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Abstract. We study the problem of privacy-preserving proofs on authenticated data, where a party
receives data from a trusted source and is requested to prove computations over the data to third
parties in a correct and private way, i.e., the third party learns no information on the data but is still
assured that the claimed proof is valid. Our work particularly focuses on the challenging requirement
that the third party should be able to verify the validity with respect to the specific data authenticated
by the source — even without having access to that source. This problem is motivated by various
scenarios emerging from several application areas such as wearable computing, smart metering, or
general business-to-business interactions. Furthermore, these applications also demand any meaningful
solution to satisfy additional properties related to usability and scalability.
In this paper, we formalize the above three-party model, discuss concrete application scenarios, and
then we design, build, and evaluate ADSNARK, a nearly practical system for proving arbitrary compu-
tations over authenticated data in a privacy-preserving manner. ADSNARK improves significantly over
state-of-the-art solutions for this model. For instance, compared to corresponding solutions based on
Pinocchio (Oakland’13), ADSNARK achieves up to 25× improvement in proof-computation time and a
20× reduction in prover storage space.
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1 Introduction

With the emergence of modern IT services, many aspects of the operation of our society have come
to critically depend on the ability to share information between multiple parties, subject to complex
information flow restrictions. The advance of information and communication technology has often
lead to the deployment of systems that offer the desired functionality, but do not offer a technical
solution to enforcing the secure information flow restrictions. Instead, parties must simply trust
each other, often without reasonable grounds.

The last few years have seen exciting developments in cryptography, where (quasi-)practical
solutions to some of these problems were proposed, prototyped, and sometimes deployed (as we
will see later in this section). In this paper, we make further progress in this direction by proposing
and efficiently instantiating a new cryptographic primitive called AD-SNARK, which targets an
important class of applications that is out of reach of current technology. Such applications involve
a potentially large set of secret data and three parties with the following trust relationships:

– The data owner wishes to keep her data secret, but is forced by circumstances to reveal partial
information on this data to a service provider. Typically, this is an aggregated result computed
by some public function f on the secret data.

– The service provider does not trust the data owner to correctly compute the partial information
on the data, but wants to be convinced of its validity.

– The data owner has access to a trusted source, who can be given local access to the data, and
who is trusted by the service provider to vouch for the quality and legitimacy of the data.

For concreteness, let us look at a few applications that fall into this model, and where the public
function that must be applied to the data has varying degrees of complexity.

Health Risk Assessment. A wearable biosensor [Vit14, BBC14] collects fine-grained health
information of an individual; the individual should give this information to a health insurance
company that wants to assess her health risk in order to evaluate a corresponding premium. Privacy
determines that the fine-grained health data collected by the sensor remains secret as it may reveal
more about the individual’s lifestyle and habits than she wishes to reveal. The computation of the
premium due to the insurance company (or an aggregate, less privacy-invasive, information of the
collected data) should therefore be carried out by the client. However, the client must convince the
insurance company that this computation is correct and performed on legitimate data produced by
the biosensor (we call this property integrity). In this setting, the biosensor can play the role of
the trusted source, provided that it is equipped to cryptographically authenticate the individual
measurements that it produces. Then the AD-SNARK primitive can be used to provide the required
assurance to the health insurance company.

Smart Metering. The service provider of some commodity installs a trusted device in the
facilities of the client. This trusted device periodically measures consumptions and produces a list
of readings, which are delivered to the client; the client should give these readings to the service
provider for billing purposes. For privacy, the client may not want to disclose these measurements
as they may reveal more about the client’s habits than she wishes to reveal (see, e.g., [AF10]).
For integrity, the supplier wants to evaluate a correct bill and prevent customers from cheating.
As before, the customer keeps all the readings provided by the local meter, which must be able to
authenticate the data and operate as a trusted source. Then, the customer computes the amount
due to the provider, and uses AD-SNARK to prove that the result is correct.
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Financial Audits. Organizations are often subject to financial audits. Auditors will typically
look at specific parts of the accounting data and assert that the results of relevant computations are
accurate. However the accounting data should be treated as sensitive information due to its business-
critical nature, and minimizing the amount of information disclosed to auditors is desirable. In this
scenario, the auditor plays the role of the service provider, and the organization the role of the data
owner. The natural entity to play the role of the trusted source is the person (or third party) who is
legally responsible for certifying the accounts of the organization, e.g., the official bookkeeper. This
entity would authenticate the accounting data, so that the organization could internally compute
the audit data in a way that is verifiable by the auditors with respect to both correctness and
legitimacy. As intended, using AD-SNARK in this context will transfer the responsibility of any
wrongdoing to the official bookkeeper.

In Section 7 we present three more example applications: pay-as-you-drive insurance, loyalty
cards, and health statistics. We believe that, with the rise of small computing devices and an
increased awareness with respect to privacy protection, many more applications will come to fall
into this three-party scenario.

Although the trust model in all of the previous applications is the same, the complexity of the
associated computations varies significantly. Solutions have been proposed for smart-metering, pay-
as-you-drive insurance, and loyalty cards, e.g., in [RD11, FKDL13], and [FL14], respectively (and
also for other applications of similarly low complexity). However, currently no generic solution is
able to scale in a satisfactory way to deal with computations of arbitrary size such as those required
for scenarios like the ones of financial audits or health statistics. Furthermore, although some
scenarios admit to a close relation between the trusted source and the service provider that could
lead to secret information being shared between the two (in the style of symmetric cryptography),
other scenarios require verification for multiple parties, i.e., a form of public verifiability that is
even more challenging. The AD-SNARK primitive and the efficient instantiation that we propose in
this paper provides a practical solution for the moderately complex computations, even with public
verifiability. Furthermore, the proposed AD-SNARK construction is as practical as the existing
state of the art solutions for computations of arbitrary size on non-authenticated data.5

Formal Model. We now illustrate more formally the three party model we have introduced
above (see Figure 1). We consider a scenario in which a prover P (the data owner) is requested
to prove certain computations C(D) on input data D to third parties V (one or more service
providers), which we call the verifiers. Since the two parties P and V may not trust each other,
we are interested in the simultaneous achievement of two main security properties: (1) integrity,
in the sense that V should be convinced about the correctness of C(D). In particular, in order to
verify that this statement holds for some specific input D, the data is assumed to be generated and
authenticated by some trusted source S; and (2) privacy, in the sense that V should not learn any
information about D beyond what is trivially revealed by C(D).

In addition to the security requirements above, any meaningful solution has to meet the following
properties that have been identified as key for practical scalability in previous work: (3) efficiency,
meaning that V’s verification cost should be much cheaper than the cost of computing C(D); and
(4) data independence, in the sense that the data source S should be independent of P, i.e., S
should be able to provide D without knowing in advance what computations will be executed on D

5 Hence the designation “nearly practical” in the title of the paper.
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Prover
obtain witness w such that 
C(x,w)=0 with x =(x1,...,xn )
and compute π = Prove(C,x,w,σ )

Source
measure data {xk }k

and sign it
σk = Auth(sk,Lk,xk)

{(xk, σk )}k π

Verifier
verify proof π
using L=(L1,...,Ln )
Ver(vk,L,π)

1 Introduction

With the emergence of modern IT services, a growing number of applications relies on privacy-
sensitive personal data for various purposes such as billing, legal compliance, etc. For instance, in
the emerging area of wearable computing, smart devices collect measurable human conditions, and
aggregation of such measures can then be given to doctors or health insurances for various compli-
ance checks. Likewise, in the area of smart metering, energy companies rely on energy consumption
measurements in order to compute the user bills. Or, consider the workflow of general business-
to-business applications where a company receives authenticated data and computes aggregations
which can be verified and embedded into larger protocols. The results of such computations should
later reliably be used by several, mutually untrusted parties.

While these scenarios introduce new and exciting services, they also raise challenges related to
the handling of sensitive data and the correctness of its processing. If services are often interested in
accessing only the aggregations of private or business-sensitive data (not the data itself, e.g., rather
the compliance of medical conditions over a relatively long period, or the bill from the month’s
consumptions is relevant), one may think to shift the performance of this aggregation to users (or
companies) so that the individual privacy-sensitive data (or sensitive business plans) do not get
exposed. However, since users and companies may be selfish, how to be sure that the transmitted
aggregations are correct? Moreover, what is the guarantee that the service learns nothing beyond
the desired aggregation?

The simultaneous achievement of integrity of computations and privacy of sensitive data has
been the goal of several works, especially in the context of zero-knowledge proofs [?]. In this work,
we consider important additional properties for a variety of scenarios (partially sketched above),
and we refine zero-knowledge proofs to fit this setting.

More precisely, we consider the problem in which a trustworthy data source S continuously
provides authenticated data D to some (unreliable) party P. P stores D, and at certain points in
time, it is requested to prove certain statements R(D) about (a portion of) D to third parties V,
which we call the verifiers. We stress that the data D and its size shall not be fixed in advance.
Analogously, the data source shall be independent of P, in particular the source might not know in
advance which statements will be proven about D (e.g., the billing function may change over time).
Since the two parties P and V may not trust each other, we are interested in two main security
properties: (1) integrity, in the sense that V should be convinced about the validity of R(D) and
in particular about the fact that this statement holds for data D that has been generated by the
trusted source S; and (2) privacy, in the sense that V should neither learn nor should it need to
store any information about D beyond what is trivially revealed by R(D). Furthermore, we aim to
achieve the following additional properties: (3) e�ciency, meaning that V’s verification cost should
be much less than the cost of computing the proven statement R(D); (4) unbounded data, in the
sense that the size of the data provided by the source S should not be fixed in advance; (5) data-
independence, in the sense that the data source should be able to provide D to P without knowing
in advance what statements will be proven about D.

1.1 Our Contribution

Our contribution is twofold. First, we fully formalize a model for the above problem by defining
a new cryptographic primitive that we call Succinct Non-Interactive Arguments on Authenticated
Data (or AD0SNARG, for short). Roughly speaking, the notion of AD0SNARGs extends the one of
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Figure 1. Three-party scenario in which a source S authenticates data xk, and a prover P proves to a verifier V the
satisfiability of a circuit C based on xk. The source and the prover are interested in data privacy, whereas the verifier
is interested in integrity and efficiency.

(e.g., the billing function may change over time). In particular, also D’s size should not be fixed in
advance, i.e., S can continuously provide data to P, even after some proofs have been generated.

Related Work. The simultaneous achievement of integrity and privacy is a fundamental goal
that has a long research history starting with the seminal work on zero-knowledge proofs [GMR89].
In the last years, the efficiency of zero-knowledge proofs has improved a lot, and nowadays we
are on the verge of having nearly practical schemes for general-purpose computations [PGHR13,
BSCG+13, BSCTV14]. Proofs on authenticated data are an important class of proofs that have
been considered earlier especially in very specialized contexts such as credentials and electronic cash
[Cha85, Dam88, LRSW99, MEK+10]. In the more general case of proving arbitrary computations
over authenticated data, there is however little prior work, especially if one is concerned about
achieving practical efficiency. While we review this related work later in Section 6, at this point
we mention that the recent work ZQL [FKDL13] aimed to address this problem by considering a
three party setting such as the one we presented above. ZQL provides an expression language for
(privacy-preserving) processing of data that can be originated (i.e., authenticated) by trusted data
sources, and proposes a cryptographic scheme that achieves integrity, privacy, and data indepen-
dence. However, the current ZQL language has some intrinsic limitations that limit its applicability
to arbitrary computations while achieving efficiency (i.e., if the verifier should perform less work
than that required to generate the proof). In summary, while we do have efficient zero-knowledge
proof systems for arbitrary computations, in the case of proofs on authenticated data the situation
is not satisfactory.

1.1 Detailed Contributions

Inspired by the goals of ZQL, we formalize a cryptographic primitive for privacy-preserving proofs
on authenticated data, and we propose a new realization that achieves the desired efficiency goal
for arbitrary computations. We then build a system called ADSNARK and evaluate its performance
in comparison with solutions based on the state of the art. More in detail, our contributions are
the following.

We fully formalize a model for the above problem by defining a new cryptographic primitive that
we call Succinct Non-Interactive Arguments of Knowledge on Authenticated Data (or AD-SNARK,
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for short). Succinct Non-Interactive Arguments, first introduced by Micali under the name of “CS
proofs” [Mic94], are proof systems that provide succinct verification, i.e., the verifier is able to
check a long poly-time computation in much less time than that required to run the computation,
given the witness. Our new notion of AD-SNARKs extends SNARKs to explicitly capture proofs
of NP relations R(x,w) in which the statement x (or a part of it) is authenticated. More precisely,
the main difference between SNARKs and AD-SNARKs is that in the former, the verifier always
knows the statement, whereas in the latter, the authenticated statements are not disclosed to the
verifier, yet the verifier can be assured about the existence of w such that R(x,w) holds for the
specific x authenticated by some trusted source. Moreover, to model privacy (and looking ahead
to our applications) we define the zero-knowledge property to hold not only for the witnesses of
the relation, but also for the authenticated statements. In particular, our zero-knowledge definition
holds also against adversaries who generate the authentication keys.

Turning our attention to realizations, we show that AD-SNARKs can be constructed in a generic
fashion by embedding digital signatures into SNARKs. However, motivated by the fact that this
“generic construction” is not efficient in practice, our second contribution is a direct and more
efficient realization of AD-SNARKs, that from now on we refer to as ADSNARK. Compared to
instantiating the generic construction with state-of-the-art SNARK schemes, ADSNARK performs
way better on the prover side, and achieves a level of efficiency that makes it a plausible candidate
for real-world deployment. In what follows we give more details on this efficiency aspect: We first
discuss the efficiency of the generic construction with state-of-the-art instantiations, and then we
describe our solution.

On the (in)efficiency of the generic construction. The idea of the generic (not very
practical) construction of AD-SNARK for an NP relation R(x,w) is to let the prover P prove an
extended NP relation R′ which contains the set of tuples (x′, w′) with x′ = (|x|, pk), w′ = (w, x, σ),
and σ = (σ1, . . . , σ|x|), such that there is a valid signature σi for every statement value xi at
position i under public key pk. The problem with this generic construction is that, in practice, a
proof for such extended relation R′ is much more expensive than a proof for R. The issue is that
R′ needs to “embed” the verification algorithm of a signature scheme. If we consider very efficient
SNARKs, such as the recent optimization of Pinocchio [PGHR13] proposed in [BSCTV14], then
embedding the verification algorithm means encoding the verification algorithm of the signature
with an arithmetic circuit over a specific finite field Fp (where p is a large prime, the order of some
bilinear groups), and then creating a Quadratic Arithmetic Program [GGPR13], a QAP for short,
out of this circuit. Without going into the details of QAPs (we will review them later in Section 2),
we note that the efficiency of the prover in these systems depends on the size of the QAP, which
in turn depends on the number of multiplication gates in the relation satisfiability circuit.

Our main observation is that the circuit resulting from expressing the verification algorithm of
a digital signature scheme is very likely to be quite inefficient (from a QAP perspective), especially
for the prover. Such inefficiency stems from the fact that the circuit would contain a huge number
of multiplication gates. In Section 3.3 we discuss why this is the case for various examples of
signatures in both the random oracle and the standard model, and based on different algebraic
problems. Our conclusions indicate that a QAP encoding a signature verification circuit is likely
to have significantly more that one thousand multiplications for every signature that must be
checked. If, for instance, we consider smart-metering, in which the prover wants to certify about
1 000 (signed) meter readings (amounting to approximately 1 month of electricity measurements),
the costs can become prohibitive!
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AD-PGHR ADSNARK Improvement

Key Generator 299 s 16 s 18.7×
Prover 491 s 20 s 24.5×
Verifier 0.062 s (PK) 0.61 s 0.1×

(SK) 0.035 s 1.8×
Proving key size 319 MB 16 MB 19.9×
Verification key size 31 KB 31 KB same
Proof size 0.3 KB (PK) 126 KB 0.002×

(SK) 0.4 KB 0.75×

Figure 2. Comparison between ADSNARK and the generic solution (AD-PGHR) based on the [BSCTV14] SNARK
considering an arithmetic circuit with 50K multiplication gates and 1000 authenticated inputs. Results obtained by
running libsnark for AD-PGHR and our implementation (based on libsnark) of ADSNARK, both at a 128-bits
security level.

Our Solution. In contrast, we propose ADSNARK, a new, direct, AD-SNARK scheme that
achieves the same efficiency as state-of-the-art SNARKs, e.g., [BSCTV14], yet it additionally allows
for proofs on authenticated statements. Our scheme builds upon an optimized version of Pinocchio
proposed and implemented in [BSCTV14], and our key technical contribution is a technique (il-
lustrated in Section 1.2) for embedding the authentication verification mechanism directly in the
proof system, without having to resort to extended relations that would incur the efficiency loss
discussed earlier. As a result, the performance of our scheme is almost the same as that of running
[BSCTV14], but with the additional benefit of obtaining proofs about authenticated values.

When comparing our direct construction with an instantiation of the generic scheme with
[BSCTV14], ADSNARK introduces a dramatic improvement (cf. Figure 2 above) in the generation
of setup keys (for the relation) and proofs, which is currently the main bottleneck of state-of-
the-art SNARKs (e.g., [PGHR13, BSCG+13, BSCTV14]). Namely, while these schemes perform
excellently in terms of verification time and proof size, the performances get much worse when
it comes to generating keys and proofs, especially for relations that have “unfriendly” arithmetic
circuit representations, such as signature verification algorithms, as discussed earlier. This is where
our technique for avoiding the explicit encoding of signature verification in the circuits allows us to
use much smaller QAPs, thus saving at least one thousand multiplication gates per authenticated
input. This improvement is clearly evident in our experimental results that show that the prover
can obtain up to a 25× speed-up (20 s vs. 8 mins) and a 20× reduction in storage (16 MB vs.
320 MB). As we discuss later, on the verifier side ADSNARK allows for two different verification
modes: one using the secret authentication key and one completely public. Although in the secret-
key case, ADSNARK essentially achieves the same verification efficiency and proof size of the generic
solution, our scheme pays more for public verification. However, in contrast to what happens on
the prover side of the generic solution, the public verification of ADSNARK still achieves timing
(0.61 s) and proof size (126 KB) that can be definitely considered practical.

1.2 An Intuitive Description of Our Techniques

The key idea for the construction of our AD-SNARK scheme is to build upon SNARKs based on
QAPs, and in particular on the PGHR scheme in [BSCTV14]. At a high level, our technique consists
of extending PGHR by embedding a linearly-homomorphic MAC that enforces the prover to run
the PGHR’s Prove algorithm on correctly authenticated statements.
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More precisely, the PGHR verifier, given a statement x = (x1, . . . , xn), has to compute the linear
combination ain =

∑n
k=1xk · ak(X) (where the ak(X) are the QAP polynomials). However, recall

that in AD-SNARKs the verifier does not know the statement x, and thus is not able to compute
ain . Our key idea to solve this issue is to shift the computation of the linear combination ain from the
verifier to the prover. Then, to enforce a cheating prover to provide the correct ain , we ask the prover
to additionally show that ain was indeed obtained by using authenticated values xk. To this end, we
employ another proof system, namely efficient linearly-homomorphic MACs [CF13, BFR13], that
are particularly suitable for linear computations over authenticated data. Specifically, we designed
a novel homomorphic MAC (which is implicitly embedded in our AD-SNARK construction) that
fits the above setting.

This technique, however, does not completely solve the problem: a further complication arises
from the fact that in order to achieve zero-knowledge, the value ain computed by the prover must
be randomized (by adding a random multiple of the QAP target polynomial z(X)). Unfortunately,
homomorphic MACs are known to authenticate only deterministic computations. We solve this
issue using the following ideas. First, we provide a novel technique to publicly re-randomize our
homomorphic MACs: roughly speaking, by publicly revealing a MAC of z(X). Second, we enforce
the prover to use the same random coefficient for z(X) in both ain and its MAC. Intuitively, this
is achieved by asking the prover to provide the linear combination ain in two distinct subspaces.
A final observation is that by using a MAC we only get secret-key verification. Although this may
not be an issue in several applications, we also show how to further generalize these techniques to
obtain public verification.

1.3 Organization

The paper is organized as follows. In Section 2, we recall common definitions and background infor-
mation on QAPs. Section 3 presents our definition of AD-SNARKs, the generic construction, and a
discussion on the efficiency of encoding signature verification with arithmetic circuits. We describe
our ADSNARK scheme in Section 4 together with a theoretical evaluation and comparison to the
generic solution. In Section 5, we present our implementation and discuss the experimental results.
Section 6 discusses further related work, Section 7 provides the description of more application
scenarios, and finally Section 8 concludes the paper. The appendix includes additional background
and the discussion of two extensions of AD-SNARKs: handling multiple data sources, and achieving
(amortized) constant-time verification.

2 Background

In this section, we review the notation and some basic definitions that we will use in our work.

Notation. We will denote with λ ∈ N a security parameter. We say that a function ε is negligible if
it vanishes faster than the inverse of any polynomial. If not explicitly specified otherwise, negligible
functions are negligible with respect to λ. If S is a set, x ←R S denotes the process of selecting
x uniformly at random in S. If A is a probabilistic algorithm, x ←R A(·) denotes the process of
running A on some appropriate input and assigning its output to x. Moreover, for a positive integer
n, we denote by [n] the set {1, . . . , n}. We denote by F a finite field and Fn is the field of size n.
When n is a prime number, then elements of Fn are represented as integers modulo n. Elements of
F are typically denoted by greek letters. F[X] denotes the field of polynomials in one variable X
and coefficients in F, while F≤d[X] is the subring of polynomials in F[X] of degree at most d.
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a=(4,2,1,0,0,0,0,0)
b=(5,1,3,0,0,0,0,0)

a=(1,0,0,4,3,0,0,0)
b=(3,0,0,0,2,0,0,0)

a=(0,0,0,0,0,1,0,0)
b=(0,0,0,0,0,0,1,0)

s1 s2 a0(r5)=4  b0(r5)=5 
a1(r5)=2  b1(r5)=1
a2(r5)=1  b2(r5)=3

c5(r5)=1        
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s5 s6
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a0(r6)=1  b0(r6)=3
a3(r6)=4  b4(r6)=2
a4(r6)=3  c6(r6)=1

G5 G6

G7 a5(r7)=1  b6(r7)=1
c7(r7)=1
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s1 s2 s3

+ +
x
s4

7
3s1-1s2

2
s2
-4s3

(b)(a)

a=(7,3,-1,0,0,…)
b=(2,0,1,-4,0,…)

Figure 3. Part (a): A bilinear gate representing the arithmetic function (7 + 3s1 − 1s2) · (2 + s2 − 4s3) specified by
coefficients a and b.
Part (b): A QAP for an arithmetic circuit with 4 input wires, 1 output wire, 3 bilinear gates. The circuit encodes the
function f(s1, s2, s3, s4) = (4 + 2s1 + s2) · (5 + s1 + 3s2) · (1 + 4s3 + 3s4) · (3 + 2s4). The non-zero equations for the
QAP polynomials are shown on the right.

Algebraic Tools. Let G(1λ) be an algorithm that, upon input of the security parameter 1λ, outputs
the description of (asymmetric) bilinear groups bgpp = (p,G1,G2,GT , e,P1,P2) where G1, G2, and
GT are groups of the same prime order p > 2λ; P1 ∈ G1 and P2 ∈ G2 are the respective generators;
and e : G1 × G2 → GT is an efficiently computable bilinear map. We call such an algorithm G a
bilinear group generator. Note that G1 and G2 are additive groups, whereas GT is a multiplicative
group. In this work we rely on specific computational assumptions in such bilinear groups: the
q-DHE [CKS09], the q-BDHE [BBG05], and the q-PKE [Gro10] assumptions.

Arithmetic Circuits and Quadratic Arithmetic Programs. An arithmetic circuit C over a
finite field F consists of addition and multiplication gates and of a set of wires between the gates.
The wires carry values over F. As in previous work [BSCTV14], here we consider only arithmetic
circuits with bilinear gates: a gate with inputs #„x = (x1, . . . , xk) is bilinear if its output can be
written as inner product 〈 #„a , (1, x1, . . . , xk)〉 · 〈

#„

b , (1, x1, . . . , xk)〉 for some #„a ,
#„

b ∈ Fk+1. Note that
this definition includes addition, multiplication, and constant gates (cf. Fig. 3(a) for an example).

Associated to any arithmetic circuit, we define a satisfaction problem as follows.

Definition 1 (Arith. Circuit Satisfaction [BSCTV14]). The circuit satisfaction problem of
a circuit C : Fn × Fh → Fl with bilinear gates is defined by the relation RC = {( #„x , #„w) ∈ Fn × Fh :
C( #„x , #„w) = 0l} and its language is LC = { #„x ∈ Fn : ∃ #„w ∈ Fh, C( #„x , #„w) = 0l}.

The state-of-the-art SNARK schemes that we build on in this paper directly operate on a
different model to represent computations called quadratic arithmetic programs (QAPs).

Definition 2 (QAP [GGPR13]). A quadratic arithmetic program Q of size m and degree d over
F consists of three vectors of m + 1 polynomials #„a ,

#„

b , #„c ∈ F≤d−1[X] of degree at most d − 1, and
a target polynomial z(X) ∈ F[X] of degree exactly d.

Associated to any QAP, there is a satisfaction problem defined as follows.
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Definition 3 (QAP Satisfaction). The satisfaction problem of a QAP Q = ( #„a ,
#„

b , #„c , z) of size
m and degree d is the relation RQ of pairs ( #„x , #„s ) such that:
(1) #„x ∈ Fn, #„s ∈ Fm for some n ≤ m;
(2) xi = si for i ∈ [n], i.e., #„s extends #„x ;
(3) z(X) divides the polynomial p(X) defined as

p(X) =
(
a0(X)+

m∑
i=1

siai(X)
)
·
(
b0(X)+

m∑
i=1

sibi(X)
)

−
(
c0(X) +

m∑
i=1

sici(X)
)

The following result implies that one can use any QAP-based SNARK scheme as an efficient
SNARK scheme taking computations more conveniently represented as arithmetic circuits.

Lemma 1 (Constructing QAPs [GGPR13, BSCTV14]). There exist two polynomial time
algorithms QAPInst and QAPwit such that, for any circuit C : Fn × Fh → Fl with u wires and v
(bilinear) gates, QC = ( #„a ,

#„

b , #„c , z) = QAPInst(C) is a QAP of size m and degree d over F satisfying
the following properties:

Efficiency: m = u, and d = v + l + 1.

Completeness: For any ( #„x , #„w) ∈ RC , if it holds that #„s = QAPwit(C, #„x , #„w) then ( #„x , #„s ) ∈ RQC .

Proof of Knowledge: For any ( #„x , #„s ) ∈ RQC , it holds ( #„x , #„w) ∈ RC where #„w is a prefix of #„s .

Non-Degeneracy: the polynomials a0(X), . . . , an(X) are all nonzero and distinct.

The very basic intuition for building a QAP according to Lemma 1 is to encode the input-
output correctness for each bilinear gate in the polynomials #„a ,

#„

b , #„c , z (see Fig. 3(b) for a simple
example). Slightly more in detail, for a gate g this is done by first selecting an arbitrary value
rg ∈ F (a “root”) and then, for every left wire i going to gate g, one imposes ai(rg) = c, where c is
the coefficient which multiplies the value of wire i in g’s left input (note that c = 0 if wire i is not a
left input). A similar process is done for polynomials bi and ci w.r.t. right input and output wires
respectively.6 Once this procedure has been iterated for every bilinear gate g (selecting distinct
roots rg), one will have essentially obtained three tables of size u · v with entries ai(rj), bi(rj), and
ci(rj), respectively, where i = 0 to u are all the wires (where the 0 wire represents constants) and

j = 1 to v are all the bilinear gates. The final QAP polynomials #„a ,
#„

b , #„c are built by extending each
row i of the table into a polynomial ai(X) (resp. bi(X), ci(X)) of degree v − 1 via interpolation in
F. The target polynomial z(X) is the degree-v polynomial defined over the roots rg of the v bilinear
gates: z(X) :=

∏v
g=1(X − rg).7 To see why the satisfiability of the QAP implies the satisfiability of

the circuit, the key observation is that the third condition of Definition 3, i.e., z(X) | p(X), means
that 〈(1, #„s ), #„a (rg)〉 · 〈(1, #„s ),

#„

b (rg)〉 = 〈(1, #„s ), #„c (rg)〉 for all roots rg of the target polynomial z(X).
In other words, given the specific construction of the polynomials, the input-output correctness of
every bilinear gate g of the circuit is satisfied.

6 The case of ci is slightly different as coefficients are only 0 or 1.
7 More precisely, in construction of Lemma 1 one needs to add one “artificial” bilinear gate for every output wire,

plus an additional constraint to guarantee non-degeneracy: from which the final degree is d = v + l + 1.

10



3 Zero-Knowledge SNARKs over Authenticated Data

In this section, we define the notion of SNARKs [Mic94, BCCT12] on authenticated data (AD-SNARKs,
for short). Let C : Fn × Fh → Fl be an arithmetic circuit, and let RC = {( #„x , #„w)} ⊆ Fn × Fh be
the corresponding circuit satisfaction relation, where #„x ∈ Fn is called the statement, and #„w ∈ Fh
is the witness.

Proof systems for the circuit satisfaction of C typically consider the problem in which a prover
P tries to convince a verifier V about the existence of a witness #„w such that ( #„x , #„w) ∈ RC . In this
scenario, the statement #„x is supposed to be public, i.e., it is known to both the prover and the
verifier. For example, V could be convinced by P that 3 colors are sufficient to color a public graph
#„x such that no two adjacent vertices are assigned the same color. The coloring serves as witness
#„w.

In this work, we consider a variation of the above problem in setting in which (1) the statement
#„x (or part of it) is provided to the prover by a trusted source S, and (2) the portion of #„x provided
by S is not known to V (see Figure 1 for illustration). Yet, V wants to be convinced by P that
( #„x , #„w) ∈ RC holds for the specific #„x provided by S, and not for some other #„x ′ of P’s choice (which
can still be in the language LC). For example, S might have provided a graph #„x – not known to V
– for which P proves to V that #„x is 3-colorable. A proof for any other graph #„x ′ is meaningless.

To formalize the idea that V checks that some values unknown to V have been authenticated
by S, we adopt the concept of labeling used for homomorphic authenticators [GW13, BFR13].
Namely, we assume that the source S authenticates a set of values Xauth = {xi, . . . , x`} against a
set of (public) labels L = {Li, . . . , L`} by using a secret authentication key (e.g., a signing key). S
then sends the authenticated Xauth to P. Later, P’s goal is to prove to V that ( #„x , #„w) ∈ RC for a
statement #„x in which some positions have been correctly authenticated by S, i.e., xi ∈ Xauth for
some i ∈ [n].

For such a proof system, we define the usual properties of completeness and soundness, and in
addition, to model privacy, we define a zero-knowledge property. Moreover, since we are interested
in efficient and scalable protocols, we define succinctness to model that the size of the proofs (and
implicitly the verifier’s running time) should be independent of the witness’ size h = | #„w|. Finally,
we consider AD-SNARKs that can have either public or secret verifiability, the difference being in
whether the adversary knows or not the verification key for the authentication tags produced by
the data source S.

3.1 SNARKs over Authenticated Data

First, we provide the formal definition for SNARGs over authenticated data. The definition of
SNARGs of knowledge (i.e., SNARKs) over authenticated data is provided later.

Definition 4 (AD-SNARG). A scheme for Succinct Non-interactive Arguments over Authenti-
cated Data (AD-SNARG, for short) for arithmetic circuit satisfiability consists of a tuple of algo-
rithms (Setup,AuthKG,Auth,AuthVer,Gen,Prove,Ver) satisfying authentication correctness, com-
pleteness, succinctness, and adaptive soundness (as defined below):

Setup(1λ): On input the security parameter λ, output some common public parameters pp. The
parameters also define the finite field F over which the circuits will be defined.

AuthKG(pp): given the public parameters pp, the key generation algorithm outputs a secret authen-
tication key sk, a verification key vk, and public authentication parameters pap.
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Auth(sk, L, x): the authentication algorithm takes as input the secret authentication key sk, a label
L ∈ L, and a value x ∈ F, and it outputs an authentication tag σ.

AuthVer(vk, σ, L, x): the authentication verification algorithm takes as input a verification key vk,
a tag σ, a label L ∈ L, and a value x ∈ F. It outputs ⊥ (reject) or > (accept).

Gen(pap, C): given the public authentication parameters pap and an arithmetic circuit C : Fn×Fh →
Fl, the algorithm outputs an evaluation key EKC and a verification key VKC . Gen can hence be
seen as a circuit encoding algorithm.

Prove(EKC ,
#„x , #„w, #„σ ): on input an evaluation key EKC , a statement #„x ∈ Fn, a witness #„w ∈ Fh, and

authentication tags for the statement #„σ = (σ1, . . . , σn), the proof algorithm outputs a proof of
membership π for ( #„x , #„w) ∈ RC . We stress that #„σ does not need to contain authentication tags
for all positions: in case a value at position i is not authenticated, the empty tag σi = ? is used
instead.

Ver(vk,VKC ,
#„

L , {xi}Li=?, π): given the verification key vk, a circuit verification key VKC , labels
#„

L = (L1, . . . , Ln) for the statement, unauthenticated statement components xi, and a proof π,
the verification algorithm outputs ⊥ (reject) or > (accept).

Authentication Correctness. Intuitively, an AD-SNARG scheme has authentication correct-
ness if any tag σ generated by Auth(sk, L, x) authenticates x with respect to L. More formally, we
say that a AD-SNARG scheme satisfies authentication correctness if for any value x ∈ F, all keys
(sk, vk, pap)←R AuthKG(1λ), any label L ∈ L, and any authentication tag σ ←R Auth(sk, L, x), we
have that AuthVer(vk, σ, L, x) = > with probability 1.

Completeness. This property aims at capturing that if the Prove algorithm produces π when
run on ( #„x , #„w, #„σ ) for some ( #„x , #„w) ∈ RC , then verification Ver(vk,VKC , L, {xi}Li=?, π) must output
> with probability 1 whenever AuthVer(vk, σi, Li, xi) = >. More formally, let us fix (sk, vk, pap)←R
AuthKG(pp), and a circuit C : Fn × Fh → Fl with keys (EKC ,VKC)←R Gen(pap, C). Let ( #„x , #„w) ∈
RC be given. Let

#„

L = (L1, . . . , Ln) ∈ (L ∪ {?})n be a vector of labels, and let #„σ = (σ1, . . . , σn)
be tags for the statement such that {AuthVer(vk, σi, Li, xi) = >}Li 6=?. Then if π ←R Prove(EKC ,
#„x , #„w, #„σ ), we have that Ver(vk,VKC ,

#„

L , {xi}Li=?, π) = > with probability 1.

Succinctness. Given a circuit C : Fn × Fh → Fl, the length of the proof π is bounded by
|π| = poly(λ)polylog(n, h).

Adaptive Soundness. Intuitively, the soundness property captures that no malicious party can
produce proofs that verify correctly for a statement which is not in the language. We formalize our
definition via an experiment, called ExpAD-Soundness

A , which is described in Figure 4. The experiment
is parametrized by an adversaryA who is given access to three oracles (aka procedures) Gen, Auth,
and Ver that can be (concurrently) run.

The three procedures Gen, Auth, and Ver essentially give to the adversary oracle access to
the algorithms Gen, Auth, and Ver, respectively, with some additional bookkeeping information. In
particular, it is worth noting that Ver returns the output of Ver, and additionally, checks whether
a proof accepted by Ver (i.e., v = >) proves a false statement according to RC . In this case, Ver
sets GameOutput← 1.

More formally, let C be a class of circuits. Then for any λ ∈ N, we define the advantage of an
adversary A in the experiment ExpAD-Soundness

A (C, 1λ) against AD-Soundness for C as

AdvAD-Soundness
A (C, λ) = Pr[ExpAD-Soundness

A (C, 1λ) = 1].
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ExpAD-Soundness
A,E (1λ):

pp←R Setup(1λ)
(sk, vk, pap)←RAuthKG(pp)
GameOutput← 0
S← ∅, T← {(?, ?)}
AGen,Auth,Ver(pp, pap)
Return GameOutput

procedure Gen(C)

(EKC ,VKC)←RGen(pap, C)
S← S ∪ {(C,EKC ,VKC)}
Return (EKC ,VKC)

procedure Auth(L, x)

if (L, ·, ·) ∈ T Return ⊥
σ ←R Auth(sk, L, x)
T← T ∪ {(L, x, σ)}
Return σ

procedure Ver(C,
#„

L , {xi}Li=?, π)

if (C, ·, ·) /∈ S then Return ⊥
fetch VKC with (C, ·,VKC) ∈ S

v ← Ver(vk,VKC ,
#„

L , {xi}Li=?, π)
if v = > then

if ∃ Li ∈
#„

L : (Li, ·, ·) /∈ T then

GameOutput← 1 // Type 1
else

fetch #„x = (x1, . . . , xn)
with {(L1, x1, ·), . . . , (Ln, xn, ·)} ⊆ T
for all Li 6= ?
if #„x /∈ LC then

GameOutput← 1 // Type 2
Return v

Figure 4. Game AD-Soundness.

An AD-SNARK with respect to a class of circuits C is adaptive computationally sound if for
any PPT A, it holds that AdvAD-Soundness

A (C, λ) is negligible in λ.

Our soundness definition is inspired by the security definition for homomorphic MACs [GW13,
CF13, BFR13]. The catch here is that there are essentially two ways to create a “cheating proof”,
and thus to break the soundness of an AD-SNARG. The first way, Type 1, is to produce an
accepting proof without having ever queried an authentication tag for a label Li. This basically
captures that, in order to create a valid proof, one needs to have all authenticated parts of the
statement, each with a valid authentication tag. The second way to break the security, Type 2, is
the more “classical” one, i.e., generating a proof that accepts for a tuple ( #„x , #„w) which is not the
correct one, i.e., #„x 6∈ LC .

Second, we note that the above game definition captures the setting in which the verification
key vk is kept secret. The definition for the publicly verifiable setting is obtained by providing vk
to the adversary.

AD-SNARKs. An AD-SNARG of knowledge (AD-SNARK) is an AD-SNARG where adaptive
soundness is strengthened as follows.

Definition 5 (AD-SNARK). A tuple of algorithms (Setup,AuthKG,Auth,AuthVer,Gen,Prove,
Ver) is an AD-SNARK if it is an AD-SNARG where adaptive soundness is replaced by the stronger
property of adaptive proof of knowledge (as defined below).

Adaptive Proof of Knowledge. Consider a variation of the adaptive soundness experiment
that is parametrized by an additional algorithm E called the extractor. Both A and E run on
exactly the same input and random tape, including some auxiliary input z. E is an algorithm that,
for every verification query of A that is accepted by the Ver algorithm, outputs a witness #„w. One
should think of such E as A itself, and the extraction capability intuitively means that if A is
able to produce an accepting proof, then A must know the corresponding witness, and thus such
witness can be extracted from A’s memory. A detailed description of the experiment procedures is
presented in Figure 5.
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ExpAD-PoK
A,E (1λ):

pp←R Setup(1λ)
(sk, vk, pap)←RAuthKG(pp)
GameOutput← 0
S← ∅, T← {(?, ?)}
AGen,Auth,Ver(pp, pap, z)
Return GameOutput

procedure Gen(C)

(EKC ,VKC)←RGen(pap, C)
S← S ∪ {(C,EKC ,VKC)}
Return (EKC ,VKC)

procedure Auth(L, x)

if (L, ·, ·) ∈ T Return ⊥
σ ←R Auth(sk, L, x)
T← T ∪ {(L, x, σ)}
Return σ

procedure Ver(C,
#„

L , {xi}Li=?, π)

if (C, ·, ·) /∈ S then Return ⊥
fetch VKC with (C, ·,VKC) ∈ S

v ← Ver(vk,VKC ,
#„

L , {xi}Li=?, π)
if v = > then

if ∃ Li ∈
#„

L : (Li, ·, ·) /∈ T then

GameOutput← 1 // Type 1
else

fetch #„x = (x1, . . . , xn)
with {(L1, x1, ·), . . . , (Ln, xn, ·)} ⊆ T
for all Li 6= ?
#„w ← E(pp, pap, z,T, S,Coins[A])
if ( #„x , #„w) /∈ RC then

GameOutput← 1 // Type 2
Return v

Figure 5. Experiment for the adaptive proof of knowledge definition.

Then we say that a scheme ADSNARK satisfies adaptive proof of knowledge for C if for any
sufficiently large λ ∈ N, and for every PPT adversary A, there exists a PPT extractor E such that
for every polynomial-size auxiliary input z ∈ {0, 1}poly(λ) the probability Pr[ExpAD-PoK

A,E (C, λ, z) = 1]
is negligible.

Zero-Knowledge AD-SNARKs. Finally we extend the AD-SNARK definition with the zero-
knowledge property. Loosely speaking, a zero-knowledge AD-SNARK is an AD-SNARK in which
the Prove algorithm generates proofs π that reveal no information: neither about the witness, nor
about the authenticated statements. In other words, the proofs do not reveal anything beyond what
is known by the verifiers when checking a proof. A formal definition follows.

Definition 6 (Zero-Knowledge AD-SNARKs). A zero-knowledge AD-SNARK is an AD-SNARK
that satisfies the following additional property “Zero-Knowledge”. Let C ∈ C be an arithmetic
circuit. Then there exists a simulator Sim = (Sim1,Sim2), such that for all PPT distinguishers D,
the following difference is negligible

|Pr[ExpD,CReal (1
λ) = 1]− Pr[ExpD,CSim (1λ) = 1]|

where the experiments Real and Sim are defined as follows:

ExpReal
D,C(1λ) :

pp←R Setup(1λ)
(sk, vk, pap)←R D(1λ, pp)
(EKC ,VKC)←R Gen(pap, C)

( #„x ,
#„

L , #„σ , #„w)← D(EKC ,VKC)
π ←R Prove(EKC ,

#„x , #„w, #„σ )
if ( #„x , #„w) /∈ RC ∨
∃i ∈ [n],

AuthVer(vk, σi, Li, xi ) =⊥
then Return 0
else Return D(π)

ExpSim
D,C(1λ) :

pp←R Setup(1λ)
(sk, vk, pap)←R D(1λ, pp)
(EKC ,VKC , td)

←R Sim1(sk, vk, pp, pap, C)
( #„x ,

#„

L , #„σ , #„w)← D(EKC ,VKC)
π ←R Sim2(td, L, {xi}Li=?)
if ( #„x , #„w) /∈ RC ∨
∃i ∈ [n],

AuthVer(vk, σi, Li, xi ) =⊥
then Return 0
else Return D(π)
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Note that the distinguisher D in the above game has a shared state that is persistent over all
invocations of D during an experiment.

We stress that the above zero-knowledge notion aims at capturing, in the strongest possible
sense, that the verifier cannot learn any useful information on the inputs, even if it knows (or
chooses) the secret authentication key. Indeed, as one can see, our definition allows the distinguisher
to choose the authentication key pair as well as the authentication tags.

Interestingly, we note that the notion of AD-SNARKs immediately implies a corresponding
notion of verifiable computation on authenticated data (similar to [BFR13]). In [BCCT12], it is
discussed how to construct a verifiable computation scheme from SNARGs for NP with adaptive
soundness. This is simply based on the fact that the correctness of a computation can be described
with an NP statement. It is not hard to see that, in a very similar way, one can construct verifiable
computation on authenticated data from AD-SNARKs.

3.2 A Generic Construction of Zero-Knowledge AD-SNARKs

We show how to construct a zero-knowledge AD-SNARK scheme from SNARKs and digital sig-
natures. A similar construction was informally sketched in [BCCT12][Appendix 10.1.2 of the full
version]. Here we make it more formal with the main purpose of offering a comparison with our
direct AD-SNARK construction proposed in the next section.

The high-level idea of the generic construction is to embed digital signatures into SNARKs.
Let therefore Π ′ = (Gen′,Prove′,Ver′) be a SNARK scheme, and Σ = (Σ.KG,Σ.Sign,Σ.Ver) be a
signature scheme.

We will use the signature scheme to sign pairs consisting of a label L and an actual message m.
Although labels and messages can be arbitrary binary strings, for ease of description we assume
that labels can take a special value ?. Also, we modify the signature scheme in such a way that
Σ.Sign(sk, ?|m) = ? and Σ.Ver(vk, ?|m′, ?) = 1. Basically, we let everyone (trivially) generate a valid
signature on a message with label ?.

We define an AD-SNARK Π = (Setup,AuthKG,Auth,AuthVer,Prove,Ver) as follows.

Setup(1λ): Output pp = 1λ.

AuthKG(pp): run (sk′, vk′) ←R Σ.KG(1λ) to generate the key pair of the signature scheme and
return sk = sk′ and vk = pap = vk′.

Auth(sk, L, x): compute a signature on the concatenation of the label L and the value x, i.e., σ′ ←
Σ.Sign(sk′, L|x). Finally, output σ = (σ′, L).

AuthVer(vk, σ, L, x): let σ = (σ′, L′). Output the result of the signature verification algorithm
Ver′(vk′, L|x, σ′).

Gen(pap, C): for the given circuit C : Fn × Fh → Fl we define C ′ as the circuit that outputs 0l

on all the pairs ( #„x , #„w) such that C( #„x , #„w) = 0l and each xi is correctly signed with respect to
a set of labels and a public key. More formally, define C ′ : Fn′ × Fh′ → Fl as the circuit that
takes as inputs pairs ( #„x ′, #„w ′) with #„x ′ = (y1, L1, . . . , yn, Ln, vk) and #„w ′ = ( #„w, z1, σ1, . . . , zn, σn)
such that, by setting xi = yi if Li = ? and xi = zi otherwise, for all i ∈ [n], it holds: (i)
((x1, . . . , xn), #„w) ∈ RC , and (ii) Σ.Ver(vk, Li|xi, σi) = 1.

Finally, run Gen′(1λ, C ′) to generate (EK′C′ ,VK′C′) and output EKC = EK′C′ , VKC = VK′C′ .
Prove(EKC ,

#„x , #„w, #„σ ): Let EKC the be evaluation key as defined above, ( #„x , #„w) ∈ Fn × Fh be
a statement-witness pair, and #„σ = (σ1, . . . , σn) be a tuple of authentication tags for #„x =
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(x1, . . . , xn). If all the tags verify correctly, define #„x ′ = (y1, L1, . . . , yn, Ln, vk), #„w ′ = ( #„w, z1, σ
′
1, . . . ,

zn, σ
′
n) so that for all i ∈ [n]: zi = xi, yi = xi if σi = ? and yi = 0 otherwise. Next, run

π ←R Prove(EK′C′ ,
#„x ′, #„w ′) to generate a proof for ( #„x ′, #„w ′) ∈ RC′ and return π.

Ver(vk,VKC ,
#„

L , {xi}Li=?, π): given the verification key vk, a circuit verification key VKC , statement

labels
#„

L = (L1, . . . , Ln), unauthenticated statement components xi, and a proof π, the verifica-
tion algorithm defines #„x ′ = (y1, L1, . . . , yn, Ln, vk) with yi = xi if Li = ? and yi = 0 otherwise.
Finally, it returns the output of Ver′(VK′C′ ,

#„x ′, π).

Note that the input size of C ′ is a circuit larger than C as follows: n′ = n + n · |Li| + |vk| and
h′ = h + n + n · |σ|, where |vk|, |Li|, and |σ| represent the size, in terms of field elements, of the
public key, a label, and a signature, respectively. In terms of gates and wires, C ′ is at least as large
as C plus the circuit size of Σ.Ver for every signature verification, that is up to n of such circuits.

Theorem 1. If Π ′ is a zero-knowledge SNARK and Σ is a secure digital signature, then the scheme
described above is a zero-knowledge AD-SNARK.

Proof (Sketch). We provide a proof sketch to show that the generic construction satisfies all the
properties. First, it is easy to see that if the SNARK is succinct, then the AD-SNARK proofs are
succinct as well. Moreover, authentication correctness and completeness immediately follow from
the correctness of the signature scheme and the completeness of the SNARK respectively.

Second, to see that adaptive proof of knowledge holds, note that for every adversary producing
an accepting proof for statement #„x ′ there is an extractor that returns a corresponding witness #„w ′

(since Π ′ is an argument of knowledge) such that ( #„x ′, #„w ′) ∈ RC′ with all but negligible probability.
Such witness #„w ′, by definition, will contain a statement-witness pair #„x , #„w for RC and a collection of
signatures. Moreover, ( #„x ′, #„w ′) ∈ RC′ implies that ( #„x , #„w) ∈ RC and all signatures are valid. Then,
if for such a proof there is a message-label pair Li|xi which was not queried to the Auth oracle, then
Li|xi and the corresponding signature σi can be used as a forgery to break the unforgeability of the
signature scheme. Otherwise, if no forgery occurs, all signatures are valid for the same statement
values queried to Auth (and thus stored in T ). This means that in the check of Ver, it also holds
( #„x , #„w) ∈ RC , i.e., GameOutput remains 0.

Third, the zero-knowledge of the AD-SNARK follows from the one of the SNARK in a straight-
forward way.

3.3 Signature Verification Overhead

We now discuss why the circuit C ′ resulting from explicitly encoding the the verification algorithm
of a digital signature scheme, as described in the generic construction, is bound to render the
construction very inefficient. We consider various examples of signatures in both the random oracle
and the standard model, and based on different algebraic problems.

If one considers signature schemes in the random oracle model (which include virtually all the
schemes used in practice), any such scheme uses a collision-resistant hash function (e.g., SHA-
1) which is thus part of the verification algorithm computation. Unfortunately, as shown also in
[PGHR13], a QAP (just) for a SHA-1 computation is terribly inefficient due to the high number
of multiplication gates (roughly 24 000, for inputs of 416 bits). On the other hand, if we focus on
standard model signature schemes, it does not get any better: These schemes involve specific alge-
braic computations, and encoding these computations into an arithmetic circuit over a field Fp is
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costly. For instance, signatures based on pairings [BB04, Wat05] require pairing computations that
amount to, roughly, 10 000 multiplications. RSA-based standard-model signatures (e.g., Cramer-
Shoup [CS99]) require exponentiations over rings of large order (e.g., 3 000 bits), and simulating
such computations over Fp ends up with thousands of multiplication gates as well. Lattice-based
signatures (in the standard model), e.g., [Boy10], can be cheaper in terms of the number of multi-
plications. However, such multiplications typically work over Zq for a q much smaller than our p.
An option would be to implement mod-q-reductions in Fp circuits, which is costly. Another option
would be to let these schemes work over Zp, but then one has to work with higher dimensional
lattices (or polynomial rings) for security reasons, again incurring a large number of multiplications.

This state of affairs suggests that a QAP encoding a signature verification circuit is likely to
require at least (and this is a very optimistic estimate) one thousand multiplications for every
signature that must be checked.

4 Our Construction of Zero-Knowledge AD-SNARKs

In this section we describe our construction of an AD-SNARK scheme for the satisfiability of
arbitrary arithmetic circuits. The scheme can be used with either secret or public verifiability. The
main difference between the two verification modes is that the size of the proof in the secretly
verifiable case is a fixed constant, whereas in the publicly verifiable case, the proof grows linearly
with the number of authenticated statement values. Although we loose constant-size proofs for
public verifiability, we stress that: (i) proofs are linear only in the number N ≤ n of authenticated
values and their size does not depend on the complexity of the circuit, and (ii) the verification
algorithm runs linearly in N in any case (even in the generic construction). Furthermore, when
considering concrete implementations and applications, although the proof size of ADSNARK with
public verifiability is not constant, it still scales very well, e.g., the size of an ADSNARK proof
for a monthly electricity bill is under 170 KB vs. a constant-size proof of 0.3 KB when using the
generic scheme with [BSCTV14]. In contrast, when considering the prover’s performance, ADSNARK
remains in the realm of practicality – 18 seconds for a monthly bill – whereas for the generic scheme
the timing goes up to 10 minutes.

For verifiers that know the secret authentication key (e.g., as in a smart metering/insurance
application where companies install a symmetric key in the devices), ADSNARK proofs have con-
stant size, and – crucially – the knowledge of such a secret key by the verifier does not compromise
privacy.

Our scheme is proven secure under two computational assumptions in bilinear groups, the q-
Diffie-Hellman Exponent assumption (q-DHE) [CKS09] and the q-Power Knowledge of Exponent
assumption (q-PKE) [Gro10]. We note that the latter one is a non-falsifiable assumption. As dis-
cussed in Section 6, this kind of assumption is likely to be inherent for SNARKs for NP. For
privacy, we show that the scheme offers statistical zero-knowledge. We stress that this property
holds even against adversaries who know (and even generate) the authentication keys.

A detailed description of our scheme follows.

Setup(1λ): On input the security parameter 1λ, run pp = (p,G1,G2,GT , e,P1,P2) ←R G(1λ) to
generate a bilinear group description, where G1, G2, and GT are groups of the same prime
order p > 2λ, P1 ∈ G1 and P2 ∈ G2 are the respective generators, and e : G1 ×G2 → GT is an
efficiently computable bilinear map. We let the finite field F be the set of integers modulo p.
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AuthKG(pp): Create a key pair (sk′, vk′)←RΣ.KG(1λ) for a regular signature scheme. Run (S, prfpp)
←R F.KG(1λ) to obtain the seed S and the public parameters prfpp of a pseudorandom function
FS : {0, 1}∗ → F. Choose a random value κ ←R F and compute K1 = κP1 ∈ G1, K2 = κP2 ∈
G2. Return the secret key sk = (sk′, S, κ), the public verification key vk = (vk′,K2), and the
public authentication parameters pap = (pp, prfpp,K1).

Auth(sk, L, x): To authenticate a value x ∈ F with label L, generate φ ← FS(L) using the PRF,
compute µ = φ+κ·x ∈ F and Φ = φP2 ∈ G2. Then compute a signature σ′ ←R Σ.Sign(sk′, Φ|L),
and output the tag σ = (µ, Φ, σ′).

AuthVer(vk, σ, L, x): Let vk = (vk′,K2) be the verification key. To verify that σ = (µ, Φ, σ′) is a
valid authentication tag for a value x ∈ F with respect to label L, output > if µP2 = Φ+ xK2

in G2, and if Σ.Ver(vk′, Φ|L, σ′) = 1. Output ⊥ otherwise. In the secret key setting (i.e., if vk is
replaced by sk), the tag σ can be verified by checking whether µ = FS(L) + κ·x.

Gen(pap, C): Let C : Fn × Fh → Fl be an arithmetic circuit. To generate the keys, proceed as
follows.
1. Compute QC = ( #„a ,

#„

b , #„c , z) = QAPInst(C) to build a QAP of size m and degree d for C.
Recall that #„a ,

#„

b , #„c are vectors ofm+1 polynomials in F≤d−1[X], while the target polynomial
z ∈ F[X] has degree d. Extend #„a ,

#„

b , #„c with 3 more polynomials each, by setting:

am+1(X) = bm+2(X) = cm+3(X) = z(X),

am+2(X) = am+3(X) = bm+1(X) = bm+3(X) = cm+1(X) = cm+2(X) = 0.

Let Ix , Imid be the following partitions of {1, . . . ,m + 3}: Ix = {1, . . . , n}, Imid = {n +
1, . . . ,m + 3}. In other words, we partition all the circuit wires into the n statement wires
Ix , and the remaining “internal” wires Imid (which include the h witness wires).

2. Pick ρa, ρb, τ, αa, αb, αc, β, γ ←R F uniformly at random, set ρc = ρa · ρb, and compute the
following values:

Z = z(τ)ρc P2, Ka = z(τ) ρaK1,

∀k ∈ {0, ...,m+ 3} : Ak = ak(τ)ρa P1, A′k = αa ak(τ)ρa P1,

Bk = bk(τ)ρb P2, B′k = αb bk(τ)ρb P1,

Ck = ck(τ)ρc P1, C ′k = αc ck(τ)ρc P1,

Ek = β(ak(τ)ρa + bk(τ)ρb + ck(τ)ρc)P1.

3. Output the evaluation key EKC and the verification key VKC defined as follows:

EKC =
(
QC ,

#„

A,
#„

A′,
#„

B,
#„

B′,
#„

C,
#„

C ′,
#„

E, {τ i P1}i∈{0,...,d},Ka

)
VKC =

(
P1, P2, αa P2, αb P1, αc P2, γ P2, β γ P1, β γ P2, Z, {Ak}nk=0,

)
Prove(EKC ,

#„x , #„w, #„σ ): Let EKC the an evaluation key defined as above, ( #„x , #„w) ∈ Fn× Fh be a
statement-witness pair, and σ = (σ1, . . . , σn) be a tuple of authentication tags for x such that,
for any i ∈ [n], either σi = (µi, Φi, σ

′
i) or σi = ?. We define Iσ = {i ∈ Ix : σi 6= ?} ⊆ Ix as the

set of indices for which there is an authenticated statement value, and let I? = Ix \ Iσ be its
complement. To produce a proof for the satisfiability of C( #„x , #„w) = 0l proceed as follows.
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1. Compute #„s = QAPwit(C, #„x , #„w) ∈ Fm (and recall that si = xi for all i ∈ [n]).

2. Randomly sample δσa , δ
mid
a , δb, δc ←R F, and set δa = δσa + δmid

a . Also, define the vector
#„u = (1, #„s , δa, δb, δc) ∈ Fm+4.

3. Solve the QAP QC by computing the coefficients (h0, . . . , hd) ∈ Fd+1 of the polynomial
h ∈ F[X] such that h(X)z(X) = a(X)b(X)− c(X), where a, b, c ∈ F[X] are

a(X) = a0(X) +
∑
k∈[m]

sk · ak(X) + δa · z(x)

b(X) = b0(X) +
∑
k∈[m]

sk · bk(X) + δb · z(x)

c(X) = c0(X) +
∑
k∈[m]

sk · ck(X) + δc · z(x)

Then compute H = h(τ)P1 using the values τ i P1 contained in the evaluation key EKC .
Note that we have a(X) = 〈 #„u , #„a 〉, b(X) = 〈 #„u ,

#„

b 〉 and c(X) = 〈 #„u , #„c 〉.

4. Compute the following values:

πb = 〈 #„u ,
#„

B〉, π′b = 〈 #„u ,
# „

B′〉, πc = 〈 #„u ,
#„

C〉, π′c = 〈 #„u ,
# „

C ′〉,
πσ = 〈 #„u ,

#„

A〉Iσ + δσa Am+1, π′σ = 〈 #„u ,
# „

A′〉Iσ + δσa A
′
m+1

πmid = 〈 #„u ,
#„

A〉Imid
− δσa Am+1, π′mid = 〈 #„u ,

# „

A′〉Iσ − δσa A′m+1

πE = 〈 #„u ,
#„

E〉.
5. Authenticate the value πσ by computing

πµ = 〈 #„µ,
#„

A〉Iσ + δσa Ka

6. Construct and return proof π as the tuple (πµ, πσ, π
′
σ, πmid , π

′
mid , πb, π

′
b, πc, π

′
c, πE , H). To

make the proof publicly verifiable, include also {Φk, σ′k}k∈Iσ .

Ver(vk,VKC , L, {xi}Li=?, π ): Let VKC be the verification key for the circuit C,
#„

L = (L1, . . . , Ln)
be a vector of labels, and let π be a proof as defined above. In a similar way as in Prove,
we define Iσ = {i ∈ Ix : Li 6= ?} ⊆ Ix and I? = Ix \ Iσ. The verification algorithm computes
A? = A0 + 〈 #„x ,

#„

A〉I? and proceeds as follows:

(A.1secret) If verification is done using the secret key sk = (S, κ), check the authenticity of πσ

against the labels
#„

L by checking whether the following equation holds in G1:8

πµ = 〈FS(
#„

L ),
#„

A〉Iσ + κ πσ

(A.1public) If the verification is performed using the public verification key vk = (vk′,K2):
first, check the validity of all Φk by verifying that Σ.Ver(vk′, Φk |Lk, σ′k) = 1 for all k ∈ Iσ;
second, check the authenticity of πσ by verifying that the following equation is satisfied
over GT :

e( πµ ,P2) =
∏
k∈Iσ

e(Ak, Φk) · e( πσ , K2)

8 The expansion of 〈FS(
#„

L ),
#„
A〉I is defined as the component-wise application of F, i.e.,

∑
i∈I FS(Li) ·Ai.
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(A.2) Check the validity of knowledge commitments for the authenticated values:

e( π′σ , P2) = e( πσ , αaP2)

(P.1) Check the satisfiability of the QAP:

e(A? + πσ + πmid , πb ) = e( H , Z) · e( πc , P2)

(P.2) Check the validity of knowledge commitments:

e( π′mid , P2) = e( πmid , αaP2) ∧ e( π′b ,P2) = e(αbP1, πb ) ∧ e( π′c , P2) = e( πc , αcP2)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e( πE , γP2) =

e(A? + πσ + πmid + πc , βγP2) · e(βγP1, πb )

If all the checks above are satisfied, then return >; otherwise return ⊥.

ReRand(EKC , L, {xi}Li=?, π): The scheme also allows for perfect re-randomization of an existing
proof, say π given by tuple (πµ, πσ, π

′
σ, πmid , π

′
mid , πb, π

′
b, πc, π

′
c, πE , H). If π verifies for a set of

labels L and a set of non-authenticated values {xi}Li=?, then π can be re-randomized as follows.
First, choose random values δ̃σa , δ̃

mid
a , δ̃b, δ̃c ←R F, and set δ̃a = δ̃σa + δ̃mid

a .
Second, compute

π̃b = πb + δ̃bBm+2, π̃′b = π′b + δ̃bB
′
m+2,

π̃c = πc + δ̃cCm+3, π̃′c = πc + δ̃cC
′
m+3,

π̃σ = πσ + δ̃σa Am+1, π̃′σ = π′σ + δ̃σa A
′
m+1,

π̃mid = πmid + δ̃mid
a Am+1,

π̃′mid = π′mid + δ̃mid
a A′m+1

π̃E = πE + δ̃aEm+1 + δ̃bEm+2 + δ̃cEm+3,

π̃µ = πµ + δ̃σa Ka,

H̃ = H + δ̃aπb + δ̃bπa + δ̃aδ̃bz(τ)P1 − δ̃c P1.

where z(τ)P1 can be included in EKC . Finally, output the re-randomised proof π̃ as
(π̃µ, π̃σ, π̃

′
σ, π̃mid , π̃

′
mid , π̃b, π̃

′
b, π̃c, π̃

′
c, π̃E , H̃).

It is not hard to check that π̃ is identically distributed as a fresh proof π generated by Prove.

The following theorem shows that the scheme ADSNARK described above is a zero-knowledge
AD-SNARK as in Definition 5.

Theorem 2. If F is a pseudorandom function, and the q-PKE [Gro10] and the q-DHE [CKS09]
assumptions hold, then ADSNARK is a secretly-verifiable zero-knowledge AD-SNARK. Furthermore,
if additionally Σ is a secure signature scheme, then ADSNARK is a publicly-verifiable zero-knwoledge
AD-SNARK.
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We prove theorem by showing separately that the properties of completeness, adaptive proof of
knowledge and zero-knowledge are all satisfied. This is done in Sections 4.1, 4.2 and 4.3 respectively.

Performance and Comparison. Before proving Theorem 2, we pause to discuss the performance
of our scheme ADSNARK in comparison with the SNARK of Parno et al. [PGHR13] that we call
PGHR (more precisely, we consider its optimization proposed by Ben-Sasson et al. [BSCTV14] that
for convenience we recall in Appendix C).

First, we note that the Gen algorithm is virtually the same in both schemes except that in
ADSNARK we have one more exponentiation9 in G1 to generate Ka = z(τ) ρaK1. Also, from a
bandwidth point of view, the evaluation key of EKC of ADSNARK contains only one more G1

element, Ka, compared to the evaluation key of PGHR. The verification key instead is the same in
both schemes.

Second, let us focus on the differences in the Prove algorithm. ADSNARK’s Prove has to com-
pute three more G1 elements: πσ, π′σ, and πµ. Generating these elements amounts to performing
three multi-exponentiations that involve N = |Iσ| terms each. When looking at the proof size,
ADSNARK’s proof contains such three additional elements in the group G1, plus the signatures
{σk}k∈Iσ in the publicly verifiable setting.

Third, we analyze the differences between ADSNARK and PGHR in the Ver algorithm. The equa-
tions (P.1), (P.2), and (P.3) are identical in both schemes and thus require the same computational
effort. In PGHR one computes Ax = A0 +

∑n
k=1 xkAk ∈ G1, whereas in ADSNARK we compute a

similar value A? = A0 +
∑

k∈I? xkAk ∈ G1 which involves fewer terms: precisely |I?| = n−N . Then,
ADSNARK has to perform some additional computation for verifying equations (A.1) and (A.2).
(A.2) costs only two pairings – a constant overhead. The first equation instead requires different
computations according to whether we are in the secretly verifiable case ((A.1)secret) or in the pub-
licly verifiable case ((A.1)public). (A.1)secret requires one multi-exponentiation with N = |Iσ| terms
(plus the cost of running the PRF which is unnoticeable compared to the multi-exponentiation).
Hence, considering the cost of computing Ax in PGHR and the total cost of computing A? and
(A.1)secret in ADSNARK, these are essentially the same. In other words, ADSNARK’s secretly veri-
fiable case is slightly slower than PGHR for the cost of computing two pairings in (A.2).

In the publicly verifiable case, equation (A.1)public requires to check a total of N signatures,
{σk}k∈Iσ , and then to compute e(πµ,P2)e(πσ,−K2) and

∏
k∈Iσ e(Ak, Φk). In general, note that the

verification of such N signatures can be done by using batching techniques, and the “multi pairings”
can also be computed efficiently. In particular, as we show in our instantiation, this cost is close to
the cost of computing Ax in PGHR. In other words, ADSNARK’s publicly verifiable case is slightly
slower than PGHR for the cost of computing the pairings in (A.1) and (A.2) and for checking the
signatures.

In Section 5, we give concrete comparisons resulting from our experiments, which are consistent
with the analysis above. Indeed, we show based on concrete timings that ADSNARK performs
almost as PGHR used without authenticated data. These results conclude that our technique added
an important property to the SNARK at almost no cost.

However, for the sake of fairness, we should also consider a comparison of the two protocols
when they are used to provide equivalent guarantees, i.e., when proving statements on authenticated
data. To this end, we now compare ADSNARK against the best possible instantiation of the generic
construction of Section 3.2, which we take to be PGHR working with the “extended” circuit C ′.

9 We use the term “exponentiation” only for ‘historical’ reasons, as G1 is actually an additive group.
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We call this scheme AD-PGHR. In our analysis, we assume that the verification of every signature
requires an arithmetic circuit with c multiplication gates, and also assume (very optimistically)
that this is the only additional cost for the design of C ′. This means that: if C yields a QAP of size
m and degree d, then C ′ yields a QAP of, at least, size m′ = m+ cN and degree d′ = d+ cN .

In AD-PGHR, the performance of Ver remains the same as the one of Ver in PGHR discussed
above. On the other hand, the Prove algorithm of AD-PGHR heavily depends on the QAP size
m′ and degree d′. Precisely, Prove performs multi-exponentiations with m′ and d′ terms, and a
polynomial division operation whose cost is O(d′ log2 d′).

In conclusion, if we fix a circuit C and a number N of authenticated values, and we compare
ADSNARK for circuit C against AD-PGHR for the same C (i.e., PGHR with the extended circuit
C ′), then we obtain:

For secret verification, both schemes perform almost the same, the only difference being that
we need to perform two more pairings; for public verification, ADSNARK has an additional cost of
one multi-pairing computation with N terms plus the signature verification. For proof generation,
AD-PGHR has to perform additional operations that involve a factor at least linear in c · N . We
recall from the discussion in Section 3.3 that such c is likely to be larger than 1000. Therefore,
one can see that while our solution charges a little more to the verifier (and only in the public
verification case), the costs of our scheme on the prover side can be much cheaper, at least by a
factor c ·N . We confirm the above asymptotic comparison in Section 5 by showing the experimental
results obtained by running our implementation.

4.1 Completeness

Theorem 3. The scheme ADSNARK satisfies authentication correctness and completeness.

Proof. It is straightforward to see that the scheme has authentication correctness by the correctness
of the regular signature scheme and by construction. To show the completeness, we prove the
satisfaction of all verification equations in the order they appear in the verification procedure.

(A.1secret)

πµ
Prove
= 〈 #„µ,

#„

A〉Iσ + δσa Ka

Gen
= 〈 #„µ,

#„

A〉Iσ + δσa z(τ)ρaK1

Auth
= 〈FS(

#„

L ) + κ · #„x ,
#„

A〉Iσ + δσa z(τ)ρaK1

AuthKG
= 〈FS(

#„

L ),
#„

A〉Iσ + κ〈 #„x ,
#„

A〉Iσ + δσa z(τ)ρaκP1

Gen
= 〈FS(

#„

L ),
#„

A〉Iσ + κ(〈 #„x ,
#„

A〉Iσ + δσaAm+1)
Prove
= 〈FS(

#„

L ),
#„

A〉Iσ + κ · πσ
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(A.1pub)

e(πµ,P2)
Prove
= e

(
〈 #„µ,

#„

A〉Iσ + δσa Ka, P2

)
Gen
= e

(
〈 #„µ,

#„

A〉Iσ + δσa z(τ)ρaK1, P2

)
Auth
= e

(
〈FS(

#„

L ) + κ · #„x ,
#„

A〉Iσ + δσa z(τ)ρaK1, P2

)
AuthKG

= e
(
〈FS(

#„

L ),
#„

A〉Iσ , P2) · e
(
κ〈 #„x ,

#„

A〉Iσ + δσa z(τ)ρaκP1, P2

)
Gen
= e

(∑
k∈Iσ

(FS(Lk)ρaak(τ))P1, P2

)
· e
(
〈 #„x ,

#„

A〉Iσ + δσa z(τ)ρaP1, P2

)κ
AuthKG,Prove

= e
(∑
k∈Iσ

ρaak(τ)P1, FS(Lk)P2

)
· e
(
〈 #„x ,

#„

A〉Iσ + δσaAm+1, K2

)
Gen,Auth

=
∏
k∈Iσ

e
(
Ak, Φk

)
· e
(
〈 #„x ,

#„

A〉Iσ + δσaAm+1, K2

)
Prove
=

∏
k∈Iσ

e
(
Ak, Φk

)
· e
(
πσ, K2

)
(A.2)

e(π′σ, P2)
Prove
= e

(
〈 #„u ,

# „

A′〉Iσ + δσa A
′
m+1, P2

)
Gen
= e

(
αa〈 #„u ,

#„

A〉Iσ + δσaαaAm+1, P2

)
= e

(
〈 #„u ,

#„

A〉Iσ + δσa Am+1, αaP2

)
Prove
= e

(
πσ, αaP2

)
(P.1)

e(A? + πσ + πmid πb)
Prove
= e

(
A0 + 〈 #„u ,

#„

A〉Iσ + 〈 #„u ,
#„

A〉I? + 〈 #„u ,
#„

A〉Imid
, 〈 #„u ,

#„

B〉
)

Prove
= e

(
〈 #„u ,

#„

A〉, 〈 #„u ,
#„

B〉
)

Gen
= e

(
(

m+4∑
k=0

ukak(τ))ρaP1, (

m+4∑
k=0

ukbk(τ))ρbP2

)
Gen
= e

(
P1, P2

)ρaρba(τ)b(τ)

Gen,Prove
= e

(
P1, P2

)ρc(h(τ)z(τ)+c(τ))

= e
(
h(τ)P1, ρcz(τ)P2

)
· e
(
ρcc(τ)P1, P2

)
Prove
= e

(
H, Z

)
· e
(
ρc〈 #„u ,

#„

C〉 P1, P2

)
Prove
= e

(
H, Z

)
· e
(
πc, P2

)
(P.2) We refer to the proof of (A.2), which is very similar to the cases of πmid , πb, and πc.
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(P.3)

e(πE , γ P2)
Prove
= e

(
〈 #„u ,

#„

E〉, γ P2

)
Gen
= e

(
β〈 #„u , (ρa

#„a (τ) + ρb
#„

b (τ) + ρaρb
#„c (τ))P1〉, γ P2

)
= e

(
〈 #„u , (ρa

#„a (τ) + ρb
#„

b (τ) + ρaρb
#„c (τ))P1〉, βγ P2

)
= e

(
〈 #„u , ρa

#„a (τ)P1〉, βγP2

)
· e
(
〈 #„u , ρb

#„

b (τ)P1〉, βγP2

)
· e
(
〈 #„u , ρaρb

#„c (τ)P1〉, βγ P2

)
= e

(
〈 #„u ,

#„

A〉, βγP2

)
· e
(
βγP1, 〈 #„u , ρb

#„

b (τ)P2〉
)
· e
(
〈 #„u ,

#„

C〉, βγ P2

)
= e

(
〈 #„u ,

#„

A〉+〈 #„u ,
#„

C〉, βγP2

)
· e
(
βγP1, 〈 #„u ,

#„

B〉
)

Prove
= e

(
A0 + 〈 #„u ,

#„

A〉Iσ + 〈 #„u ,
#„

A〉I? + 〈 #„u ,
#„

A〉Imid
+ πc, βγP2

)
· e
(
βγP1, πb

)
Prove
= e

(
A? + πσ + πmid + πc, βγP2

)
· e
(
βγP1, πb

)
ut

4.2 Adaptive Proof of Knowledge

In the following theorem we prove that the scheme ADSNARK described in Section 4 satisfies the
adaptive proof of knowledge property. For this purpose, we base (part of) the security directly on
the proof of knowledge property of the SNARK of Parno et al. [PGHR13] (with the adaptation of
[BSCTV14], see Appendix C), that is in turn based on the q-PKE and the q-DHE assumptions.

Theorem 4. If PGHR is a SNARK, F is a pseudorandom function, the q-PKE [Gro10] and the q-
DHE [CKS09] assumptions hold, then ADSNARK is a secretly-verifiable AD-SNARK with adaptive
proof of knowledge.

Before giving the proof, we first recall the q-DHE and the q-PKE assumptions.

Definition 7 (q-Diffie-Hellman Exponent assumption [CKS09]). The q-DHE problem is
defined as follows. Let G be a bilinear group generator, and let bgpp = (p,G1,G2,GT , e,P1,P2)←R
G(1λ). Let τ ←R Zp be chosen uniformly at random. We define the advantage of an adversary A
in solving the q-DHE problem as

Advq−DHE
A (λ) = Pr[A(bgpp, τ P1, τ P2, . . . , τ

q P1,

τ q P2, τ
q+2 P1, τ

q+2 P2, . . . , τ
2q P1, τ

2q P2) = τ q+1 P1].

We say that the q-DHE assumption holds for G if for every PPT algorithm A and any polynomially-
bounded q = poly(λ) we have that Advq−DHE

A (λ) is negligible in λ.

Definition 8 (q-Power Knowledge of Exponent assumption [Gro10]). Let G be a bilinear
group generator, λ be a security parameter and q = poly(λ). The q-PKE assumption holds for G if
for every non-uniform PPT adversary A there exists a non-uniform PPT extractor EA such that:

Pr[αH = Ĥ ∧ H 6= (
∑q

i=0 ṽiτ
i)P1 :

(H, Ĥ; ṽ0, . . . , ṽq)← (A|EA)(bgpp, τP1, τP2, . . . , τ
qP1, τ

qP2, αP1, ατP1, . . . , ατ
qP1, aux )] = negl(λ)

where bgpp = (p,G1,G2,GT , e,P1,P2)←R G(1λ), τ, α←R Zp are chosen uniformly at random, and
aux is any auxiliary information that is generated independently of α. The notation (H, Ĥ; ṽi) ←
(A|EA)(inp) means that A upon input of inp returns (H, Ĥ) and EA on the same input returns ṽi.
In this case, EA has access to A’s random tape.
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In order to prove Theorem 4, we describe a series of hybrid experiments G0 − G4, where ex-
periment G0 is identical to the real adaptive proof of knowledge experiment and the remaining
experiments G1 − G4 are progressively modified in such a way that each consecutive pair is proven
to be (computationally) indistinguishable. Some of the games use some flag values badi that are
initially set to false. If at the end of a game any of these values is set to true, the game simply
outputs 0. For notation, we denote with Gi the event that a run of Gi with the adversary outputs
1, and we call Badi the event that badi is set to true during a run of Gi. Essentially, whenever an
event Badi occurs, the corresponding game may deviate its outcome.

Game G0: This is the adaptive proof of knowledge experiment described in Section 3 and Figure 5.
Game G1: This is the same as G0 except that the PRF FS(·) is replaced by a truly random function

R : {0, 1}∗ → F. By the security of the PRF, G1 is computationally indistinguishable from G0,
i.e.,

|Pr[G0]− Pr[G1]| ≤ AdvPRFD,F (λ)

Game G2: This is the same as G1 except that the procedure Ver sets bad2 ← true if the adversary
makes verification queries that (a) verify correctly with respect to the equation (A.1)secret , and
in which (b) there is a label L /∈ T (i.e., A never asked to authenticate a value under label L).
Clearly, G1 and G2 are identical until Bad2, i.e.,

|Pr[G1]− Pr[G2]| ≤ Pr[Bad2]

We show that G2 is statistically close to G1, by proving in Lemma 2 that Pr[Bad2] is (uncondi-
tionally) negligible. Intuitively, this follows from the fact that when L /∈ T the first verification
check is an equation with an almost-freshly sampled element φL = R(L) ∈ F, i.e., the equation
will be satisfied only with negligible probability, which is at most 1/(p − Q) where Q is the
number of verification queries made by A.

Game G3: This is the same as G2 except for the following change in Ver when answering Type 2
verification queries, i.e., we assume every label L was previously used to authenticate a value.
Let πµ, πσ be the elements in the proof π queried by the adversary. In G3 we compute π∗σ =∑

k∈Iσ xkAk ∈ G1, as well as its corresponding authentication tag π∗µ =
∑

k∈Iσ µkAk, where
each µk is the tag previously generated for (Lk, xk) upon the respective authentication query.
Next, we replace the check of equations (A.1)secret with checking whether

e(πµ/π
∗
µ,P2) = e(πσ/π

∗
σ,K2) (1)

is satisfied. Then, if equation (A.2) is satisfied (hence π′σ = αa πσ), we can run an extractor EA
to obtain a polynomial ãσ(X) of degree at most d. If πσ 6= ãσ(τ)ρaP1, then we set bad3 ← true.

First, we observe that by correctness, checking equation (1) is equivalent to checking the veri-
fication equation (A.1)secret .

Second, to see that we can run the extractor EA, we observe that the input received by the
adversary A can indeed be expressed as a pair (T, aux ), where T = {τ iPj , ατ iPj}i∈[0,d],j=1,2

and aux is some auxiliary information independent of α – as in the definition of the d-PKE
assumption.
Hence, G2 and G3 are identical up to Bad3, i.e.,

|Pr[G2]− Pr[G3]| ≤ Pr[Bad3]

and it is easy to see that the d-PKE assumption immediately implies that the probability of
Bad3 (i.e., that the extractor outputs a polynomial which is not a correct one) is negligible.
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Game G4: This game proceeds as G3 except for the following change in the Ver procedure. Assume
that the equation (1) is satisfied and that bad3 ← true is not set (i.e., πσ = ãσ(τ)ρaP1 holds).
Then, compute the polynomials a∗σ(X) =

∑
k∈Iσ xkak(X) and δa(X) = ãσ(X) − a∗σ(X), where

ãσ(X) is the polynomial obtained from the extractor. If δa(X) is not divisible by z(X) then set
bad4 ← true.
Clearly, G3 and G4 are identical up to Bad4, i.e.,

|Pr[G3]− Pr[G4]| ≤ Pr[Bad4]

To show that the two games are negligibly close, we prove in Lemma 3 that Pr[Bad4] is negligible
under the q-DHE assumption, for some q = 2d+ 1.

Finally, we observe that at this point, if Bad4 does not occur, we have verified that πσ was
computed by using the correct (i.e., authenticated) statement values. Namely, except for having
a randomized element πσ, we are almost in the same conditions for breaking the proof of
knowledge of PGHR. In fact, in Lemma 4 we show that if any adversary has advantage at most
ε in breaking the adaptive proof of knowledge of PGHR, then Pr[G4] ≤ Q · ε, where Q is the
number of Gen queries made by the adversary.

Lemma 2. Pr[Bad2] ≤ Q/(p−Q).

Proof. Let Q be the number of verification queries made by the adversary in G2, and let Bi be the
event that bad2 is first set from false to true in the i-th verification query. Clearly, we have:

Pr[Bad2] = Pr
[ Q∨
i=1

Bi
]
≤

Q∑
i=1

Pr[Bi]

To prove the lemma we will bound the probability Pr[Bi] for any 1 ≤ i ≤ Q, where the
probability is taken over the random choices of the function R(·).

By definition of Bi we have Pr[Bi] = Pr[Bi|B1∧ · · · ∧Bi−1]. Also, observe that bad2 is set to true
if ∃k ∈ Iσ such that (Lk, ·) /∈ T and the equation

πµ =
[∑
k∈Iσ

R(Lk)Ak

]
+κ · πσ (2)

is satisfied.
Let us fix one such index k̄ ∈ Iσ such that (Lk̄, ·) /∈ T. If φk̄ = R(Lk̄) is sampled uniformly at

random in the i-th query, then the equation above will be satisfied with probability 1/p. However,
the adversary might have asked Lk̄ in some previous verification query, and such a query might have
leaked some information about φk̄ = R(Lk̄). Yet, since it holds B1∧· · ·∧Bi−1, the only information
leaked to the adversary is that a bunch of equations involving φk̄ were not satisfied. For each of
these unsatisfied equations, one can exclude at most one possible value of φk̄. In conclusion, we
have that in the i-th query, the equation (2) is satisfied with probability at most 1

p−(i−1) . Hence,

Pr[Bad2] ≤
Q∑
i=1

1

p− (i− 1)
≤ Q

p−Q.

ut
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Lemma 3. If the q-DHE assumption [CKS09] holds for G, we have that Pr[Bad4] is negligible for
any PPT adversary A.

Proof. Assume that there is an adversary A such that Pr[Bad4] ≥ ε is non-negligible. We show how
to build an adversary B that breaks the q-DHE assumption with probability ε/DQ − 1/|F| such
that: (a) D = poly(λ) is an upper bound on the number of multiplication gates (and thus the degree
of the corresponding QAP) in the Q circuits C1, . . . , CQ queried by A to Gen, and (b) q = 2d∗+ 1
for some d∗ ≤ D, which is the degree of the QAP in the circuit C∗ for which Bad4 occurs.

B takes as input an instance of the q-DHE assumption (bgpp, τP1, τP2, . . . , τ
qP1, τ

qP2, τ
q+2P1,

τ q+2P2, . . . , τ
2qP1, τ

2qP2) and its goal is to compute the missing element τ q+1P1. To do so, B
simulates G4 to A as described in the following. Assume that Bad4 occurs for the circuit C∗ which
is the j-th circuit queried to Gen.

Game setup:

– B sets up the experiment for A as in G4 with the following modifications.
– It picks random j∗ ←R {1, . . . , Q}, d∗ ←R {1, . . . , D} to guess the query’s index of C∗ and its

QAP’s degree respectively.
– B sets q ← 2d∗ + 1, and takes as input an instance (bgpp, τP1, τP2, . . . , τ

qP1, τ
qP2, τ

q+2P1,
τ q+2P2, . . . , τ

2qP1, τ
2qP2) of the q-DHE assumption.

– It defines the degree-d∗ polynomial z∗(X) =
∏d∗

k=1(X−rk) where {rk} is a set of canonical roots
used to build the QAP.10

– B chooses κ∗(X) as a random polynomial in F[X] of degree d∗+1 such that the polynomial
κ∗(X) z∗(X) of degree 2d∗+1 has a zero coefficient in front of Xd∗+1.

– B simulates the secret κ with κ∗(τ) by computing Kj = κ∗(τ)Pj , for j = 1, 2. Observe that
κ∗(τ)Pj can be computed efficiently using {τ iPj}d

∗+1
i=0 contained in the q-DHE instance.

– B generates a key pair (sk′, vk′)←R Σ.KG(1λ) for the regular signature scheme and gives to the
adversary pap = (pp, prfpp,K1,K2) and vk = (vk′,K2).

Gen(C)
B proceeds as follows to simulate the i-th query.

– [Case i 6= j∗] B runs the real Gen(pap, C) algorithm and returns its output.
– [Case i = j∗] Let us call C∗ the queried circuit. B simulates the answer to this query as follows.

First, it builds the QAP for C∗ and if its degree d is not the d∗ guessed earlier, then B aborts the
simulation. Otherwise, we have d = d∗ and hence z(X) = z∗(X) and B can proceed as follows.
For the value τ , instead of randomly choosing it, B implicitly uses the same value τ from the
q-DHE assumption. Namely, B implicitly sets ρa = ρ′a τ

d+1 and ρc = ρ′a ρb τ
d+1ρaρb, where

ρ′a, ρb ←R F, by computing, for k = 0, . . . ,m:

Ak = τd+1ak(τ)ρ′a P1, Ck = τd+1ck(τ)ρ′aρb P1, Am+1 = τd+1z(τ)ρ′a P1, Cm+3 = τd+1z(τ)ρ′aρb P1.

Notice that these values can be computed efficiently since all the polynomials τd+1 ak(τ) and
τd+1 ck(τ) have degree at most 2d∗ < q, while τd+1 z(τ) has degree 2d∗ + 1 = q. Similarly, all
the remaining values {Bk} can be simulated as the degree of the polynomials encoded in the
exponent is at most d∗ < q. The simulation of the remaining elements Z,A′k, B

′
k, C

′
k, Ek can be

done in a very similar way.

10 The roots of the QAP target polynomial can be chosen arbitrarily.
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Finally, Ka = (Am+1)κ is simulated by computing ρ′a(τ
d+1 κ∗(τ) z(τ)P1). In particular, note

that (τd+1 κ∗(τ) z(τ)P1 can be computed since τd+1 κ∗(τ) z(τ) has degree 3d+ 2 and has a zero
coefficient in front of τ2d+2 = τ q+1, by construction of κ∗(X).

Auth(L, x)
To simulate authentication queries, B samples a random µ ←R F, computes Φ = µP2 − xK2,
generates σ′ ←R Σ.Sign(sk′, Φ|L), updates T ← T ∪ {(L, x)}, and returns σ = (µ, Φ, σ′). Observe
that such σ is identically distributed as an authentication tag returned by Auth in G4. Also,
although B is not explicitly generating φ ← R(L), as one can notice, these values are no longer
used to answer the verification queries.

Ver(C, L, {xi}Li 6=?, π̃)
Finally, we describe how B handles verification queries. First, note that for those queries that fall
in the Type 1 branch, B can directly answer ⊥ (reject), and it does not have to use the values R(L).
Clearly, due to definition of game G4 and since Bad2 does not occur, answers to these queries are
correctly distributed. Second, for queries in the Type 2 branch, we distinguish two cases according
to whether the queried circuit C is C∗ or not.
– If C 6= C∗, then B can answer as is done in game G4. In particular, note that equation (A.1)secret

has been replaced by equation (1) that requires only public values to be checked.
– If C = C∗, then B proceeds as in G4. First, set δa(X) = ãσ(X) − a∗σ(X). Now, since we

assume that Bad4 occurs in the experiment, this means that δa(X) is not divisible by z∗(X),
i.e., δa /∈ Span(z∗(X)). Then B checks whether ω(X) = δa(X)κ∗(X) is such that its coefficient
ωd+1 is zero. If so, B aborts the simulation (however, by Lemma 10 [GGPR13], this happens
with probability at most 1/|F|). Otherwise, if ωd+1 6= 0, B returns

Ω = (ωd+1 ρ
′
a)
−1

πµ − π∗µ − 2d+1∑
k=0,k 6=d+1

ρ′aωk(τ
k+d+1P1)


Notice that B’s simulation to A is perfect except if B aborts. However, B can abort only in

three cases: if its guess on j∗ is wrong, i.e., if j 6= j∗ (which happens with probability 1 − 1/Q);
if its guess on d∗ is wrong, i.e., if d 6= d∗ (which happens with probability 1 − 1/D); if ωd+1 = 0
(which holds unconditionally with probability at most 1/|F|). Also, it is not hard to see that if Bad4

occurs, then B returns

Ω = (ωd+1 ρ
′
a)
−1

κ(πσ − π∗σ)−
2d+1∑

k=0,k 6=d+1

ρ′aωk(τ
k+d+1P1)


= (ωd+1 ρ

′
a)
−1

ρ′aτd+1δa(τ)κ∗(τ)P1 −
2d+1∑

k=0,k 6=d+1

ρ′aωk(τ
k+d+1P1)


= (ωd+1 ρ

′
a)
−1
[
ρ′aτ

d+1ω(τ)− ρ′aτd+1(ω(τ)− ωd+1τ
d+1)

]
P1

= (ωd+1 ρ
′
a)
−1
[
ρ′aτ

d+1ωd+1τ
d+1
]
P1

= τ2d+2 P1

and breaks the q-DHE assumption, as desired.
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Therefore, by putting together the probability that B does not abort, with our assumption that
Pr[Bad4] ≥ ε, then we obtain that B breaks the q-DHE assumption with probability ≥ ε/DQ−1/|F|.

ut

Lemma 4. If PGHR satisfies adaptive proof of knowledge, and the q-PKE assumption holds, then
for any PPT adversary A we have that Pr[G4] is negligible.

Proof. Assume by contradiction that there exists an adversary A such that Pr[G4] ≥ ε is non-
negligible. We show how to build an adversary B that breaks the security of PGHR with probability
at least ε/Q1Q2, where Q1 is the number of circuits C1, . . . , CQ1 queried by A to Gen during game
G4, and Q2 is the number of verification queries. Without loss of generality, assume that B receives
the parameters bgpp of the bilinear groups before choosing the circuit C∗ to attack.11

Game setup:
– B picks a random j∗ ←R {1, . . . , Q1} to guess the query’s index of C∗, the circuit for which A

will break the security of our ADSNARK scheme in game G4.
– B generates a key pair (sk′, vk′)←R Σ.KG(1λ) for the regular signature scheme, and then samples

a random κ←R F. It gives to A pap = (bgpp, prfpp,K1 = κP1,K2 = κP2) and vk = (vk′,K2).

Gen(C)
B proceeds as follows to simulate the i-th generation query.
– [Case i 6= j∗] B runs the real Gen(pap, C) algorithm and returns its output.
– [Case i = j∗] Let us call C∗ the queried circuit. B forwards C∗ to its challenger and receives a

pair of keys (VK∗P ,EK∗P ) of the PGHR scheme. B then uses κ to compute Ka = κAm+1, sets the
key pair of the ADSNARK scheme to (VK∗,EK∗), where VK∗ = VK∗P and EK∗ consists of EK∗P
and the additional value Ka.

Auth(L, x)

B runs Auth as in G4, i.e., B outputs σ = (µ = R(L) + κx, Φ = R(L)P2, σ
′ = Σ.Sign(sk′, Φ|L)).

Ver(C, L, {xi}Li 6=?, π̃)
Finally, we describe how B simulates verification queries to A. Notice that all the equation checks
require only public values. Also, observe that in G4 the adversary A can win only by returning
a Type 2 forgery, and by returning a proof π containing values πσ, π

′
σ of the “correct form”, i.e.,

πσ = (a∗σ(τ)+δσa z(τ))ρa P1 and π′σ = (a∗σ(τ)+δσa z(τ))ρaαa P1 = αaπσ respectively, for some δσa ∈ F.
So, for every verification query that passes the verification checks and that involves the circuit

C∗, B translates the given proof π into a proof πP as described below.

Translation of π to πP . Let π = (πµ, πσ, π
′
σ, πmid , π

′
mid , πb, π

′
b, πc, π

′
c, πE , H). First, B computes

π̂mid = πmid + (πσ − π∗σ) and π̂′mid = π′mid + (π′σ − π′∗σ ), where π∗σ = 〈 #„x ,
#„

A〉Iσ and π′∗σ = 〈 #„x ,
# „

A′〉Iσ .
Then, B computes π̂E = πE + δσa Em+1 where δσa = (ãσ(X) − a∗σ(X))/z(X). Next, B changes the
(accepting) proof π produced by A by: replacing πmid , π′mid and πE with the values π̂mid , π̂′mid and
π̂E (as computed above) respectively; removing πσ, π′σ, πµ. Let πP be such modified proof. B stores
the tuple ({xk}k∈Ix , πP ) into a list Ω.

First, observe that the proof πP is identical to a proof in the scheme PGHR, and in particular it
has the same distribution. Second, we claim that if π is accepted in G4 for the circuit C∗ and labels

11 We note that this reduction to the security of PGHR is done for ease of exposition. Indeed, we could have included
in our simulator B the same code of the simulator in the security proof of the PGHR scheme, where the parameters
of the bilinear groups are received at the very beginning.
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{Lk}k∈Iσ (used to authenticate {xk}k∈Iσ), then πP is accepted for statement {xk}k∈Ix in the given
instance of the PGHR scheme for circuit C∗.

The first claim follows by inspection and by observing that since Bad4 does not occur, the value
(πσ − π∗σ) contains a multiple of z(τ), i.e., the correct form of πmid is preserved. In particular,
the value δσa is a scalar value since (ãσ(X) − a∗σ(X)) is divisible by z(X) which has degree d, and
deg(ãσ(X)),deg(a∗σ(X)) ≤ d.

The second claim follows from the fact that the value A = πσ + A? + πmid computed to verify
the proof π in the ADSNARK scheme, and the value AP = 〈 #„x ,

#„

A〉[0,n] + π̂mid computed to verify
the proof πP in PGHR are identical – as π̂mid = πmid + (πσ − π∗σ). Since Bad4 does not occur, the

value δ
(σ)
a is exactly the coefficient used by A for the randomization of πσ.

After A stops running, B picks a random tuple ({xk}k∈Ix , πP ) from the list Ω (which contains
at most Q2 elements) and returns this tuple to its challenger.

To complete the proof we analyze B’s success probability. We claim that if A breaks the security
of the ADSNARK scheme in game G4, then B breaks the adaptive proof of knowledge property of
PGHR with probability at least 1/Q1Q2. It is not hard to see that B’s simulation has a distribution
which is statistically close to the distribution of game G4. Also, if A breaks the scheme it means
that for at least one of its verification queries that accepts, say the `-th query, we have that
x /∈ RC . Assume that C was the j-th circuit queried to Gen, and that B returns the `∗-th tuple
in the list Ω. Since the simulation does not leak any information on j∗ and `∗, we have that
Pr[j∗ = j∧ `∗ = `] ≥ 1/Q1Q2. Therefore, if A breaks the security of the ADSNARK scheme in game
G4 with probability at least ε, then B breaks the security of PGHR with probability ≥ ε/Q1Q2. ut

Adaptive Proof of Knowledge with Public Verifiability. It is easy to adapt the proof of
Theorem 4 in order to show that our scheme satisfies adaptive proof of knowledge even in the case
where the proof is made publicly verifiable. Hence, it is possible to prove the following theorem:

Theorem 5. If PGHR is a SNARK, F is a pseudorandom function, Σ is a secure signature scheme,
the d-PKE [Gro10] and the q-DHE [CKS09] assumptions hold, then the scheme described above is
a publicly-verifiable AD-SNARK with adaptive proof of knowledge.

In the publicly verifiable case, since the adversary can verify the proofs on its own, we can assume
that it makes a single verification query to Ver. To obtain the proof of Theorem 5, we use the same
games as those for Theorem 4. The only difference is that the probability Pr[Bad2] is now shown
to be negligible under the assumption that the regular signature scheme is secure. Such claim is
rather straightforward: an adversary which returns a proof involving a statement value with label
Lk that had not been queried to the Auth oracle, has to show at least one signature σ′k that verifies
correctly for some non-queried label L.

4.3 Proof of the Zero-Knowledge Property

Theorem 6. The ADSNARK scheme described in Section 4 is statistically zero-knowledge in the
sense of Definition 6.

Proof. To see that our scheme satisfies zero-knowledge, our first observation is that the group
elements πσ, πmid , and πc, are statistically uniform over G1 and the same holds for πb over G2.
Indeed, as long as z(τ) 6= 0, each of these elements is uniformly randomized.
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Sim1(pp, C, sk, vk, pap)
Run Gen(pap, C) to obtain
(EKC ,VKC) and also store
sk, τ, β, αa, αb, αc, ρa, ρb, ρc in td
Return (EKC ,VKC , td)

Sim2(td, L, {xi}Li=?)
let a?(X) = a0(X) +

∑
k∈I? xkak(X), {φk ← FS(Lk)}k∈Iσ

Choose random aσ(X), amid(X)←R F[X]
a(X)← aσ(X) + a?(X) + amid(X)
Choose random b(X), c(X)←R F[X], such that z(Z) | a(X)b(X)− c(X)
h(X) ← (a(X)b(X)− c(X))/z(X)
πµ ← 〈

#„

φ,
#„
A〉Iσ + ρaaσ(τ)κP1

πσ ← ρaaσ(τ)P1, π
′
σ ← αaπσ, πmid ← ρaamid(τ)P1, π′mid ← αaπmid

πb ← ρbb(τ)P2, π′b ← αbρbb(τ)P1, πc ← ρcc(τ)P1, π′c ← αcπc,
πE ← β[πσ + πmid + (ρaa?(τ) + ρbb(τ))P1 + πc]
H ← h(τ)P1

Return π = (πµ, πσ, π
′
σ, πmid , π

′
mid , πb, π

′
b, πc, π

′
c, πE , H)

Figure 6. Simulator Sim.

Second, we notice that once the elements πσ, πmid , πb, πc, are fixed, the values of all the
remaining elements in π, i.e., πµ, π′σ, π′mid , π′b, π′c, πE , and H get determined according to the
constraints of the verification equations (A.1), (A.2), (P.1), (P.2), (P.3).

Finally, we show that there is a simulator (Sim1, Sim2), formally described in Figure 6, that sat-
isfies Definition 6. The simulated keys generated by Sim1 are distributed as in the real experiment.
Regarding Sim2, it is not hard to see that the simulated values πσ, πmid , πb, πc are statistically uni-
form. Also, given the trapdoor, Sim2 can generate (without knowing inputs {xk}k∈Iσ) all remaining
elements of π with the correct distribution, i.e., such that verification equations (A.1), (A.2), (P.1),
(P.2), (P.3) are satisfied. ut

5 Evaluation

We now describe our implementation of the ADSNARK scheme proposed in Section 4 and then
present the experimental results we obtained to support the efficiency and practical applicability
claims for our construction.

5.1 Implementation

We have implemented our ADSNARK scheme as an extension to the libsnark library12 [BSCG+13,
BSCTV14]. Our scheme extends the PGHR SNARK implementation offered by this library and
supports the same class of statements expressed in the NP-complete language R1CS (rank-1 con-
straint systems), which is similar to arithmetic circuit satisfiability. The resulting implementation
is totally generic, following the libsnark code writing policies, and can be instantiated with arbi-
trary digital signatures and PRF constructions (in addition to the various parameterization options
already offered by the libsnark library). The source code is available upon request.

The modifications to the original PGHR SNARK implementation required by our extensions
were relatively small.13 In the global parameter generation algorithm, the modifications were lim-
ited to one additional exponentiation. In the symmetric verification algorithm, we replaced the
computations performed on the (known) inputs with (essentially equivalent) computations on the

12 https://github.com/scipr-lab/libsnark
13 This would be expected from the theoretical description of our scheme, but praise should also go to the developers

of the libsnark library, who produced a nice, modular and well documented implementation on which it was easy
to build upon.
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corresponding authentication elements.14 In the prover algorithm, the extra code comprises the
three multi-exponentiations required to compute the extra authentication elements. Finally, our
extensions are most visible in the public verification algorithm where, in addition to the digital sig-
nature verification operations, the number of pairings to be computed also increases linearly with
the number of authenticated inputs. Our implementation strategy was to employ the optimizations
available in the libsnark codebase whenever possible, taking advantage of the existing multi- and
batch- exponentiation algorithms. The additional pairing computations required in public verifica-
tion are performed two-by-two, exploiting the available double Miller loop optimization.

For the extra cryptographic components required by our construction, i.e., the generic signa-
ture scheme and the PRF mapping labels to field elements, we have turned to the state-of-the-art
implementations offered by the most recent version of the Supercop framework.15 For the signature
scheme, we have used the ed2551916 implementation described in [BDL+12], which offers extremely
fast batch verification that we incorporated in the ADSNARK public verification algorithm (recall
that one signature per input must be verified). For the PRF implementation, we have fixed labels to
be 128-bit binary strings and the PRF key to be a 256-bit string partitioned as two AES keys. The
PRF construction uses one AES computation to map the input label to a 128-bit pseudorandom
seed, applies an independent instance of AES in counter mode to expand the seed to 384 pseudo-
random bits, and then uses modular reduction to obtain a pseudorandom 254-bit field element.17

To select the best ed25519 and AES implementations, we have simply run Supercop on our target
machine to exhaustively evaluate all available implementations, and then used the recommenda-
tions that this framework produced for the fastest implementations and corresponding compilation
options.

Microbenchmarks. All measurements were taken in a modest machine with two Dual-Core AMD
Opteron 2218 processors clocked at 1 GHz, with 12 GB RAM. The reported values for every
parameter correspond to the median of measurements computed over at least 100 runs. Following
the original implementation of the libsnark library, we have equipped our implementation of the
verification algorithm with the capability to perform part of the computation off-line. However, all
our results pessimistically report the full verification time. The security level was set at 128-bits.

5.2 Experiments Setup

We have conducted experiments to carry out two types of performance evaluation: the first targeting
general circuits, and the second focusing on a concrete application.

General circuits. To obtain our first set of experimental results, we have relied on the libsnark
functionality that permits generating random instances of constraint systems of arbitrary sizes. This
allowed us to evaluate the performance of our protocol when dealing with proof goals correspond-
ing to computations of growing complexity and with a varying number of inputs. Our goal here
was to corroborate the theoretical analysis presented in Section 4, by benchmarking our protocol

14 We deviate slightly from the original implementation in the way we store these input authentication elements. We
use a simple (dense) vector representation as opposed to the more elaborate (sparse) map representation in the
original. This originated a slight improvement in verification times in the experiments we conducted, but this is
simply due to the fact that we did not explore more complex input handling scenarios, where our representation
of inputs data might prove less adequate.

15 http://bench.cr.yp.to/supercop.html
16 http://ed25519.cr.yp.to/
17 It is straightforward to prove that this construction yields a secure PRF, assuming that AES is itself a secure PRF.
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against both the original (unauthenticated) PGHR SNARK protocol and the generic AD-SNARK
construction described in Section 3.2 instantiated with PGHR, that we call AD-PGHR.
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Generation Time (seconds) Proving Time (seconds) Verification Time (seconds)
Inputs PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK SK ADSNARK PK

100 16.259 44.441 16.269 19.600 56.349 19.558 0.017 0.017 0.014 0.073
250 16.312 84.695 16.358 19.651 111.008 19.597 0.025 0.025 0.017 0.165
500 16.317 159.943 16.335 19.561 212.162 19.473 0.038 0.038 0.023 0.316
750 16.344 236.379 16.307 19.602 380.563 19.672 0.050 0.050 0.029 0.470

1 000 16.350 299.314 16.276 19.513 490.852 19.612 0.062 0.062 0.035 0.613

Proving Key Size (KBytes) Verification Key Size (KBytes) Proof size (Kbytes)
Inputs PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK PGHR AD-PGHR ADSNARK SK ADSNARK PK

100 15 650 45 944 15 657 3.5 3.5 3.5 0.3 0.3 0.4 12.9
250 15 640 91 885 15 657 8.2 8.2 8.2 0.3 0.3 0.4 31.6
500 15 622 167 092 15 657 16.0 16.0 16.0 0.3 0.3 0.4 62.9
750 15 605 250 459 15 657 23.8 23.8 23.8 0.3 0.3 0.4 94.1

1 000 15 587 318 590 15 657 31.5 31.5 31.5 0.3 0.3 0.4 125.4

Figure 7. Experimental results showing generation, proving and verification times for random constraint systems of
size 50K and varying number of inputs. For AD-PGHR, the number of multiplication gates is 50K + 1000×#inputs.
For ADSNARK in the public verification variant, the proof size is equal to the SNARK proof size plus the size of the
authentication data, which is 128 bytes per input.

We have arbitrarily fixed the complexity of the computation associated with the proof goal
to involve 50K restrictions (or equivalent, roughly 50K multiplication gates), which typically cor-
responds to a computation of intermediate complexity according to the state of the art (see for
example [PGHR13]). The concrete size of the computation is not important, since we will be con-
cerned with the relative degradation of the performance of the various protocols, as we gradually
increase the number of (possibly authenticated) inputs to the computation from 100 to 1000. For
the generic construction AD-PGHR, we have (very optimistically) taken the penalty for including
the signature verification circuit in the proof goal to be only of 1000 multiplications per signature.
The fact that, in practice, the cost will probably be higher only strengthens our claims.

Concrete Application. Our second set of experimental results targets a real-world scenario, where
the security guarantees provided by an AD-SNARK are highly relevant: a concrete smart-metering
application like the one described in the introduction. Analogous results can be obtained for similar
applications such as the pay-as-you-drive insurance or the health risk assessment. Our goal here
is to indeed demonstrate the practical applicability of our ADSNARK implementation and to show
that the overhead incurred by the generic construction can be prohibitive in practice, as it may
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lead to a significant increase in the complexity of the proof goal. This is particularly true if the
proof goal is reasonably simple to start with, as is the case in the application that follows.
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Generation Time (seconds) Proving Time (seconds) Verification Time (seconds)
Days Mgates AD-PGHR ADSNARK AD-PGHR ADSNARK AD-PGHR ADSNARK SK ADSNARK PK

1 8 641 17.929 3.262 21.760 0.622 0.013 0.013 0.042
7 60 481 110.164 18.296 151.146 4.463 0.030 0.020 0.219

14 120 961 214.457 34.507 306.705 9.078 0.047 0.028 0.421
21 181 441 213.647 50.770 444.592 14.314 0.062 0.037 0.628
28 241 921 431.341 65.539 629.003 18.426 0.077 0.043 0.823

Proving Key Size (KBytes) Verification Key Size (KBytes) Proof size (Kbytes)
Days Mgates AD-PGHR ADSNARK AD-PGHR ADSNARK AD-PGHR ADSNARK SK ADSNARK PK

1 8 641 17 463 2 500 1.9 1.9 0.3 0.4 6.4
7 60 481 124 274 17 641 10.9 10.9 0.3 0.4 42.4

14 120 961 248 547 35 282 21.3 21.4 0.3 0.4 84.4
21 181 441 364 661 52 923 31.8 31.8 0.3 0.4 126.4
28 241 921 497 094 70 563 42.2 42.3 0.3 0.4 168.4

Figure 8. Experimental results showing generation, proving, and verification times for the smart metering application,
with the number of measurements varying from 1 day to 28 days (with 48 measurements per day). For AD-PGHR,
the number of multiplication gates is #Mgates+ 1000×#days× 48. For ADSNARK in the public verification variant,
the proof size is equal that of the SNARK proof plus the size of the authentication data (128 bytes per input).

We focus on the smart-metering application described in [RD11, FKDL13] where a (non-linear)
cumulative price function is applied to the consumption measurements in order to determine the
aggregated cost. The idea here is that the smart meter is able to authenticate the measurements,
and that the client locally computes the monetary value corresponding to the measured consump-
tion. The client can then use an AD-SNARK protocol to demonstrate to the supplier that the
computation is correct and based on legitimate measurements, without divulging the details of
the individual values. As a simple example of a cumulative policy [RD11], one may think of a
non-linear function defined by the following list of threshold/price pairs: [(0, 2), (3, 5), (7, 8)]. This
policy establishes four consumption intervals and their corresponding prices, as follows: [0, 3]→ 2,
(3, 7]→ 5, (7,∞)→ 8. For a measured consumption of 9, the price due is 3×2 + 4×5 + 2×8 = 42.

In this application, the complexity of the price computation depends on both the number of
measurements and the number of intervals prescribed by the cost function.

We have implemented a generator of R1CS statements that, for a specified number of mea-
surements and a concrete cumulative cost function, is able to construct a constraint system for an
arithmetic circuit that checks the correctness of the computed cost, for any given set of measure-
ments. The number of multiplication gates in (i.e., the number of constraints associated to) the
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resulting circuits is 36×#measurements×#intervals + 1.18 For the generic construction AD-PGHR,
we have again used the estimate of 1000 additional multiplications per signature verification. We
set the number of thresholds to 5 (a coarse level of granularity in specifying the non-linear policy)
so that we obtain a moderately sized circuit even for a month’s worth of readings. We then take
the indicative value of 48 measurements per day, and vary the number of days separating the price
computation to be 1, 7, 14, 21, and 28 days. The policy is defined by thresholds 5, 10, 15, 20, and
25. The measurement values were sampled at random in the range 0 to 100.

5.3 Performance for General Circuits

Figure 7 shows the results we obtained in terms of execution time. It is clear from the graphs the
rapid degradation of the global generation and proving times in the case of AD-PGHR. This is a
direct consequence of increasing the size of the circuit and corresponding increase in the size of
the proving key, which for 1000 inputs in AD-PGHR approaches 320 MB, as opposed to 15 MB
for ADSNARK and PGHR.19 The (relatively) small penalty payed for using public verification in
ADSNARK is visible in the verification times. Furthermore, it is interesting to observe that the
secret-key verification of ADSNARK is as fast as the one of AD-PGHR or the (unauthenticated)
PGHR. The size of the proof is under 500 bytes for all protocols except the public verification
version of AD-PGHR, where the authentication data takes an additional 128 bytes per input. Even
so, for 1000 inputs, the proof size is under 126Kbytes.20

5.4 Performance for Smart Metering Billing

Figure 8 shows the results we obtained in terms of execution time. It is clear from the graphs
that ADSNARK yields proving times that are compatible with real-world deployment: even for one
month’s worth of measurements, the proving time is around 18 seconds, the proof size is under
0.5 KB for secret verification and under 170 KB for public verification. The contrast to AD-PGHR
is evident, where the proof size is essentially the same as ADSNARK with secret verification, but the
running time of the AD-PGHR’s prover goes up to over 10 minutes. Moreover, even for a month’s
worth of readings, ADSNARK would pay little more time for public verification (around 0.8 seconds
vs. 0.08 seconds of AD-PGHR). Although this may not be very important for smart-metering, it
shows, once more, that the public verification time scales very well.

6 Further Related Work

As we mentioned earlier, our work extends the notion of succinct non-interactive arguments of
knowledge (SNARKs) [Mic94, BCCT12], which in turn build on (succinct) interactive proofs
[GMR89] and interactive arguments [Kil92, Kil95]. In particular, we focus on the so-called prepro-
cessing model where the verifier is required to run an expensive but re-usable key generation phase.
In this preprocessing model, several works [Gro10, Lip12, GGPR13, BCI+13] proposed efficient real-
izations of SNARKs, and more recent works [PGHR13, BSCG+13, BSCTV14] have shown efficient,

18 The circuit implementation assumes that measurements and thresholds are represented as 32-bit integer values.
19 For PGHR and ADSNARK the variations in generation and proving times with the increasing number of inputs are

barely visible due to the fact that the number of constraints in the circuit is fixed at 50K.
20 In our implementation each signature and public key takes 64 bytes, and the group element takes 64 bytes per

input.
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highly-optimized, implementations that support general-purpose computations. These schemes can
also support zero-knowledge proofs. It is worth mentioning that all known SNARKs are either in
the random oracle model or rely on non-standard non-falsifiable assumptions [Nao03]. Assumptions
from this class have been shown [GW11a] likely to be inherent for SNARKs for NP.

The notion of SNARKs is also related to verifiable computation [GGP10], in which a (compu-
tationally weak) client delegates the computation of a function to a powerful server and wants to
verify the result efficiently. As noted in previous work, by using SNARKs for NP, it is possible
to construct a verifiable computation scheme, and several works [GGPR13, PGHR13, BSCG+13]
indeed follow this approach. However, alternative approaches to realizing verifiable computation
have been proposed, notably based on fully homomorphic encryption [GGP10, CKV10, AIK10] or
attribute-based encryption [PRV12].

Another line of work which is closely related to ours is the one on homomorphic authentication
(comprising both homomorphic/malleable signatures [JMSW02, BF11, ABC+12, CKLM14] and
MACs [GW13, CF13, BFR13]). The main idea of homomorphic authenticators is that, given a set
of messages (σ1, . . . , σn) authenticated using a secret key sk, anyone can evaluate a program P on
such authenticated messages in a way that the result σ ← P ({σi}) is again authenticated with
respect to the same key sk (or some public key vk in the case of signatures). Some works in this
area [ABC+12, CKLM14] considered various privacy notions (called context-hiding) to model that
signatures on the outputs of a computation should not reveal information about the inputs. In this
sense, AD-SNARKs are closely related to the notion of multi-input malleable signatures [CKLM14].
However, to the best of our knowledge, none of these schemes achieves practical efficiency for
arbitrary computations.

The recent work Z∅ [FL14] aimed to combine the best of different zero-knowledge proof systems
by doing an efficiency cost analysis to use the best one for every application. In particular, Z∅
relies on both ZQL and Pinocchio [PGHR13]. However, when using Pinocchio with authenticated
data, Z∅ does not provide any guarantee on the integrity of this data, i.e., on the validity of the
corresponding signatures.

7 More Applications

In this section we describe three more applications that fit our three-party model.

Pay-as-you-drive Insurance. Similarly to the smart-metering scenario, a trusted black-box
installed in the client’s car collects information on the driving habits; the driver receives the infor-
mation and needs to pay a premium to the insurance company according to the driving information
(distances, speed, safety, etc.). For privacy, the driver may not want to reveal her personal driving
habits to the insurance company. For integrity, the company wants to be sure that every driver pays
the correct premium. The solution is similar to the one for smart-metering: the black-box plays the
role of the trusted source, the driver keeps the collected information locally, sends to the company
only the computed premium and uses AD-SNARK to attest its correctness.

Loyalty Cards. Many large retailers use customer loyalty cards to encourage repeat visits.
Typically, the customer must enroll in a loyalty program, and receive a card that can be shown
to receive discounts in future visits. However, this has the great disadvantage of allowing the
retailer to keep track of the purchase history of its clients. One solution [FL14] would be to let
the point of sale become the trusted source by transferring to the client’s mobile phone a signed
purchase transaction. The client should then be able to compute the discount claim locally, and
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use AD-SNARK to prove to the retailer that this is correct and performed on legitimate purchase
transactions, without revealing the exact details of its prior purchases.

Health Statistics. Governments and states must periodically publish health statistics in order
to inform the public of the status of healthcare systems. Obviously, the original data cannot be made
public because it will contain sensitive information pertaining to the people receiving health care.
However, this raw information can be authenticated by medical practitioners, who can operate as
trusted sources. In this case, the general public (playing the role of a multitude of service providers)
can be given the assurance that the statistics computed by the government (playing the role of the
data owner) are correct and originated in legitimate medical data by using AD-SNARK.

8 Conclusions

This paper presents and addresses the problem of enabling privacy-preserving (aka zero-knowledge)
data processing with a specific focus on the case where the input data is authenticated, and solely
the authentication guarantees “percolate” to the resulting proof, without disclosing information
on the original data. Current approaches to solve this problem are limited in either the class of
computations that can be supported [FKDL13], or in the prover’s scalability (as we show in our
experiments).

In this paper, we propose a formal approach to this three-party problem via a new cryptographic
primitive, AD-SNARK, of which we propose an efficient realization. Starting from our realization,
we build and evaluate a nearly practical system, ADSNARK, for proving arbitrary computations
over authenticated data in a privacy-preserving way.

Our experimental evaluations show that ADSNARK performs essentially as well as non-authenticated
state of the art solutions [PGHR13, BSCTV14], which means that it scales excellently for mod-
est computations. Moreover, ADSNARK dramatically improves over generic solutions to the input
authentication problem. Furthermore, since ADSNARK leverages the recent developments in zero-
knowledge proof systems, it permits handling arbitrary computations in an easy and usable way.
Indeed, any of the available compilers (e.g., [PGHR13]) can be used as a front-end tool for trans-
lating from high-level languages (e.g., C++) into arithmetic circuit satisfaction problems that can
later be passed to the zero-knowledge backend, in our case to ADSNARK.

ADSNARK also inherits some of the limitations of existing SNARKs, such as the use of the
circuit computation model. Recent work [BSCTV14] have shown how to move to more efficient
representations such as RAM. We leave it as future work to study the extension of AD-SNARKs
to more convenient and efficient computation models.
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A AD-SNARK Extensions

In this section we discuss two extensions of AD-SNARKs. The first one is a generalization of
AD-SNARKs to the setting in which one proves statements authenticated by multiple data sources.
As a second extension we show how to obtain a scheme in which the verification algorithm runs
in time independent of the number of authenticated inputs. This second extension supports only
secret-key verification and assumes labels with a specific structure.

A.1 Multi-Source AD-SNARKs

A multi-source AD-SNARK is an AD-SNARK where: the Gen algorithms takes in a tuple of k public
authentication parameters; the Prove may receive inputs authenticated using different authentica-
tion keys (i.e., from multiple data sources); the Ver algorithm takes as input a set of authentication
verification keys and extended labels L where each Li specifies if the statement value xi is authen-
ticated and under which key. The definition of completeness is the straightforward generalization
of the one in Section 5. Adaptive proof of knowledge is similar to the one of Definition 5 except
that in the multi-source setting the adversary is allowed to obtain values authenticated under all
possible keys.

An Efficient Multi-Source AD-SNARK scheme. We briefly show how to adapt our AD-SNARK
construction of Section 4 to work in the multi-source setting.

The algorithms Setup, AuthKG, Auth and AuthVer are identical. The remaining algorithms work
as follows.

Gen({papj}, C) takes as input a circuit C and k public authentication parameters pap1, . . . , papk.
It proceeds exactly as in Gen of Section 4 except that now it computes a Ka value for each
authentication key. Namely, it computes (and includes in EKC) Ka,j = z(τ)ρaK1,j , for j =
1, . . . , k.

Prove(EKC ,
#„x , #„w, #„σ ): here each authentication tag σi in #„σ also specifies under which authentication

key vkji it verifies. The set Iσ is then further partitioned in several subsets Iσ,j , one for every
authentication key used in the statement. Without loss of generality, assume there are k of such
sets. The algorithm proceeds as follows:

1. Compute #„s = QAPwit(C, #„x , #„w) ∈ Fm.

2. Randomly sample δ
(1)
a , . . . , δ

(k)
a , δmid

a , δb, δc ←R F, and set δa =
∑k

j=1 δ
(j)
a +δmid

a . Also, define

the vector #„u = (1, #„s , δa, δb, δc) ∈ Fm+4 as before.

3. Solve the QAP QC exactly as in Prove of Section 4. Then compute H = h(τ)P1 using the
values τ i P1 contained in the evaluation key EKC .
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4. For j = 1 to k, compute:

πσ,j =〈 #„u ,
#„

A〉Iσ,j+δ
(j)
a Am+1, π

′
σ,j =〈 #„u ,

# „

A′〉Iσ,j+δ
(j)
a A′m+1

πmid =〈 #„u ,
#„

A〉Imid
−

k∑
j=1

δ
(j)
a Am+1,

π′mid =〈 #„u ,
# „

A′〉Iσ−
k∑
j=1

δ
(j)
a A′m+1

and then compute πb, π
′
b, πc, π

′
c, πE as in Section 4.

5. Authenticate each value πσ,j by computing

πµ,j = 〈 #„µ,
#„

A〉Iσ,j + δ
(j)
a Ka,j

6. Output π = ({πµ,j , πσ,j , π′σ,j , }kj=1 πmid , π
′
mid , πb, π

′
b, πc, π

′
c, πE , H). To make the proof pub-

licly verifiable, include also {Φk, σ′k}k∈Iσ in π.
Ver({vkj},VKC , L, {xi}Li=?, π ): it proceeds as the verification algorithm of Section 4 except that

it runs the verification equations (A.1) and (A.2) for every triple (πµ,j , πσ,j , π
′
σ,j) in the proof.

The completeness of this scheme follows from the same arguments used to argue the complete-
ness of our AD-SNARK. The security of the multi-source AD-SNARK described above holds under
the same assumptions used for ADSNARK. The difference in the security proof is that one needs to
define more hybrid games as the “bad events” can now occur for either one of the k authentication
keys.

As an efficiency remark, note that while the size of the proof π depends on the number k of
authentication keys used to sign the statement, in several applications one should think of k as a
rather small constant. For instance, one may think of a variation of the pay-as-you-drive insurance
application in which there may be k = 2 distinct trusted devices acting as data sources, e.g., a GPS
collecting geographic data and a car sensor collecting driving information.

A.2 A Zero-Knowledge AD-SNARK with Constant-Time Verification.

Here we show a variant of the scheme proposed in Section 4 which allows for a verification algorithm
whose efficiency does not depend on the number of authenticated values, in an amortized sense. In
order to achieve this appealing property, we trade efficiency for usability in making the previous
scheme only secretly verifiable.

The Setup algorithm is identical. The remaining algorithms work as follows.

AuthKG(pp): Run (S, prfpp) ←R F.KG(1λ) to obtain the seed S and the public parameters prfpp
of a pseudorandom function FS : {0, 1}∗ → G2. Choose a random value κ ←R F. Compute
K = e(P1,P2)κ ∈ GT . Return the secret key sk = vk = (S, κ), and the public authentication
parameters pap = (pp, prfpp,K).

Auth(sk, L, x): Let sk = (S, κ). To authenticate a value x ∈ F with label L, use the PRF to compute
Φ← FS(L), then compute σ = Φ+ xκP2 and output σ.

AuthVer(vk, σ, L, x): Let vk = (S, κ) be the (secret) verification key. To verify that σ is a valid
authentication tag for a value x ∈ F with respect to label L, output > if σ = FS(L) +xκP2 and
⊥ otherwise.
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Gen(pap, C): is the same as in Section 4 except that here Ka = (K)z(τ) ∈ GT .
Prove(EKC ,

#„x , #„w, #„σ ): is the same as in Section 4 except that here πµ=[
∏
k∈Iσe(Ak, Φk)] · (Ka)

δσa ∈
GT .

Ver(vk,VKC , L, {xi}Li=?, π ): is the same as in Section 4 except for the first verification equation.
Let vk = (S, κ).
(A.1) Check the authenticity of πσ , against labels L by checking if the following equation is

satisfied over GT :

πµ =
∏
k∈Iσ

e(Ak,FS(Lk)) · e( πσ , κP2)

How to Achieve Efficient Verification. By assuming a proper labeling of the data and a
suitable pseudorandom function F, the scheme described above can allow for an improved verifica-
tion algorithm whose running time does not depend on the number |Iσ| of authenticated values.
Following the ideas in [BFR13], we assume that every input x is authenticated by using a multi-
label L = (∆, τ), where ∆ is a data set identifier, and τ is an input identifier. As an example, the
input identifiers τ1, . . . τn can be specific canonical information like date and time (e.g., day 05,
11:12:42), and the data set identifier ∆ can be more general information describing the category
(e.g., “energy consumption for March 2014”).

As for the pseudorandom function, we can instantiate FS by using the specific ACF-efficient
PRF of [BFR13] FS : {0, 1}∗ × {0, 1}∗ → G2 such that: FS(∆, τ) = (a∆uτ + b∆vτ )P2, where the
values (a∆, b∆) and (uτ , vτ ) are derived by applying two standard PRFs (each mapping into F2)
to ∆ and τ , respectively. This function is pseudorandom under the Decision Linear assumption
[BFR13]. To achieve efficient verification one proceeds as follows:
– Offline phase: precompute ωu = e(

∑
k∈Iσ uk Ak,P2) and ωv = e(

∑
k∈Iσ vk Ak,P2) where each

(uk, vk) is derived from τk for all k ∈ Iσ. Store (ωu, ωv).
– Online phase: given ∆, derive (a∆, b∆) from ∆, and compute Ω = (ωu)a∆ · (ωv)

b∆ ∈ GT .
Finally, use Ω to check the verification equation (A.1) described above, i.e., check that πµ =

Ω · e( π̃σ , κP2).

The correctness of this efficient verification follows from Ω =
[∏

k∈Iσ e(Ak,FS(∆, τk))
]
.

B Definition of Zero Knowledge SNARKs

We recall the definition of SNARKs for arithmetic circuit satisfiability [Mic94, GW11b]. A succinct
non-interactive argument (SNARG) for arithmetic circuit satisfiability is a triple of algorithms
Π = (Gen,Prove,Ver) working as follows:

– Given a circuit C, the generation algorithm Gen(1λ, C) generates a (public) reference string
EKC and a corresponding verification key VKC for C.

– Given statement #„x and witness #„w such that C( #„x , #„w) = 0, the prover produces a proof π ←
Prove(EKC ,

#„x , #„w).
– The verifier runs {⊥,>} ← Ver(VKC ,

#„x , π) to verify the validity of π.
The following three properties need to be satisfied.

– Completeness. For all ( #„x , #„w) ∈ RC , we have that

Pr[Ver(VKC ,
#„x , π) = ⊥ : (EKC ,VKC)← Gen(1λ, C),

π ← Prove(EKC ,
#„x , #„w)] = negl(λ)
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– Soundness. (Adaptive case) For all PPT Prove∗, we have

Pr[Ver(VKC ,
#„x , π) = > ∧ #„x 6∈ LC :

(EKC ,VKC)←Gen(1λ, C), ( #„x , π)←Prove∗(EKC)]=negl(λ)

(Non-adaptive case) For all PPT Prove∗, and #„x 6∈ LC :

Pr[Ver(VKC ,
#„x , π) = > : (EKC ,VKC)←Gen(1λ, C),

π ← Prove∗(EKC ,
#„x )] = negl(λ)

– Succinctness. The length of a proof π is given by |π| = poly(λ)polylog(| #„x |, | #„w|).
A SNARG is called adaptive if the prover can choose the statement #„x after seeing the reference
string EKC .

A SNARG of knowledge (SNARK) is a SNARG where soundness is replaced by the following
property:

– Adaptive Proof of Knowledge. For all efficient Prove∗ there exists a polynomial-size extrac-
tor E such that for every auxiliary input aux ∈ {0, 1}poly(λ), and every circuit C of polynomial
size,

Pr[Ver(VKC ,
#„x , π) = > ∧ ( #„x , #„w) 6∈ RC : (EKC ,VKC)← Gen(1λ, C),

( #„x , π)← Prove∗(aux,EKC), #„w ← E(aux,EKC)] = negl(λ)

C The PGHR Zero-Knowledge SNARK

We review a version of the zero-knowledge SNARK scheme of Parno et al. [PGHR13] which was
described in the recent work of Ben-Sasson et al. [BSCTV14].

Setup(1λ): generate the public parameters consisting of a bilinear group description pp = (p,G1,G2,
GT , e,P1,P2)←R G(1λ). Let F be the finite field Fp.

(EKC ,VKC)← Gen(pp, C): Let C : Fn × Fh → Fl be an arithmetic circuit.

1. Run QC = ( #„a ,
#„

b , #„c , z) = QAPInst(C) to build a QAP QC of size m and degree d for C.
Extend #„a ,

#„

b , #„c with 3 more polynomials each, by setting:

am+1(X) = bm+2(X) = cm+3(X) = z(X),

am+2(X) = am+3(X) = bm+1(X) = bm+3(X) = cm+1(X) = cm+2(X) = 0.

2. Pick ρa, ρb, τ, αa, αb, αc, β, γ ←R F, set ρc = ρa · ρb.

3. Compute Z = z(τ)ρc P2, and ∀k ∈ {0, ...,m+ 3}:

Ak = ak(τ)ρa P1, A′k = αa ak(τ)ρa P1,

Bk = bk(τ)ρb P2, B′k = αb bk(τ)ρb P1,

Ck = ck(τ)ρc P1, C ′k = αc ck(τ)ρc P1,

Ek = β(ak(τ)ρa + bk(τ)ρb + ck(τ)ρc)P1.
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4. Output the evaluation key EKC and the verification key VKC which are defined as follows:

EKC =
(
QC ,

#„

A,
#„

A′,
#„

B,
#„

B′,
#„

C,
#„

C ′,
#„

E, {τ i P1}i∈{0,...,d}
)

VKC =
(
P1, P2, αa P2, αb P1, αc P2, γ P2, β γ P1, β γ P2, Z, {Ak}nk=0,

)
Prove(EKC ,

#„x , #„w): given a statement #„x ∈ Fn and witness #„w ∈ Fh, proceed as follows:
1. Compute #„s = QAPwit(C, #„x , #„w) ∈ Fm.
2. Randomly sample δa, δb, δc ←R F. Also, define the vector #„u = (1, #„s , δa, δb, δc) ∈ Fm+4.
3. Solve the QAP QC by computing the coefficients (h0, . . . , hd) ∈ Fd+1 of h ∈ F[X] such that
h(X)z(X) = a(X)b(X)− c(X), where a, b, c ∈ F[X] are

a(X) = a0(X) +
∑
k∈[m]

sk · ak(X) + δa · z(x) = 〈 #„u , #„a 〉

b(X) = b0(X) +
∑
k∈[m]

sk · bk(X) + δb · z(x) = 〈 #„u ,
#„

b 〉

c(X) = c0(X) +
∑
k∈[m]

sk · ck(X) + δc · z(x) = 〈 #„u , #„c 〉

Compute H = h(τ)P1 using the values τ i P1 in EKC .
4. Use the elements in EKC to compute the following values:

πmid = 〈 #„u ,
#„

A〉Imid
+ δaAm+1,

π′mid = 〈 #„u ,
# „

A′〉Iσ + δaA
′
m+1

πb = 〈 #„u ,
#„

B〉, πc = 〈 #„u ,
#„

C〉, πE = 〈 #„u ,
#„

E〉
π′b = 〈 #„u ,

# „

B′〉, π′c = 〈 #„u ,
# „

C ′〉.

5. Output π = (πmid , π
′
mid , πb, π

′
b, πc, π

′
c, πE , H).

Verify(VKC ,
#„x , π ): in order to verify a proof π (as defined above) for statement #„x ∈ Fn, first

compute Ax = A0 + 〈 #„x ,
#„

A〉[1,n] and then perform the following steps:
(P.1) Check the satisfiability of the QAP:

e(A? + πσ + πmid , πb ) = e( H , Z) · e( πc , P2)

(P.2) Check the validity of knowledge commitments:

e( π′mid , P2) = e( πmid , αaP2) ∧ e( π′b ,P2) = e(αbP1, πb ) ∧ e( π′c , P2) = e( πc , αcP2)

(P.3) Check that all the QAP linear combinations use the same coefficients:

e( πE , γP2) = e(A? + πσ + πmid + πc , βγP2) · e(βγP1, πb )

If all the checks above are satisfied, then return >; otherwise return ⊥.
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