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Abstract. In Ciphertext-Policy Attribute-Based Encryption (CP-ABE), a user’s decryption key is
associated with attributes which in general are not related to the user’s identity, and the same set
of attributes could be shared between multiple users. From the decryption key, if the user created a
decryption blackbox for sale, this malicious user could be difficult to identify from the blackbox. Hence
in practice, a useful CP-ABE scheme should have some tracing mechanism to identify this ‘traitor’ from
the blackbox. In addition, being able to revoke compromised keys is also an important step towards
practicality, and for scalability, the scheme should support an exponentially large number of attributes.
However, none of the existing traceable CP-ABE schemes simultaneously supports revocation and large
attribute universe. In this paper, we construct the first practical CP-ABE which possesses these three
important properties: (1) blackbox traceability, (2) revocation, and (3) supporting large universe. This
new scheme achieves the fully collusion-resistant blackbox traceability, and when compared with the
latest fully collusion-resistant blackbox traceable CP-ABE schemes, this new scheme achieves the same
efficiency level, enjoying the sub-linear overhead of O(

√
N), where N is the number of users in the

system, and attains the same security level, namely, the fully collusion-resistant traceability against
policy-specific decryption blackbox, which is proven in the standard model with selective adversaries.
The scheme supports large attribute universe, and attributes do not need to be pre-specified during
the system setup. In addition, the scheme supports revocation while keeping the appealing capability
of conventional CP-ABE, i.e. it is highly expressive and can take any monotonic access structures as
ciphertext policies.

We also present the analogous results in the Key-Policy Attribute-Based Encryption (KP-ABE) set-
ting, where users’ description keys are described by access policies and ciphertexts are associated with
attributes. We construct the first practical KP-ABE which possesses the three important properties:
(1) blackbox traceability, (2) revocation, and (3) supporting large universe. The scheme is highly ex-
pressive and can take any monotonic access structures as key policies, and is efficient, namely, enjoys
the sub-linear overhead of O(

√
N) while supporting fully collusion-resistant blackbox traceability and

revocation, and does not need to pre-specify the attributes during the system setup. The scheme is
proven selectively secure in the standard model.
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1 Introduction

In some emerging applications such as user-side encrypted cloud storage, users may store encrypted
data on a public untrusted cloud and let other users who have eligible credentials decrypt and
access the data. The decryption credentials could be based on the users’ roles and do not have to
be their identities. For example, a user Alice wants to encrypt some documents, upload to the cloud,
and let all PhD students and alumni in the Department of Mathematics download and decrypt.
Attribute-Based Encryption (ABE), introduced by Sahai and Waters [29], provides a solution to



this application. In a Ciphertext-Policy ABE (CP-ABE) [12,3] scheme3, each user possesses a set
of attributes and a decryption key, the encrypting party can encrypt the documents using an
access policy (e.g. a Boolean formula) on attributes, and a user can decrypt if and only if the
user’s attributes satisfy the policy. Hence in this example, Alice can encrypt the documents under
“(Mathematics AND (PhD Student OR Alumni))”, which is an access policy defined over descriptive
attributes, so that only those receivers whose attributes satisfy this policy can decrypt.

Among the recently proposed CP-ABE schemes [3,8,11,31,17,25,13,19], one of the latest works
is due to Lewko and Waters [19,20]. Their scheme achieves high expressivity (i.e. can take any
monotonic access structures as ciphertext policies), and is provably secure against adaptive adver-
saries in the standard model. The scheme is also efficient and removes the one-use restriction that
other comparable schemes have [17,25]. As of the current Public Key Infrastructure which mandates
the capabilities of key generation, revocation, and certified binding between identities and public
keys, before the CP-ABE being able to deploy in practice, we should provision a practical CP-ABE
scheme with three important features: (1) traceability, (2) revocation, and (3) large universe. Very
recently, a handful of research works have been done on each one of these while the fundamental
open problem remains is the existence of an efficient scheme which supports these three features at
once.

Traceability / Traitor Tracing. Access policies in CP-ABE do not have to contain any
receivers’ identities, and more commonly, a CP-ABE policy is role-based and attributes are shared
between multiple users. In practice, a malicious user, with attributes shared with multiple other
users, might leak a decryption blackbox/device, which is made of the user’s decryption key, for the
purpose of financial gain or some other forms of incentives, as the malicious user has little risk of
being identified out of all the users who can build a decryption blackbox with identical decryption
capability. Being able to identify this malicious user is crucial towards the practicality of a CP-ABE
system.

Given a well-formed decryption key, if the tracing algorithm of a CP-ABE scheme can identify
the malicious user who created the key, the scheme is called Whitebox Traceable CP-ABE [22].
Given a decryption blackbox, while the decryption key and even the decryption algorithm could
be hidden inside the blackbox, if the tracing algorithm can still find out the traitor whose key has
been used in constructing the blackbox, the scheme is called Blackbox Traceable CP-ABE [21]. In
this stronger notion, there are two types of blackboxes: key-like decryption blackbox and policy-
specific decryption blackbox. A key-like decryption blackbox has an attribute set associated and
can decrypt encrypted messages with policies being satisfied by the attribute set. A policy-specific
decryption blackbox has a policy associated and can decrypt encrypted messages with the same
policy. Liu et al. [23] formally proved that if a CP-ABE scheme is traceable against policy-specific
decryption blackbox then it is also traceable against key-like decryption blackbox, and proved that
the CP-ABE scheme in [21] is fully collusion-resistant traceable against policy-specific decryption
blackbox in the standard model with selective adversaries. The scheme in [21] is highly expressive,
and as a fully collusion-resistant blackbox traceable CP-ABE scheme, it achieves the most efficient
level to date, i.e. the overhead for the fully collusion-resistant traceability is in O(

√
N), where N is

the number of users in the system. Note that fully collusion-resistant traceability means that the
number of colluding users in constructing a decryption blackbox is not limited and can be arbitrary.
Another recent blackbox traceable CP-ABE scheme is due to Deng et al. [9], but the scheme is

3 Here we focus on CP-ABE, while skipping discussions about Key-Policy ABE.

2



only t-collusion-resistant traceable, where the number of colluding users is limited, i.e., less than a
parameter t, and the scheme’s security is proven in the random oracle model.

Revocation. For any encryption systems that involve many users, private keys might get
compromised, users might leave or be removed from the systems. When any of these happens, the
corresponding user keys should be revoked. In the literature, several revocation mechanisms have
been proposed in the context of CP-ABE. In [28]4, Sahai et al. proposed an indirect revocation
mechanism, which requires an authority to periodically broadcast a key update information so
that only the non-revoked users can update their keys and continue to decrypt messages. In [1],
Attrapadung and Imai proposed a direct revocation mechanism, which allows a revocation list to
be specified directly during encryption so that the resulting ciphertext cannot be decrypted by any
decryption key which is in the revocation list even though the associated attribute set of the key
satisfies the ciphertext policy. The direct revocation mechanism does not need any periodic key
updates that an indirect revocation mechanism requires. It does not affect any non-revoked users
either. In direct revocation, a system-wide revocation list could be made public and revocation
could be taken into effect promptly as the revocation list could be updated immediately once a key
is revoked. In this paper, we focus on achieving direct revocation in CP-ABE.

Large Attribute Universe. In most CP-ABE schemes, the size of the attribute universe is
polynomially bounded in the security parameter, and the attributes have to be fixed during the
system setup. In a large universe CP-ABE, the attribute universe can be exponentially large, any
string can be used as an attribute, and attributes do not need to be pre-specified during setup.
Although “somewhat” large universe CP-ABE schemes have been proposed or discussed previously
[31,17,1,26], as explained by Rouselakis and Waters [27], limitations exist. The first “truly” large
universe CP-ABE construction, in which there is no restriction on ciphertext policies or attributes
associated with the decryption keys, was proposed in [27].

1.1 Our Results

We propose the first practical CP-ABE scheme that simultaneously supports (1) traceability against
policy-specific decryption blackbox, (2) (direct) revocation and (3) “truly” large attribute universe.
The scheme’s traceability is fully collusion-resistant, that is, the number of colluding users in
constructing a decryption blackbox is not limited and can be arbitrary. Furthermore, the traceability
is public, that is, anyone can run the tracing algorithm. The scheme is also highly expressive that
allows any monotonic access structures to be the ciphertext policies.

The scheme is proven selectively secure and traceable in the standard model. This is comparable
to the policy-specific blackbox traceability of the fully collusion-resistant traceable CP-ABE [23]
and also to the security of the “truly” large universe CP-ABE [27]. The selective security is indeed
a weakness when compared with the full security of [19,21], but as discussed in [27], selective
security is still a meaningful notion and can be a reasonable trade off for performance in some
circumstances. Furthermore, in light of the proof method of [19] that achieves full security through
selective techniques, we can see that developing selectively secure schemes could be an important
stepping stone towards building fully secure ones.

Table 1 compares this new scheme with the representative results in conventional CP-ABE [19],
blackbox traceable CP-ABE [21], revocable CP-ABE [1], and large universe CP-ABE [27], all of

4 Note that in this paper we focus on the the conventional revocation, which is to prevent a compromised or revoked
user from decrypting newly encrypted messages. In [28], revoking access on previously encrypted data is also
considered.
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1 Blackbox Revocation Large Public Key Ciphertext Private Key Pairings
2 Traceability Universe Size Size Size in Decryption

[19,20] 3 × × × 14 + 6|U| 7 + 6l 6 + 6|S| 9 + 6|I|
[1, Sec. 5.1] ×

√
∂ 4 2N + 2 +m+ lm

4 3 + l 2 + |S| 3 + 2|I|
[1, Sec. 5.2] ×

√
∂ 4 7 +m+ lm

4 2 + l + 2|R| 4 4 + |S| 1 + 2|I|+ 2|R| 4

[27] × ×
√

6 2 + 3l 2 + 2|S| 1 + 3|I|
[21,23] 5 √

× × 3 + 4
√
N + |U| 17

√
N + 2l 4 + |S| 10 + 2|I|

this work
√ √ √

5 + 5
√
N 16

√
N + 3l 2 +

√
N + 2|S| 9 + 3|I|

1 All the six schemes are provably secure in the standard model and highly expressive.
2 Let N be the number of users in the system, |U| the size of the attribute universe, l the number of rows of the

LSSS matrix for an access policy, |S| the size of the attribute set of a decryption key, and |I| the number of
attributes for a decryption key to satisfy a ciphertext policy.

3 The efficiency evaluation here is based on the prime order construction in [20], which is the full version of [19].
4 The CP-ABE schemes in [1] are not “truly” large universe, as some limitations are imposed and some correspond-

ing parameters have to be fixed during the setup. Let m be the maximum size of an attribute set associated with
a key, lm the maximum number of rows in the LSSS matrix of a policy, and |R| the number of revoked users in
a revocation list R.

5 The construction in [21,23] is on composite order groups where the group order is the product of three large
primes, and the efficiency evaluation is based on the composite order groups. As a result, the actual sizes of
public key and ciphertext in [21,23] are larger than that of this work, and the encryption and decryption in
[21,23] are slower than that of this work.

Table 1. Features and Efficiency Comparison

which are provably secure in the standard model and highly expressive. The scheme’s overhead is
in O(

√
N), where N is the number of users in a system, and for fully collusion-resistant blackbox

traceable CP-ABE, this is the most efficient one to date. Furthermore, when compared with the
existing fully collusion-resistant blackbox traceable CP-ABE scheme in [21], at the cost of

√
N

additional elements in private key, our construction achieves revocation and “truly” large universe.
For achieving better performance, this new scheme is constructed on prime order groups, rather
than composite order groups, as it has been showed (e.g. in [10,16]) that constructions on composite
order groups will result in significant loss of efficiency.

Paper Outline. In Sec. 2, we propose a definition for CP-ABE supporting policy-specific blackbox
traceability, direct revocation and large attribute universe. As of [21], the definition is ‘functional’,
namely each decryption key is uniquely indexed by k ∈ {1, . . . , N} (N is the number of users in the
system) and given a policy-specific decryption blackbox, the tracing algorithm Trace can return the
index k of a decryption key which has been used for building the decryption blackbox. On direct
revocation, in our definition, the Encrypt algorithm takes a revocation list R ⊆ {1, . . . , N} as an
additional input so that a message encrypted under the (revocation list, access policy) pair (R,A)
would only allow users whose (index, attribute set) pair (k, S) satisfies (k /∈ R) ∧ (S satisfies A)
to decrypt.

On the construction, we refer to the ‘functional’ CP-ABE in Sec. 2 as Revocable CP-ABE (or
R-CP-ABE for short), then extend the R-CP-ABE to a primitive called Augmented R-CP-ABE (or
AugR-CP-ABE for short), which will lastly be transformed to a policy-specific blackbox traceable
R-CP-ABE. More specifically, in Sec. 3, we define the encryption algorithm of AugR-CP-ABE as
EncryptA(PP,M,R,A, k̄) which takes one more parameter k̄ ∈ {1, . . . , N+1} than the original one
in R-CP-ABE. This also changes the decryption criteria in AugR-CP-ABE in such a way that an
encrypted message can be recovered using a decryption key SKk,S , which is identified by index
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k ∈ {1, . . . , N} and associated with an attribute set S, only if (k /∈ R)∧ (S satisfies A)∧ (k ≥ k̄).
On the security, we formalize and show that a message-hiding and index-hiding AugR-CP-ABE
can be transformed to a secure R-CP-ABE with policy-specific blackbox traceability.

In Sec. 4, we propose a large universe AugR-CP-ABE construction, and prove its message-hiding
and index-hiding properties in the standard model. Combining it with the results in Sec. 3, we obtain
a large universe R-CP-ABE construction, which is efficient (with overhead size in O(

√
N)), highly

expressive, and provably secure and traceable in the standard model.
To construct the AugR-CP-ABE, we borrow ideas from the CP-ABE constructions in [21,27] and

Trace&Revoke scheme in [10]. However, the combination is not trivial and may result in inefficient
or insecure systems. In particular, besides achieving the important features for practicality, such
as traitor tracing, revocation, large universe, high expressivity and efficiency, we achieve provable
security and traceability in the standard model. As we will discuss later in Sec. 4, proving the
blackbox traceability while supporting the large attribute universe is one of the most challenging
tasks in this work. As we can see, the proof techniques for blackbox traceability in [21] are no longer
applicable for large universe, while that for large universe in [27] are only for confidentiality rather
than for blackbox traceability.

Following a similar route, we also present the analogous results in Key-Policy ABE setting, as
shown in Sec. 5.

2 Revocable CP-ABE and Blackbox Traceability

In this section, we define Revocable CP-ABE (or R-CP-ABE for short) and its security, which
are based on conventional (non-traceable, non-revocable) CP-ABE (e.g. [19,27]). Similar to the
traceable CP-ABE in [21], in our ‘functional’ definition, we explicitly assign and identify users
using unique indices. Then we formalize traceability against policy-specific decryption blackbox on
R-CP-ABE.

2.1 Revocable CP-ABE

Given a positive integer n, let [n] be the set {1, 2, . . . , n}. A Revocable Ciphertext-Policy Attribute-
Based Encryption (R-CP-ABE) scheme consists of four algorithms:

Setup(λ,N)→ (PP,MSK). The algorithm takes as input a security parameter λ and the number
of users in the system N , runs in polynomial time in λ, and outputs a public parameter PP and
a master secret key MSK. We assume that PP contains the description of the attribute universe
U5.

KeyGen(PP,MSK, S) → SKk,S . The algorithm takes as input PP, MSK, and an attribute set S,
and outputs a secret key SKk,S corresponding to S. The secret key is assigned and identified by
a unique index k ∈ [N ].

Encrypt(PP,M,R,A)→ CTR,A. The algorithm takes as input PP, a message M , a revocation list
R ⊆ [N ], and an access policy A over U , and outputs a ciphertext CTR,A. (R,A) is included in
CTR,A.

Decrypt(PP, CTR,A,SKk,S)→M or ⊥. The algorithm takes as input PP, a ciphertext CTR,A, and
a secret key SKk,S . If (k ∈ [N ] \R) AND (S satisfies A), the algorithm outputs a message M ,
otherwise it outputs ⊥ indicating the failure of decryption.

5 For large universe and also in our work, the attribute universe depends only on the size of the underlying group
G, which depends on λ and the group generation algorithm.
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Correctness. For any attribute set S ⊆ U , index k ∈ [N ], revocation list R ⊆ [N ], access policy
A, and message M , suppose (PP,MSK) ← Setup(λ,N), SKk,S ← KeyGen(PP,MSK, S), CTR,A ←
Encrypt(PP,M,R,A). If (k ∈ [N ] \R) ∧ (S satisfies A) then Decrypt(PP, CTR,A,SKk,S) = M .

Security. The security of the R-CP-ABE is defined using the following message-hiding game, which
is a typical semantic security game and is similar to that for conventional CP-ABE [19,27] security.
GameMH. The message-hiding game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(λ,N) and gives the public parameter PP to A.
Phase 1. For i = 1 to Q1, A adaptively submits (index, attribute set) pair (ki, Ski) to ask for

secret key for attribute set Ski . For each (ki, Ski) pair, the challenger responds with a secret key
SKki,Ski

, which corresponds to attribute set Ski and has index ki.
Challenge. A submits two equal-length messages M0,M1 and a (revocation list, access pol-

icy) pair (R∗,A∗). The challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,A∗ ←
Encrypt(PP,Mb, R

∗,A∗) to A.
Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, attribute set) pair (ki, Ski) to ask

for secret key for attribute set Ski . For each (ki, Ski) pair, the challenger responds with a secret
key SKki,Ski

, which corresponds to attribute set Ski and has index ki.
Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that none of the queried {(ki, Ski)}
Q
i=1 can satisfy

(ki ∈ [N ]\R∗) AND (Ski satisfies A∗). The advantage of A is defined as MHAdvA = |Pr[b′ = b]− 1
2 |.

Definition 1. An N -user R-CP-ABE scheme is secure if for all probabilistic polynomial time
(PPT) adversaries A, MHAdvA is negligible in λ.

We say that an N -user R-CP-ABE scheme is selectively secure if we add an Init stage before Setup
where the adversary commits to the access policy A∗.
Remark: (1) Although the KeyGen algorithm is responsible for determining/assigning the index of each
user’s secret key, to capture the security that an adversary can adaptively choose secret keys to corrupt,
the above model allows A to specify the index when querying for a key, i.e., for i = 1 to Q, A submits
pairs of (ki, Ski) for secret keys with attribute sets corresponding to Ski , and the challenger will assign
ki to be the index of the corresponding secret key, where Q ≤ N , ki ∈ [N ], and ki 6= kj ∀1 ≤ i 6= j ≤ Q
(this is to guarantee that each user/key can be uniquely identified by an index). (2) For ki 6= kj we do
not require Ski 6= Skj , i.e., different users/keys may have the same attribute set.

Remark: (1) The R-CP-ABE defined above extends the conventional definition for non-revocable
CP-ABE [19,21,27], where the revocation list R is always empty. (2) When the revocation list R
needs an update due to, for example, some secret keys being compromised or some users leaving
the system, the updated R needs to be disseminated to encrypting parties. In practice, this can
be done in a similar way to the certificate revocation list distribution in the existing Public Key
Infrastructure, namely an authority may update R, and publish it together with the authority’s
signature generated on it. (3) From the view of the public, R is just a set of numbers (in [N ]).
These numbers (or indices) do not have to provide any information on the corresponding users,
in fact, besides the authority who runs KeyGen, each user only knows his/her own index. Also,
encrypting parties do not need to know the indices of any users in order to encrypt but only the
access policies. Although associating a revocation list with a ciphertext might make the resulting
CP-ABE look less purely attribute-based, it does not undermine the capability of CP-ABE, that
is, enabling fine-grained access control on encrypted messages.
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2.2 Blackbox Traceability

A policy-specific decryption blackbox D is described by a (revocation list, access policy) pair (RD,AD)
and a non-negligible probability value ε (i.e. ε = 1/f(λ) for some polynomial f), and this blackbox
D can decrypt ciphertexts generated under (RD,AD) with probability at least ε. Such a blackbox
can reflect most practical scenarios, which include the key-like decryption blackbox for sale and
decryption blackbox “found in the wild”, which are discussed in [21,23]. In particular, once a
blackbox is found being able to decrypt ciphertexts (regardless of how this is found, for example,
an explicit description of the blackbox’s decryption ability is given, or the law enforcement agency
finds some clue), we can regard it as a policy-specific decryption blackbox with the corresponding
(revocation list, access policy) pair (which is associated to the ciphertext).

We now define the tracing algorithm and traceability against policy-specific decryption blackbox.

TraceD(PP, RD,AD, ε)→ KT ⊆ [N ]. Trace is an oracle algorithm that interacts with a policy-specific
decryption blackbox D. By given the public parameter PP, a revocation list RD, an access policy
AD, and a probability value ε, the algorithm runs in time polynomial in λ and 1/ε, and outputs an
index set KT ⊆ [N ] which identifies the set of malicious users. Note that ε has to be polynomially
related to λ, i.e. ε = 1/f(λ) for some polynomial f .

Traceability. The following tracing game captures the notion of fully collusion-resistant trace-
ability against policy-specific decryption blackbox. In the game, the adversary targets to build a
decryption blackbox D that can decrypt ciphertexts under some (revocation list, access policy) pair
(RD,AD).

GameTR. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(λ,N) and gives the public parameter PP to A.
Key Query. For i = 1 to Q, A adaptively submits (index, attribute set) pair (ki, Ski) to ask for

secret key for attribute set Ski . For each (ki, Ski) pair, the challenger responds with a secret key
SKki,Ski

, which corresponds to attribute set Ski and has index ki.
Decryption Blackbox Generation. A outputs a decryption blackbox D associated with a

(revocation list, access policy) pair (RD,AD) and a non-negligible probability value ε.
Tracing. The challenger runs TraceD(PP, RD,AD, ε) to obtain an index set KT ⊆ [N ].

Let KD = {ki|1 ≤ i ≤ Q} be the index set of secret keys corrupted by the adversary. We say that
A wins the game if the following two conditions hold:

1. Pr[D(Encrypt(PP,M,RD,AD)) = M ] ≥ ε, where the probability is taken over the random
choices of messageM and the random coins of D. A decryption blackbox satisfying this condition
is said to be a useful policy-specific decryption blackbox.

2. KT = ∅, or KT 6⊆ KD, or ((kt ∈ RD) OR (Skt does not satisfy AD) ∀kt ∈ KT ).

We denote by TRAdvA the probability that A wins.

Remark: For a useful policy-specific decryption blackbox D, the traced KT must satisfy (KT 6=
∅) ∧ (KT ⊆ KD) ∧ (∃kt ∈ KT s.t. (kt ∈ [N ] \ RD) AND (Skt satisfies AD)) for traceability. (1)
(KT 6= ∅)∧ (KT ⊆ KD) captures the preliminary traceability that the tracing algorithm can extract
at least one malicious user and the coalition of malicious users cannot frame any innocent user. (2)
(∃kt ∈ KT s.t. (kt ∈ [N ] \ RD) AND (Skt satisfies AD)) captures the strong traceability that the
tracing algorithm can extract at least one malicious user whose secret key enables D to have the

7



decryption ability corresponding to (RD,AD), i.e. whose index is not in RD and whose attribute
set satisfies AD. We refer to [15,21] on why strong traceability is desirable.

Note that, as of [6,7,10,15,21], we are modeling a stateless (resettable) decryption blackbox –
such a blackbox is just an oracle and maintains no state between activations. Also note that we
are modeling public traceability, namely, the Trace algorithm does not need any secrets and anyone
can perform the tracing.

Definition 2. An N -user R-CP-ABE scheme is traceable against policy-specific decryption black-
box if for all PPT adversaries A, TRAdvA is negligible in λ.

We say that an N -user R-CP-ABE is selectively traceable against policy-specific decryption black-
box if we add an Init stage before Setup where the adversary commits to the access policy AD.

In the traceable CP-ABE of [21], given a decryption blackbox, it is guaranteed that at least
one secret key in the blackbox will be traced. But in the traceable R-CP-ABE above, it is possible
to trace all the active secret keys in the blackbox. In particular, given a decryption blackbox D
described by (RD,AD) and non-negligible probability ε, we can run Trace to obtain an index set
KT so that (KT 6= ∅)∧ (KT ⊆ KD)∧ (∃kt ∈ KT s.t. (kt ∈ [N ]\RD) AND (Skt satisfies AD)). Then,
we can set a new revocation list R′D = RD ∪ {kt ∈ KT | (kt ∈ [N ] \RD) AND (Skt satisfies AD)}
and test whether D can decrypt ciphertexts under (R′D,AD). If D can still decrypt the ciphertexts
with non-negligible probability ε′, we can run Trace on (R′D,AD, ε′) and obtain a new index set
K′T , where (K′T 6= ∅) ∧ (K′T ⊆ KD) ∧ (∃kt ∈ K′T s.t. (kt ∈ [N ] \ R′D) AND (Skt satisfies AD)). By
repeating this process, iteratively expanding the revocation list, until D can no longer decrypt the
corresponding ciphertexts, we have finished finding out all the active malicious users of D.

3 Augmented R-CP-ABE

As outlined in Sec. 1.1, we now define Augmented R-CP-ABE (or AugR-CP-ABE for short) from
the R-CP-ABE above, formalize its security notions, then show that a secure AugR-CP-ABE can
be transformed to a secure R-CP-ABE with blackbox traceability. In Sec. 4, we propose a concrete
construction of AugR-CP-ABE.

3.1 Definitions

An AugR-CP-ABE scheme has four algorithms: SetupA, KeyGenA, EncryptA, and DecryptA. The
setup algorithm SetupA and key generation algorithm KeyGenA are the same as that of R-CP-ABE.
For the encryption algorithm, it takes one more parameter k̄ ∈ [N + 1] as input, and is defined as
follows.

EncryptA(PP,M,R,A, k̄)→ CTR,A. The algorithm takes as input PP, a message M , a revocation
list R ⊆ [N ], an access policy A, and an index k̄ ∈ [N + 1], and outputs a ciphertext CTR,A.
(R,A) is included in CTR,A, but the value of k̄ is not.

The decryption algorithm DecryptA is also defined in the same way as that of R-CP-ABE. However,
the correctness definition is changed to the following.

Correctness. For any attribute set S ⊆ U , index k ∈ [N ], revocation list R ⊆ [N ], access policy A
over U , encryption index k̄ ∈ [N+1], and message M , suppose (PP,MSK)← SetupA(λ,N), SKk,S ←
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KeyGenA(PP,MSK, S), CTR,A ← EncryptA(PP,M,R,A, k̄). If (k ∈ [N ]\R)∧(S satisfies A)∧(k ≥ k̄)
then DecryptA(PP, CTR,A,SKk,S) = M .

Note that during decryption, as long as (k ∈ [N ]\R)∧ (S satisfies A), the decryption algorithm
outputs a message, but only when k ≥ k̄, the output message is equal to the correct message, that
is, if and only if (k ∈ [N ] \R) ∧ (S satisfies A) ∧ (k ≥ k̄), can SKk,S correctly decrypt a ciphertext
under (R,A, k̄). If we always set k̄ = 1, the functions of AugR-CP-ABE are identical to that of
R-CP-ABE. In fact, the idea behind transforming an AugR-CP-ABE to a traceable R-CP-ABE,
that we will show shortly, is to construct an AugR-CP-ABE with index-hiding property, and then
always sets k̄ = 1 in normal encryption, while using k̄ ∈ [N + 1] to generate ciphertexts for tracing.

Security. We define the security of AugR-CP-ABE in two games. The first game is a message-
hiding game and says that a ciphertext created using index N + 1 is unreadable by anyone. The
second game is an index-hiding game and captures the intuition that a ciphertext created using
index k̄ reveals no non-trivial information about k̄.

GameAMH. The message-hiding game GameAMH is similar to GameMH except that the Challenge
phase is

Challenge. A submits two equal-length messages M0,M1 and a (revocation list, access pol-
icy) pair (R∗,A∗). The challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,A∗ ←
EncryptA(PP,Mb, R

∗,A∗, N + 1) to A.

A wins the game if b′ = b. The advantage of A is defined as MHAAdvA = |Pr[b′ = b]− 1
2 |.

Definition 3. An N -user Augmented R-CP-ABE scheme is message-hiding if for all PPT adver-
saries A the advantage MHAAdvA is negligible in λ.

GameAIH. In the index-hiding game, we require that, for any (revocation list, access policy) pair
(R∗,A∗), an adversary cannot distinguish between a ciphertext under (R∗,A∗, k̄) and (R∗,A∗, k̄+1)
without a secret key SKk̄,Sk̄

such that (k̄ ∈ [N ] \R∗)∧ (Sk̄ satisfies A∗). The game takes as input

a parameter k̄ ∈ [N ] which is given to both the challenger and the adversary. The game is similar
to GameMH except that the Challenge phase is

Challenge. A submits a message M and a (revocation list, access policy) pair (R∗,A∗). The
challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,A∗ ← EncryptA(PP,M,R∗,A∗, k̄ + b)
to A.

A wins the game if b′ = b under the restriction that none of the queried pairs {(ki, Ski)}
Q
i=1

can satisfy (ki = k̄) ∧ (ki ∈ [N ] \ R∗) ∧ (Ski satisfies A∗). The advantage of A is defined as
IHAAdvA[k̄] = |Pr[b′ = b]− 1

2 |.

Definition 4. An N -user Augmented R-CP-ABE scheme is index-hiding if for all PPT adversaries
A the advantages IHAAdvA[k̄] for k̄ = 1, . . . , N are negligible in λ.

We say that an Augmented R-CP-ABE scheme is selectively index-hiding if we add an Init stage
before Setup where the adversary commits to the challenge access policy A∗.
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3.2 The Reduction of Traceable R-CP-ABE to Augmented R-CP-ABE

LetΣA = (SetupA,KeyGenA, EncryptA,DecryptA) be an AugR-CP-ABE, define Encrypt(PP,M,R,A)
= EncryptA(PP, M,R,A, 1), then Σ = (SetupA,KeyGenA,Encrypt,DecryptA) is a R-CP-ABE derived
from ΣA. In the following, we show that if ΣA is message-hiding and index-hiding, then Σ is secure
(w.r.t. Def. 1). Furthermore, we propose a tracing algorithm Trace for Σ and show that if ΣA is
message-hiding and index-hiding, then Σ (equipped with Trace) is traceable (w.r.t. Def. 2).

3.2.1 R-CP-ABE Security

Theorem 1. If ΣA is message-hiding and index-hiding (resp. selectively index-hiding), then Σ is
secure (resp. selectively secure).

Proof. First we need a slightly more elaborate message-hiding game for ΣA. In addition to N,λ,
this extended game, denoted as GameAEMH, takes as input a parameter k̄ ∈ [N + 1] which is only
given to the challenger. GameAEMH is similar to the original GameAMH except that the Challenge
phase is

Challenge. A submits two equal-length messages M0,M1 and a (revocation list, access pol-
icy) pair (R∗,A∗). The challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,A∗ ←
EncryptA(PP,Mb, R

∗,A∗, k̄) to A. This is the only place where k̄ is used in the game.

The adversary A wins the game if b′ = b under the restriction that none of the queried pairs
{(ki, Ski)}

Q
i=1 can satisfy (ki ∈ [N ] \ R∗) ∧ (Ski satisfies A∗). The advantage of A is defined as

EMHAAdvA[k̄] = |Pr[b′ = b]− 1
2 |.

When k̄ = 1, the game above, including the restriction, is exactly identical to the message-
hiding game GameMH for Σ, thus we have EMHAAdvA[1] = MHAdvA. When k̄ = N + 1, we have
that EMHAAdvA[N + 1] ≤ MHAAdvA, since GameAMH is identical to GameAEMH for k̄ = N + 1, but
there is no restriction in GameAMH. In the following proof sketch, we will make use of the facts that
ΣA is message-hiding and index-hiding to show that EMHAAdvA[1] is negligible, which implies that
MHAdvA is negligible (i.e. Σ is secure w.r.t. Def. 1).

Suppose that Σ is not secure, i.e. MHAdvA > ε for some adversary A and non-negligible ε.
MHAdvA > ε implies that EMHAAdvA[1] > ε. As ΣA is message-hiding, MHAAdvA is negligible
(for simplicity, say MHAAdvA = 0), thus EMHAAdvA[N + 1] = 0. Then, by the standard hybrid
argument there exists a k̄ ∈ [N ] such that

|EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| > ε/N.

In other words, with non-negligible probability, A is able to distinguish EncryptA(PP,M,R∗,A∗, k̄)
from EncryptA(PP,M, R∗,A∗, k̄+ 1) for some M and (R∗,A∗). But then A can directly be used to
win the index-hiding game GameAIH.

More specifically, by reduction (the details are given in Appendix A) where an adversary B in
GameAIH with input k̄ makes use of an adversary A through simulating GameAEMH, we show that for
any A, there exists B such that for all k̄ = 1, . . . , N , we have

|EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| ≤ 2 · IHAAdvB[k̄]. (1)

Then we have

|EMHAAdvA[1]− EMHAAdvA[N + 1]|
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≤
N∑
k̄=1

|EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| ≤ 2

N∑
k̄=1

IHAAdvB[k̄].

But since ΣA is message-hiding and index-hiding, we have that MHAAdvA (≥ EMHAAdvA[N + 1])
and IHAAdvB[k̄] for k̄ = 1, . . . , N are negligible for any PPT adversary. Therefore, EMHAAdvA[1] is
negligible. The selective case is similar.

3.2.2 R-CP-ABE Traceability
We now propose a tracing algorithm Trace, which uses a general tracing method previously used
in [5,24,6,7,10,21], and show that equipped with Trace, Σ is traceable (w.r.t. Def. 2).

TraceD(PP, RD,AD, ε)→ KT ⊆ [N ]: Given a policy-specific decryption blackbox D associated with
a (revocation list, access policy) pair (RD,AD) and probability ε > 0, the tracing algorithm works
as follows:

1. For k = 1 to N + 1, do the following:

(a) Repeat the following 8λ(N/ε)2 times:

i. Sample M from the message space at random.
ii. Let CTRD,AD ← EncryptA(PP,M,RD,AD, k).
iii. Query oracle D on input CTRD,AD , and compare the output of D with M .

(b) Let p̂k be the fraction of times that D decrypted the ciphertexts correctly.

2. Let KT be the set of all k ∈ [N ] for which p̂k − p̂k+1 ≥ ε/(4N). Output KT .

Theorem 2. If ΣA is message-hiding and index-hiding (resp. selectively index-hiding), then Σ is
traceable (resp. selectively traceable).

Proof. We show that if the blackbox output by the adversary is a useful one then KT will satisfy
(KT 6= ∅) ∧ (KT ⊆ KD) ∧ (∃kt ∈ KT s.t. (kt ∈ [N ] \ RD) ∧ (Skt satisfies AD)) with overwhelming
probability, which implies that the adversary cannot win GameTR, i.e., TRAdvA is negligible. The
selective case will be similar.

Let D be the policy-specific decryption blackbox output by the adversary, and (RD,AD) be the
(revocation list, access policy) pair describing D. Define

pk̄ = Pr[D(EncryptA(PP,M,RD,AD, k̄)) = M ],

where the probability is taken over the random choice of message M and the random coins of D.

We have that p1 ≥ ε and pN+1 is negligible (for simplicity let pN+1 = 0). The former follows
from the fact that D is useful, and the latter is because ΣA is message-hiding in GameAMH. Then
there must exist some k ∈ [N ] such that pk−pk+1 ≥ ε/(2N). By the Chernoff bound it follows that
with overwhelming probability, p̂k − p̂k+1 ≥ ε/(4N). Hence, we have KT 6= ∅.

For any k ∈ KT (i.e., p̂k−p̂k+1 ≥ ε
4N ), we know, by Chernoff, that with overwhelming probability

pk − pk+1 ≥ ε/(8N). Clearly (k ∈ KD) ∧ (k ∈ [N ] \ RD) ∧ (Sk satisfies AD) since otherwise, D
can directly be used to win the index-hiding game for ΣA. Hence, we have (KT ⊆ KD) ∧ ((k ∈
[N ] \RD) ∧ (Sk satisfies AD) ∀k ∈ KT ).
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4 An Efficient Augmented R-CP-ABE

We propose an AugR-CP-ABE scheme which is highly expressive and efficient with sub-linear
overhead in the number of users in the system. It is also large universe, where attributes do not
need to be enumerated during setup, and the public parameter size is independent of the attribute
universe size. We prove that this AugR-CP-ABE scheme is message-hiding and selectively index-
hiding in the standard model.

Combining this AugR-CP-ABE with the results in Sec. 3.2, we obtain a large universe R-
CP-ABE which is selectively secure and traceable, and for a fully collusion-resistant blackbox
traceable CP-ABE, the resulting R-CP-ABE achieves the most efficient level to date, with sub-
linear overhead.

To obtain this practical CP-ABE scheme supporting traitor tracing, revocation and large uni-
verse, we borrow ideas from the Blackbox Traceable CP-ABE of [21], the Trace and Revoke scheme
of [10] and the Large Universe CP-ABE of [27], but the work is not trivial as a straightforward com-
bination of the ideas would result in a scheme which is inefficient, insecure, or is not able to achieve
strong traceability. Specifically, by incorporating the ideas from [10] and [27] into the Augmented
CP-ABE of [21], we can obtain a large universe AugR-CP-ABE which is message-hiding, but prov-
ing the index-hiding property is a challenging task. The proof techniques for index-hiding in [21]
only work if the attribute universe size is polynomial in the security parameter and the parameters
of attributes have to be enumerated during setup. They are not applicable to large universe. The
proof techniques in [27] are applicable to large universe, but work only for message-hiding, while
not applicable to index-hiding. To prove index-hiding in the large universe setting, we introduce
a new assumption that the index-hiding of our large universe AugR-CP-ABE can be based on. In
particular, in the underlying q-1 assumption of [27] on bilinear groups (p,G,GT , e), the challenge
term T ∈ GT is e(g, g)ca

q+1
or a random element, and such a term in the target group could be

used to prove the message-hiding as the message space is GT . To prove the index-hiding, which
is based on the ciphertext components in the source group G, we need the challenge term to be
in the source group G so that the simulator can embed the challenge term into these ciphertext
components. Inspired by the Source Group q-Parallel BDHE Assumption in [20], which is a close
relative to the (target group) Decisional Parallel BDHE Assumption in [31], we modify the q-1
assumption to its source group version where the challenge term is gca

q+1
or a random element in

G. Based on this new assumption and with a new crucial proof idea, we prove the index-hiding
property for our large universe AugR-CP-ABE. We prove that this new assumption holds in the
generic group model.

4.1 Preliminaries

Linear Secret-Sharing Schemes (LSSS). An LSSS is a share-generating matrix A whose rows
are labeled by attributes via a function ρ. An attribute set S satisfies the LSSS access matrix (A, ρ)
if the rows labeled by the attributes in S have the linear reconstruction property, namely, there
exist constants {ωi} such that, for any valid shares {λi} of a secret s, we have

∑
i ωiλi = s. The

formal definitions of access structures and LSSS can be found in Appendix E.

Bilinear Groups. Let G be a group generator, which takes a security parameter λ and outputs
(p,G,GT , e) where p is a prime, G and GT are cyclic groups of order p, and e : G × G → GT

is a map such that: (1) (Bilinear) ∀g, h ∈ G, a, b ∈ Zp, e(ga, hb) = e(g, h)ab, (2) (Non-Degenerate)
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∃g ∈ G such that e(g, g) has order p in GT . We refer to G as the source group and GT as the target
group. We assume that group operations in G and GT as well as the bilinear map e are efficiently
computable, and the description of G and GT includes a generator of G and GT respectively.

Complexity Assumptions. Besides the Decision 3-Party Diffie-Hellman Assumption (D3DH)
and the Decisional Linear Assumption (DLIN) that are used in [10] to achieve traceability in
broadcast encryption, the index-hiding property of our AugR-CP-ABE construction will rely on a
new assumption, which is similar to the Source Group q-Parallel BDHE Assumption [20] and is
closely related to the q-1 assumption in [27]. We refer to it as the Extended Source Group q-Parallel
BDHE Assumption. Here we only review this new assumption, and refer to Appendix F for the
details of the D3DH and DLIN.

The Extended Source Group q-Parallel BDHE Assumption Given a group generator G
and a positive integer q, define the following distribution:

(p,G,GT , e)
R←− G(λ), g

R←− G, a, c, d, b1, . . . , bq
R←− Zp,

D =
(
(p,G,GT , e), g, g

cd, gd, gda
q
,

ga
i
, gbj , ga

ibj , ga
i/b2j , gcdbj ∀i, j ∈ [q],

ga
i/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

ga
ibj′/b

2
j ∀i ∈ [2q], j, j′ ∈ [q] s.t. j′ 6= j,

gcda
ibj′/bj , gcda

ibj′/b
2
j ∀i ∈ [q], j, j′ ∈ [q] s.t. j 6= j′

)
,

T0 = gca
q+1
, T1

R←− G.

The advantage of an algorithm A in breaking the Extended Source Group q-Parallel BDHE As-
sumption is AdvqG,A(λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|.

Definition 5. G satisfies the Extended Source Group q-Parallel BDHE Assumption if AdvqG,A(λ)
is a negligible function of λ for any PPT algorithm A.

This new assumption is closely related to the q-1 assumption in [27], except that the challenge term
gca

q+1
remains in the source group, all the input terms (in D) replace c with cd, and additional

input terms gd and gda
q

are given to the adversary. The relation between this assumption and the
q-1 assumption is analogous to that between the Source Group q-Parallel BDHE Assumption [20]
and the Decisional Parallel BDHE Assumption [31], i.e. the challenge term changes from a term
in the target group (i.e. e(g, g)ca

q+1
) to a term in the source group (i.e. gca

q+1
), and the input

terms are modified accordingly (i.e. replacing c with cd, and adding gd). The main difference is
that in this new assumption, there is an additional input term gda

q
. Note that giving the term

gda
q

does not pose any problem in the generic group model. Intuitively, there are two ways that
the adversary may make use of the term gda

q
: (1) pairing gda

q
with the challenge term: since the

pairing result of any two input terms would not be e(g, g)cda
2q+1

, the adversary cannot break this
new assumption in this way; (2) pairing the challenge term with another input term whose exponent
contains d: however, the result could be a random element or one of { e(g, g)c

2daq+1
, e(g, g)cda

q+1
,

e(g, g)c
2dbja

q+1
, e(g, g)c

2daq+1+ibj′/bj , e(g, g)c
2daq+1+ibj′/b

2
j}, and as there is no input term which can

be paired with gda
q

to obtain any of these terms, the adversary cannot break this new assumption
by this way either. In Appendix D, we prove that this assumption holds in the generic group model.
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It is worth mentioning that Liu et al. [23] modified the Source Group q-Parallel BDHE Assumption
[20] by adding gda

q
to and removing ga

q+2
, . . . , ga

2q
from the input terms.

Notations. Suppose that the number of users N in the system equals to m2 for some m. In practice,
if N is not a square, we can add some “dummy” users until it pads to the next square. We arrange
the users in an m × m matrix and uniquely assign a tuple (i, j), where i, j ∈ [m], to each user.
A user at position (i, j) of the matrix has index k = (i − 1) ∗ m + j. For simplicity, we directly
use (i, j) as the index where (i, j) ≥ (̄i, j̄) means that ((i > ī) ∨ (i = ī ∧ j ≥ j̄)). Let [m,m] be
the set {(i, j)|i, j ∈ [m]}. The use of pairwise notation (i, j) is purely a notational convenience,
as k = (i − 1) ∗ m + j defines a bijection between {(i, j)|i, j ∈ [m]} and [N ]. For a given vector
v = (v1, . . . , vd), by gv we mean the vector (gv1 , . . . , gvd). Furthermore, for gv = (gv1 , . . . , gvd) and
gw = (gw1 , . . . , gwd), by gv ·gw we mean the vector (gv1+w1 , . . . , gvd+wd), i.e. gv ·gw = gv+w, and by
ed(g

v, gw) we mean
∏d
k=1 e(g

vk , gwk), i.e. ed(g
v, gw) = e(g, g)(v·w), where (v ·w) is the inner product

of v and w. Given a prime p, one can randomly choose rx, ry, rz ∈ Zp, and set χ1 = (rx, 0, rz), χ2 =
(0, ry, rz), χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Let span{χ1,χ2} = {ν1χ1 + ν2χ2|ν1, ν2 ∈ Zp} be
the subspace spanned by χ1 and χ2. We can see that χ3 is orthogonal to the subspace span{χ1,χ2}
and Z3

p = span{χ1,χ2,χ3} = {ν1χ1 + ν2χ2 + ν3χ3|ν1, ν2, ν3 ∈ Zp}. For any v ∈ span{χ1,χ2},
(χ3 · v) = 0, and for random v ∈ Z3

p, (χ3 · v) 6= 0 happens with overwhelming probability.

4.2 Augmented R-CP-ABE Construction

Now we propose a large universe Augmented R-CP-ABE, where the attribute universe is U = Zp.

SetupA(λ,N = m2)→ (PP,MSK). The algorithm calls the group generator G(λ) to get (p,G,GT , e),
where p is the prime order of G and GT and e is the bilinear map, and sets the attribute universe
to U = Zp. It then randomly picks

g, h, f, f1, . . . , fm, G, H ∈ G, {αi, ri, zi ∈ Zp}i∈[m], {cj ∈ Zp}j∈[m],

and outputs the public parameter PP and master secret key MSK as

PP =
(

(p,G,GT , e), g, h, f, f1, . . . , fm, G, H,

{Ei = e(g, g)αi , Gi = gri , Zi = gzi}i∈[m], {Hj = gcj}j∈[m]

)
,

MSK =
(
α1, . . . , αm, r1, . . . , rm, c1, . . . , cm

)
.

A counter ctr = 0 is implicitly included in MSK.

KeyGenA(PP,MSK, S ⊆ Zp) → SK(i,j),S . The algorithm first sets ctr = ctr + 1 and computes the
corresponding index in the form of (i, j) where 1 ≤ i, j ≤ m and (i − 1) ∗m + j = ctr. Then
it picks random exponents σi,j ∈ Zp, {δi,j,x ∈ Zp}∀x∈S , and outputs a secret key SK(i,j),S =(

(i, j), S, Ki,j ,K
′
i,j ,K

′′
i,j , {K̄i,j,j′}j′∈[m]\{j}, {Ki,j,x,K

′
i,j,x}x∈S

)
where

Ki,j = gαigricj (ffj)
σi,j , K ′i,j = gσi,j , K ′′i,j = Z

σi,j
i , {K̄i,j,j′ = f

σi,j
j′ }j′∈[m]\{j},

{Ki,j,x = gδi,j,x , K ′i,j,x = (Hxh)δi,j,xG−σi,j}x∈S .
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EncryptA(PP,M,R,A = (A, ρ), (̄i, j̄)) → CTR,(A,ρ). R ⊆ [m,m] is a revocation list. A = (A, ρ)
is an LSSS matrix where A is an l × n matrix and ρ maps each row Ak of A to an attribute
ρ(k) ∈ U = Zp. The encryption is for recipients whose (index, attribute set) pairs ((i, j), S(i,j))
satisfy

(
(i, j) ∈ [m,m] \R

)
∧
(
S(i,j) satisfies (A, ρ)

)
∧
(
(i, j) ≥ (̄i, j̄)

)
. Let R̄ = [m,m] \R and

for i ∈ [m], R̄i = {j′|(i, j′) ∈ R̄}, that is, R̄ is the non-revoked index list, and R̄i is the set of
non-revoked column index on the i-th row. The algorithm randomly chooses

κ, τ, s1, . . . , sm, t1, . . . , tm ∈ Zp,
vc, w1, . . . ,wm ∈ Z3

p,

ξ1, . . . , ξl ∈ Zp, u = (π, u2, . . . , un) ∈ Znp .

In addition, it randomly chooses rx, ry, rz ∈ Zp, and sets χ1 = (rx, 0, rz), χ2 = (0, ry, rz),
χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Then it randomly chooses

vi ∈ Z3
p ∀i ∈ {1, . . . , ī},

vi ∈ span{χ1,χ2} ∀i ∈ {̄i+ 1, . . . ,m},

and computes a ciphertext 〈R, (A, ρ), (Ri,R
′
i, Qi, Q

′
i, Q

′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k, P

′′
k )lk=1〉

as follows:

1. For each row i ∈ [m]:

– if i < ī: randomly chooses ŝi ∈ Zp, and sets

Ri = gvi , R′i = gκvi , Qi = gsi , Q′i = (f
∏
j′∈R̄i

fj′)
siZtii f

π, Q′′i = gti , Ti = E ŝii .

– if i ≥ ī: sets

Ri = Gsivii , R′i = Gκsivii ,

Qi = gτsi(vi·vc), Q′i = (f
∏
j′∈R̄i

fj′)
τsi(vi·vc)Ztii f

π, Q′′i = gti , Ti = M · Eτsi(vi·vc)i .

2. For each column j ∈ [m]:

– if j < j̄: randomly chooses µj ∈ Zp, and sets Cj = H
τ(vc+µjχ3)
j · gκwj , C ′j = gwj .

– if j ≥ j̄: sets Cj = Hτvc
j · gκwj , C ′j = gwj .

3. For each k ∈ [l]: sets Pk = fAk·uGξk , P ′k = (Hρ(k)h)−ξk , P ′′k = gξk .
DecryptA(PP, CTR,(A,ρ), SK(i,j),S)→M or ⊥. For ciphertext CTR,(A,ρ) = 〈R, (A, ρ), (Ri,R

′
i, Qi, Q

′
i,

Q′′i , Ti)
m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k, P

′′
k )lk=1〉 and secret key SK(i,j),S =

(
(i, j), S, Ki,j ,K

′
i,j ,K

′′
i,j ,

{K̄i,j,j′}j′∈[m]\{j}, {Ki,j,x, K
′
i,j,x}x∈S

)
, if (i, j) ∈ R or S does not satisfy (A, ρ), the algorithm

outputs ⊥, otherwise:
1. Since S satisfies (A, ρ), the algorithm can efficiently compute constants {ωk ∈ Zp} such that∑

ρ(k)∈S ωkAk = (1, 0, . . . , 0), then compute

DP =
∏

ρ(k)∈S

(
e(K ′i,j , Pk) · e(Ki,j,ρ(k), P

′
k) · e(K ′i,j,ρ(k), P

′′
k )
)ωk
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=
∏

ρ(k)∈S

(
e(gσi,j , fAk·uGξk) · e(gδi,j,ρ(k) , (Hρ(k)h)−ξk) · e((Hρ(k)h)δi,j,ρ(k)G−σi,j , gξk)

)ωk
=
∏

ρ(k)∈S

(
e(gσi,j , fAk·u)

)ωk = e(gσi,j , f)
∑
ρ(k)∈S ωk(Ak·u) = e(gσi,j , f)π.

Note that if S does not satisfy (A, ρ), no such constants {ωk ∈ Zp} would exist.

2. Since (i, j) ∈ R̄(= [m,m] \R) implies j ∈ R̄i, the algorithm can compute

K̄i,j = Ki,j · (
∏

j′∈R̄i\{j}

K̄i,j,j′) = gαigricj (ffj)
σi,j · (

∏
j′∈R̄i\{j}

f
σi,j
j′ ) = gαigricj · (f

∏
j′∈R̄i

fj′)
σi,j .

Note that if (i, j) ∈ R (implying j /∈ R̄i), the algorithm cannot produce such a K̄i,j . The
algorithm then computes

DI =
e(K̄i,j , Qi) · e(K ′′i,j , Q′′i )

e(K ′i,j , Q
′
i)

·
e3(R′i,C

′
j)

e3(Ri,Cj)
.

3. Computes M = Ti/(DP ·DI) as the output message. Suppose that the ciphertext is generated
from message M ′ and encryption index (̄i, j̄), it can be verified that only when (i > ī) or
(i = ī∧j ≥ j̄),M = M ′. This is because for i > ī, we have (vi·χ3) = 0 (since vi ∈ span{χ1,χ2}),
and for i = ī, we have that (vi · χ3) 6= 0 happens with overwhelming probability (since vi is
randomly chosen from Z3

p). The correctness is given in Appendix B.

4.3 Augmented R-CP-ABE Security

The following theorem states that the AugR-CP-ABE proposed above is message-hiding. Then in
Theorem 4, we state that the AugR-CP-ABE is also selectively index-hiding.

Theorem 3. No PPT adversary can win GameAMH with non-negligible advantage.

Proof. The argument for message-hiding in GameAMH is straightforward since an encryption to index
N+1 (i.e. (m+1, 1)) contains no information about the message. The simulator simply runs SetupA

and KeyGenA and encrypts Mb under the challenge (revocation list, access policy) pair (R∗,A∗) and
index (m+ 1, 1). Since for all i = 1 to m, Ti = E ŝii contains no information about the message, the
bit b is perfectly hidden and MHAAdvA = 0.

Theorem 4. Suppose that the D3DH, the DLIN and the Extended Source Group q-Parallel BDHE
Assumption hold. Then no PPT adversary can selectively win GameAIH with non-negligible advantage,
provided that the challenge LSSS matrix’s size l × n satisfies l, n ≤ q.

Proof. It follows Lemma 1 and Lemma 2 below.

Lemma 1. If the D3DH and the Extended Source Group q-Parallel BDHE Assumption hold, then
for j̄ < m, no PPT adversary can selectively distinguish between an encryption to (̄i, j̄) and (̄i, j̄+1)
in GameAIH with non-negligible advantage, provided that the challenge LSSS matrix’s size l×n satisfies
l, n ≤ q.
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Proof. In GameAIH with index (̄i, j̄), let (R∗, (A∗, ρ∗)) be the challenge (revocation list, access policy)
pair, the restriction is that the adversary A does not query a secret key for (index, attribute set)
pair ((i, j), S(i,j)) such that

(
(i, j) = (̄i, j̄)

)
∧
(
(i, j) ∈ [m,m]\R∗

)
∧
(
S(i,j) satisfies (A∗, ρ∗)

)
. Under

this restriction, there are two ways for A to take:

Case I: In Phase 1 and Phase 2, A does not query a secret key with index (̄i, j̄).

Case II: In Phase 1 or Phase 2, A queries a secret key with index (̄i, j̄). Let S(̄i,j̄) be the corre-
sponding attribute set. Case II has the following sub-cases:

1. (̄i, j̄) /∈ [m,m] \R∗, S(̄i,j̄) satisfies (A∗, ρ∗).

2. (̄i, j̄) /∈ [m,m] \R∗, S(̄i,j̄) does not satisfy (A∗, ρ∗).

3. (̄i, j̄) ∈ [m,m] \R∗, S(̄i,j̄) does not satisfy (A∗, ρ∗).

If A is in Case I, Case II.1 or Case II.2, it follows the restrictions in the index-hiding game
for Augmented Broadcast Encryption (AugBE) in [10], where the adversary does not query the
key with index (̄i, j̄) or (̄i, j̄) is not in the receiver list [m,m] \ R∗. Case II.3 captures the index-
hiding requirement of Augmented R-CP-ABE in that even if a user has a key with index (̄i, j̄)
and (̄i, j̄) /∈ R∗, the user cannot distinguish between an encryption to (R∗, (A∗, ρ∗), (̄i, j̄)) and
(R∗, (A∗, ρ∗), (̄i, j̄ + 1)) if the corresponding attribute set S(̄i,j̄) does not satisfy (A∗, ρ∗). This is
the most challenging part of proving the index-hiding when we attempt to securely intertwine the
tracing techniques of broadcast encryption (e.g. [10]) into the large universe CP-ABE (e.g. [27]).
Compared to the proof of [21], the challenge here is to prove the index-hiding in the large universe
setting, as discussed previously.

To prove this lemma, we flip a random coin c ∈ {0, 1} as our guess on which case that A is
in. In particular, if c = 0, we guess that A is in Case I, Case II.1 or Case II.2, and make a
reduction that uses A to solve a D3DH problem instance, using a proof technique similar to that
of [10]. Actually, in this proof, we reduce from our AugR-CP-ABE to the AugBE in [10]. If c = 1,
we guess that A is in Case I, Case II.2 or Case II.3, and use A to solve an Extended Source
Group q-Parallel BDHE problem instance, which is where the main novelty resides among all the
proofs in this work. Please refer to Appendix C for details.

Lemma 2. If the D3DH, the DLIN and the Extended Source Group q-Parallel BDHE Assumption
hold, then for 1 ≤ ī ≤ m, no PPT adversary can selectively distinguish between an encryption
to (̄i,m) and (̄i + 1, 1) in GameAIH with non-negligible advantage, provided that the challenge LSSS
matrix’s size l × n satisfies l, n ≤ q.

Proof. Similar to the proof of Lemma 6.3 in [10], to prove this lemma we define the following hybrid
experiment: H1: encrypt to (̄i, j̄ = m); H2: encrypt to (̄i, j̄ = m+ 1); and H3: encrypt to (̄i+ 1, 1).
This lemma follows Claim 1 and Claim 2 below.

Claim 1. If the D3DH and the Extended Source Group q-Parallel BDHE Assumption hold, then
no PPT adversary can selectively distinguish between experiment H1 and H2 with non-negligible
advantage, provided that the challenge LSSS matrix’s size l × n satisfies l, n ≤ q.

Proof. The proof is identical to that for Lemma 1.

Claim 2. If the D3DH and the DLIN hold, then no PPT adversary can distinguish between exper-
iment H2 and H3 with non-negligible advantage.
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Proof. Note that (̄i,m + 1) /∈ [m,m] implies that for any revocation list R∗ ⊆ [m,m], we have
(̄i,m+1) /∈ R̄∗(= [m,m]\R∗), i.e, the adversaries for distinguishing H2 and H3 will not be in Case
II.3. Thus, similar to that of case c = 0 in the proof of Lemma 1, in this proof we reduce from our
AugR-CP-ABE to the AugBE in [10].

In the proof of index-hiding for an AugBE scheme ΣAugBE in [10, Lemma 6.3], two hybrid
experiments were defined and proven indistinguishable via a sequence of hybrid sub-experiments.

– HAugBE
2 : Encrypt to (̄i,m+ 1), (i.e. H2 in [10])

– HAugBE
3 : Encrypt to (̄i+ 1, 1), (i.e. H5 in [10])

By following [10, Lemma 6.3], if the D3DH and the DLIN hold, no PPT adversary can distinguish

between HAugBE
2 and HAugBE

3 for ΣAugBE with non-negligible advantage. Suppose there is a PPT
adversary A that can distinguish between H2 and H3 for our AugR-CP-ABE scheme with non-
negligible advantage. We can build a reduction, which is similar to that of case c = 0 in the proof
of Lemma 1 (i.e. the reduction of Case A in Appendix C), to use A to distinguish between HAugBE

2

and HAugBE
3 for ΣAugBE with non-negligible advantage.

5 KP-ABE Analog

We have obtained the first practical CP-ABE scheme that simultaneously supports (1) public and
fully collusion-resistant traceability against policy-specific decryption blackbox, (2) (direct) revo-
cation and (3) “truly” large attribute universe, and is also highly expressive (i.e. supporting any
monotonic access structures) and efficient (i.e. enjoying the sub-linear overhead of O(

√
N) while

supporting fully collusion-resistant blackbox traceability). The scheme’s security and traceability
are proven against selectively adversaries in the standard model. Our techniques also yield an
analogous Key-Policy ABE (KP-ABE) scheme, i.e. the first practical KP-ABE scheme that simul-
taneously supports (1) public and fully collusion-resistant traceability against attributes-specific
decryption blackbox, (2) (direct) revocation and (3) “truly” large attribute universe, and is also
highly expressive (i.e. supporting any monotonic access structures) and efficient (i.e. enjoying the
sub-linear overhead of O(

√
N) while supporting fully collusion-resistant blackbox traceability). Es-

sentially, KP-ABE is like CP-ABE with the roles of keys and ciphertexts reversed: in KP-ABE,
keys are associated with access policies and ciphertexts are associated with sets of attributes. In the
setting of KP-ABE, attributes-specific decryption blackbox, which can decrypt ciphertxets gener-
ated under some specific attribute set, reflects more general and practical applications than key-like
decryption blackbox which functions like a private key with certain access policy. Our techniques
readily adapt to KP-ABE and attributes-specific decryption blackbox, and the definitions, construc-
tions and proofs are very similar to the CP-ABE case. The details can be found in Appendix G,
Appendix H, and Appendix I. In Appendix G we present the definition for KP-ABE supporting
traceability against attributes-specific decryption blackbox, direct revocation and large attribute
universe, and call it Revocable KP-ABE (R-KP-ABE). In Appendix H we extend the R-KP-ABE to
a primitive called Augmented R-KP-ABE (or AugR-KP-ABE for short), then formalize a message-
hiding game and an index-hiding game, and show that an AugR-KP-ABE scheme satisfying the
message-hiding and the (selective) index-hiding can be transformed to a (selectively) secure R-KP-
ABE scheme with (selective) attributes-specific blackbox traceability. In Appendix I we propose a
large universe AugR-KP-ABE, and prove that it is message-hiding and selective index-hiding in the
standard model. Combining it with the results in Appendix H, we obtain a large universe R-KP-
ABE construction, which is efficient (with overhead size in O(

√
N)), highly expressive (supporting
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1 Blackbox Revocation Large Public Key Ciphertext Private Key Pairings
2 Traceability Universe Size Size Size in Decryption

[1, Sec. 4.1] ×
√

∂ 3 2N + 2 +m 3 3 + |S| 2l 2 + 2|I|
[1, Sec. 4.2] ×

√
∂ 3 6 +m 3 2 + |S|+ 2|R| 3 2 + 2l 2|I|+ 2|R| 3

[27] × ×
√

5 2 + 2|S| 3l 3|I|
this work

√ √ √
5 + 5

√
N 1 + 16

√
N + 2|S| 2 +

√
N + 3l 9 + 3|I|

1 All the four schemes are highly expressive, i.e. supporting any monotonic access structures.
2 Let N be the number of users in the system, l the number of rows of the LSSS matrix for an access

policy, |S| the size of the attribute set of a ciphertext, and |I| the number of attributes for a ciphertext
to satisfy a key policy.

3 The KP-ABE schemes in [1] are not “truly” large universe, as some limitations are imposed and some
corresponding parameters have to be fixed during the setup. Let m be the maximum size of an attribute
set associated with a ciphertext, and |R| the number of revoked users in a revocation list R.

Table 2. KP-ABE: Features and Efficiency Comparison

any monotonic access structures as policies), selectively secure and selectively attributes-specific
blackbox traceable in the standard model.

Table 2 compares this new KP-ABE scheme with the representative results in revocable KP-
ABE [1] and large universe KP-ABE [27]. The scheme’s overhead is in O(

√
N), where N is the

number of users in a system, and for fully collusion-resistant blackbox traceable KP-ABE, this
is the most efficient one to date. It is worth mentioning that the traceable Predicate Encryption
(PE) scheme by Katz and Schröder [15] implies an expressive KP-ABE scheme with fully collusion-
resistant blackbox traceability, but the scheme’s overhead is linear in N , and it does not support
revocation or “truly” large universe.

6 Conclusion

In this paper, we proposed the first practical CP-ABE and KP-ABE that simultaneously support
(1) traitor tracing, (2) revocation and (3) large universe. Both schemes are highly expressive in
supporting any monotonic access structures. Besides achieving fully collusion-resistant blackbox
traceability, and direct revocation, they are also efficient with the overhead in O(

√
N) only. Fur-

thermore, they support large attribute universe and do not need to fix the values of attributes
during the system setup. The CP-ABE (resp. KP-ABE) scheme was proven selectively secure and
selectively traceable against policy-specific (resp. attributes-specific) decryption blackbox in the
standard model.
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A AugR-CP-ABE Implies Secure R-CP-ABE

To prove that the R-CP-ABE scheme Σ in Sec. 3.2 is secure it remains to prove that Equation (1)
holds for all k̄ = 1, . . . , N . Consider a specific k̄ ∈ [N ]. Adversary B plays the index-hiding game
GameAIH with input k̄ and works as follows:
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Setup. B receives PP from its challenger in the index-hiding game GameAIH. B runs adversary A
in the extend message-hiding game GameAEMH and gives PP to A.

Phase 1. For i = 1 to Q1, A adaptively submits (index, attribute set) pair (ki, Ski) to B. B
submits (ki, Ski) to the challenger and receives secret key SKki,Ski

. Then B gives SKki,Ski
to A.

Challenge. A submits two equal-length messages M0,M1 and a (revocation list, access policy)
pair (R∗,A∗) to B, under the restriction that none of the queried pairs {(ki, Ski)}

Q1
i=1 can satisfy

(ki ∈ [N ] \ R∗) ∧ (Ski satisfies A∗). B flips a coin γ ∈ {0, 1}, then gives Mγ and (R∗,A∗)
to its challenger. Note that (R∗,A∗) satisfies the restriction on B in GameAIH that none of the

queried pairs {(ki, Ski)}
Q1
i=1 can satisfy (ki = k̄)∧ (ki ∈ [N ]\R∗)∧ (Ski satisfies A∗). B receives

CTR∗,A∗ ← EncryptA(PP, Mγ , R
∗,A∗, k̄ + b) for some random b ∈ {0, 1}. Then B gives CTR∗,A∗

to A.
Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, attribute set) pair (ki, Ski) to B,

under the restriction that (ki, Ski) does not satisfy (ki ∈ [N ] \ R∗) ∧ (Ski satisfies A∗). B
submits (ki, Ski) to the challenger. Note that (ki, Ski) satisfies the restriction on B in GameAIH
that (ki, Ski) does not satisfy (ki = k̄) ∧ (ki ∈ [N ] \ R∗) ∧ (Ski satisfies A∗). B receives secret
key SKki,Ski

from the challenger. Then B gives SKki,Ski
to A.

Guess. A outputs a guess γ′ ∈ {0, 1} for γ. If γ′ = γ then B returns 0 to its challenger. Otherwise
B returns 1 to its challenger.

Now, observe that when b = 0 then B is emulating perfectly an EMHAAdvA[k̄] challenger. When
b = 1 then B is emulating perfectly an EMHAAdvA[k̄ + 1] challenger. A standard argument now
shows that |EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| ≤ 2 · IHAAdvB[k̄] as required.

B Correctness

Correctness. Suppose that the message is M ′ and the encryption index is (̄i, j̄). For i ≥ ī we have

e(K̄i,j , Qi) · e(K ′′i,j , Q′′i )
e(K ′i,j , Q

′
i)

=
e
(
gαigricj (f

∏
j′∈R̄i fj′)

σi,j , gτsi(vi·vc)
)
e(Z

σi,j
i , gti)

e
(
gσi,j , (f

∏
j′∈R̄i fj′)

τsi(vi·vc)Ztii f
π
) =

e(gαigricj , gτsi(vi·vc))

e
(
gσi,j , fπ

) .

If i ≥ ī ∧ j ≥ j̄: we have

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , Hτvc
j · gκwj )

=
1

e3(grisivi , gcjτvc)
=

1

e(g, g)risicjτ(vi·vc)
.

If i > ī ∧ j < j̄: note that for i > ī, we have (vi · χ3) = 0 (since vi ∈ span{χ1,χ2}), then we have

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , H
τ(vc+µjχ3)
j · gκwj )

=
1

e3(grisivi , gcjτ(vc+µjχ3))
=

1

e(g, g)risicjτ(vi·vc)
.

If i = ī∧j < j̄: note that for i = ī, we have that (vi ·χ3) 6= 0 happens with overwhelming probability
(since vi is randomly chosen from Z3

p), then we have

e3(R′i,C
′
j)

e3(Ri,Cj)
=

e3(Gκsivii , gwj )

e3(Gsivii , H
τ(vc+µjχ3)
j · gκwj )

=
1

e3(grisivi , gcjτ(vc+µjχ3))
=

1

e(g, g)risicjτ((vi·vc)+µj(vi·χ3))
.

Thus from the values of Ti, DP and DI , for M = Ti/(DP ·DI) we have that: (1) if (i > ī) ∨ (i =
ī ∧ j ≥ j̄), then M = M ′; (2) if i = ī ∧ j < j̄, then M = M ′ · e(g, g)τsiricjµj(vi·χ3); (3) if i < ī, then
M has no relation with M ′.

21



C Proof of Lemma 1

Proof. Suppose there exists a PPT adversary A that selectively breaks the index-hiding game with
non-negligible advantage AdvA. We construct a PPT algorithm B, which by given a D3DH problem
instance and an Extended Source Group q-parallel BDHE problem instance, solves at least one of
them. B flips a random coin c ∈ {0, 1}, if c = 0, B interacts with A in Case A as guessing “A is
not in Case II.3”, otherwise B interacts with A in Case B as guessing “A is not in Case II.1”.

Case A: B uses A to solve the D3DH problem. Garg et al. [10, Sec. 5.1] proposed an AugBE
scheme ΣAugBE = (SetupAugBE,EncryptAugBE,DecryptAugBE) and proved that it is index-hiding. The
Lemma 6.2 of [10] states that if the D3DH assumption holds, then for j̄ < m no PPT adversary can
distinguish between an encryption to (̄i, j̄) and (̄i, j̄ + 1) in the index-hiding game for ΣAugBE with
non-negligible probability. Note that if A is in Case I, Case II.1 or Case II.2, it also follows the
restrictions of the index-hiding game for ΣAugBE, here we do not build a direct reduction that uses
A to solve the D3DH problem, instead, we build a reduction to break the index-hiding property of
ΣAugBE.

First we review the structures of public key PKAugBE, private key SKAugBE
(i,j) and ciphertext

CTAugBE
R̄

of ΣAugBE [10]6, and give the reduction sketch below:

PKAugBE =
(
g, {Ei = e(g, g)αi , Gi = gri}i∈[m], {Hj = gcj , fj}j∈[m]

)
,

SKAugBE
(i,j) =

(
Ki,j , K

′
i,j , {K̄i,j,j′}j′∈[m]\{j}

)
=
(
gαigricjf

σi,j
j , gσi,j , {fσi,jj′ }j′∈[m]\{j}

)
,

CTAugBE
R̄

= 〈(Ri,R
′
i, Qi, Q

′
i, Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, R̄〉,

where CTAugBE
R̄

is for receiver list R̄ and index (i∗, j∗) with

1. For each i ∈ [m]:

– if i < i∗: Ri = gvi , R′i = gκvi , Qi = gsi , Q′i = (
∏
j′∈R̄i fj′)

si , Ti = E ŝii .

– if i ≥ i∗: Ri = Gsivii , R′i = Gκsivii , Qi = gτsi(vi·vc), Q′i = (
∏
j′∈R̄i fj′)

τsi(vi·vc), Ti =

M · Eτsi(vi·vc)i .

2. For each j ∈ [m]:

– if j < j∗: Cj = H
τ(vc+µjχ3)
j · gκwj , C ′j = gwj .

– if j ≥ j∗: Cj = Hτvc
j · gκwj , C ′j = gwj .

Setup. From the received PKAugBE, B generates PP for A by randomly choosing β, θ, zi (i ∈ [m]) ∈
Zp and h,H ∈ G, and setting f = gβ, G = gθ, {Zi = gzi}i∈[m].

Phase 1 and 2. As B can compute fσi,j = (gσi,j )β, Z
σi,j
i = (gσi,j )zi , and G−σi,j = (gσi,j )−θ without

needing to know the value of σi,j , B can produce SK(i,j),S(i,j)
for A, using SKAugBE

(i,j) and randomly

chosen {δi,j,x}x∈S(i,j)
.

Challenge. As B can compute fsi = (gsi)β and f τsi(vi·vc) = (gτsi(vi·vc))β without needing to know

the values of si or τsi(vi · vc), by using its challenge ciphertext CTAugBE
R̄∗

(for R̄∗ = [m,m]\R∗) and
randomly chosen ti(i ∈ [m]), ξk(k ∈ [l]) ∈ Zp,u = (π, u2, . . . , un) ∈ Znp , B can produce the challenge
ciphertext CTR∗,(A∗,ρ∗) for A.
Guess. B sends A’s guess b′ ∈ {0, 1} to its challenger.

6 Note that we slightly changed the variable names in the underlying AugBE scheme ΣAugBE to better suit our proof.
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During the interaction, if A is in Case II.3, B will abort and return a random β3 ∈ {0, 1} to its
challenger.
Now we give the reduction details below.

Init. The adversary A gives B the challenge LSSS matrix (A∗, ρ∗), where A∗ is an l × n matrix.

Setup. The challenger gives B the public key PKAugBE

PKAugBE =
(
g, {Ei = e(g, g)αi , Gi = gri}i∈[m], {Hj = gcj , fj}j∈[m]

)
,

and private keys {SKAugBE
(i,j) }(i,j)∈[m,m]\{(̄i,j̄)} as

SKAugBE
(i,j) =

(
K̃i,j , K̃

′
i,j , { ˜̄Ki,j,j′}j′∈[m]\{j}

)
=
(
gαigricjf

σi,j
j , gσi,j , {fσi,jj′ }j′∈[m]\{j}

)
,

where g, f1, . . . , fm ∈ G and {αi, ri ∈ Zp}i∈[m], {cj ∈ Zp}j∈[m], {σi,j ∈ Zp}(i,j)∈[m,m]\{(̄i,j̄)} are

randomly chosen. B sets c̃ = 0 to denote that B does not obtain the private SKAugBE
(̄i,j̄)

.

B randomly chooses β, θ, z1, . . . , zm ∈ Zp and h,H ∈ G, then gives A the following public
parameter PP:

PP =
(
g, h, f = gβ, f1, . . . , fm, G = gθ, H, {Ei, Gi, Zi = gzi}i∈[m], {Hj}j∈[m]

)
.

Phase 1. A adaptively submits ((i, j), S(i,j)) to B. If (i, j) = (̄i, j̄), then B sets c̃ = 1 and

submits c̃ to its challenger, and receives the private key SKAugBE
(̄i,j̄)

. B randomly chooses {δi,j,x ∈
Zp}x∈S(i,j)

, then creates a secret key SK(i,j),S(i,j)
=
(

(i, j), S(i,j), Ki,j ,K
′
i,j ,K

′′
i,j , {K̄i,j,j′}j′∈[m]\{j},

{Ki,j,x,K
′
i,j,x}x∈S(i,j)

)
from SKAugBE

(i,j) as

Ki,j = K̃i,j · (K̃ ′i,j)β, K ′i,j = K̃ ′i,j , K ′′i,j = (K̃ ′i,j)
zi , {K̄i,j,j′ = ˜̄Ki,j,j′}j′∈[m]\{j},

{Ki,j,x = gδi,j,x , Ki,j,x = (Hxh)δi,j,x(K̃ ′i,j)
−θ}x∈S(i,j)

.

Challenge. A submits a message M and a revocation list R∗. B sets R̄∗ = [m,m] \R∗.

• if (̄i, j̄) ∈ R̄∗ ∧ c̃ = 1: A is in Case II.3. B returns a random β3 ∈ {0, 1} to its challenger,
then aborts.
• if (̄i, j̄) ∈ R̄∗ ∧ c̃ = 0: B continues the following interaction.
• if (̄i, j̄) /∈ R̄∗ ∧ c̃ = 1: B continues the following interaction.
• if (̄i, j̄) /∈ R̄∗ ∧ c̃ = 0: B sets c̃ = 1 and submits c̃ to its challenger, and receives the private key

SKAugBE
(̄i,j̄)

. Then B continues the following interaction.

Now B ends the Query Phase for the AugBE index-hiding game with its challenger, and submits
(M, R̄∗) to the challenger. Note that from the view of the challenger, B’s behaviors satisfy the restric-

tions in the AugBE index-hiding game, i.e., if B sends c̃ = 1 to the challenger and obtains SKAugBE
(̄i,j̄)

then (̄i, j̄) /∈ R̄∗. The challenger gives B the challenge ciphertext CTAugBE
R̄∗

= 〈(R̃i, R̃
′
i, Q̃i, Q̃

′
i, T̃i)

m
i=1,

(C̃j , C̃
′
j)
m
j=1, R̄

∗〉, which is encrypted to (i∗, j∗) ∈ {(̄i, j̄), (̄i, j̄ + 1)} and in the form of

1. For each i ∈ [m]:
– if i < i∗: R̃i = gvi , R̃′i = gκvi , Q̃i = gsi , Q̃′i = (

∏
j′∈R̄∗i

fj′)
si , T̃i = E ŝii .
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– if i ≥ i∗: R̃i = Gsivii , R̃′i = Gκsivii , Q̃i = gτsi(vi·vc), Q̃′i = (
∏
j′∈R̄∗i

fj′)
τsi(vi·vc), T̃i =

M · Eτsi(vi·vc)i .

2. For each j ∈ [m]:

– if j < j∗: C̃j = H
τ(vc+µjχ3)
j · gκwj , C̃ ′j = gwj .

– if j ≥ j∗: C̃j = Hτvc
j · gκwj , C̃ ′j = gwj .

where κ, τ, si(i ∈ [m]), ŝi(1 ≤ i < i∗), µj(1 ≤ j < j∗) ∈ Zp, vc,wj(j ∈ [m]),vi(1 ≤ i ≤ i∗) ∈ Z3
p,

and vi(i > i∗) ∈ span{χ1,χ2} are randomly chosen (where χ1 = (rx, 0, rz), χ2 = (0, ry, rz),
χ3 = (−ryrz,−rxrz, rxry) are for randomly chosen rx, ry, rz ∈ Zp), and R̄∗i = {j′|(i, j′) ∈ R̄∗}.
B randomly chooses t1, . . . , tm, ξ1, . . . , ξl ∈ Zp, u = (π, u2, . . . , un) ∈ Znp , then creates a cipher-

text 〈R∗, (A∗, ρ∗), (Ri,R
′
i, Qi, Q

′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k, P

′′
k )lk=1〉 as follows:

1. For each i ∈ [m]: Ri = R̃i, R
′
i = R̃′i, Qi = Q̃i, Q

′
i = Q̃βi · Q̃′i · Z

ti
i f

π, Q′′i = gti , Ti = T̃i.

2. For each j ∈ [m]: Cj = C̃j , C
′
j = C̃ ′j .

3. For each k ∈ [l]: Pk = fA
∗
k·uGξk , P ′k = (Hρ∗(k)h)−ξk , P ′′k = gξk .

Phase 2. A adaptively submits ((i, j), S(i,j)) to B.

– if (i, j) 6= (̄i, j̄): B creates a secret key SK(i,j),S(i,j)
from SKAugBE

(i,j) as in Phase 1.

– if (i, j) = (̄i, j̄) ∧ c̃ = 1: this implies B has obtained SKAugBE
(̄i,j̄)

from its challenger. B creates a

secret key SK(̄i,j̄),S(̄i,j̄)
from SKAugBE

(̄i,j̄)
as in Phase 1.

– if (i, j) = (̄i, j̄)∧ c̃ = 0: observing B’s behaviors in Challenge phase, we have that c̃ = 0 implies
(̄i, j̄) ∈ R̄∗. In other words, A is querying a key with index (̄i, j̄) and (̄i, j̄) ∈ R̄∗, i.e., A is in
Case II.3. B return a random β3 ∈ {0, 1} to its challenger, then aborts.

Guess. A outputs a guess b′ ∈ {0, 1} to B, then B sets β3 = b′ and returns β3 to its challenger.

When B does not abort, B’s advantage in the index-hiding game for ΣAugBE will be exactly equal to
A’s advantage in the index-hiding game for our AugR-CP-ABE scheme. Thus, B’s final advantage
in the index-hiding game for ΣAugBE is AdvB,3 = AdvA · Pr[A is not in Case II.3 ∧ (c = 0)].

Case B: B uses A to solve the Extended Source Group q-parallel BDHE problem. B is
given a problem instance as

D =
(
(p,G,GT , e), g, g

d, gcd, gda
q
,

ga
i
, gbj , ga

ibj , ga
i/b2j , gcdbj ∀i, j ∈ [q],

ga
i/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q],

ga
ibj′/b

2
j ∀i ∈ [2q], j, j′ ∈ [q] s.t. j′ 6= j,

gcda
ibj′/bj , gcda

ibj′/b
2
j ∀i ∈ [q], j, j′ ∈ [q] s.t. j 6= j′

)
and T , where (p,G,GT , e)

R←− G, g
R←− G, a, c, d, b1, . . . , bq

R←− Zp, and T is either equal to gca
q+1

or is a random element of G. B’s goal is to determine T = gca
q+1

or T is a random element from G.

Init. The adversary A gives B the challenge LSSS matrix (A∗, ρ∗), where A∗ is an l × n matrix
with l, n ≤ q.
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Setup. B randomly chooses {αi ∈ Zp}i∈[m], {ri, z′i ∈ Zp}i∈[m]\{̄i}, r
′
ī
, zī, {c′j ∈ Zp}j∈[m], and

β, θ, η, θ1, . . . , θm ∈ Zp. B gives A the public parameter PP:(
g, f = ga, {fj = gθj}j∈[m], h = gβ ·

∏
k∈[l]

∏
t∈[n]

(
ga

t/b2k
)−ρ∗(k)A∗k,t ,

G = gθ ·
∏
k∈[l]

∏
t∈[n]

(
ga

t/bk
)A∗k,t , H = gη ·

∏
k∈[l]

∏
t∈[n]

(
ga

t/b2k
)A∗k,t , {Ei = e(g, g)αi}i∈[m],

{Gi = gri , Zi = (ga)z
′
i}i∈[m]\{̄i}, Gī = (ga

q
)r
′
ī , Zī = gzī ,

{Hj = (gd)c
′
j}j∈[m]\{j̄}, Hj̄ = (ga)

c′
j̄

)
.

Note that B implicitly chooses rī ∈ Zp, {zi ∈ Zp}i∈[m]\{̄i}, {cj ∈ Zp}j∈[m] such that

aqr′ī ≡ rī mod p, az′i ≡ zi mod p ∀i ∈ [m] \ {̄i},
dc′j ≡ cj mod p ∀j ∈ [m] \ {j̄}, ac′j̄ ≡ cj̄ mod p.

Phase 1. To respond to A’s query for ((i, j), S(i,j)),
• if (i, j) 6= (̄i, j̄): B chooses σi,j ∈ Zp, {δi,j,x ∈ Zp}x∈S(i,j)

at random, then creates a secret key
SK(i,j),S(i,j)

:

Ki,j =


gαi(gd)ric

′
j (ffj)

σi,j , : i 6= ī, j 6= j̄

gαi(gda
q
)r
′
ī
c′j (ffj)

σi,j , : i = ī, j 6= j̄

gαi(ga)
ric
′
j̄ (ffj)

σi,j , : i 6= ī, j = j̄

K ′i,j = gσi,j , K ′′i,j = Z
σi,j
i , {K̄i,j,j′ = f

σi,j
j′ }j′∈[m]\{j},

{Ki,j,x = gδi,j,x , K ′i,j,x = (Hxh)δi,j,xG−σi,j}x∈S(i,j)
.

• if (i, j) = (̄i, j̄): if S(i,j) satisfies (A∗, ρ∗), thenA is in Case II.1, B returns a random βq ∈ {0, 1}
to the challenger and aborts. Otherwise (i.e. S(i,j) does not satisfy (A∗, ρ∗)), B first computes a
vector ū = (ū1, . . . , ūn) ∈ Znp that has first entry equal to −r′

ī
c′
j̄

(i.e. ū1 = −r′
ī
c′
j̄
) and is orthogonal

to all of the rows A∗k of A∗ such that ρ∗(k) ∈ S(i,j) (i.e. A∗k · ū = 0 ∀k ∈ [l] s.t. ρ∗(k) ∈ S(i,j)). Note
that such a vector must exist since S(i,j) fails to satisfy (A∗, ρ∗), and it is efficiently computable.
Then B randomly chooses σ′

ī,j̄
∈ Zp, {δ′ī,j̄,x ∈ Zp}x∈S(i,j)

and sets the values of σī,j̄ and {δī,j̄,x}x∈S(i,j)

by implicitly setting

σī,j̄ = σ′ī,j̄ +
∑
t∈[n]

ūta
q+1−t, (2)

δī,j̄,x = δ′ī,j̄,x + σ′ī,j̄ ·
∑
k′∈[l]

ρ∗(k′)/∈S(i,j)

bk′

x− ρ∗(k′)
+

∑
k′∈[l]

ρ∗(k′)/∈S(i,j)

∑
t∈[n]

ūtbk′a
q+1−t

x− ρ∗(k′)
.

(3)

Note that for x ∈ S(i,j) and ρ∗(k′) /∈ S(i,j) we have x−ρ∗(k′) 6= 0. B creates a secret key SK(̄i,j̄),S(̄i,j̄)

as follows:

Kī,j̄ = gαī(ffj̄)
σ′
ī,j̄
( n∏
t=2

(ga
q+2−t

)ūt
)( n∏

t=1

(ga
q+1−t

)ūt
)θj̄ , K ′ī,j̄ = g

σ′
ī,j̄

n∏
t=1

(ga
q+1−t

)ūt , K ′′ī,j̄ = (K ′ī,j̄)
zī ,
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{K̄ī,j̄,j′ = (K ′ī,j̄)
θj′}j′∈[m]\{j̄}.

For x ∈ S(i,j), we have

Kī,j̄,x = gδī,j̄,x = g
δ′
ī,j̄,x ·

( ∏
k′∈[l]

ρ∗(k′)/∈S(i,j)

(gbk′ )
σ′
ī,j̄
/(x−ρ∗(k′))) · ( ∏

k′∈[l]
ρ∗(k′)/∈S(i,j)

∏
t∈[n]

(gbk′a
q+1−t

)ūt/(x−ρ
∗(k′))

)
,

and after some algebraic manipulations (the details are given in Appendix C.1), we have

(Hxh)δī,j̄,x = Ψ1 ·
( ∏

k∈[l]
ρ∗(k)/∈S(i,j)

∏
t∈[n]

∏
t′∈[n]

(ga
q+1−t′+t/bk)A

∗
k,tūt′

)
,

G−σī,j̄ = Ψ2 ·
( ∏
k∈[l]

∏
t∈[n]

∏
t′∈[n]

(ga
q+1−t′+t/bk)−A

∗
k,tūt′

)
,

where Ψ1 and Ψ2 can be calculated using the suitable terms of the assumption. Thus, we have

K ′ī,j̄,x = (Hxh)δī,j̄,xG−σī,j̄

= Ψ1 · Ψ2 ·
( ∏

k∈[l]
ρ∗(k)∈S(i,j)

∏
t∈[n]

∏
t′∈[n]

(ga
q+1−t′+t/bk)−A

∗
k,tūt′

)

= Ψ1 · Ψ2 ·
( ∏

k∈[l]
ρ∗(k)∈S(i,j)

∏
t∈[n]

∏
t′∈[n]\{t}

(ga
q+1−t′+t/bk)−A

∗
k,tūt′

)
︸ ︷︷ ︸

Ψ3 (for t′ 6=t)

·
( ∏

k∈[l]
ρ∗(k)∈S(i,j)

∏
t∈[n]

(ga
q+1/bk)−A

∗
k,tūt

)
︸ ︷︷ ︸

for t′=t

= Ψ1 · Ψ2 · Ψ3 ·
( ∏

k∈[l]
ρ∗(k)∈S(i,j)

(ga
q+1/bk)−(A∗k·ū)

)
= Ψ1 · Ψ2 · Ψ3, (since A∗k · ū = 0 ∀k ∈ [l] s.t. ρ∗(k) ∈ S(i,j))

Note that Ψ1, Ψ2 and Ψ3 can be calculated using the suitable terms of the assumption, B can
calculate K ′

ī,j̄,x
.

Challenge. A submits a message M and a revocation list R∗. B randomly chooses

τ ′, s1, . . . , sī−1, s
′
ī, sī+1, . . . , sm ∈ Zp,

t′1, . . . , t
′
ī−1, t̄i, t

′
ī+1, . . . , t

′
m ∈ Zp,

w1, . . . ,wj̄−1,w
′
j̄ , . . . ,w

′
m ∈ Z3

p,

ξ′1, . . . , ξ
′
l, π

′ ∈ Zp, u′ = (0, u′2, . . . , u
′
n) ∈ Znp .

B randomly chooses rx, ry, rz ∈ Zp, and sets χ1 = (rx, 0, rz), χ2 = (0, ry, rz),χ3 = χ1 × χ2 =
(−ryrz,−rxrz, rxry), then randomly chooses

vi ∈ Z3
p ∀i ∈ {1, . . . , ī− 1},

vp
ī
∈ span{χ1,χ2}, vqī ∈ span{χ3},
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vi ∈ span{χ1,χ2} ∀i ∈ {̄i+ 1, . . . ,m},
vpc ∈ span{χ1,χ2}, vqc = νcχ3 ∈ span{χ3}.

B sets the values of κ, τ, sī, ti(i ∈ [m]\ {̄i}) ∈ Zp, vī, vc, wj(j ∈ {j̄, . . . ,m}) ∈ Z3
p, π ∈ Zp, u ∈ Znp ,

and {ξk ∈ Zp}k∈[l] by implicitly setting

aq ≡ κ mod p, caqτ ′ ≡ τ mod p, s′ī/a
q ≡ sī mod p,

∀i ∈ {1, . . . , ī− 1} : t′i + cdτ ′s′ī(v
q
ī
· vqc)/z′i ≡ ti mod p,

∀i ∈ {̄i+ 1, . . . ,m} : t′i − aqτ ′si(vi · vpc)/z′i + cdτ ′s′ī(v
q
ī
· vqc)/z′i ≡ ti mod p,

vī = vp
ī

+ dvq
ī
, vc = c−1vpc + vqc,

w′j̄ − ac
′
j̄τ
′vpc ≡ wj̄ mod p,

∀j ∈ {j̄ + 1, . . . ,m} : w′j − cdc′jτ ′vqc ≡ wj mod p,

π′ − cdτ ′s′ī(v
q
ī
· vqc) ≡ π mod p, u = π(1, a, a2, . . . , an−1) + u′,

∀k ∈ [l] : ξ′k + cdbkτ
′s′ī(v

q
ī
· vqc) ≡ ξk mod p.

It is worth noticing that vī and vc are chosen from Z3
p at random as required, and (vī · vc) =

1
c (v

p
ī
· vpc) + d(vq

ī
· vqc), since χ3 is orthogonal to span{χ1,χ2} and Z3

p = span{χ1,χ2,χ3}.
Let R̄∗ = [m,m]\R∗ and R̄∗i = {j′|(i, j′) ∈ R̄∗} ∀i ∈ [m]. B creates a ciphertext 〈R∗, (A∗, ρ∗), (Ri,

R′i, Qi, Q
′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, (Pk, P

′
k, P

′′
k )lk=1〉 as follows:

1. For each row i ∈ [m]:

– if i < ī: randomly chooses ŝi ∈ Zp, and sets

Ri = gvi , R′i = (ga
q
)vi ,

Qi = gsi , Q′i = (f
∏
j′∈R̄∗i

fj′)
siZ

t′i
i f

π′ , Q′′i = gt
′
i(gcd)τ

′s′
ī
(vq
ī
·vqc)/z′i , Ti = E ŝii .

– if i = ī: sets

Ri = gr
′
ī
s′
ī
vp
ī · (gd)r

′
ī
s′
ī
vq
ī , R′i = (ga

q
)r
′
ī
s′
ī
vp
ī · (gdaq)r

′
ī
s′
ī
vq
ī ,

Qi = gτ
′s′
ī
(vp
ī
·vpc )(gcd)τ

′s′
ī
(vq
ī
·vqc), Q′i = f τ

′s′
ī
(vp
ī
·vpc )(

∏
j′∈R̄∗i

Q
θj′
i )Z

t̄i
i f

π′ , Q′′i = gt̄i ,

Ti = M · e(gαi , Qi).

– if i > ī: sets

Ri = grisivi , R′i = (ga
q
)risivi ,

Qi = (ga
q
)τ
′si(vi·vpc ), Q′i = (

∏
j′∈R̄∗i

Q
θj′
i )Z

t′i
i f

π′ , Q′′i = gt
′
i(ga

q
)−τ

′si(vi·vpc )/z′i(gcd)τ
′s′
ī
(vq
ī
·vqc)/z′i ,

Ti = M · e(gαi , Qi).

2. For each j ∈ [m]:
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– if j < j̄: randomly chooses µ′j ∈ Zp and implicitly sets the value of µj such that (µ′j/(cda
q) −

1)νc ≡ µj mod p, then sets: Cj = (gda
q
)c
′
jτ
′vpc · gc

′
jτ
′µ′jv

q
c · (gaq)wj , C ′j = gwj .

– if j = j̄: sets Cj = T
c′
j̄
τ ′vqc · (gaq)w

′
j , C ′j = g

w′
j̄ · (ga)−c

′
j̄
τ ′vpc .

– if j > j̄: sets Cj = (gda
q
)c
′
jτ
′vpc · (gaq)w

′
j ,C ′j = gw

′
j · (gcd)−c

′
jτ
′vqc .

3. For each k ∈ [l]: we have

Pk = fA
∗
k·uGξk =

(
fA
∗
k·(1,a,...,a

n−1)
)π · fA∗k·u′ ·Gξ′k︸ ︷︷ ︸

Φ1

·
(
gθ
∏
k′∈[l]

∏
t∈[n]

(ga
t/bk′ )

A∗
k′,t
)cdbkτ ′s′ī(vqī ·vqc)

=
( ∏
t∈[n]

(ga
t
)A
∗
k,t
)π′−cdτ ′s′

ī
(vq
ī
·vqc) · Φ1 ·

(
gcdbk

)θτ ′s′
ī
(vq
ī
·vqc)︸ ︷︷ ︸

Φ2

·
( ∏
k′∈[l]

∏
t∈[n]

(gcda
tbk/bk′ )

A∗
k′,t
)τ ′s′

ī
(vq
ī
·vqc)

=
( ∏
t∈[n]

(ga
t
)A
∗
k,t
)π′

︸ ︷︷ ︸
Φ3

·
( ∏
t∈[n]

(gcda
t
)A
∗
k,t
)−τ ′s′

ī
(vq
ī
·vqc)

︸ ︷︷ ︸
∆

·Φ1 · Φ2

·
( ∏
k′∈[l]\{k}

∏
t∈[n]

(gcda
tbk/bk′ )

A∗
k′,t
)τ ′s′

ī
(vq
ī
·vqc)

︸ ︷︷ ︸
Φ4 (for k′ 6=k)

·
( ∏
t∈[n]

(gcda
t
)A
∗
k,t
)τ ′s′

ī
(vq
ī
·vqc)

︸ ︷︷ ︸
∆−1 (for k′=k)

= Φ3 · Φ1 · Φ2 · Φ4,

P ′k = (Hρ∗(k)h)−ξk

= (Hρ∗(k)h)−ξ
′
k ·
(
gηρ
∗(k)+β

)−cdbkτ ′s′ī(vqī ·vqc) · ( ∏
k′∈[l]

∏
t∈[n]

(
ga

t/b2
k′
)(ρ∗(k)−ρ∗(k′))A∗

k′,t
)−cdbkτ ′s′ī(vqī ·vqc)

= (Hρ∗(k)h)−ξ
′
k ·
(
gcdbk

)−(ηρ∗(k)+β)τ ′s′
ī
(vq
ī
·vqc)︸ ︷︷ ︸

Φ5

·
( ∏
k′∈[l]

∏
t∈[n]

(
gcda

tbk/b
2
k′
)(ρ∗(k′)−ρ∗(k))A∗

k′,t
)τ ′s′

ī
(vq
ī
·vqc)

= Φ5 ·
( ∏
k′∈[l]\{k}

∏
t∈[n]

(
gcda

tbk/b
2
k′
)(ρ∗(k′)−ρ∗(k))A∗

k′,t
)τ ′s′

ī
(vq
ī
·vqc)

︸ ︷︷ ︸
Φ6 (for k′ 6=k)

·
( ∏
t∈[n]

(
gcda

tbk/b
2
k
)(ρ∗(k)−ρ∗(k))A∗k,t

)τ ′s′
ī
(vq
ī
·vqc)

︸ ︷︷ ︸
1 (for k′=k)

= Φ5 · Φ6,

P ′′k = gξk = gξ
′
k(gcdbk)τ

′s′
ī
(vq
ī
·vqc).

Note that Φ1, . . . , Φ6 can be calculated using the suitable terms of the assumption, B can calculate
Pk, P

′
k and P ′′k .

If T = gca
q+1

, the ciphertext is a well-formed encryption to the index (̄i, j̄). If T is randomly
chosen, say T = gr for some random r ∈ Zp, the ciphertext is a well-formed encryption to the index
(̄i, j̄ + 1) with implicit setting µj̄ such that ( r

caq+1 − 1)νc ≡ µj̄ mod p.

Phase 2. Same as Phase 1.
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Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger.

When B does not abort, the distributions of the public parameter, secret keys and challenge cipher-
text are the same as in the real scheme, B’s advantage in the Extended Source Group q-parallel
BDHE game will be exactly equal to A’s advantage in the selective index-hiding game. Thus, B’s
final advantage is AdvB,q = AdvA · Pr[A is not in Case II.1 ∧ (c = 1)].

Note that in both Case A and Case B, the distributions of the public parameter, secret keys
and challenge ciphertext that B gives A are the same as in the real scheme and independent of the
value of c. This implies that the value of c and the case that A is in are independent of each other.
Let A.I,A.II.1,A.II.2, and A.II.3 be the events that A is in Case I, Case II.1, Case II.2 and
Case II.3, respectively, and A.II.1 and A.II.3 be the events that “A is not in Case II.1” and “A
is not in Case II.3”, respectively. Thus,

AdvB,3 +AdvB,q = AdvA · Pr[A.II.3 ∧ (c = 0)] +AdvA · Pr[A.II.1 ∧ (c = 1)]

= AdvA · Pr[A.II.3] · Pr[c = 0] +AdvA · Pr[A.II.1] · Pr[c = 1]

= AdvA · (1− Pr[A.II.3]) · 1

2
+AdvA · (1− Pr[A.II.1]) · 1

2

=
1

2
·AdvA · (2− (Pr[A.II.3] + Pr[A.II.1]))

≥ 1

2
·AdvA,

since Pr[A.II.3] + Pr[A.II.1] ≤ Pr[A.I] + Pr[A.II.1] + Pr[A.II.2] + Pr[A.II.3] = 1. This implies
that either AdvB,3 ≥ 1

4 ·AdvA or AdvB,q ≥ 1
4 ·AdvA.

C.1 The Algebraic Manipulation for K′
ī,j̄,x

in Case B of Proof of Lemma 1

For (i, j) = (̄i, j̄), with the value of σī,j̄ in Equation (2) and the values of δī,j̄,x(∀x ∈ S(i,j)) in
Equation (3), for x ∈ S(i,j), we have

(Hxh)δī,j̄,x = (Hxh)
δ′
ī,j̄,x︸ ︷︷ ︸

Ψ1,1

·(Hxh)
σ′
ī,j̄
·
∑
k′∈[l],ρ∗(k′)/∈S(i,j)

bk′
x−ρ∗(k′) · (Hxh)

∑
k′∈[l],ρ∗(k′)/∈S(i,j)

∑
t′∈[n]

ūt′ bk′a
q+1−t′

x−ρ∗(k′)

= Ψ1,1 ·
( ∏

k′∈[l]
ρ∗(k′)/∈S(i,j)

(
gηx+β

∏
k∈[l]

∏
t∈[n]

(ga
t/b2k)(x−ρ∗(k))A∗k,t

) σ′
ī,j̄
bk′

x−ρ∗(k′)
)

·
( ∏

k′∈[l]
ρ∗(k′)/∈S(i,j)

∏
t′∈[n]

(
gηx+β

∏
k∈[l]

∏
t∈[n]

(ga
t/b2k)(x−ρ∗(k))A∗k,t

) ūt′ bk′aq+1−t′

x−ρ∗(k′)
)

= Ψ1,1 ·
( ∏

k′∈[l]
ρ∗(k′)/∈S(i,j)

(gbk′ )
σ′
ī,j̄
·(ηx+β)/(x−ρ∗(k′)))

︸ ︷︷ ︸
Ψ1,2

·
( ∏
k∈[l]

∏
t∈[n]

∏
k′∈[l]

ρ∗(k′)/∈S(i,j)

(ga
tbk′/b

2
k)
σ′
ī,j̄
A∗k,t

x−ρ∗(k)

x−ρ∗(k′)
)
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·
( ∏

k′∈[l]
ρ∗(k′)/∈S(i,j)

∏
t′∈[n]

(gbk′a
q+1−t′

)ūt′ (ηx+β)/(x−ρ∗(k′)))
︸ ︷︷ ︸

Ψ1,3

·
( ∏
k∈[l]

∏
t∈[n]

∏
k′∈[l]

ρ∗(k′)/∈S(i,j)

∏
t′∈[n]

(ga
q+1−t′+tbk′/b

2
k)
A∗k,tūt′

x−ρ∗(k)

x−ρ∗(k′)
)

= Ψ1,1 · Ψ1,2 ·
( ∏

k∈[l]
ρ∗(k)∈S(i,j)

∏
t∈[n]

∏
k′∈[l]

ρ∗(k′)/∈S(i,j)

(ga
tbk′/b

2
k)
σ′
ī,j̄
A∗k,t

x−ρ∗(k)

x−ρ∗(k′)
)

︸ ︷︷ ︸
Ψ1,4 (for ρ∗(k)∈S(i,j))

·
( ∏

k∈[l]
ρ∗(k)/∈S(i,j)

∏
t∈[n]

∏
k′∈[l]\{k}
ρ∗(k′)/∈S(i,j)

(ga
tbk′/b

2
k)
σ′
ī,j̄
A∗k,t

x−ρ∗(k)

x−ρ∗(k′)
)

︸ ︷︷ ︸
Ψ1,5 (for ρ∗(k)/∈S(i,j),k

′ 6=k)

·
( ∏

k∈[l]
ρ∗(k)/∈S(i,j)

∏
t∈[n]

(ga
t/bk)

σ′
ī,j̄
A∗k,t
)

︸ ︷︷ ︸
Ψ1,6 (for ρ∗(k)/∈S(i,j),k

′=k)

·Ψ1,3

·
( ∏

k∈[l]
ρ∗(k)∈S(i,j)

∏
t∈[n]

∏
k′∈[l]

ρ∗(k′)/∈S(i,j)

∏
t′∈[n]

(ga
q+1−t′+tbk′/b

2
k)
A∗k,tūt′

x−ρ∗(k)

x−ρ∗(k′)
)

︸ ︷︷ ︸
Ψ1,7 (for ρ∗(k)∈S(i,j))

·
( ∏

k∈[l]
ρ∗(k)/∈S(i,j)

∏
t∈[n]

∏
k′∈[l]\{k}
ρ∗(k′)/∈S(i,j)

∏
t′∈[n]

(ga
q+1−t′+tbk′/b

2
k)
A∗k,tūt′

x−ρ∗(k)

x−ρ∗(k′)
)

︸ ︷︷ ︸
Ψ1,8 (for ρ∗(k)/∈S(i,j),k

′ 6=k)

·
( ∏

k∈[l]
ρ∗(k)/∈S(i,j)

∏
t∈[n]

∏
t′∈[n]

(ga
q+1−t′+t/bk)A

∗
k,tūt′

)
︸ ︷︷ ︸

(for ρ∗(k)/∈S(i,j),k
′=k)

= Ψ1,1 · Ψ1,2 · Ψ1,4 · Ψ1,5 · Ψ1,6 · Ψ1,3 · Ψ1,7 · Ψ1,8︸ ︷︷ ︸
Ψ1

·
( ∏

k∈[l]
ρ(k)/∈S(i,j)

∏
t∈[n]

∏
t′∈[n]

(ga
q+1−t′+t/bk)A

∗
k,tūt′

)
,

G−σī,j̄ = G
−σ′

ī,j̄
(
gθ
∏
k∈[l]

∏
t∈[n]

(ga
t/bk)A

∗
k,t
)−∑

t′∈[n] ūt′a
q+1−t′

= G
−σ′

ī,j̄
( ∏
t′∈[n]

(ga
q+1−t′

)−θūt′
)

︸ ︷︷ ︸
Ψ2

·
( ∏
k∈[l]

∏
t∈[n]

∏
t′∈[n]

(ga
q+1−t′+t/bk)−A

∗
k,tūt′

)

= Ψ2 ·
( ∏
k∈[l]

∏
t∈[n]

∏
t′∈[n]

(ga
q+1−t′+t/bk)−A

∗
k,tūt′

)
,
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where Ψ1 = Ψ1,1 ·Ψ1,2 · · · · ·Ψ1,8 and Ψ2 can be calculated using the suitable terms of the assumption.

D Proof of Our Extended Source Group q-Parallel BDHE Assumption

In this section, we give a lower bound to the complexity of our Extended Source Group q-Parallel
BDHE assumption. The proof is similar to that of the Source Group q-Parallel BDHE Assumption
[20] and the Modified Source Group q-Parallel BDHE Assumption [23], which are proven in the
generic group model. In the generic group model [30], an adversary does not have direct access to
the group. It must interact with an oracle to perform the group operation and obtain “handles”
for new elements. Also, it can only use handles previously received from the oracle. We consider an
experiment where an adversary is given handles for the group elements given out in the assumption
as well as a handle for the challenge term Tβ (here, β is a uniformly random bit). The adversary may
interact with the oracle to perform group operations and pairings, and gets handles in return as the
results from these operations. Finally, the adversary guesses the bit β. The difference between the
adversary’s success probability and one half is defined as its advantage. We refer readers to [4,14]
for other examples of using the generic group model for justifying assumptions in bilinear groups.

We denote a, c, d, b1, . . . , bq as variables over Zp, and define M as the following set of rational
functions over these variables:

M :=
{

1, cd, d, daq,
ai, bj , a

ibj , a
i/b2j , cdbj ∀i, j ∈ [q],

ai/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q],
aibj′/b

2
j ∀i ∈ [2q], j, j′ ∈ [q] s.t. j′ 6= j,

cdaibj′/bj , cda
ibj′/b

2
j ∀i ∈ [q], j, j′ ∈ [q] s.t. j 6= j′

}
.

These are the exponents of the group elements given in our Extended Source Group q-Parallel
BDHE assumption. Let E(M) be the set of all pairwise products of functions in M. It represents
the exponents of elements in GT that can be obtained by pairing elements with exponents in M.
We say a function T is dependent on a set of functions S = {S1, . . . , Sk} if there exist constants
r1, . . . , rk ∈ Zp such that T = r1S1 + · · ·+ rkSk. This is an equality of functions over Zp, and hence
hold for all settings of the variables. If no such constants exist, we say that T is independent of S.

Lemma 3. For each function M ∈M∪{caq+1}, the product M · caq+1 is independent of E(M)∪
caq+1(M \M). (Here, caq+1(M \M) denotes the set formed by removing M from M and then
multiplying all remaining elements by caq+1.)

Proof. As every element in M ∪ {caq+1} and E(M) ∪ caq+1(M \ M) is a ratio of monomials,
the only way that M · caq+1 can be dependent on E(M) ∪ caq+1(M \M) is if it is contained in
E(M) ∪ caq+1(M\M). First, c2a2q+2 is not in E(M) ∪ caq+1M, and for any M ∈M, caq+1M /∈
caq+1(M\M). Thus it suffices to show that for any M , caq+1M /∈ E(M). In other words, we show
that E(M) does not intersect with the set caq+1M, which is formed by multiplying each element
of M by caq+1. To see this, we examine the set caq+1M. By definition, we have that

caq+1M =
{
caq+1, c2daq+1, cdaq+1, cda2q+1,
caq+1+i, caq+1bj , ca

q+1+ibj , ca
q+1+i/b2j , c

2daq+1bj ∀i, j ∈ [q],

caq+1+i/bj ∀i ∈ [2q] \ {q + 1}, j ∈ [q],
caq+1+ibj′/b

2
j ∀i ∈ [2q], j, j′ ∈ [q] s.t. j′ 6= j,

c2daq+1+ibj′/bj , c
2daq+1+ibj′/b

2
j ∀i ∈ [q], j, j′ ∈ [q] s.t. j 6= j′

}
.
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We now check if any of these are in E(M), which is the set of pairwise products of things in M.
In M, every occurrence of c is accompanied by d, and d−1 never appears. Hence E(M) does not
contain any element which has a higher power of c than d. This rules out all the elements in caq+1M
above but cdaq+1 and cda2q+1. To rule out cdaq+1, we consider all the possible ways it might be
formed as a product of two elements of M. As d is in the term, one of the two factors in M must
be a term containing d. Note that cd, d, or daq cannot be one of the factors as aq+1, caq+1, ca /∈M.
Also, an element of the form cdbj cannot be one of the two factors as aq+1/bj /∈ M, an element
of the form cdaibj′/bj (s.t. j 6= j′) cannot be one of the two factors as aq+1−ibj/bj′ /∈ M, and an
element of the form cdaibj′/b

2
j (s.t. j 6= j′) cannot be one of the two factors as aq+1−ib2j/bj′ /∈ M.

Hence we can dismiss all the possible ways, and conclude that cdaq+1 /∈ E(M). To rule out cda2q+1,
we consider all the possible ways it might be formed as a product of two elements of M. Since d
is in the term, one of the two factors in M must be a term containing d. Similarly, cd, d, or daq

cannot be one of the factors as a2q+1, ca2q+1, caq+1 /∈ M. An element of the form cdbj cannot be
one of the two factors as a2q+1/bj /∈ M. An element of the form cdaibj′/bj (s.t. j 6= j′) cannot be
one of the two factors as a2q+1−ibj/bj′ /∈M. An element of the form cdaibj′/b

2
j (s.t. j 6= j′) cannot

be one of the two factors as a2q+1−ib2j/bj′ /∈ M. Hence we can dismiss all ways, and conclude that

cda2q+1 /∈ E(M).

We now proceed similarly to the proof strategy in [4,14,20] to establish the following theorem:

Theorem 5. For any adversary A that makes Q queries to the oracles computing the group oper-
ations in G,GT and the bilinear map e : G × G → GT , the advantage of A against the Extended

Source Group q-Parallel BDHE Assumption in the generic group model is at most O(Q
2q
p ).

Proof. The proof of this theorem is identical to that of Theorem 22 in [20].

E Access Structure and Linear Secret-Sharing Schemes

Definition 6. (Access Structure) [31] Let P be a set of attributes. A collection A ⊆ 2P is
monotone if ∀B,C : B ∈ A and B ⊆ C imply C ∈ A. An access structure (resp., monotone
access structure) is a collection (resp., monotone collection) A of non-empty subsets of P, i.e.,
A ⊆ 2P \{∅}. The sets in A are called authorized sets, and the sets not in A are called unauthorized
sets. Also, for an attribute set S ⊆ P, if S ∈ A then we say S satisfies the access structure A,
otherwise we say S does not satisfy A.

As shown in [2], any monotonic access structure can be realized by a linear secret sharing scheme.

Definition 7. (Linear Secret-Sharing Schemes (LSSS)) [31] A secret sharing scheme Π over
a set of attributes P is called linear (over Zp) if

1. The shares for each attribute form a vector over Zp.
2. There exists a matrix A called the share-generating matrix for Π. The matrix A has l rows and

n columns. For i = 1, . . . , l, the ith row Ai of A is labeled by an attribute ρ(i)(ρ is a function
from {1, . . . , l} to P). When we consider the column vector v = (s, r2, . . . , rn), where s ∈ Zp
is the secret to be shared and r2, . . . , rn ∈ Zp are randomly chosen, then Av is the vector of
l shares of the secret s according to Π. The share λi = (Av)i, i.e., the inner product Ai · v,
belongs to attribute ρ(i).
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Also shown in [2], every LSSS as defined above enjoys the linear reconstruction property, which is
defined as follows: Suppose that Π is an LSSS for access structure A. Let S ∈ A be an authorized
set, and I ⊂ {1, . . . , l} be defined as I = {i : ρ(i) ∈ S}. There exist constants {ωi ∈ Zp}i∈I
such that

∑
i∈I ωiAi = (1, 0, . . . , 0), so that if {λi} are valid shares of a secret s according to Π,∑

i∈I ωiλi = s. Furthermore, these constants {ωi} can be found in time polynomial in the size of
the share-generating matrix A. For any unauthorized set, no such constants exist.

F Complexity Assumptions

Decision 3-Party Diffie Hellman Assumption (D3DH). Given a group generator G, define
the following distribution:

(p,G,GT , e)
R←− G(λ), g

R←− G, a, b, c
R←− Zp,

D =
(
(p,G,GT , e), g, g

a, gb, gc
)
, T0 = gabc, T1

R←− G.

The advantage of an algorithm A in breaking the Decision 3-Party Diffie Hellman Assumption is:

AdvD3DH
G,A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|.

Definition 8. G satisfies the Decision 3-Party Diffie Hellman Assumption if AdvD3DH
G,A (λ) is a

negligible function of λ for any PPT algorithm A.

Decisional Linear Assumption (DLIN). Given a group generator G, define the following
distribution:

(p,G,GT , e)
R←− G(λ), g

R←− G, a, b, c, x, y
R←− Zp,

D =
(
(p,G,GT , e), g, g

a, gb, gc, gax, gby
)
, T0 = gc(x+y), T1

R←− G.

The advantage of an algorithm A in breaking the Decisional Linear Assumption is:

AdvDLING,A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|.

Definition 9. G satisfies the Decisional Linear Assumption if AdvDLING,A (λ) is a negligible function
of λ for any PPT algorithm A.

G Revocable KP-ABE and Blackbox Traceability

In this section, we define Revocable KP-ABE (or R-KP-ABE for short) and its security, which
are based on conventional (non-traceable, non-revocable) KP-ABE (e.g. [12,18,27]). Similar to the
traceable CP-ABE in [21], in our ‘functional’ definition, we explicitly assign and identify users using
unique indices. Then we formalize traceability against attributes-specific decryption blackbox on
R-KP-ABE.
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G.1 Revocable KP-ABE

A Revocable Key-Policy Attribute-Based Encryption (R-KP-ABE) scheme consists of four algo-
rithms:

Setup(λ,N)→ (PP,MSK). The algorithm takes as input a security parameter λ and the number
of users in the system N , runs in polynomial time in λ, and outputs a public parameter PP and
a master secret key MSK. We assume that PP contains the description of the attribute universe
U7.

KeyGen(PP,MSK,A)→ SKk,A. The algorithm takes as input the public parameter PP, the master
secret key MSK, and an access policy A over U , and outputs a secret key SKk,A, which is assigned
and identified by a unique index k ∈ [N ].

Encrypt(PP,M,R, S)→ CTR,S . The algorithm takes as input PP, a message M , a revocation list
R ⊆ [N ], and an attribute set S ⊆ U , and outputs a ciphertext CTR,S . (R,S) is included in
CTR,S .

Decrypt(PP, CTR,S , SKk,A)→M or ⊥. The algorithm takes as input PP, a ciphertext CTR,S , and
a secret key SKk,A. If (k ∈ [N ] \R) AND (S satisfies A), the algorithm outputs a message M ,
otherwise it outputs ⊥ indicating the failure of decryption.

Correctness. The scheme must satisfy the following correctness property: For any access policy
A over U , k ∈ [N ], revocation list R ⊆ [N ], attribute set S ⊆ U , and message M , suppose
(PP,MSK) ← Setup(λ,N), SKk,A ← KeyGen(PP,MSK,A), CTR,S ← Encrypt(PP,M,R, S). If (k ∈
[N ] \R) ∧ (S satisfies A) then Decrypt(PP, CTR,S ,SKk,A) = M .

Security. The security of the R-KP-ABE is defined by the following game.

GameMH. This message-hiding game is defined between a challenger and an adversary A.

Setup. The challenger runs Setup(λ,N) and gives the public parameter PP to A.

Phase 1. For i = 1 to Q1, A adaptively submits (index, access policy) pair (ki,Aki) to ask for
secret key for access policy Aki . For each (ki,Aki) pair, the challenger responds with a secret
key SKki,Aki , which corresponds to access policy Aki and has index ki.

Challenge.A submits two equal-length messagesM0,M1 and a (revocation list, attribute set) pair
(R∗, S∗). The challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,S∗ ← Encrypt(PP,Mb, R

∗,
S∗) to A.

Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, access policy) pair (ki,Aki) to ask
for secret key for access policy Aki . For each (ki,Aki) pair, the challenger responds with a secret
key SKki,Aki , which corresponds to access policy Aki and has index ki.

Guess. A outputs a guess b′ ∈ {0, 1} for b.

A wins the game if b′ = b under the restriction that none of the queried {(ki,Aki)}
Q
i=1 can satisfy

(ki ∈ [N ]\R∗) AND (S∗ satisfies Aki). The advantage of A is defined as MHAdvA = |Pr[b′ = b]− 1
2 |.

Definition 10. An N -user R-KP-ABE scheme is secure if for all probabilistic polynomial time
(PPT) adversaries A, MHAdvA is negligible in λ.

7 For large universe and also in our work, the attribute universe depends only on the size of the underlying group
G, which depends on λ and the group generation algorithm.
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We say that an N -user R-KP-ABE scheme is selectively secure if we add an Init stage before
Setup where the adversary commits to the challenge attribute set S∗.

It is worth noticing that: (1) although the KeyGen algorithm is responsible for determining/assigning
the index of each user’s secret key, to capture the security that an adversary can adaptively choose secret
keys to corrupt, the above model allows A to specify the index when querying for a key, i.e., for i = 1
to Q, A submits pairs of (ki,Aki) for secret keys with access policies corresponding to Aki , and the
challenger will assign ki to be the index of the corresponding secret key, where Q ≤ N , ki ∈ [N ], and
ki 6= kj ∀1 ≤ i 6= j ≤ Q (this is to guarantee that each user/key can be uniquely identified by an
index); and (2) for ki 6= kj we do not require Aki 6= Akj , i.e., different users/keys may have the same
access policy.

Remark: (1) The R-KP-ABE defined above extends the conventional definition for non-revocable
KP-ABE [12,18,27], where the revocation list R is always empty. (2) When the revocation list
R needs an update due to, for example, some decryption keys being compromised or some users
leaving the system, the updated R needs to be disseminated to encrypting parties. In practice, this
can be done in a similar way to the certificate revocation list distribution in the existing Public Key
Infrastructure, namely an authority may update R, and publish it together with the authority’s
signature generated on it. (3) From the view of the public, R is just a set of numbers (in [N ]). These
numbers (or indices) do not have to provide any information on the corresponding users, in fact,
besides the authority who runs KeyGen, each user only knows his/her own index. Also, encrypting
parties do not need to know the indices of any users in order to encrypt but only the attribute
sets. Although associating a revocation list with a ciphertext might make the resulting KP-ABE
look less purely attribute-based, it does not undermine the capability of KP-ABE, that is, enabling
fine-grained access control on encrypted messages.

G.2 Blackbox Traceability

An attributes-specific decryption blackbox D is described by a (revocation list, attribute set) pair
(RD,AD) and a non-negligible probability value ε (i.e. 0 < ε ≤ 1 is polynomial in λ), and this
blackbox D can decrypt ciphertexts generated under (RD,AD) with probability at least ε. Such a
blackbox can reflect most practical scenarios, which include the key-like decryption blackbox for sale
where an explicit description of the blackbox’s decryption ability is given and decryption blackbox
“found in the wild” where only some clue on the attribute set of the ciphertext that the blackbox can
decrypt may be found, similar to that discussed in [21]. In particular, once a blackbox is found being
able to decrypt ciphertexts (regardless of how this is found, for example, an explicit description
of the blackbox’s decryption ability is given, or the law enforcement agency finds some clue), we
can regard it as an attributes-specific decryption blackbox with the corresponding (revocation list,
attribute set) pair (which is associated to the ciphertext).

We now define the tracing algorithm and traceability against attributes-specific decryption black-
box.

TraceD(PP, RD, SD, ε) → KT ⊆ [N ]. Trace is an oracle algorithm that interacts with an attributes-
specific decryption blackbox D. By given the public parameter PP, a revocation list RD, an attribute
set SD, and a probability value ε, the algorithm runs in time polynomial in λ and 1/ε, and outputs
an index set KT ⊆ [N ] which identifies the set of malicious users. Note that ε has to be polynomially
related to λ, i.e. ε = 1/f(λ) for some polynomial f .
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The following tracing game captures the notion of fully collusion-resistant traceability against
attributes-specific decryption blackbox. In the game, the adversary targets to build a decryption
blackbox D that can decrypt ciphertexts under some (revocation list, attribute set) pair (RD, SD).

GameTR. The tracing game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(λ,N) and gives the public parameter PP to A.
Key Query. For i = 1 to Q, A adaptively submits (index, access policy) pair (ki,Aki) to ask for

secret key for access policy Aki . For each (ki,Aki) pair, the challenger responds with a secret
key SKki,Aki , which corresponds to access policy Aki and has index ki.

Decryption Blackbox Generation. A outputs a decryption blackbox D associated with a
(revocation list, attribute set) pair (RD, SD) and a non-negligible probability value ε.

Tracing. The challenger runs TraceD(PP, RD, SD, ε) to obtain an index set KT ⊆ [N ].

Let KD = {ki|1 ≤ i ≤ Q} be the index set of secret keys corrupted. We say that A wins the game
if:

1. Pr[D(Encrypt(PP,M,RD, SD)) = M ] ≥ ε, where the probability is taken over the random
choices of messageM and the random coins of D. A decryption blackbox satisfying this condition
is said to be a useful attributes-specific decryption blackbox.

2. KT = ∅, or KT 6⊆ KD, or ((kt ∈ RD) OR (SD does not satisfy Akt) ∀kt ∈ KT ).

We denote by TRAdvA the probability that A wins.
For a useful attributes-specific decryption blackbox D, the traced KT must satisfy (KT 6=

∅)∧(KT ⊆ KD)∧(∃kt ∈ KT s.t. (kt ∈ [N ]\RD) AND (SD satisfies Akt)). (1) (KT 6= ∅)∧(KT ⊆ KD)
captures the preliminary traceability that the tracing algorithm can extract at least one malicious
user and the coalition of malicious users cannot frame any innocent user. (2) (∃kt ∈ KT s.t. (kt ∈
[N ] \ RD) AND (SD satisfies Akt)) captures the strong traceability that the tracing algorithm
can extract at least one malicious user whose secret key enables D to have the decryption ability
corresponding to (RD, SD), i.e. whose index is not in RD and whose access policy is satisfied by
SD. We refer to [15,21] on why strong traceability is desirable. Note that, as of [6,7,10,15,21], we
are modeling a stateless (resettable) decryption blackbox – such a blackbox is just an oracle and
maintains no state between activations. Also note that we are modeling public traceability, namely,
the Trace algorithm does not need any secrets and anyone can perform the tracing from the public
parameter only.

Definition 11. An N -user R-KP-ABE scheme is traceable against attributes-specific decryption
blackbox if for all PPT adversaries A, TRAdvA is negligible in λ.

We say that an N -user R-KP-ABE is selectively traceable against attributes-specific decryption
blackbox if we add an Init stage before Setup where the adversary commits to the access policy
AD.

In the traceable R-KP-ABE above, it is possible to trace all the active secret keys in the
blackbox. In particular, given a decryption blackbox D described by (RD, SD) and non-negligible
probability ε, we can run Trace to obtain an index set KT so that (KT 6= ∅) ∧ (KT ⊆ KD) ∧
(∃kt ∈ KT s.t. (kt ∈ [N ] \ RD) AND (SD satisfies Akt)). Then, we can set a new revocation list
R′D = RD ∪ {kt ∈ KT | (kt ∈ [N ] \RD) AND (SD satisfies Akt)} and test whether D can decrypt
ciphertexts under (R′D, SD). If D can still decrypt the ciphertexts with non-negligible probability
ε′, we can run Trace on (R′D, SD, ε

′) and obtain a new index set K′T , where (K′T 6= ∅) ∧ (K′T ⊆
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KD)∧(∃kt ∈ K′T s.t. (kt ∈ [N ]\R′D) AND (SD satisfies Akt)). By repeating this process, iteratively
expanding the revocation list, until D can no longer decrypt the corresponding ciphertexts, we have
finished finding out all the active malicious users of D.

H Augmented R-KP-ABE

We now define Augmented R-KP-ABE (or AugR-KP-ABE for short) from the R-KP-ABE above,
formalize its security notions, then show that a secure AugR-KP-ABE can be transformed to
a R-KP-ABE with blackbox traceability. In Appendix I, we propose a concrete construction of
AugR-KP-ABE.

H.1 Definitions

An AugR-KP-ABE scheme has four algorithms: SetupA, KeyGenA, EncryptA, and DecryptA. The
setup algorithm SetupA and key generation algorithm KeyGenA are the same as that of R-KP-ABE.
For the encryption algorithm, it takes one more parameter k̄ ∈ [N + 1] as input, and is defined as
follows.

EncryptA(PP,M,R, S, k̄) → CTR,S . The algorithm takes as input PP, a message M , a revocation
list R ⊆ [N ], an attribute set S, and an index k̄ ∈ [N + 1], and outputs a ciphertext CTR,S .
(R,S) is included in CTR,S, but the value of k̄ is not.

The decryption algorithm DecryptA is also defined in the same way as that of R-KP-ABE. However,
the correctness definition is changed to the following.

Correctness. For any access policy A over U , k ∈ [N ], revocation list R ⊆ [N ], attribute set
S ⊆ U , encryption index k̄ ∈ [N+1], and message M , suppose (PP,MSK)← SetupA(λ,N), SKk,A ←
KeyGenA(PP,MSK,A), CTR,S ← EncryptA(PP,M,R, S, k̄). If (k ∈ [N ]\R)∧(S satisfies A)∧(k ≥ k̄)
then DecryptA(PP, CTR,S ,SKk,A) = M .

Note that during decryption, as long as (k ∈ [N ]\R)∧ (S satisfies A), the decryption algorithm
outputs a message, but only when k ≥ k̄, the output message is equal to the correct message, that
is, if and only if (k ∈ [N ] \R) ∧ (S satisfies A) ∧ (k ≥ k̄), can SKk,A correctly decrypt a ciphertext
under (R,S, k̄). If we always set k̄ = 1, the functions of AugR-KP-ABE are identical to that of
R-KP-ABE. In fact, the idea behind transforming an AugR-KP-ABE to a blackbox traceable R-
KP-ABE, that we will show shortly, is to construct an AugR-KP-ABE with index-hiding property,
and then always sets k̄ = 1 in normal encryption, while using k̄ ∈ [N + 1] to generate ciphertexts
for tracing.

Security. We define the security of AugR-KP-ABE in two games. The first game is a message-
hiding game and says that a ciphertext created using index N + 1 is unreadable by anyone. The
second game is an index-hiding game and captures the intuition that a ciphertext created using
index k̄ reveals no non-trivial information about k̄.

GameAMH. The message-hiding game GameAMH is similar to GameMH except that the Challenge
phase is

Challenge.A submits two equal-length messagesM0,M1 and a (revocation list, attribute set) pair
(R∗, S∗). The challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,S∗ ← EncryptA(PP,Mb, R

∗,
S∗, N + 1) to A.

37



A wins the game if b′ = b. The advantage of A is defined as MHAAdvA = |Pr[b′ = b]− 1
2 |.

Definition 12. An N -user Augmented R-KP-ABE scheme is message-hiding in GameAMH if for all
PPT adversaries A the advantage MHAAdvA is negligible in λ.

GameAIH. In the index-hiding game, we require that, for any (revocation list, attribute set) pair
(R∗, S∗), an adversary cannot distinguish between a ciphertext under (R∗, S∗, k̄) and (R∗, S∗, k̄+1)
without a secret key SKk̄,Ak̄ , where (k̄ ∈ [N ] \R∗) ∧ (S∗ satisfies Ak̄). The game takes as input a

parameter k̄ ∈ [N ] which is given to both the challenger and the adversary A. The game is similar
to GameMH except that the Challenge phase is

Challenge. A submits a message M and a (revocation list, attribute set) pair (R∗, S∗). The
challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,S∗ ← EncryptA(PP, M,R∗, S∗, k̄ + b)
to A.

A wins the game if b′ = b under the restriction that none of the queried pairs {(ki,Aki)}
Q
i=1

can satisfy (ki = k̄) ∧ (ki ∈ [N ] \ R∗) ∧ (S∗ satisfies Aki). The advantage of A is defined as
IHAAdvA[k̄] = |Pr[b′ = b]− 1

2 |.

Definition 13. An N -user Augmented R-KP-ABE scheme is index-hiding if for all PPT adver-
saries A the advantages IHAAdvA[k̄] for k̄ = 1, . . . , N are negligible in λ.

We say that an Augmented R-KP-ABE scheme is selectively index-hiding if we add an Init
stage before Setup where the adversary commits to the challenge attribute set S∗.

H.2 The Reduction of Traceable R-KP-ABE to Augmented R-KP-ABE

LetΣA = (SetupA,KeyGenA,EncryptA,DecryptA) be an AugR-KP-ABE, define Encrypt(PP,M,R, S) =
EncryptA(PP,M,R, S, 1), then Σ = (SetupA,KeyGenA,Encrypt,DecryptA) is a R-KP-ABE derived
from ΣA. In the following, we show that if ΣA is message-hiding and index-hiding, then Σ is secure
(w.r.t. Def. 10). Furthermore, we propose a tracing algorithm Trace for Σ and show that if ΣA is
message-hiding and index-hiding, then Σ (equipped with Trace) is traceable (w.r.t. Def. 11).

H.2.1 R-KP-ABE Security

Theorem 6. If ΣA is message-hiding and index-hiding (resp. selectively index-hiding), then Σ is
secure (resp. selectively secure).

Proof. First we need a slightly more elaborate message-hiding game for ΣA. In addition to N,λ,
this extended game, denoted as GameAEMH, takes as input a parameter k̄ ∈ [N + 1] which is only
given to the challenger. GameAEMH is similar to the original GameAMH except that the Challenge
phase is

Challenge.A submits two equal-length messagesM0,M1 and a (revocation list, attribute set) pair
(R∗, S∗). The challenger flips a random coin b ∈ {0, 1}, and sends CTR∗,A∗ ← EncryptA(PP,Mb, R

∗,
S∗, k̄) to A. This is the only place where k̄ is used in the game.
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The adversary A wins the game if b′ = b under the restriction that none of the queried pairs
{(ki, Ski)}

Q
i=1 can satisfy (ki ∈ [N ] \ R∗) ∧ (S∗ satisfies Aki). The advantage of A is defined as

EMHAAdvA[k̄] = |Pr[b′ = b]− 1
2 |.

When k̄ = 1, the game above, including the restriction, is exactly identical to the message-
hiding game GameMH for Σ, we have EMHAAdvA[1] = MHAdvA. When k̄ = N + 1, we have that
EMHAAdvA[N + 1] ≤ MHAAdvA, since GameAMH is identical to GameAEMH for k̄ = N + 1, but there
is no restriction in GameAMH. In the following proof sketch, we will make use of the facts that ΣA

is message-hiding and index-hiding to show that EMHAAdvA[1] is negligible, which implies that
MHAdvA is negligible (i.e. Σ is secure w.r.t. Def. 10).

Suppose that Σ is not secure, i.e. MHAdvA > ε for some adversary A and non-negligible ε.
MHAdvA > ε implies that EMHAAdvA[1] > ε. As ΣA is message-hiding, MHAAdvA is negligible
(for simplicity, say MHAAdvA = 0), thus EMHAAdvA[N + 1] = 0. Then, by the standard hybrid
argument there exists a k̄ ∈ [N ] such that

|EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| > ε/N.

In other words, with non-negligible probability, A is able to distinguish EncryptA(PP,M,R∗, S∗, k̄)
from EncryptA(PP,M, R∗, S∗, k̄ + 1) for some M and (R∗, S∗). But then A can directly be used to
win the index-hiding game GameAIH.

More specifically, by reduction (the details are given in Appendix J) where an adversary B in
GameAIH with input k̄ makes use of an adversary A through simulating GameAEMH, we show that for
any A, there exists B such that for all k̄ = 1, . . . , N , we have

|EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| ≤ 2 · IHAAdvB[k̄]. (4)

Then we have

|EMHAAdvA[1]− EMHAAdvA[N + 1]| ≤
N∑
k̄=1

|EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| ≤ 2

N∑
k̄=1

IHAAdvB[k̄].

But since ΣA is message-hiding and index-hiding, we have that EMHAAdvA[N + 1] and IHAAdvB[k̄]
for k̄ = 1, . . . , N are negligible for any PPT adversary. Therefore, EMHAAdvA[1] is negligible. The
selective case is similar.

H.2.2 R-KP-ABE Traceability
We now propose a tracing algorithm, which uses a general tracing method previously used in
[5,24,6,7,10,21], and show that equipped with Trace, Σ is traceable (w.r.t. Def. 11).

TraceD(PP, RD, SD, ε)→ KT ⊆ [N ]: Given an attributes-specific decryption blackbox D associated
with a (revocation list, attribute set) pair (RD, SD) and probability ε > 0, the tracing algorithm
works as follows:

1. For k = 1 to N + 1, do the following:
(a) Repeat the following 8λ(N/ε)2 times:

i. Sample M from the message space at random.
ii. Let CTRD,SD ← EncryptA(PP,M,RD, SD, k).
iii. Query oracle D on input CTRD,SD , and compare the output of D with M .

(b) Let p̂k be the fraction of times that D decrypted the ciphertexts correctly.
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2. Let KT be the set of all k ∈ [N ] for which p̂k − p̂k+1 ≥ ε/(4N). Output KT .

Theorem 7. If ΣA is message-hiding and index-hiding (resp. selectively index-hiding), then Σ is
traceable (resp. selectively traceable).

Proof. We show that if the blackbox output by the adversary is a useful one then KT will satisfy
(KT 6= ∅) ∧ (KT ⊆ KD) ∧ (∃kt ∈ KT s.t. (kt ∈ [N ] \ RD) ∧ (SD satisfies Akt)) with overwhelming
probability, which implies that the adversary cannot win GameTR, i.e., TRAdvA is negligible. The
selective case will be similar. Let D be the attributes-specific decryption blackbox output by the
adversary, and (RD, SD) be the (revocation list, attribute set) pair describing D. Define

pk̄ = Pr[D(EncryptA(PP,M,RD, SD, k̄)) = M ],

where the probability is taken over the random choice of message M and the random coins of D.
We have that p1 ≥ ε and pN+1 is negligible (for simplicity let pN+1 = 0). The former follows from
the fact that D is useful, and the latter is because ΣA is message-hiding in GameAMH. Then there
must exist some k ∈ [N ] such that pk− pk+1 ≥ ε/(2N). By the Chernoff bound it follows that with
overwhelming probability, p̂k − p̂k+1 ≥ ε/(4N). Hence, we have KT 6= ∅.

For any k ∈ KT (i.e., p̂k − p̂k+1 ≥ ε/(4N)), we know, by Chernoff, that with overwhelming
probability pk − pk+1 ≥ ε/(8N). Clearly (k ∈ KD) ∧ (k ∈ [N ] \ RD) ∧ (SD satisfies Ak) since
otherwise, D can directly be used to win the index-hiding game for ΣA. Hence, we have (KT ⊆
KD) ∧ ((k ∈ [N ] \RD) ∧ (SD satisfies Ak) ∀k ∈ KT ).

I An Efficient Augmented R-KP-ABE

We propose an AugR-KP-ABE scheme which is highly expressive and efficient with sub-linear
overhead in the number of users in the system. It is also large universe, where attributes do not
need to be enumerated during setup, and the public parameter size is independent of the attribute
universe size. We show that this AugR-KP-ABE is message-hiding and selectively index-hiding in
the standard model.

Combining this AugR-KP-ABE with the results in Sec. H.2, we obtain a large universe R-
KP-ABE which is selectively secure and traceable, and for a fully collusion-resistant blackbox
traceable KP-ABE, the resulting R-KP-ABE achieves the most efficient level to date, with sub-
linear overhead.

To obtain this practical KP-ABE scheme supporting traitor tracing, revocation and large uni-
verse, we borrow ideas from the Blackbox Traceable CP-ABE of [21], the Trace and Revoke scheme
of [10] and the Large Universe KP-ABE of [27], but the work is not trivial as a straightforward com-
bination of the ideas would result in a scheme which is inefficient, insecure, or is not able to achieve
strong traceability. Specifically, by incorporating the ideas from [10] and [27] into the Augmented
CP-ABE of [21], we can obtain a large universe AugR-KP-ABE which is message-hiding, but prov-
ing the index-hiding property is a challenging task. The proof techniques for index-hiding in [21]
only work if the attribute universe size is polynomial in the security parameter and the parameters
of attributes have to be enumerated during setup. They are not applicable to large universe. The
proof techniques in [27] are applicable to large universe, but work only for message-hiding, while
not applicable to index-hiding. To prove index-hiding in the large universe setting, we introduce
a new assumption that the index-hiding of our large universe AugR-KP-ABE can be based on. In
particular, in the underlying q-2 assumption of [27] on bilinear groups (p,G,GT , e), the challenge
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term T ∈ GT is e(g, g)abc or a random element, and such a term in the target group could be used to
prove the message-hiding as the message space is GT . To prove the index-hiding, which is based on
the ciphertext components in the source group G, we need the challenge term to be in the source
group G so that the simulator can embed the challenge term into these ciphertext components.
Inspired by the Source Group q-Parallel BDHE Assumption in [20], which is a close relative to the
(target group) Decisional Parallel BDHE Assumption in [31], we modify the q-2 assumption to its
source group version where the challenge term is gabc or a random element in G. Based on this new
assumption and with a new crucial proof idea, we prove the index-hiding property for our large
universe AugR-KP-ABE. We prove that this new assumption holds in the generic group model.

I.1 Preliminaries

Complexity Assumptions. Besides the Decision 3-Party Diffie-Hellman Assumption (D3DH)
and the Decisional Linear Assumption (DLIN) that are used in [10] to achieve traceability in
broadcast encryption, the index-hiding property of our AugR-KP-ABE construction will rely on a
new assumption, which we refer to as Source Group q-Parallel DBDH Assumption. Here we only
review this new assumption, and refer to Appendix F for the details of the other assumptions.

The Source Group q-Parallel DBDH Assumption Given a group generator G and a positive
integer q, define the following distribution:

(p,G,GT , e)
R←− G(λ),

g
R←− G, a, b, c, d, d1, . . . , dq

R←− Zp,
D =

(
(p,G,GT , e), g, g

a, gb, gcd, g(acd)2
, gd, gad,

gdi , gacddi , ga
2cddi , gacd/di , gb/d

2
i , gb

2/d2
i ∀i ∈ [q],

gacddi/dj , g(acd)2di/dj , gbdi/d
2
j , gabcddi/d

2
j ∀i, j ∈ [q] s.t. i 6= j

)
,

T0 = gabc, T1
R←− G.

The advantage of an algorithm A in breaking the Source Group q-Parallel DBDH Assumption is:
AdvqG,A(λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|.

Definition 14. G satisfies the Source Group q-Parallel DBDH Assumption if AdvqG,A(λ) is a neg-
ligible function of λ for any PPT algorithm A.

Note that the q-2 assumption in [27] is a variant of DBDH assumption, where 4q2 + 2q + 1
additional input terms are given to the adversary, we refer to it as q-Parallel DBDH assumption.
The above new assumption is closely related to q-Parallel DBDH assumption (i.e. the q-2 assumption
in [27]) except that the challenge term gabc remains in the source group, all the input terms replace
c with cd, and additional input terms gd and gad are given to the adversary. The relation between
this assumption and the q-2 assumption is analogous to that between the Source Group q-Parallel
BDHE Assumption [20] and the Decisional Parallel BDHE Assumption [31], i.e. the challenge term
changes from a term in the target group (i.e. e(g, g)abc and e(g, g)ca

q+1
respectively) to a term in

the source group (i.e. gabc and gca
q+1

respectively), and the input terms are modified accordingly
(i.e. replacing c with cd, and adding gd). The main difference is that in this new assumption, there
is an additional input term gad. Note that giving the term gad does not pose any problem in the
generic group model. Intuitively, there are two ways that the adversary may make use of the term
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gad: (1) pairing gad with the challenge term: since the pairing result of any two input terms would
not be e(g, g)a

2bcd, the adversary cannot break this new assumption in this way; (2) pairing the
challenge term with another input term whose exponent contains d: however, the result could be
a random element or one of { e(g, g)abc

2d, e(g, g)a
3bc3d2

, e(g, g)abcd, e(g, g)a
2bc2ddi , e(g, g)a

3bc2ddi ,

e(g, g)a
2bc2d/di , e(g, g)a

2bc2ddi/dj , e(g, g)a
3bc3d2di/dj , e(g, g)a

2b2c2ddi/d
2
j }, and as there is no input term

which can be paired with gad to obtain any of these terms, the adversary cannot break this new
assumption by this way either. In Appendix L, we prove that this assumption holds in the generic
group model.

I.2 Augmented R-KP-ABE Construction

Now we propose a large universe Augmented R-KP-ABE, where the attribute universe is U = Zp,
and we do not need to enumerate all the attributes or their corresponding public parameters
during system setup. Note that the notations here are same to that of the Augmented R-CP-ABE
construction in Sec. 4.2.

SetupA(λ,N = m2)→ (PP,MSK). The algorithm calls the group generator G(λ) to get (p,G,GT , e),
where p is the prime order of G and GT and e is the bilinear map, and sets the attribute universe
to U = Zp. It then randomly picks

g, h, f, f1, . . . , fm, G, H ∈ G, {αi, ri, zi ∈ Zp}i∈[m], {cj ∈ Zp}j∈[m],

and outputs the public parameter PP and master secret key MSK as

PP =
(

(p,G,GT , e), g, h, f, f1, . . . , fm, G, H,

{Ei = e(g, g)αi , Gi = gri , Zi = gzi}i∈[m], {Hj = gcj}j∈[m]

)
.

MSK =
(
α1, . . . , αm, r1, . . . , rm, c1, . . . , cm

)
.

A counter ctr = 0 is implicitly included in MSK.
KeyGenA(PP,MSK, (A, ρ))→ SK(i,j),(A,ρ). (A, ρ) is an LSSS matrix where ρ maps each row Ak of A

to an attribute ρ(k) ∈ U = Zp. Let l×n be the size of A. The algorithm first sets ctr = ctr+1 and
computes the corresponding index in the form of (i, j) where 1 ≤ i, j ≤ m and (i−1)∗m+j = ctr.
Then the algorithm randomly chooses u = (σi,j , u2, . . . , un) ∈ Znp and {ξk ∈ Zp}k∈[l], and out-
puts a secret key SK(i,j),(A,ρ) =

(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j , {K̄i,j,j′}j′∈[m]\{j}, {Ki,j,k,1,Ki,j,k,2,

Ki,j,3}k∈[l]

)
where

Ki,j = gαigricj (ffj)
σi,j , K ′i,j = gσi,j , K ′′i,j = Z

σi,j
i , {K̄i,j,j′ = f

σi,j
j′ }j′∈[m]\{j},

{Ki,j,k,1 = f (Ak·u)Gξk , Ki,j,k,2 = (Hρ(k)h)−ξk , Ki,j,k,3 = gξk}k∈[l].

EncryptA(PP,M,R, S, (̄i, j̄))→ CTR,S . R ⊆ [m,m] is a revocation list. S ⊆ U = Zp is an attribute
set. The encryption is for recipients whose (index, access policy) pairs ((i, j), (A, ρ)) satisfy(
(i, j) ∈ [m,m] \R

)
∧
(
S satisfies (A, ρ)

)
∧
(
(i, j) ≥ (̄i, j̄)

)
. Let R̄ = [m,m] \R and for i ∈ [m],

R̄i = {j′|(i, j′) ∈ R̄}, that is, R̄ is the non-revoked index list, and R̄i is the set of non-revoked
column index on the i-th row. The algorithm randomly chooses

κ, τ, s1, . . . , sm, t1, . . . , tm ∈ Zp,
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vc, w1, . . . ,wm ∈ Z3
p,

δx ∈ Zp ∀x ∈ S, π ∈ Zp.

In addition, it randomly chooses rx, ry, rz ∈ Zp, and sets χ1 = (rx, 0, rz), χ2 = (0, ry, rz),
χ3 = χ1 × χ2 = (−ryrz,−rxrz, rxry). Then it randomly chooses

vi ∈ Z3
p ∀i ∈ {1, . . . , ī},

vi ∈ span{χ1,χ2} ∀i ∈ {̄i+ 1, . . . ,m},

and creates the ciphertext 〈R,S, (Ri,R
′
i, Qi, Q

′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, P, {Px, P ′x}x∈S〉 as fol-

lows:
1. For each row i ∈ [m]:

– if i < ī: randomly chooses ŝi ∈ Zp, and sets

Ri = gvi , R′i = gκvi , Qi = gsi , Q′i = (f
∏
j′∈R̄i

fj′)
siZtii f

π, Q′′i = gti , Ti = E ŝii .

– if i ≥ ī: sets

Ri = Gsivii , R′i = Gκsivii ,

Qi = gτsi(vi·vc), Q′i = (f
∏
j′∈R̄i

fj′)
τsi(vi·vc)Ztii f

π, Q′′i = gti , Ti = M · Eτsi(vi·vc)i .

2. For each column j ∈ [m]:

– if j < j̄: randomly chooses µj ∈ Zp, and sets Cj = H
τ(vc+µjχ3)
j · gκwj , C ′j = gwj .

– if j ≥ j̄: sets Cj = Hτvc
j · gκwj , C ′j = gwj .

3. P = gπ, {Px = gδx , P ′x = (Hxh)δxG−π}∀x∈S .
DecryptA(PP, CTR,S ,SK(i,j),(A,ρ)) → M or ⊥. For ciphertext CTR,S = 〈R,S, (Ri,R

′
i, Qi, Q

′
i, Q
′′
i ,

Ti)
m
i=1, (Cj ,C

′
j)
m
j=1, P, {Px, P ′x}x∈S〉 and secret key SK(i,j),(A,ρ) =

(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j ,

{K̄i,j,j′}j′∈[m]\{j}, {Ki,j,k,1, Ki,j,k,2,Ki,j,k,3}k∈[l]

)
, if (i, j) ∈ R or S does not satisfy (A, ρ), the

algorithm outputs ⊥, otherwise:
1. Since S satisfies (A, ρ), the algorithm can efficiently compute constants {ωk ∈ Zp} such that∑

ρ(k)∈S ωkAk = (1, 0, . . . , 0), then compute

DP =
∏

ρ(k)∈S

(
e(Ki,j,k,1, P ) · e(Ki,j,k,2, Pρ(k)) · e(Ki,j,k,3, P

′
ρ(k))

)ωk
=
∏

ρ(k)∈S

(
e(f (Ak·u)Gξk , gπ) · e((Hρ(k)h)−ξk , gδρ(k)) · e(gξk , (Hρ(k)h)δρ(k)G−π)

)ωk
=
∏

ρ(k)∈S

(
e(f (Ak·u), gπ)

)ωk = e(f, g)πσi,j .

Note that if S does not satisfy (A, ρ), no such constants {ωk ∈ Zp} would exist.
2. Since (i, j) ∈ R̄(= [m,m] \R) implies j ∈ R̄i, the algorithm can compute

K̄i,j = Ki,j · (
∏

j′∈R̄i\{j}

K̄i,j,j′) = gαigricj (ffj)
σi,j · (

∏
j′∈R̄i\{j}

f
σi,j
j′ ) = gαigricj · (f

∏
j′∈R̄i

fj′)
σi,j .
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Note that if (i, j) ∈ R (implying j /∈ R̄i), the algorithm cannot produce such a K̄i,j . The
algorithm then computes

DI =
e(K̄i,j , Qi) · e(K ′′i,j , Q′′i )

e(K ′i,j , Q
′
i)

·
e3(R′i,C

′
j)

e3(Ri,Cj)
.

3. Computes M = Ti/(DP ·DI). Suppose that the ciphertext is generated from message M ′ and
encryption index (̄i, j̄), it can be verified that only when (i > ī) or (i = ī ∧ j ≥ j̄), M = M ′.
This is because for i > ī, we have (vi ·χ3) = 0 (since vi ∈ span{χ1,χ2}), and for i = ī, we have
that (vi · χ3) 6= 0 happens with overwhelming probability (since vi is randomly chosen from
Z3
p). The correctness is also referred to Appendix B.

I.3 Augmented R-KP-ABE Security

The following theorem states that the AugR-KP-ABE proposed above is message-hiding. Then in
Theorem 9, we state that the AugR-KP-ABE is also selectively index-hiding.

Theorem 8. No PPT adversary can win GameAMH with non-negligible advantage.

Proof. The argument for message-hiding in GameAMH is straightforward since an encryption to index
N+1 (i.e. (m+1, 1)) contains no information about the message. The simulator simply runs SetupA

and KeyGenA and encrypts Mb under the challenge (revocation list, attribute set) pair (R∗, S∗) and
index (m+ 1, 1). Since for all i = 1 to m, Ti = E ŝii contains no information about the message, the
bit b is perfectly hidden and MHAAdvA = 0.

Theorem 9. Suppose that the D3DH, the DLIN and the Source Group q-Parallel DBDH Assump-
tion hold. Then no PPT adversary can selectively win GameAIH with non-negligible advantage, pro-
vided that the size of the challenge attribute set is ≤ q.

Proof. It follows Lemma 4 and Lemma 5 below.

Lemma 4. If the D3DH and the Source Group q-Parallel DBDH Assumption hold, then for j̄ < m,
no PPT adversary can selectively distinguish between an encryption to (̄i, j̄) and (̄i, j̄+1) in GameAIH
with non-negligible advantage, provided that the size of the challenge attribute set is ≤ q.

Proof. In GameAIH with index (̄i, j̄), let (R∗, S∗) be the challenge (revocation list, attribute set) pair,
the restriction is that the adversary A does not query a secret key for (index, access policy) pair
((i, j),A(i,j)) such that

(
(i, j) = (̄i, j̄)

)
∧
(
(i, j) ∈ [m,m] \ R∗

)
∧
(
S∗ satisfies A(i,j)

)
. Under this

restriction, there are two ways for A to take:

Case I: In Phase 1 and Phase 2, A does not query a secret key with index (̄i, j̄).
Case II: In Phase 1 or Phase 2, A queries a secret key with index (̄i, j̄). Let A(̄i,j̄) be the

corresponding access policy. Case II has the following sub-cases:

1. (̄i, j̄) /∈ [m,m] \R∗, S∗ satisfies A(̄i,j̄).
2. (̄i, j̄) /∈ [m,m] \R∗, S∗ does not satisfy A(̄i,j̄).
3. (̄i, j̄) ∈ [m,m] \R∗, S∗ does not satisfy A(̄i,j̄).
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If A is in Case I, Case II.1 or Case II.2, it follows the restrictions in the index-hiding game for
Augmented Broadcast Encryption (AugBE) in [10], where the adversary does not query the key
with index (̄i, j̄) or (̄i, j̄) is not in the receiver list [m,m] \R∗. Case II.3 captures the index-hiding
requirement of Augmented R-KP-ABE in that even if a user has a key with index (̄i, j̄) and (̄i, j̄) /∈
R∗, the user cannot distinguish between an encryption to (R∗, S∗, (̄i, j̄)) and (R∗, S∗, (̄i, j̄ + 1)) if
the corresponding access policy A(̄i,j̄) is not satisfied by S∗. This is the most challenging part of
proving the index-hiding when we attempt to securely intertwine the tracing techniques of broadcast
encryption (e.g. [10]) into the large universe KP-ABE (e.g. [27]). Compared to the proof of [21], the
challenge here is to prove the index-hiding in the large universe setting, as discussed previously.

To prove this lemma, we flip a random coin c ∈ {0, 1} as our guess on which case that A is in.
If A is in Case I, Case II.1 or Case II.2, we make a reduction that uses A to solve a D3DH
problem instance, using a proof technique similar to that of [10]. Actually, in this proof, we reduce
from our AugR-KP-ABE to the AugBE in [10]. If A is in Case I, Case II.2 or Case II.3, we use
A to solve a Source Group q-Parallel DBDH problem instance, which is where the main novelty
resides among all the proofs in this work. Please refer to Appendix K for details.

Lemma 5. If the D3DH, the DLIN and the Source Group q-Parallel DBDH Assumption hold, then
for 1 ≤ ī ≤ m, no PPT adversary can selectively distinguish between an encryption to (̄i,m) and
(̄i+ 1, 1) in GameAIH with non-negligible advantage, provided that the size of the challenge attribute
set is ≤ q.

Proof. Similar to the proof of Lemma 6.3 in [10], to prove this lemma we define the following hybrid
experiment: H1: encrypt to (̄i, j̄ = m); H2: encrypt to (̄i, j̄ = m+ 1); and H3: encrypt to (̄i+ 1, 1).
This lemma follows Claim 3 and Claim 4 below.

Claim 3. If the D3DH and the Source Group q-Parallel DBDH Assumption hold, then no PPT
adversary can selectively distinguish between experiment H1 and H2 with non-negligible advantage,
provided that the size of the challenge attribute set is ≤ q.

Proof. The proof is identical to that for Lemma 4.

Claim 4. If the D3DH and the DLIN hold, then no PPT adversary can distinguish between exper-
iment H2 and H3 with non-negligible advantage.

Proof. Note that (̄i,m + 1) /∈ [m,m] implies that for any revocation list R∗ ⊆ [m,m], we have
(̄i,m+1) /∈ R̄∗(= [m,m]\R∗), i.e, the adversaries for distinguishing H2 and H3 will not be in Case
II.3. Thus, we can prove this claim in a similar way to that of [10]. Actually, in this proof, we reduce
from our AugR-KP-ABE to the AugBE in [10]. In the proof of index-hiding for an AugBE scheme
ΣAugBE in [10, Lemma 6.3], two hybrid experiments were defined and proven indistinguishable via
a sequence of hybrid sub-experiments.

– HAugBE
2 : Encrypt to (̄i,m+ 1), (i.e. H2 in [10])

– HAugBE
3 : Encrypt to (̄i+ 1, 1), (i.e. H5 in [10])

By following [10, Lemma 6.3], if the D3DH and the DLIN hold, no PPT adversary can distinguish

between HAugBE
2 and HAugBE

3 with non-negligible advantage for ΣAugBE. Suppose there is a PPT
adversary A that can distinguish between H2 and H3 for our AugR-KP-ABE scheme with non-
negligible advantage. We can build a reduction, which is similar to that of Case A in Appendix K,
to use A to distinguish between HAugBE

2 and HAugBE
3 for ΣAugBE with non-negligible advantage.
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J AugR-KP-ABE Implies Secure R-KP-ABE

To prove that the R-KP-ABE scheme Σ in Sec. H.2 is secure it remains to prove that Equation (4)
holds for all k̄ = 1, . . . , N . Consider a specific k̄ ∈ [N ]. Adversary B plays the index-hiding game
GameAIH with input k̄ and works as follows:

Setup. B receives PP from its challenger in the index-hiding game GameAIH. B runs adversary A
in the extend message-hiding game GameAEMH and gives PP to A.

Phase 1. For i = 1 to Q1, A adaptively submits (index, access policy) pair (ki,Aki) to B. B
submits (ki,Aki) to the challenger and receives secret key SKki,Aki . Then B gives SKki,Aki to A.

Challenge. A submits two equal-length messages M0,M1 and a (revocation list, attribute set)
(R∗, S∗) to B, under the restriction that none of the queried pairs {(ki,Aki)}

Q1
i=1 can satisfy

(ki ∈ [N ] \ R∗) ∧ (S∗ satisfies Aki). B flips a coin γ ∈ {0, 1}, then gives Mγ and (R∗, S∗)
to its challenger. Note that (R∗, S∗) satisfies the restriction on B in GameAIH that none of the

queried pairs {(ki,Aki)}
Q1
i=1 can satisfy (ki = k̄)∧ (ki ∈ [N ]\R∗)∧ (S∗ satisfies Aki). B receives

CTR∗,S∗ ← EncryptA(PP,Mγ , R
∗, S∗, k̄ + b) for some random b ∈ {0, 1}. Then B gives CTR∗,S∗

to A.
Phase 2. For i = Q1 + 1 to Q, A adaptively submits (index, access policy) pair (ki,Aki) to B,

under the restriction that (ki,Aki) does not satisfy (ki ∈ [N ] \ R∗) ∧ (S∗ satisfies Aki). B
submits (ki,Aki) to the challenger. Note that (ki,Aki) satisfies the restriction on B in GameAIH
that (ki,Aki) does not satisfy (ki = k̄) ∧ (ki ∈ [N ] \R∗) ∧ (S∗ satisfies Aki). B receives secret
key SKki,Aki from the challenger. Then B gives SKki,Aki to A.

Guess. A outputs a guess γ′ ∈ {0, 1} for γ. If γ′ = γ then B returns 0 to its challenger. Otherwise
B returns 1 to its challenger.

Now, observe that when b = 0 then B is emulating perfectly an EMHAAdvA[k̄] challenger. When
b = 1 then B is emulating perfectly an EMHAAdvA[k̄ + 1] challenger. A standard argument now
shows that |EMHAAdvA[k̄]− EMHAAdvA[k̄ + 1]| ≤ 2 · IHAAdvB[k̄] as required.

K Proof of Lemma 4

Proof. Suppose there exists a PPT adversary A that selectively breaks the index-hiding game with
non-negligible advantage AdvA. We construct a PPT algorithm B, which by given a D3DH problem
instance and a Source Group q-Parallel DBDH problem instance, solves at least one of them. B
flips a random coin c ∈ {0, 1}, if c = 0, B interacts with A in Case A as guessing “A is not in
Case II.3”, otherwise B interacts with A in Case B as guessing “A is not in Case II.1”.

Case A: B uses A to solve the D3DH problem. Garg et al. [10, Sec. 5.1] proposed an AugBE
scheme ΣAugBE = (SetupAugBE,EncryptAugBE,DecryptAugBE) and proved that it is index-hiding. The
Lemma 6.2 of [10] states that if the D3DH assumption holds, then for j̄ < m no PPT adversary can
distinguish between an encryption to (̄i, j̄) and (̄i, j̄ + 1) in the index-hiding game for ΣAugBE with
non-negligible probability. Note that if A is in Case I, Case II.1 or Case II.2, it also follows the
restrictions of the index-hiding game for ΣAugBE, here we do not build a direct reduction that uses
A to solve the D3DH problem, instead, we build a reduction to break the index-hiding property of
ΣAugBE.
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First we review the structures of public key PKAugBE, private key SKAugBE
(i,j) and ciphertext

CTAugBE
R̄

of ΣAugBE [10]8, and give the reduction sketch below:

PKAugBE =
(
g, {Ei = e(g, g)αi , Gi = gri}i∈[m], {Hj = gcj , fj}j∈[m]

)
,

SKAugBE
(i,j) =

(
Ki,j , K

′
i,j , {K̄i,j,j′}j′∈[m]\{j}

)
=
(
gαigricjf

σi,j
j , gσi,j , {fσi,jj′ }j′∈[m]\{j}

)
,

CTAugBE
R̄

= 〈(Ri,R
′
i, Qi, Q

′
i, Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, R̄〉,

where CTAugBE
R̄

is for receiver list R̄ and index (i∗, j∗) with

1. For each i ∈ [m]:
– if i < i∗: Ri = gvi , R′i = gκvi , Qi = gsi , Q′i = (

∏
j′∈R̄i fj′)

si , Ti = E ŝii .

– if i ≥ i∗: Ri = Gsivii , R′i = Gκsivii , Qi = gτsi(vi·vc), Q′i = (
∏
j′∈R̄i fj′)

τsi(vi·vc), Ti =

M · Eτsi(vi·vc)i .
2. For each j ∈ [m]:

– if j < j∗: Cj = H
τ(vc+µjχ3)
j · gκwj , C ′j = gwj .

– if j ≥ j∗: Cj = Hτvc
j · gκwj , C ′j = gwj .

Setup. From the received PKAugBE, B generates PP for A by randomly choosing β, θ, zi (i ∈ [m]) ∈
Zp and h,H ∈ G, and setting f = gβ, G = gθ, {Zi = gzi}i∈[m].

Phase 1 and 2. As B can compute fσi,j = (gσi,j )β and Z
σi,j
i = (gσi,j )zi without σi,j , B can produce

SK(i,j),(A,ρ) for A, using SKAugBE
(i,j) and random u2, . . . , un ∈ Zp, {ξk ∈ Zp}k∈[l].

Challenge. As B can compute fsi = (gsi)β and f τsi(vi·vc) = (gτsi(vi·vc))β without si or τsi(vi · vc),
by using its challenge ciphertext CTAugBE

R̄∗
(for R̄∗ = [m,m] \R∗) and random π, t1, . . . , tm, δx(x ∈

S∗) ∈ Zp, B can produce the challenge ciphertext CTR∗,S∗ for A.
Guess. B sends A’s guess b′ ∈ {0, 1} to its challenger.

During the interaction, if A is in Case II.3, B will abort and return a random b ∈ {0, 1} to its
challenger.
Now we give the reduction details.

Init. The adversary A gives B the challenge attribute set S∗.

Setup. The challenger gives B the public key PKAugBE

PKAugBE =
(
g, {Ei = e(g, g)αi , Gi = gri}i∈[m], {Hj = gcj , fj}j∈[m]

)
,

and private keys {SKAugBE
(i,j) }(i,j)∈[m,m]\{(̄i,j̄)} as

SKAugBE
(i,j) =

(
K̃i,j , K̃

′
i,j , { ˜̄Ki,j,j′}j′∈[m]\{j}

)
=
(
gαigricjf

σi,j
j , gσi,j , {fσi,jj′ }j′∈[m]\{j}

)
,

where g, f1, . . . , fm ∈ G and {αi, ri ∈ Zp}i∈[m], {cj ∈ Zp}j∈[m], {σi,j ∈ Zp}(i,j)∈[m,m]\{(̄i,j̄)} are

randomly chosen. B sets c̃ = 0 to denote that B does not obtain the private SKAugBE
(̄i,j̄)

.

B randomly chooses β, θ, z1, . . . , zm ∈ Zp and h,H ∈ G, then gives A the following public
parameter PP:(

g, h, f = gβ, f1, . . . , fm, G = gθ, H, {Ei, Gi, Zi = gzi}i∈[m], {Hj}j∈[m]

)
.

8 Note that we slightly changed the variable names in the underlying AugBE scheme ΣAugBE to better suit our proof.
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Phase 1. A adaptively submits ((i, j), (A, ρ)) to B, where (A, ρ) is an LSSS matrix. Let A be an l×n
matrix. If (i, j) = (̄i, j̄), then B sets c̃ = 1 and submits c̃ to its challenger, and receives the private

key SKAugBE
(̄i,j̄)

. B randomly chooses u2, . . . , un ∈ Zp and {ξk ∈ Zp}k∈[l], and sets the value of u ∈ Znp by

implicitly setting u = (σi,j , u2, . . . , un). For k = 1 to l, let Ak = (Ak,1, . . . , Ak,n) ∈ Znp be the kth row
of A. B creates a secret key SK(i,j),(A,ρ) =

(
(i, j), (A, ρ), Ki,j ,K

′
i,j ,K

′′
i,j , {K̄i,j,j′}j′∈[m]\{j}, {Ki,j,k,1,

Ki,j,k,2,Ki,j,k,3}k∈[l]

)
from SKAugBE

(i,j) as follows:

Ki,j = K̃i,j · (K̃ ′i,j)β, K ′i,j = K̃ ′i,j , K ′′i,j = (K̃ ′i,j)
zi , {K̄i,j,j′ = ˜̄Ki,j,j′}j′∈[m]\{j},

{Ki,j,k,1 = (K̃ ′i,j)
βAk,1f

∑n
d=2 udAk,dGξk , Ki,j,k,2 = (Hρ(k)h)−ξk , Ki,j,k,3 = gξk}k∈[l].

Challenge. A submits a message M and a revocation list R∗. B sets R̄∗ = [m,m] \R∗.

• if (̄i, j̄) ∈ R̄∗ ∧ c̃ = 1: A is in Case II.3. B returns a random β3 ∈ {0, 1} to its challenger,
then aborts.

• if (̄i, j̄) ∈ R̄∗ ∧ c̃ = 0: B continues the following interaction.

• if (̄i, j̄) /∈ R̄∗ ∧ c̃ = 1: B continues the following interaction.

• if (̄i, j̄) /∈ R̄∗ ∧ c̃ = 0: B sets c̃ = 1 and submits c̃ to its challenger, and receives the private key

SKAugBE
(̄i,j̄)

. Then B continues the following interaction.

Now B ends the Query Phase for the AugBE index-hiding game with its challenger, and submits
(M, R̄∗) to the challenger. Note that from the view of the challenger, B’s behaviors satisfy the restric-

tions in the AugBE index-hiding game, i.e., if B sends c̃ = 1 to the challenger and obtains SKAugBE
(̄i,j̄)

then (̄i, j̄) /∈ R̄∗. The challenger gives B the challenge ciphertext CTAugBE
R̄∗

= 〈(R̃i, R̃
′
i, Q̃i, Q̃

′
i, T̃i)

m
i=1,

(C̃j , C̃
′
j)
m
j=1, R̄

∗〉, which is encrypted to (i∗, j∗) ∈ {(̄i, j̄), (̄i, j̄ + 1)} and in the form of

1. For each i ∈ [m]:

– if i < i∗: R̃i = gvi , R̃′i = gκvi , Q̃i = gsi , Q̃′i = (
∏
j′∈R̄∗i

fj′)
si , T̃i = E ŝii .

– if i ≥ i∗: R̃i = Gsivii , R̃′i = Gκsivii , Q̃i = gτsi(vi·vc), Q̃′i = (
∏
j′∈R̄∗i

fj′)
τsi(vi·vc), T̃i =

M · Eτsi(vi·vc)i .

2. For each j ∈ [m]:

– if j < j∗: C̃j = H
τ(vc+µjχ3)
j · gκwj , C̃ ′j = gwj .

– if j ≥ j∗: C̃j = Hτvc
j · gκwj , C̃ ′j = gwj .

where κ, τ, si(i ∈ [m]), ŝi(1 ≤ i < i∗), µj(1 ≤ j < j∗) ∈ Zp, vc,wj(j ∈ [m]),vi(1 ≤ i ≤ i∗) ∈ Z3
p,

and vi(i > i∗) ∈ span{χ1,χ2} are randomly chosen (where χ1 = (rx, 0, rz), χ2 = (0, ry, rz),
χ3 = (−ryrz,−rxrz, rxry) are for randomly chosen rx, ry, rz ∈ Zp), and R̄∗i = {j′|(i, j′) ∈ R̄∗}.
B randomly chooses π, t1, . . . , tm, δx(x ∈ S∗) ∈ Zp, then creates the ciphertext 〈R∗, S∗, (Ri,R

′
i,

Qi, Q
′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, P, {Px, P ′x}x∈S∗〉 as follows:

1. For each i ∈ [m]: Ri = R̃i, R
′
i = R̃′i, Qi = Q̃i, Q

′
i = Q̃βi · Q̃′i · Z

ti
i f

π, Q′′i = gti , Ti = T̃i.

2. For each j ∈ [m]: Cj = C̃j , C
′
j = C̃ ′j .

3. P = gπ, {Px = gδx , P ′x = (Hxh)δxG−π}x∈S∗ .

Phase 2. A adaptively submits ((i, j), (A, ρ)) to B.
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– if (i, j) 6= (̄i, j̄): B creates a secret key SK(i,j),(A,ρ) from SKAugBE
(i,j) as in Phase 1.

– if (i, j) = (̄i, j̄) ∧ c̃ = 1: this implies B has obtained SKAugBE
(̄i,j̄)

from its challenger. B creates a

secret key SK(̄i,j̄),(A,ρ) from SKAugBE
(̄i,j̄)

as in Phase 1.

– if (i, j) = (̄i, j̄)∧ c̃ = 0: observing B’s behaviors in Challenge phase, we have that c̃ = 0 implies
(̄i, j̄) ∈ R̄∗. In other words, A is querying a key with index (̄i, j̄) and (̄i, j̄) ∈ R̄∗, i.e., A is in
Case II.3. B return a random β3 ∈ {0, 1} to its challenger, then aborts.

Guess. A outputs a guess b′ ∈ {0, 1} to B, then B sets β3 = b′ and returns β3 to its challenger.

When B does not abort, B’s advantage in the index-hiding game for ΣAugBE will be exactly equal
toA’s advantage in the index-hiding game for our AugR-KP-ABE scheme. Thus, B’s final advantage
in the index-hiding game for ΣAugBE is AdvB,3 = AdvA · Pr[A is not in Case II.3 ∧ (c = 0)].

Case B: B uses A to solve the Source Group q-Parallel DBDH problem. B is given

D =
(
(p,G,GT , e), g, g

a, gb, gcd, g(acd)2
, gd, gad

gdi , gacddi , ga
2cddi , gacd/di , gb/d

2
i , gb

2/d2
i ∀i ∈ [q],

gacddi/dj , g(acd)2di/dj , gbdi/d
2
j , gabcddi/d

2
j ∀i, j ∈ [q] s.t. i 6= j

)
and T , where (p,G,GT , e)

R←− G, g
R←− G, a, b, c, d, d1, . . . , dq

R←− Zp, and T is either equal to gabc

or is a random element of G. B’s goal is to determine T = gabc or T is a random element from G.

Init. A gives B the challenge attribute set S∗ = {a∗1, . . . , a∗l∗} ⊆ U = Zp, where |S∗| = l∗ ≤ q.

Setup. B randomly chooses {αi ∈ Zp}i∈[m], {ri, z′i ∈ Zp}i∈[m]\{̄i}, r
′
ī
, zī ∈ Zp, {c′j ∈ Zp}j∈[m], and

β, η, δ, θ, θ1, . . . , θm ∈ Zp. B gives A the public parameter PP:(
g, h = gβ ·

( ∏
t∈[l∗]

gacd/dt
)
·
( ∏
t∈[l∗]

(gb/d
2
t )−a

∗
t
)
, f = (ga)θ, {fj = gθj}j∈[m],

G = (ga)δ, H = gη ·
( ∏
t∈[l∗]

gb/d
2
t
)
, {Ei = e(g, g)αi}i∈[m],

{Gi = gri , Zi = (ga)z
′
i}i∈[m]\{̄i}, {Hj = (gd)c

′
j}j∈[m]\{j̄}, Gī = (ga)r

′
ī , Zī = gzī , Hj̄ = (gb)

c′
j̄ .
)
.

Note that B implicitly chooses rī, zi(i ∈ [m] \ {̄i}), cj(j ∈ [m]) ∈ Zp such that

ar′ī ≡ rī mod p, az′i ≡ zi mod p ∀i ∈ [m] \ {̄i},
dc′j ≡ cj mod p ∀j ∈ [m] \ {j̄}, bc′j̄ ≡ cj̄ mod p.

Phase 1. To respond to A’s query for ((i, j), (A, ρ)), let l × n be the size of A,

• if (i, j) 6= (̄i, j̄): B randomly chooses u = (σi,j , u2, . . . , un) ∈ Znp and {ξk ∈ Zp}lk=1, and creates
a secret key SK(i,j),(A,ρ):

Ki,j =


gαi(gd)ric

′
j (ffj)

σi,j , : i 6= ī, j 6= j̄

gαi(gad)r
′
ī
c′j (ffj)

σi,j , : i = ī, j 6= j̄

gαi(gb)
ric
′
j̄ (ffj)

σi,j , : i 6= ī, j = j̄.
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K ′i,j = gσi,j , K ′′i,j = Z
σi,j
i , {K̄i,j,j′ = f

σi,j
j′ }j′∈[m]\{j},

{Ki,j,k,1 = f (Ak·u)Gξk , Ki,j,k,2 = (Hρ(k)h)−ξk , Ki,j,k,3 = gξk}k∈[l].

• if (i, j) = (̄i, j̄): if S∗ satisfies (A, ρ), then A is in Case II.1, B returns a random βq ∈
{0, 1} to the challenger. Otherwise (i.e. S∗ does not satisfy (A, ρ)), B first computes a vector
ū = (ū1, . . . , ūn) ∈ Znp that has first entry equal to 1 (i.e. ū1 = 1) and is orthogonal to all of
the rows Ak of A such that ρ(k) ∈ S∗ (i.e. Ak · ū = 0 ∀k ∈ [l] s.t. ρ(k) ∈ S∗). Note that
such a vector must exist since S∗ fails to satisfy (A, ρ), and it is efficiently computable. Then
B randomly chooses σ′

ī,j̄
, u′2, . . . , u

′
n ∈ Zp, {ξk ∈ Zp}k∈[l] s.t. ρ(k)∈S∗ , {ξ′k ∈ Zp}k∈[l] s.t. ρ(k)/∈S∗ . Let

u′ = (0, u′2, . . . , u
′
n) ∈ Znp , B sets the values of σī,j̄ ∈ Zp, u ∈ Znp , {ξk ∈ Zp}k∈[l] s.t. ρ(k)/∈S∗ by

implicitly setting

σ′ī,j̄ − br
′
īc
′
j̄/θ ≡ σī,j̄ mod p, u = u′ + σī,j̄ū,

ξ′k + br′īc
′
j̄(Ak · ū)/δ − r′īc

′
j̄

∑
t∈[l∗]

acddt(Ak · ū)/δ

ρ(k)− a∗t
≡ ξk mod p ∀k ∈ [l] s.t. ρ(k) /∈ S∗.

Note that for a∗t ∈ S∗ and ρ(k) /∈ S∗ we have ρ(k) − a∗t 6= 0. B creates a secret key SK(̄i,j̄),(A,ρ) as
follows:

Kī,j̄ = gαīf
σ′
ī,j̄
(
g
σ′
ī,j̄ (gb)

−r′
ī
c′
j̄
/θ)θj̄ , K ′ī,j̄ = g

σ′
ī,j̄ (gb)

−r′
ī
c′
j̄
/θ
, K ′′ī,j̄ = (K ′ī,j̄)

zī ,

{K̄ī,j̄,j′ =
(
K ′ī,j̄

)θj′}j′∈[m]\{j̄},

for k ∈ [l] s.t. ρ(k) ∈ S∗,

Ki,j,k,1 = f (Ak·u)Gξk = f (Ak·u′)+σī,j̄(Ak·ū)Gξk = f (Ak·u′)Gξk , Ki,j,k,2 = (Hρ(k)h)−ξk , Ki,j,k,3 = gξk ,

for k ∈ [l] s.t. ρ(k) /∈ S∗,

Ki,j,k,1 = f (Ak·u)Gξk

= f (Ak·u′) · f (σ′
ī,j̄
−br′

ī
c′
j̄
/θ)(Ak·ū) ·Gξ′k · (gaδ)br

′
ī
c′
j̄
(Ak·ū)/δ · (gaδ)−r

′
ī
c′
j̄

∑
t∈[l∗]

acddt(Ak·ū)/δ

ρ(k)−a∗t

= f (Ak·u′) · fσ
′
ī,j̄

(Ak·ū) ·Gξ′k ·
( ∏
t∈[l∗]

(ga
2cddt)

−r′
ī
c′
j̄

(Ak·ū)

ρ(k)−a∗t
)
,

Ki,j,k,2 = (Hρ(k)h)−ξk

= (Hρ(k)h)−ξ
′
k ·
(
gηρ(k)+β ·

( ∏
t∈[l∗]

(gb/d
2
t )ρ(k)−a∗t

)
·
( ∏
t∈[l∗]

gacd/dt
))−br′īc′j̄(Ak·ū)/δ+r′

ī
c′
j̄

∑
t′∈[l∗]

acddt′ (Ak·ū)/δ

ρ(k)−a∗
t′

= (Hρ(k)h)−ξ
′
k ·
(
gb
)−(ηρ(k)+β)r′

ī
c′
j̄
(Ak·ū)/δ ·

( ∏
t′∈[l∗]

(gacddt′ )
r′
ī
c′
j̄

(ηρ(k)+β)(Ak·ū)/δ

ρ(k)−a∗
t′

)
︸ ︷︷ ︸

Ψ1

·
( ∏
t∈[l∗]

(gb
2/d2

t )
−(ρ(k)−a∗t )r′

ī
c′
j̄
(Ak·ū)/δ)

︸ ︷︷ ︸
Ψ2

·
( ∏
t∈[l∗]

∏
t′∈[l∗]

(gabcddt′/d
2
t )
r′
ī
c′
j̄

(ρ(k)−a∗t )(Ak·ū)/δ

ρ(k)−a∗
t′

)
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·
( ∏
t∈[l∗]

(gabcd/dt)
−r′

ī
c′
j̄
(Ak·ū)/δ) · ( ∏

t∈[l∗]

∏
t′∈[l∗]

(ga
2c2d2dt′/dt)

r′
ī
c′
j̄

(Ak·ū)/δ

ρ(k)−a∗
t′
)

= Ψ1 · Ψ2 ·
( ∏
t∈[l∗]

∏
t′∈[l∗]\{t}

(gabcddt′/d
2
t )
r′
ī
c′
j̄

(ρ(k)−a∗t )(Ak·ū)/δ

ρ(k)−a∗
t′

)
︸ ︷︷ ︸

Ψ3 (for t′ 6=t)

·
( ∏
t∈[l∗]

(gabcddt/d
2
t )
r′
ī
c′
j̄

(ρ(k)−a∗t )(Ak·ū)/δ

ρ(k)−a∗t
)

︸ ︷︷ ︸
∆ (for t′=t)

·
( ∏
t∈[l∗]

(gabcd/dt)
−r′

ī
c′
j̄
(Ak·ū)/δ)

︸ ︷︷ ︸
∆−1

·
( ∏
t∈[l∗]

∏
t′∈[l∗]\{t}

(ga
2c2d2dt′/dt)

r′
ī
c′
j̄

(Ak·ū)/δ

ρ(k)−a∗
t′
)

︸ ︷︷ ︸
Ψ4 (for t′ 6=t)

·
( ∏
t∈[l∗]

(ga
2c2d2dt/dt)

r′
ī
c′
j̄

(Ak·ū)/δ

ρ(k)−a∗t
)

︸ ︷︷ ︸
for t′=t

= Ψ1 · Ψ2 · Ψ3 · Ψ4 ·
( ∏
t∈[l∗]

(ga
2c2d2

)
r′
ī
c′
j̄

(Ak·ū)/δ

ρ(k)−a∗t
)
,

Ki,j,k,3 = gξk = g
ξ′k+br′

ī
c′
j̄
(Ak·ū)/δ−r′

ī
c′
j̄

∑
t∈[l∗]

acddt(Ak·ū)/δ

ρ(k)−a∗t = gξ
′
k · (gb)r

′
ī
c′
j̄
(Ak·ū)/δ ·

( ∏
t∈[l∗]

(gacddt)
−r′

ī
c′
j̄

(Ak·ū)/δ

ρ(k)−a∗t
)
.

Note that B can calculate the values ofKi,j ,K
′
i,j ,K

′′
i,j , {K̄ī,j̄,j′}j′∈[m]\{j̄}, {Ki,j,k,1,Ki,j,k,2,Ki,j,k,3}k∈[l]

using the suitable terms of the assumption.

Challenge. A submits a message M and a revocation list R∗. B randomly chooses

τ ′, s1, . . . , sī−1, s
′
ī, sī+1, . . . , sm, t

′
1, . . . , t

′
ī−1, t̄i, t

′
ī+1, . . . , t

′
m ∈ Zp,

w1, . . . ,wj̄−1,w
′
j̄ , . . . ,w

′
m ∈ Z3

p,

π′, δ′1, . . . , δ
′
l∗ ∈ Zp.

B randomly chooses rx, ry, rz ∈ Zp, and sets χ1 = (rx, 0, rz),χ2 = (0, ry, rz),χ3 = χ1 × χ2 =
(−ryrz,−rxrz, rxry). B randomly chooses

vi ∈ Z3
p ∀i ∈ {1, . . . , ī− 1},

vp
ī
∈ span{χ1,χ2}, vqī ∈ span{χ3},
vi ∈ span{χ1,χ2} ∀i ∈ {̄i+ 1, . . . ,m},
vpc ∈ span{χ1,χ2}, vqc = ν3χ3 ∈ span{χ3}.

B sets the value of κ, τ, sī, ti(i ∈ [m] \ {̄i}) ∈ Zp, vc,vī ∈ Z3
p, {wj ∈ Z3

p}mj=j̄ , π ∈ Zp, {δt ∈ Zp}t∈[l∗]

by implicitly setting

a ≡ κ mod p, acτ ′ ≡ τ mod p, s′ī/a ≡ sī mod p,

t′i + cdθτ ′s′ī(v
q
ī
· vqc)/z′i ≡ ti mod p ∀i ∈ {1, . . . , ī− 1},

t′i − aθτ ′si(vi · vpc)/z′i + cdθτ ′s′ī(v
q
ī
· vqc)/z′i ≡ ti mod p ∀i ∈ {̄i+ 1, . . . ,m},

vc = c−1vpc + vqc, vī = vp
ī

+ dvq
ī
,

w′j̄ − bc
′
j̄τ
′vpc ≡ wj̄ mod p,

w′j − cdcjτ ′vqc ≡ wj mod p ∀j ∈ {j̄ + 1, . . . ,m},
π′ − cdτ ′s′ī(v

q
ī
· vqc) ≡ π mod p, δ′t − dtδτ ′s′ī(v

q
ī
· vqc) ≡ δt mod p ∀t ∈ [l∗].
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It is worth noticing that vī and vc are random vectors in Z3
p as required, and (vī ·vc) = 1

c (v
p
ī
·vpc)+

d(vq
ī
· vqc), since χ3 is orthogonal to span{χ1,χ2} and Z3

p = span{χ1,χ2,χ3}.
Let R̄∗ = [m,m]\R∗ and R̄∗i = {j′|(i, j′) ∈ R̄∗} ∀i ∈ [m]. B creates a ciphertext 〈R∗, S∗, (Ri,R

′
i,

Qi, Q
′
i, Q
′′
i , Ti)

m
i=1, (Cj ,C

′
j)
m
j=1, P, {Px, P ′x}x∈S∗〉 as follows:

1. For each i ∈ [m]:
– if i < ī: it randomly chooses ŝi ∈ Zp, then sets

Ri = gvi , R′i = (ga)vi ,

Qi = gsi , Q′i = (f
∏
j′∈R̄∗i

fj′)
siZ

t′i
i f

π′ , Q′′i = gt
′
i(gcd)θτ

′s′
ī
(vq
ī
·vqc)/z′i , Ti = E ŝii .

– if i = ī: it sets

Ri = gr
′
ī
s′
ī
vp
ī (gd)r

′
ī
s′
ī
vq
ī , R′i = (ga)r

′
ī
s′
ī
vp
ī (gad)r

′
ī
s′
ī
vq
ī ,

Qi = gτ
′s′
ī
(vp
ī
·vpc )(gcd)τ

′s′
ī
(vq
ī
·vqc), Q′i = f τ

′s′
ī
(vp
ī
·vpc )(

∏
j′∈R̄∗i

Q
θj′
i )Z

t̄i
i f

π′ , Q′′i = gt̄i ,

Ti = M · e(gαi , Qi).

– if i > ī: it sets

Ri = grisivi , R′i = (ga)risivi ,

Qi = (ga)τ
′si(vi·vpc ), Q′i = (

∏
j′∈R̄∗i

Q
θj′
i )Z

t′i
i f

π′ , Q′′i = gt
′
i(ga)−θτ

′si(vi·vpc )/z′i(gcd)θτ
′s′
ī
(vq
ī
·vqc)/z′i ,

Ti = M · e(gαi , Qi).

2. For each j ∈ [m]:
– if j < j̄: it randomly chooses µ′j ∈ Zp and implicitly sets the value of µj such that

(acd)−1µ′jν3 − ν3 ≡ µj mod p, then sets Cj = (gad)c
′
jτ
′vpc · gc

′
jτ
′µ′jv

q
c · (ga)wj , C ′j = gwj .

– if j = j̄: it sets Cj = T
c′
j̄
τ ′vqc · (ga)w

′
j , C ′j = g

w′
j̄ · (gb)−c

′
j̄
τ ′vpc .

– if j > j̄: it sets Cj = (gad)c
′
jτ
′vpc · (ga)w

′
j , C ′j = gw

′
j · (gcd)−c

′
jτ
′vqc .

3. P = gπ = gπ
′
(gcd)−τ

′s′
ī
(vq
ī
·vqc), and for t ∈ [l∗],

Pa∗t = gδt = gδ
′
t(gdt)−δτ

′s′
ī
(vq
ī
·vqc),

P ′a∗t = (Ha∗t h)δtG−π

= (Ha∗t h)δ
′
t︸ ︷︷ ︸

Φ1

·
(
gηa

∗
t+β ·

( ∏
t′∈[l∗]

(gb/d
2
t′ )a

∗
t−a∗t′

)
·
( ∏
t′∈[l∗]

gacd/dt′
))−dtδτ ′s′ī(vqī ·vqc)

·G−π′ · (gaδ)cdτ
′s′
ī
(vq
ī
·vqc)

= Φ1 ·
(
gdt
)−(ηa∗t+β)δτ ′s′

ī
(vq
ī
·vqc)︸ ︷︷ ︸

Φ2

·
( ∏
t′∈[l∗]

(gbdt/d
2
t′ )−(a∗t−a∗t′ )δτ

′s′
ī
(vq
ī
·vqc)) · ( ∏

t′∈[l∗]

(gacddt/dt′ )−δτ
′s′
ī
(vq
ī
·vqc))

·G−π′ · (gacd)δτ
′s′
ī
(vq
ī
·vqc)

52



= Φ1 · Φ2 ·
( ∏
t′∈[l∗]\{t}

(gbdt/d
2
t′ )−(a∗t−a∗t′ )δτ

′s′
ī
(vq
ī
·vqc))

︸ ︷︷ ︸
Φ3 (for t′ 6=t)

·
(
(gbdt/d

2
t )−(a∗t−a∗t )δτ ′s′

ī
(vq
ī
·vqc))︸ ︷︷ ︸

1 (for t′=t)

·
( ∏
t′∈[l∗]\{t}

(gacddt/dt′ )−δτ
′s′
ī
(vq
ī
·vqc))

︸ ︷︷ ︸
Φ4 (for t′ 6=t)

·
(
(gacddt/dt)−δτ

′s′
ī
(vq
ī
·vqc))︸ ︷︷ ︸

∆ (for t′=t)

·G−π′ · (gacd)δτ
′s′
ī
(vq
ī
·vqc)︸ ︷︷ ︸

∆−1

= Φ1 · Φ2 · Φ3 · Φ4 ·G−π
′
.

Note that the values of Φ1, . . . , Φ4 can be calculated using the suitable terms of the assumption.

If T = gabc, then the ciphertext is a well-formed encryption to the index (̄i, j̄). If T is randomly
chosen, say T = gr for some random r ∈ Zp, the ciphertext is a well-formed encryption to the index
(̄i, j̄ + 1) with implicitly setting µj̄ such that ( r

abc − 1)ν3 ≡ µj̄ mod p.

Phase 2. Same as Phase 1.

Guess. A outputs a guess b′ ∈ {0, 1} to B, then B outputs this b′ to the challenger.

When B does not abort, the distributions of the public parameter, secret keys and challenge
ciphertext are the same as in the real scheme, B’s advantage in Source Group q-Parallel DBDH
game will be exactly equal to A’s advantage in the selective index-hiding game. Thus, B’s final
advantage is AdvB,q = AdvA · Pr[A is not in Case II.1 ∧ (c = 1)].

Note that in both Case A and Case B, the distributions of the public parameter, secret keys
and challenge ciphertext that B gives A are the same as in the real scheme and independent of the
value of c. This implies that the value of c and the case that A is in are independent of each other.
Let A.I,A.II.1,A.II.2, and A.II.3 be the events that A is in Case I, Case II.1, Case II.2 and
Case II.3, respectively, and A.II.1 and A.II.3 be the events that “A is not in Case II.1” and “A
is not in Case II.3”, respectively. Thus,

AdvB,3 +AdvB,q = AdvA · Pr[A.II.3 ∧ (c = 0)] +AdvA · Pr[A.II.1 ∧ (c = 1)]

= AdvA · Pr[A.II.3] · Pr[c = 0] +AdvA · Pr[A.II.1] · Pr[c = 1]

= AdvA · (1− Pr[A.II.3]) · 1

2
+AdvA · (1− Pr[A.II.1]) · 1

2

=
1

2
·AdvA · (2− (Pr[A.II.3] + Pr[A.II.1]))

≥ 1

2
·AdvA,

since Pr[A.II.3] + Pr[A.II.1] ≤ Pr[A.I] + Pr[A.II.1] + Pr[A.II.2] + Pr[A.II.3] = 1. This implies
that either AdvB,3 ≥ 1

4 ·AdvA or AdvB,q ≥ 1
4 ·AdvA.

L Proof of Our Source Group Parallel DBDH Assumption

In this section, we give a lower bound to the complexity of our Source Group q-Parallel DBDH
Assumption. The proof is similar to that of the Source Group q-Parallel BDHE Assumption [20],
which is given in [20, Appendix B] in the generic group model. In the generic group model [30], an
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adversary does not have direct access to the group. It must interact with an oracle to perform the
group operation and obtain “handles” for new elements. Also, it can only use handles previously
received from the oracle. We consider an experiment where an adversary is given handles for the
group elements given out in the assumption as well as a handle for the challenge term Tβ (here, β is
a uniformly random bit). The adversary may interact with the oracle to perform group operations
and pairings, and gets handles in return as the results from these operations. Finally, the adversary
guesses the bit β. The difference between the adversary’s success probability and one half is defined
as its advantage. We refer readers to [4,14] for other examples of using the generic group model for
justifying assumptions in bilinear groups. We denote a, b, c, d, d1, . . . , dq as variables over Zp, and
define M as the following set of rational functions over these variables:

M :=
{

1, a, b, cd, (acd)2, d, ad
di, acddi, a

2cddi, acd/di, b/d
2
i , b

2/d2
i ∀i ∈ [q],

acddi/dj , (acd)2di/dj , bdi/d
2
j , abcddi/d

2
j ∀i, j ∈ [q] s.t. i 6= j

}
These are the exponents of the group elements given in our Source Group q-Parallel DBDH

Assumption. Let E(M) be the set of all pairwise products of functions in M. It represents the
exponents of elements in GT that can be obtained by pairing elements with exponents in M.
We say a function T is dependent on a set of functions S = {S1, . . . , Sk} if there exist constants
r1, . . . , rk ∈ Zp such that T = r1S1 + · · ·+ rkSk. This is an equality of functions over Zp, and hence
hold for all settings of the variables. If no such constants exist, we say that T is independent of S.

Lemma 6. For each function M ∈M∪{abc}, the product M ·abc is independent of E(M)∪abc(M\
M). (Here, abc(M\M) denotes the set formed by removing M from M and then multiplying all
remaining elements by abc.)

Proof. As every element inM∪{abc} and E(M)∪abc(M\M) is a ratio of monomials, the only way
that M · abc can be dependent on E(M)∪ abc(M\M) is if it is contained in E(M)∪ abc(M\M).
First, (abc)2 is not in E(M)∪abcM, and for any M ∈M, abcM /∈ abc(M\M). Thus it suffices to
show that for any M , abcM /∈ E(M). In other words, we show that E(M) does not intersect with
the set abcM, which is formed by multiplying each element of M by abc. To see this, we examine
the set abcM. By definition, we have that

abcM :=
{
abc, a2bc, ab2c, abc2d, a3bc3d2, abcd, a2bcd
abcdi, a

2bc2ddi, a
3bc2ddi, a

2bc2d/di, ab
2c/d2

i , ab
3c/d2

i ∀i ∈ [q],
a2bc2ddi/dj , a

3bc3d2di/dj , ab
2cdi/d

2
j , a

2b2c2ddi/d
2
j ∀i, j ∈ [q] s.t. i 6= j

}
We now check if any of these are in E(M), which is the set of pairwise products of things in M.
In M, every occurrence of c is accompanied by d, and d−1 never appears. Hence E(M) does not
contain any element which has a higher power of c than d. This rules out all the elements in abcM
above but abcd and a2bcd. To rule out abcd, we consider all the possible ways it might be formed
as a product of two elements of M. As d is in the term, one of the two factors in M must be a
term containing d. At the same time, as a−1, b−1, c−1, d−1 never appear, if any one of {a, b, c, d}
has order ≥ 2 then the term could not be a factor. Note that cd, d or ad cannot be one of the
factors as ab, abc, bc /∈ M. Also, an element of the form acddi cannot be one of the two factors as
b/di /∈M, an element of the form acd/di cannot be one of the two factors as bdi /∈M, an element
of the form acddi/dj (s.t. i 6= j) cannot be one of the two factors as bdj/di /∈ M, and an element
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of the form abcddi/d
2
j (s.t. i 6= j) cannot be one of the two factors as d2

j/di /∈ M. Hence we can

dismiss all the possible ways, and conclude that abcd /∈ E(M). To rule out a2bcd, we consider all
the possible ways it might be formed as a product of two elements of M. As d is in the term, one
of the two factors inM must be a term containing d. At the same time, as a−1, b−1, c−1, d−1 never
appear, if any one of {b, c, d} has order ≥ 2 or a has order ≥ 3 then the term could not be a factor.
Note that cd, d or ad cannot be one of the factors as a2b, a2bc, abc /∈ M. Also, an element of the
form acddi cannot be one of the two factors as ab/di /∈ M, an element of the form a2cddi cannot
be one of the two factors as b/di /∈ M, an element of the form acd/di cannot be one of the two
factors as abdi /∈ M, an element of the form acddi/dj (s.t. i 6= j) cannot be one of the two factors
as abdj/di /∈M, and an element of the form abcddi/d

2
j (s.t. i 6= j) cannot be one of the two factors

as ad2
j/di /∈M. Hence we can dismiss all the possible ways, and conclude that a2bcd /∈ E(M).

We now proceed similarly to the proof strategy in [4,14] to establish the following theorem:

Theorem 10. For any adversary A that makes Q queries to the oracles computing the group
operations in G,GT and the bilinear map e : G×G→ GT , the advantage of A against the Source

Group q-Parallel DBDH assumption in the generic group model is at most O(Q
2q
p ).

Proof. The proof of this theorem is identical to that of Theorem 22 in [20].
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