the complexity of the attack is based on decoding
errors in k − 2l bits (out of n). However, the implementers of the system should always suppose
that the worst case scenario, when the message m can be easily distinguished even in the presence
of errors, and the attacker only needs to correctly recover k − 3l bits of ke.

We summarize the complexity of the attack for some of the recommended parameter choices
from [8,1,2,9] in Table 1, along with the limits to parameter l based on security level. Maximum



Table 1. Complexity of the attack for selected parameter choices of the MECS. Max. l denotes the maximum value
of parameter l, for which the estimated attack cost is approximately equal to the expected security level. Choices of
l larger than this maximum lead to insecure systems.

Sec. Level (n, k, t) H(t/n) l = 2s l = 6s Max. l

50 [8] (1024,524,50) 0.281 119 63 346
80 [1] (2048,1751,27) 0.101 161 129 961
80 [9] (1702,1219,45) 0.176 187 130 765
128 [2] (3178,2384,68) 0.149 318 241 1526
256 [2] (6944,5208,136) 0.139 653 511 3368

size l should be divided by 3 if one uses a conversion from [10] for small messages. If l is chosen to
be double the security level (preventing collision attacks in hash function), the system can resist
the attack in all analysed cases. However, we should caution that the complexity estimate is based
on the estimated complexity of a simple brute force attack, and may be improved in the future by
more advanced attacks.

The conversions presented by Kobara and Imai [7] require the attacker to recover the whole
cleartext m̃ to retrieve original message m. The complexity of the brute-force attack in this case is
approximately 2H(t/n)k. However, if the attacker can repair all errors in k bits of encoded code-word,
he has already succeeded in the information-set decoding attack, even if the public key matrix is not
in a systematic form. Thus the attack is not relevant in this case, as it should be already thwarted
by a proper choice of the parameters of the MECS.

4 Conclusions

Some of the proposed CCA2 conversions of the McEliece cryptosystem [13,14,10] use only a part of
the cleartext to embed a session key ke for the payload message. An additional parameter l controls
the size of the payload message, and inversely the size of the session key (in the studied systems
k − l, or k − 3l, respectively). If the public key for the system is in a systematic form, the session
key as a part of cleartext is a specific part of the ciphertext, masked only by a small number of
error bits. If the size of ke is not large enough (e.g., due to the implementers trying to reduce the
data redundancy, or as a possible backdoor), the attacker can recover the ke and the message by
trying to guess the error bit positions.

We provide the estimated complexities of the attack and the upper bound on l for [13,14] in
Table 1. These estimates are based on a simple brute force search of error positions, and do not
take into account a possibility of more advanced attacks.
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