
Computing on the edge of chaos: Structure
and randomness in encrypted computation

Craig Gentry

Abstract. This survey, aimed mainly at mathematicians rather than practitioners, covers recent devel-
opments in homomorphic encryption (computing on encrypted data) and program obfuscation (gen-
erating encrypted but functional programs). Current schemes for encrypted computation all use es-
sentially the same “noisy” approach: they encrypt via a noisy encoding of the message, they decrypt
using an “approximate” ring homomorphism, and in between they employ techniques to carefully con-
trol the noise as computations are performed. This noisy approach uses a delicate balance between
structure and randomness: structure that allows correct computation despite the randomness of the en-
cryption, and randomness that maintains privacy against the adversary despite the structure. While the
noisy approach “works”, we need new techniques and insights, both to improve efficiency and to better
understand encrypted computation conceptually.

Mathematics Subject Classification (2010). Primary 68Qxx; Secondary 68P25.

Keywords. Cryptography, complexity theory, homomorphic encryption, software obfuscation, learn-
ing with errors (LWE).

1. Introduction

Many results in cryptography are counterintuitive. Alice and Bob can agree on a secret key
over a public channel. Alice can prove to Bob that she knows something – say, a proof that P
6= NP – without revealing any details of the proof. Alice can send Bob an encryption of her
datam1, . . . ,mt such that Bob can compute a succinct encryption of f(m1, . . . ,mt) for any
function f that he wants, but without Bob learning anything aboutm1, . . . ,mt. The last trick
is called “fully homomorphic encryption” (FHE). This survey is about FHE and another type
of encrypted computation called program obfuscation. Obfuscation allows Alice to encrypt
a software program so that the obfuscated program is fully executable but hides essential
secrets inside.

Before exploring encrypted computation, let us review some basics about computation
and cryptography, illustrated by the story of a young theoretical computer scientist.

1.1. Computation. Young Gauss, the story goes, was challenged by his teacher to add up
the numbers from 1 to 100. To his teacher’s surprise, Gauss computed the solution almost
instantly, while the other pupils toiled for the remainder of the class.

While his classmates added the numbers sequentially, Gauss found a shortcut. He saw
that, for even n, the first n numbers can be partitioned into n/2 pairs that each add up to

Proceedings of the International Congress of Mathematicians, Seoul, 2014

610 Craig Gentry

n + 1, and that therefore the sum of the first n numbers is n(n + 1)/2. A mathematician
might say that Gauss found a formula or expression for the sum of the first n numbers –
namely, n(n + 1)/2. A computer scientist would add that Gauss also found an algorithm
or program. Moreover, Gauss’s algorithm is efficient, in contrast to the inefficient algorithm
used by his classmates.

Gauss’s algorithm for adding up the first n numbers takes as input the number n, rep-
resented by k = log2 n bits (or log10 n decimal digits). The most complex part of Gauss’s
algorithm is to multiply n and n+ 1, which requires O(k2) steps using grade-school multi-
plication. Since the number of computational steps in Gauss’s algorithm is only polynomial
in the size of the input, we say his algorithm is polynomial-time. The sequential algorithm
used by his classmates takes at least n = 2k steps, which is exponential-time.

If a problem – such as adding up the numbers 1 to n, or multiplying two numbers – has a
polynomial-time algorithm that always solves it, then we say the problem is in the complex-
ity class P (for polynomial-time). BPP, which contains P, is the class of problems solvable
by efficient algorithms, which includes probabilistic polynomial-time (PPT) algorithms that
may use random coins and only solve the problem with good probability. NP (for “nonde-
terministic polynomial-time”) contains problems that, if you happen to guess the solution,
you can verify that it is correct in polynomial time. For example, the integer factorization
problem – decomposing an integer N into its prime factors, which is essentially the inverse
of multiplication – is in NP, but widely believed not to be in BPP. The biggest open problem
in complexity theory is to prove P 6= NP (if that is the case).

1.2. Cryptography. Since we have not resolved P
?
= NP and other complexity-theoretic

questions, we do not know whether strong cryptography is possible. We might live in any of
Impagliazzo’s Worlds [23]. Impagliazzo imagined a face-off between Gauss and his teacher
in five different worlds, each of which is possible given what we currently know. In “Algo-
rithmica”, P = NP or some moral equivalent, making much of modern cryptography inse-
cure, and making it virtually impossible for the teacher to stump Gauss. To make the face-off

fair, the teacher’s problem needs to have a succinct verifiable answer, but any such problem
is in NP, hence in P, and therefore is easy for Gauss to solve. At the other extreme, in
“Cryptomania”, public-key cryptography [12, 33] is possible: two parties can communicate
secret messages over public channels. Impagliazzo notes “In Cryptomania, Gauss is utterly
humiliated. By means of conversations in class, [the teacher] and his pet student would be
able to jointly choose a problem that they would both know the answer to, but which Gauss
could not solve.” Most cryptographers bet their careers that we live in Cryptomania. But bet-
ting against the Gausses of the world is a risky proposition, and so “cryptographers seldom
sleep well” [25].

Still, cryptographers soldier on. An early triumph was a paper by Goldwasser and Micali
[21] that introduced “probabilistic encryption”, defined a rigorous (now standard) notion of
security for encryption schemes, and proposed an elegant construction of public-key encryp-
tion whose security they provably reduced to a natural, plausible computational assumption:
that the quadratic residuosity problem is hard. We review their results here as a vigorous
warm-up for recent encrypted computation schemes.

A public-key encryption scheme has three efficient algorithms: a key-generation algo-
rithm K that generates public and secret keys (pk, sk), an encryption algorithm E that takes
pk and a plaintext message m and outputs a ciphertext c, and a decryption algorithm D that
takes sk and c and recovers m. It is called “public key”, since anyone can use the publicly

Computing on the edge of chaos: Structure and randomness in encrypted computation 611

available pk to encrypt (without needing any secret knowledge). Of course, for any key pair
(pk, sk) output by K, whenever c = E(pk,m), it should hold that m = D(sk, c).

Goldwasser and Micali observed that, to be secure, an encryption scheme really should
be probabilistic – that is, E needs to be randomized, and there must be many ciphertexts for
each plaintext. If E were deterministic, an adversary could easily detect whether two cipher-
texts encrypt the same thing! To make this intuition more precise, they defined a notion of
“semantic security” for encryption in terms of a game between a challenger and an adver-
sary. In the initial phase, the adversary can ask the challenger for encryptions of messages of
its choosing. (In the public-key setting, the adversary can generate these encryptions itself.)
Then, the adversary generates two equal-length messagesm0,m1 and asks for an encryption
of one of them. The challenger sends a “challenge ciphertext” E(mb) for random b ∈ {0, 1},
the adversary wins the game if it guesses b, and the scheme is considered semantically secure
if the adversary has negligible advantage.

In the Goldwasser-Micali (GM) public-key encryption scheme, Alice samples random
prime integers p, q according to an appropriate distribution and sets N = pq, samples a
uniform x ∈ (Z/NZ)∗ that is a non-square modulo N but whose Jacobi symbol

(
x
N

)
equals

1, and publishes (N, x) as her public key. Bob encrypts m ∈ {0, 1} for Alice by sampling
random r ∈ (Z/NZ)∗ and sending the ciphertext c ← xm · r2 ∈ (Z/NZ)∗. That is, an
encryption of 0 is a square, and an encryption of 1 is a non-square (with Jacobi symbol 1).
Alice decrypts to recover m by distinguishing whether c is a square modulo the secret prime
factor p (e.g., by using Gauss’s quadratic reciprocity theorem).

The quadratic residuosity problem is related to the integer factorization problem. The
problem is: given a composite integer N = pq (but not the prime factors p and q) and an
element x ∈ (Z/NZ)∗ whose Jacobi symbol is 1 (where N and x are sampled accord-
ing to appropriate distributions), decide whether x is a square in (Z/NZ)∗. The quadratic
residuosity assumption is that the quadratic residuosity problem is hard (not in BPP). To
put it another way, the assumption is that, against all PPT adversaries, the subset of squares
modulo N = pq is pseudorandom among the set of elements with Jacobi symbol 1. The
assumption is clearly stronger than factoring, but it seems like a safe assumption, since we
do not know an actual algorithm to solve it that is significantly faster than factoring. For
us, the assumption has the added appeal of taunting our adversary Gauss, since he can use
his quadratic reciprocity theorem to compute the Jabobi symbol of x modulo N without
knowing N ’s factorization, but this does not help him since we always fix

(
x
N

)
= 1.

To reduce the semantic security of their scheme to quadratic residuosity, Goldwasser
and Micali use a “hybrid argument” approach that has become standard. Assume that our
adversary Gauss can break the cryptosystem – i.e., can distinguish encryptions of 0 from
encryptions of 1. Consider two different games, Game 0 and Game 1. In Game 0, we
generate the public key (N, x) and a challenge ciphertext (an encryption of a random bit
m ∈ {0, 1}) for Gauss in the correct way. By assumption, Gauss should be able to guess
m with noticeable advantage. In Game 1, however, we generate the public key (N, x) in
a different way. Specifically, we make x a square in (Z/NZ)∗, and generate the challenge
ciphertext by encrypting m using the normal encryption procedure, as if (N, x) were a valid
public key. In Game 1, encryptions of 0 and encryptions of 1 have the same distribution
(either way, the ciphertext is a random square), and thus Gauss cannot have any advantage
guessing m. Thus, Gauss’s success probability noticeably differs in Games 0 and 1. To
construct a PPT algorithm to decide whether x is a non-square or square (i.e., whether we
are in Game 0 or Game 1), we simply use Gauss’s performance to help us distinguish. This

612 Craig Gentry

bases the security of GM on quadratic residuosity.

1.3. Homomorphic encryption. The GM scheme has a curious bonus feature: it is mal-
leable. It allows anyone to manipulate (in limited but meaningful ways) what is encrypted,
even without knowing the secret key: to compute on encrypted data. Specifically, suppose
that c1 is a GM encryption of m1 ∈ {0, 1}, and c2 is a GM encryption of m2 – that is,
c1 = xm1 · r21 and c2 = xm2 · r22 for some r1, r2 ∈ (Z/NZ)∗. We can increment the plain-
text by multiplying the ciphertext by x, without even knowing what the plaintext is. The new
ciphertext c← c1 · x = xm1+1 · r21 encrypts m1 + 1. Also, we can add plaintexts by multi-
plying the corresponding ciphertexts: c ← c1 · c2 = xm1+m2 · (r1r2)2 encrypts m1 +m2.
These plaintext additions are in Z/2Z, since x2 is an encryption of 0. Interestingly, GM
allows an unlimited number of plaintext additions, but GM’s overall malleability is limited.
GM can compute linear functions on encrypted data, but it does not (for example) provide
any way to operate on two ciphertexts so as to multiply the two plaintexts.

Rivest, Adleman and Dertouzos [32] saw the potential of computing on encrypted data
a few years earlier in 1978, shortly after the invention of the RSA public-key encryption
scheme [33], which allows multiplications of plaintexts but not additions. They wondered
whether it could be possible to construct an encryption scheme that is completely malleable,
that allows unlimited computations on encrypted data. They called such a scheme a “privacy
homomorphism”. These days, we call it “fully homomorphic encryption” (FHE), where
“fully” means it allows any computation over encrypted values. (GM is “additively homo-
morphic” and RSA is “multiplicatively homomorphic”.) They also foresaw that an FHE
scheme would have amazing applications. It took more than 30 years after Rivest et al.
proposed the notion to discover the first plausible FHE scheme [16]. Now that we have dis-
covered plausible constructions, we have made tremendous progress improving them, but
still have far to go.

Before we address what FHE can do, let us be more precise about what it is. In this sur-
vey, an FHE scheme is first of all a public-key encryption scheme with the usual algorithms
K, E, and D. LetM and C be the message space and ciphertext space of the scheme. Let us
say that a ciphertext c ∈ C encrypts a message m ∈ M under key (pk, sk) if decryption re-
turns m← D(sk, c). The special feature of an FHE scheme is that it comes equipped with a
fourth efficient algorithm, called Evaluate and denoted by V, such that for any valid key pair
(pk, sk), any t (for any t) encryptions c1, . . . , ct of any messages m1, . . . ,mt ∈ M under
(pk, sk), and for any t-ary function f :Mt →M, V(pk, f, c1, . . . , ct) outputs a ciphertext c
that encrypts f(m1, . . . ,mt). Crucially, Evaluate is a public algorithm that anyone can exe-
cute without the secret key, and of course we want the encryption scheme to be semantically
secure despite its availability. In short, an FHE scheme allows computation of any function
f inside an “impenetrable box” of encryption.

We can describe FHE in terms of a commutative diagram.

Ct C

Mt M

V(pk,f,·,...,·)

D(sk,·,...,·) D(sk,·)

f(·,...,·)

The diagram is meant to convey that, for any key, messages, ciphertexts, and function
f , the order of decryption and applying f does not matter: either way we end up with

Computing on the edge of chaos: Structure and randomness in encrypted computation 613

f(m1, . . . ,mt). An analogous commutative diagram with encryption instead of decryption
does not work. Although it is true that the order of encryption and applying f does not
matter in the sense that (either way) we end up with an encryption of f(m1, . . . ,mt), the
actual ciphertexts might be different. (Recall that having many different ciphertexts for each
message is essential for an encryption scheme to be semantically secure.)

Later in the survey, we will see in detail how to construct an FHE scheme. At this point,
we must keep the reader in suspense.

1.3.1. Applications of homomorphic encryption. An exciting potential application of
FHE is preserving privacy online, which is more relevant now than ever before. For example,
we seem to heading toward widespread acceptance of cloud computing, where users put
their data online “in the cloud” for convenience and availability. Putting everything online
unencrypted is to risk an Orwellian future, not just because the corporation hosting our
data may misuse it, but also because a government may strong-arm the corporation into
providing a backdoor. For certain types of data, such as medical records, storing them off-
site unencrypted may be illegal. On the other hand, encrypting one’s data seems to nullify
the benefits of the “computing” part of cloud computing. Unless I give the cloud my secret
decryption key (sacrificing my privacy), how can I expect the cloud to do any meaningful
processing of my encrypted data? Fully homomorphic encryption provides a way out of this
false dilemma. If I want to make some query f on my encrypted data, I can just send a
description of f to the cloud, which uses the Evaluate algorithm to derive an encryption of
f(m1, . . . ,mt), which is the response to my query.

In addition to encrypting my data, I can encrypt my query f (under the same pk). More
broadly, I can encrypt a program P , so that the cloud can execute P on unencrypted data
or data encrypted under the same pk, and output the encrypted result. At first, this fact may
seem surprising, but it is just an application of Turing’s idea that a program can be viewed
just another type of data to be processed by a universal Turing machine. (In more modern
terms, a program can be read and executed by an interpreter program.)

The applications of FHE may seem counterintuitive and hard to believe. In a world with
FHE – call it “Cryptomegalomania” – cryptography flexes its muscles and sticks its tongue
out at young Gauss. Gauss might have the last laugh though. Current FHE schemes are
too impractical to realize all of the applications that are possible in principle. Developing
a significantly faster FHE scheme is an interesting mathematical problem that also has high
stakes for society.

1.3.2. Shortcomings of homomorphic encryption. Besides high overhead, there are two
related “problems” with FHE.

The first problem is that Evaluate always has an encrypted output. This is, in some sense,
optimal for security: nothing is ever revealed to anyone but the secret key holder. But it is of-
ten sub-optimal for functionality. Sometimes it is useful to reveal some (carefully controlled)
unencrypted information to the Evaluator. This especially true for encrypted programs. One
might like to hide (encrypt) certain aspects of a program (e.g., to prevent it from being se-
mantically deconstructed) while preserving its functionality as a fully executable program
with unencrypted inputs and outputs.

The second problem is that, while FHE can handle general computations “efficiently”
in the sense of “polynomial-time”, FHE cannot exploit certain optimizations essential to the
practicality of computation in modern computing environments. Specifically, FHE needs to

614 Craig Gentry

put a function f or program P into a special format – called a boolean or arithmetic circuit
– before it can be processed.1 In a circuit evaluation of f , the number of computational steps
does not depend on the input x. For the security of FHE, this is necessary: if the run time
of Evaluate depended on the particular value of (encrypted) x, it would reveal something
about x. However, it also means that Evaluate’s run time depends on the worst-case x’s;
Evaluate can never take a shortcut for “easy” inputs. Similarly, FHE cannot do random
access (as in a random access machine (RAM)) over encrypted data, since FHE does not
allow the Evaluator to learn unencrypted data-dependent addresses. Nor does FHE allow an
Evaluator to exploit an inverted index, which helps make searches (like web searches) over
huge data-sets practical.

1.4. Program obfuscation. Using FHE, we can generate encrypted programs that have en-
crypted output. But is there some way to generate encrypted programs that have unencrypted
output? To put it another way: Is there any meaningful sense in which we can “encrypt” a
program while preserving its functionality (input/output behavior) as a fully executable pro-
gram? This is the seemingly-paradoxical and hard-to-define goal of program obfuscation.

Program obfuscation may sound impossible to achieve, and indeed some notions of ob-
fuscation are. For example, consider a program P that prints its own code. Since any obfus-
cationO(P) of P must have the same functionality as P ,O(P) reveals P completely. Barak
et al. [4] showed that some programs are unobfuscatable even without being so exhibition-
ist. They showed that, assuming one-way functions (functions that are hard to invert), there
are unlearnable programs P (programs for which no PPT algorithm can recover P or any
code equivalent to P just from oracle access to P) that can be completely recovered from
any code that implements them. Obfuscation is impossible in an “absolute” sense: for some
programs, any obfuscation reveals everything.

However, it turns out that obfuscation is possible in a “relative” sense. To understand
this notion of encrypting a program, let us revisit what it means to encrypt a message. Gold-
wasser and Micali called an encryption scheme “semantically secure” if a PPT adversary
has negligible advantage of winning the following game: the adversary picks two equal-
length messages m0,m1, the challenger encrypts one of them, and the adversary tries to
guess which one. They need the “equal-length” message requirement, because a ciphertext
always reveals some information about the message it encrypts – namely, an upper bound
on its length. Similarly, an obfuscated program always reveals something about the orig-
inal program – an upper bound on its size, and also the program’s input/output behavior.
Accordingly, Barak et al. [4] defined an analogue of semantic security for programs via a
similar game: the adversary picks two equal-size functionally-equivalent programs (repre-
sented as circuits C0, C1), the challenger obfuscates one of them, and the adversary tries to
guess which one. The obfuscator is considered secure if every PPT adversary has negligible
advantage of winning the game. This notion is called indistinguishability obfuscation (IO).

It is not obvious that IO is actually useful. An IO obfuscator does not guarantee it
will hide any secrets residing in the program. It does not provide any absolute guarantees
about the quality of the obfuscation. However, IO provides a strong relative guarantee –
namely, an indistinguishability obfuscator is a “best-possible” obfuscator: it is as good as
any other obfuscator of roughly the same complexity [4, 22]. To see this, suppose O is
a secure indistinguishability obfuscator. Suppose BO(·) is the actual best obfuscator of a

1We will discuss circuits in more detail in Section 2.

Computing on the edge of chaos: Structure and randomness in encrypted computation 615

certain complexity of circuits of a certain size, whereas Pad(·) merely increases the size of
circuits the same amount asBO(·). Then, for any circuitC, the circuitsBO(C) and Pad(C)
are the same size and have the same functionality, and so O(BO(C)) and O(Pad(C)) are
indistinguishable. Since they are indistinguishable, O(Pad(C)) obfuscates C as well as
O(BO(C)), which obfuscates C as well as BO(C).

Although IO only provides a relative guarantee of security, it can be used to construct
schemes having absolute guarantees. For example, Garg et al. [15] showed how to use
IO to construct a functional encryption scheme [5]: a public-key scheme administered by
an authority that chooses a function f and distributes secret keys to users such that a user
with sky associated to string y can recover exactly f(x, y) from a ciphertext encrypting x.
For example, y might specify a user’s security clearance, and f might specify a redaction
policy, such that user y obtains only the portion of document x for which it has clearance.
Obfuscation can also be used to “fix” some of the problems with FHE. For example, it can be
used to allow encrypted computation in the RAM model of computation (rather than circuits)
[1, 18].

Garg et al. [15] recently found the first plausibly secure construction of IO. Here is a
very brief overview of how their scheme works. First, they show how to “bootstrap” IO for
NC1 (logarithmic depth) circuits to IO for general circuits. Specifically, the obfuscation of
a circuit C consists of encryptions of C under two FHE key pairs (sk0, pk0), (sk1, pk1) and
an obfuscated conditional decryption circuit O(ConD) (to be described momentarily). The
Evaluator computes the encrypted program C on its input under both FHE public keys, and
feeds the resulting ciphertexts, with a “proof” that they were computed correctly, as input
to O(ConD), which decrypts one ciphertext using sk0 if the proof verifies. Garg et al. use
the fact that ConD can be implemented in NC1 for known FHE schemes. Assuming O is
a secure IO for NC1, they show that a PPT attacker cannot distinguish whether the FHE
secret key inside O(ConD) is sk0 or sk1, since either way ConD’s output is the same. This
shell game shows that sk0 is hidden, and forms part of their hybrid security proof for IO for
general circuits.

Next, Garg et al. present an indistinguishability obfuscator for NC1 circuits. Their NC1

obfuscator uses a graded encoding scheme by Garg et al. [14]. A graded encoding scheme
is similar to a homomorphic encryption scheme, with the important difference that it comes
equipped with zero test that allows anyone to efficiently distinguish when the encoded value
is 0. This zero test allows some unencrypted information to leak (unlike FHE), but schemes
using graded encodings are carefully designed to ensure that (hopefully) this leakage can
only occur when the Evaluator computes over the encodings in a permitted way. Currently,
known schemes for IO for NC1 have security based on unconventional assumptions about
graded encodings.

Since Garg et al.’s obfuscation construction, there have been some improvements both in
security and efficiency, but both aspects are still worse than for FHE, in part because current
obfuscation schemes use FHE as a component. This is a young and active area of research.

1.5. “Computing on the Edge of Chaos” and “Structure and Randomness”. We now
begin turning to the construction of FHE and obfuscation schemes. Before we begin in
earnest, let us start with a high-level intuition for how current FHE schemes (and the obfus-
cation schemes derived from them) work. Current FHE schemes all use essentially the same
“noisy” approach. They encrypt via a noisy encoding of the message: by sending the mes-
sage to a ciphertext that is similar to a perturbed codeword in an error-correcting code. The

616 Craig Gentry

decrypter recovers the message by recovering the noise. The public key is, in some sense,
a “bad” basis of the error-correcting code, which permits efficient encryption but does not
permit efficient correction of errors. By careful manipulation of the ciphertexts, an Evalua-
tor can add and multiply the underlying plaintexts while increasing the noise by only a small
amount. Furthermore, when the noise becomes almost large enough to drown out the signal
(the message), the Evaluator can apply an operation called “bootstrapping” to “refresh” the
noisy ciphertext: to generate a new ciphertext that encrypts the same message but with less
noise. In short, the “noise” turns out to be both a boon and a bane. The noise hides the mes-
sage from adversaries. However the noise lies behind the impracticality of current schemes:
it makes ciphertexts large and it requires computationally expensive steps to bound the noise
as computations are performed.

The phrases “computing on the edge of chaos” and “structure and randomness” capture
some intuitions that I have about encrypted computation, and the possibility that a noisy ap-
proach may be necessary. Of course, these intuitions may be illusions. I would like nothing
more than for someone to find a radically different way of constructing fully homomorphic
encryption and obfuscation schemes that escapes the current paradigm of using noisy, ap-
proximate homomorphisms. Consider the title of this paper a provocation, a challenge.

My (not very strongly held) intuition, for what it’s worth, is that “exact” mathematical
structures – e.g., exact rather than approximate homomorphisms of the kind used in previous
weakly homomorphic encryption schemes such as Goldwasser-Micali – seem either too rigid
(e.g., they allow only additive but not multiplicative homomorphism) or too permissive (e.g.,
they allow full homomorphism but enable trivial linear algebra attacks). Instead, for robust
encrypted computation, we seem to need mathematical structures that can be inexact without
simply being wrong – that is, structures that noisily remain close to exact solutions.

To be secure under Goldwasser and Micali’s notion of “semantic security”, an encryption
scheme must be probabilistic – i.e., it must use randomness in encryption. But getting this
randomness to play nicely with the structure we need for correct computation is a delicate
balance, and it raises certain questions: What happens to the randomness when we do ho-
momorphic operations on ciphertexts? Does the randomness mix with the structured part of
the ciphertexts, or does it somehow remain cordoned off? If the former, how is the structure
preserved (so as to allow correct decryption)? If the latter, how does the randomness re-
main safely cordoned off despite performing complex general computations? (It seems like
general computation would induce a lot of mixing.) Also, in the latter case, how does the
scheme remain secure – for example, how does it remain secure against linear algebra at-
tacks if the randomness is perpetually isolated to certain coordinates? In the noisy approach
to homomorphic encryption, the randomness indeed mixes with the structure (in particular,
with the message), but the randomness is always kept small so that it does not overwhelm
the structure.

I thought “computing on the edge of chaos” would be a fun and original way to de-
scribe the current approach to encrypted computation, but it turns out the phrase has already
been taken. Apparently, it refers to a critical phase transition point in cellular automata
between overly ordered and completely chaotic where the automata become capable of uni-
versal computation, and more broadly refers to the notion that dynamic “lifelike” systems,
such as the economy or human brain, are healthiest when they are “poised on the edge of
chaos”. The notion seems intuitively appealing, though there has been pushback against it as
being unrigorous and unsubstantiated. The idea that the noisy approach to encrypted com-
putation somehow exploits a phase transition between order and chaos also seems intuitively

Computing on the edge of chaos: Structure and randomness in encrypted computation 617

appealing, if even more unsubstantiated.

1.6. Roadmap. In the rest of the survey, we will limit our focus to FHE. We will describe
in depth how to construct an FHE scheme with security provably based on the hardness of
the so-called learning with errors (LWE) problem.

2. Circuits and homomorphic encryption

We touched upon circuits and homomorphic encryption in the Introduction. Here, we discuss
them more formally.

2.1. Circuits. Before we can specify how to Evaluate a function using homomorphic en-
cryption, we need to be more explicit about our model of computation. The canonical theo-
retical representation of a computer is the Turing machine, described by Alan Turing in the
1930’s. It handles general computations, and is as efficient as modern random access mem-
ory (RAM) computers up to polynomial factors (assuming the RAM computer’s memory is
not pre-loaded). However, in this survey, we will primarily use a mathematically cleaner
representation of algorithms, called a boolean or arithmetic circuit. Circuits also handle gen-
eral computations, and almost as efficiently as Turing machines. In particular, if there is a
Turing machine program that always evaluates a function f in at most Tf steps, then there is
a circuit for f that has size O(Tf · log Tf) [30].

An arithmetic circuit is a remarkably simple and mathematically clean way of repre-
senting a program. It is typically just a composition of addition gates (which take several
inputs and output their sum), multiplication gates (which take several inputs and output their
product), and scalar multiplication gates (which take one input and multiply it by a scalar),
where these operations are performed over some ring. The gates are typically arranged into
levels, so that the outputs of gates at level i are inputs to gates at level i + 1 unless i is the
last level of the circuit. The circuit cannot contain any loops (it is a directed acyclic graph),
but one can reuse the output of a gate as input to multiple higher-level gates. The number
of gates is called the size of the circuit, and the number of levels is called the depth. Notice
that, since the circuit just uses addition and multiplication, the output of each gate has a nice
mathematical interpretation: it is simply a multivariate polynomial (evaluated at the inputs).

When the ring is F2 and each gate has at most two inputs, we call the circuit a boolean
circuit. Interestingly, any boolean function can be computed using a circuit composed en-
tirely of NAND gates. For x, y ∈ {0, 1}, NAND(x, y) = 1 − x · y ∈ {0, 1}. Restricting to
{0, 1}, we can implement NAND over any ring.

It may be surprising that multivariate polynomials representable by polynomial-size cir-
cuits, even boolean circuits of NAND gates, are adequate to represent polynomial-time com-
putation.2 However, a multivariate polynomial with low circuit complexity may be very
complex by other measures. Even when the circuit has polynomial size, the multivariate
polynomials it represents may have an exponential number of monomials. Moreover, over
large fields, the degree of the polynomials may be exponential in the depth of the circuit,

2Leslie Lamport, in his essay How to Tell a Program from an Automobile, remarked that “An automobile runs,
a program does not. (Computers run, but I’m not discussing them.) ... An automobile is a piece of machinery,
a program is some kind of mathematical expression”. Lamport’s observation becomes especially clear when the
program is represented as a circuit, which in turn represents nothing more than a set of multivariate polynomials.

618 Craig Gentry

since each level of multiplication gates may double the degree.

2.2. Homomorphic encryption. A homomorphic encryption scheme is a tuple of four
probabilistic polynomial time (PPT) algorithms (K,E,D,V). In this survey, the message
space M of the scheme will always be some ring and our computational model will be
arithmetic circuits over this ring (e.g., addition, multiplication and NAND gates).

• HE.K takes the security parameter λ (and possibly other parameters of the scheme)
and produces a secret key sk and a public key pk.

• HE.E takes pk a message m ∈M and produces a ciphertext c which is the encryption
of m.

• HE.D takes sk and a ciphertext c and produces a message m.

• HE.V takes pk, an arithmetic circuit f overM, and ciphertexts c1, . . . , ct, where t is
the number of inputs to f , and outputs a ciphertext c.

Roughly speaking, the security parameter λ specifies the security level of the scheme. The
algorithms of the scheme should take time poly(λ), but any known algorithms to attack the
scheme should take time super-polynomial in λ, preferably exponential (say 2λ) time.

Definition 2.1 (Correctness and Compactness). We say that a homomorphic encryption
scheme (K,E,D,V) correctly evaluates a circuit family F if for all f ∈ F and for all
m1, . . . ,mt ∈M it holds that if sk, pk were properly generated by K with security parame-
ter λ, and if ci = E(pk,mi) for all i, and c = V(pk, f, c1, . . . , ct), then

Pr[D(sk, c) 6= f(m1, . . . ,mt)] = negl(λ) ,

where the probability is taken over all the randomness in the experiment.
We say that the scheme compactly evaluates the family if in addition the run time of the

decryption circuit only depends on λ and not on its input.

The notation negl(λ) means the function grows more slowly than the inverse of any polyno-
mial: negl(λ) = O(1/λc) for any constant c.

The reason for the compactness requirement is that homomorphic encryption is uninter-
esting without it. If the ciphertext size could depend on the circuit size, we could just set
c = (f, c1, . . . , ct), and decrypt c by decrypting the ci’s and applying f . Obviously such a
scheme is useless for delegation of computation, since the decrypter rather than the Evaluator
performs all of the computation.

Much of this survey will focus on the construction of a leveled fully homomorphic
scheme, where the parameters of the scheme depend (polynomially) on the depth (but not
the size) of the circuits that the scheme is capable of evaluating.

Definition 2.2 (Leveled FHE). We say that a family of homomorphic encryption schemes
{E(L) : L ∈ Z+} is leveled fully homomorphic if, for all L ∈ Z+, they all use the same
decryption circuit, E(L) compactly evaluates all circuits of depth at most L, and the compu-
tational complexity of E(L)’s algorithms is polynomial (the same polynomial for all L) in
the security parameter, L, and (in the case of the evaluation algorithm) the size of the circuit.

In a “pure” FHE scheme, the complexity of the algorithms (except for Evaluate) is indepen-
dent of L.

We use Goldwasser and Micali’s notion of semantic security [21].

Computing on the edge of chaos: Structure and randomness in encrypted computation 619

Definition 2.3. A homomorphic scheme is secure if any PPT adversary that first gets a
properly generated pk, then specifies m0,m1 ∈M and finally gets E(pk,mb) for random b,
cannot guess b with probability > 1/2 + negl(λ).

Of course, the adversary can try to use the additional Evaluate algorithm to win the semantic
security game.

3. Learning with Errors (LWE)

As we saw in the Introduction, when cryptographers construct an encryption scheme, they
try to prove that the scheme is secure as long as a natural problem (such as quadratic residu-
osity) is hard to solve. This proof is called a reduction. Here, we describe a natural problem
called learning with errors (LWE). Later, we will show how to construct public-key and ho-
momorphic encryption schemes whose security reduces to it. We also review some evidence
that LWE is a hard problem.

The LWE problem was introduced by Regev [31]. Informally, the “search” version of
LWE is about solving “noisy” systems of linear equations. The problem is to recover a n-
dimensional vector ~s over Z/qZ from many pairs (~ai, bi), where the ~ai’s are sampled as
uniformly random vectors over Z/qZ, and bi is set to 〈~ai, ~s〉+ ei ∈ Z/qZ for some “error”
ei of small magnitude (� q). If not for the errors, we could recover ~s efficiently using
Gaussian elimination after receiving about n equations. Introducing error seems to make the
problem hard.

More formally, LWE is typically defined as a “decision” problem as follows.

Definition 3.1 (LWE). For security parameter λ, let n = n(λ) be an integer dimension,
q = q(λ) ≥ 2 be an integer, and χ = χ(λ) be a distribution over Z. The LWEn,q,χ problem
is to distinguish the following two distributions:

(1) Output (~ai, bi) sampled uniformly from (Z/qZ)n+1.

(2) For fixed uniform ~s ← (Z/qZ)n, sample ~ai ← (Z/qZ)n uniformly, sample ei ← χ,
set bi = 〈~ai, ~s〉+ ei ∈ Z/qZ, and output (~ai, bi).

The LWEn,q,χ assumption is that the LWEn,q,χ problem is hard.

For n, q = poly(λ), Regev gave a polynomial-time reduction from search LWE to deci-
sion LWE. Applebaum et al. [2] showed that the hardness of LWE is unaffected when the
coefficients of secret ~s are chosen from the small error distribution χ.

Sometimes we prefer to view LWE in the following way. Let ~ci = (bi,~ai) and ~t =
(1,−~s) for bi,~ai, ~s as above. Then [〈~ci,~t〉]q = [~ei]q is small for all i, where [x]q denotes
the representative of x in (−q/2, q/2]. The LWE problem is to decide whether there exists a
vector ~t that is “nearly orthogonal” to all of the ~ci’s.

Typically, χ is taken to be a discrete Gaussian distribution over Z, with deviation σ � q.
Rather than referring explicitly to the noise distribution χ, sometimes it is convenient to refer
to a bound β on the size of the noise.

Definition 3.2 (β-bounded distributions). A distribution ensemble {χn}n∈N, supported over
the integers, is called β-bounded if Pre←χn [|e| > β] = negl(n).

620 Craig Gentry

When the noise is extremely small or has some structure, there are sub-exponential al-
gorithms to solve LWE [3]. For example, when ei ∈ {0, 1} for all i, solving LWE is easy:
taking tensor products, 〈~ci,~t〉 ∈ {0, 1} implies 〈~ci ⊗ ~ci,~t ⊗ ~t〉 − 〈~ci,~t〉 = 0, giving us a
O(n2)-dimension error-free linear system to recover ~t ⊗ ~t, hence ~t. However, for discrete
Gaussian error distributions with σ = poly(n), the hardness of LWE stops depending so
much on the noise bound β, and appears to depend more on the ratio q/β.

In particular, the LWE problem has been shown to be as hard on average (for ran-
dom instances) as certain lattice problems in the worst-case (the hardest instances). A n-
dimensional lattice is a (full-rank) additive subgroup of Rn. For lattice dimension parameter
n and number d, the shortest vector problem GapSVPγ is the problem of distinguishing
whether a n-dimensional lattice has a nonzero vector of Euclidean norm less than d or no
nonzero vector shorter than γ(n) · d. The gist of the theorem below is that if one can solve
average-case n-dimensional LWE for ratio q/β then one can solve worst-case n-dimensional
GAPSVPγ for γ just a little larger than q/β.

Theorem 3.3 ([26, 27, 29, 31], Corollary 2.1 from [6]). Let q = q(n) ∈ N be either a prime
power or a product of small (size poly(n)) distinct primes, and let β ≥ ω(log n) ·

√
n. Then

there exists an efficient sampleable β-bounded distribution χ such that if there is an efficient
algorithm that solves the average-case LWE problem for parameters n, q, χ, then:

• There is an efficient quantum algorithm that solves GapSVPÕ(nq/β) on any n-dimen-
sional lattice.

• There is an efficient classical algorithm that solves GapSVPÕ(nq/β) on any n-dimen-

sional lattice when q ≥ Õ(2n/2).

Brakerski et al. [9] recently improved the classical result by removing the requirement on
the size of q.

GAPSVPγ is NP-hard for any constant γ, but unfortunately in cryptography we need γ
to be larger (at least n in the theorem above). For γ = poly(n), the fastest algorithm to
solve GAPSVPγ takes time 2O(n). (As a crude rule of thumb, the fastest algorithm to solve
GAPSVP2k takes roughly 2n/k time [34].) Interestingly, there are no quantum algorithms
for GAPSVP that perform significantly better than classical algorithms. In contrast, there
are polynomial-time quantum algorithms for integer factorization and some other common
problems used in cryptography.

4. Public key encryption from LWE

Regev [31] described a simple encryption scheme based on LWE. We describe a variant of
his scheme here. We split key generation algorithm K into three parts Setup, SecretKeyGen
and PublicKeyGen. Let [x]q denote the integer x ∈ (−q/2, q/2] that represents the coset of
x ∈ Z/qZ.

• Setup(1λ): Choose an odd integer modulus q = q(λ), lattice dimension parameter
n = n(λ), and error distribution χ = χ(λ) appropriately for LWE for security param-
eter λ. Also, choose parameterm = m(λ) = O(n log q). Let params = (n, q, χ,m).

• SecretKeyGen(params): Sample ~s ← χn. Set sk = ~t ← (1,−s1, . . . ,−sn) ∈
(Z/qZ)n+1.

Computing on the edge of chaos: Structure and randomness in encrypted computation 621

• PublicKeyGen(params, sk): Generate a matrix A ← (Z/qZ)m×n uniformly and a
vector ~e← χm. Set~b = A · ~s+ ~e. Set B to be the (n+ 1)-column matrix consisting
of ~b followed by the n columns of A. Set the public key pk = B. (Remark: Observe
that B · ~t = ~e.)

• E(params, pk, µ): To encrypt message µ ∈ {0, 1}, sample uniform ~r ∈ {0, 1}m, set
~µ← (µ, 0, . . . , 0) ∈ (Z/qZ)n+1, and output the ciphertext:

~c← ~µ+ 2 · ~r ·B ∈ (Z/qZ)n+1.

• D(params, sk,~c): Output [[〈~c,~t〉]q]2.

Decryption works correctly when the parameters are set so that |〈~r,~e〉| < q/4− 1 is guaran-
teed, since if ~c = ~µ + 2 · ~r · B for µ ∈ {0, 1}, then [〈~c,~t〉]q = [µ + 2 · 〈~r,~e〉]q is an integer
of magnitude < q/2 with the same parity as µ.

Interestingly, the encryption process of Regev’s scheme already uses the fact the scheme
is additively homomorphic. Each row 2 · Bi of 2 · B is an encryption of 0, in the sense that
[〈Bi,~t〉]q is small and even. To encrypt, one takes a random subset sum (defined by ~r) of the
2 ·Bi’s to obtain a “random” encryption of 0, and then one adds in ~µ to get an encryption of
µ.

This encryption process increases the size of the error: the error associated to the cipher-
text is µ plus a subset sum of the errors associated to the 2 · Bi’s. One needs to set q large
enough to “accommodate” the error expansion – again, one wants |µ + 2 · 〈~r,~e〉| < q/2 to
ensure correct decryption.

The security of Regev’s scheme follows from the following lemma [31].

Lemma 4.1 (Implicit in [31]). Let params = (n, q, χ,m) be such that the LWEn,q,χ
assumption holds, with q odd. Then, for m = O(n log q) and B, ~r as generated above,
the joint distribution (B, 2 · ~r · B) is computationally indistinguishable from uniform over
(Z/qZ)m×(n+1) × (Z/qZ)n+1. Concretely, it suffices to take m > 2n log q.

The lemma says that, for Regev’s encryption scheme, it is hard to distinguish a uniform
matrix and uniform vector from a valid pk and a valid encryption of 0.

To sketch a proof of the lemma, observe that it follows from two claims: that it is hard
to distinguish (B, 2 · ~r · B) from (U, 2 · ~r · U) where U is uniform in (Z/qZ)m×(n+1),
and also (U, 2 ·~r ·U) from (U, ~u) where ~u is uniform in (Z/qZ)n+1. The first claim follows
immediately from the LWE assumption, since given a LWE instanceB orU , we can generate
the 2 ·~r ·B or 2 ·~r ·U part ourselves. The second claim is true statistically. For large enough
m, the distributions (U, 2 · ~r · U) and (U, ~u) have negligible statistical distance from each
other when q is odd.

Now, let us use the lemma to reduce LWE to the semantic security of Regev’s encryption
scheme. Assume an adversary wins the semantic security game with non-negligible advan-
tage. We imagine two games between the challenger and the adversary. In Game 0, the
challenger uses the distribution (B, 2 ·~r ·B) to generate its public key pk = B and challenge
ciphertext ~c ← ~µ + 2 · ~r · B. By assumption, the adversary guesses µ with non-negligible
advantage. In Game 1, uses uniform (U, ~u) ∈ (Z/qZ)m×(n+1) × (Z/qZ)n+1, sets pk = U ,
and sets ~c← ~µ+~u. In Game 1, since ~u is uniform, the adversary has no advantage guessing
µ. We guess that the distribution is (B, 2 · ~r · B) (that we are in Game 0) if the adversary
guesses µ correctly; otherwise, we guess the distribution is uniform (that we are in Game 1).

622 Craig Gentry

One can show that if the adversary guesses µ correctly in Game 0 with probability 1/2 + ε,
then we guess the distribution correctly with probability 1/2 + ε/2.

5. Leveled FHE from LWE

The Gentry-Sahai-Waters (GSW) leveled FHE scheme [20] is currently the conceptually
simplest FHE scheme whose security is based on LWE. As a warm-up to build intuition,
we first describe how a noise-free (but insecure) version of GSW would work. Then, we
introduce noise, describe how to fix the problems it causes, and reduce the security of GSW
to the security of Regev’s scheme (hence to LWE).

5.1. Thought experiment: Leveled FHE from learning without errors. Imagine that
Regev’s encryption scheme had no error, that an encryption of µ ∈ {0, 1} is simply a vector
~c ∈ (Z/qZ)n+1 such that 〈~c,~t〉 = µ ∈ Z/qZ, where ~t is the secret key. How can we add and
multiply such ciphertexts so as to add and multiply the plaintexts inside?

Addition is easy. Given two ciphertexts ~c1,~c2 that happen to encrypt µ1, µ2, we add
them to obtain a ciphertext that encrypts the sum: 〈~c1 + ~c2,~t〉 = µ1 + µ2.

Multiplication is tricker. We can use tensor products: 〈~c1⊗~c2,~t⊗~t〉 = µ1 ·µ2. However,
then each circuit level of multiplications squares the dimension of the ciphertexts, making
the scheme non-compact and inefficient.

To get compact multiplication, a better idea is to use matrix multiplication. Specifically,
let an encryption of µ be a square matrix C such that C · ~t = µ · ~t. In other words, the
secret key is an eigenvector of the ciphertext matrix, and the message is the eigenvalue.3
Addition and multiplication of ciphertexts induces addition and multiplication of plaintexts
(eigenvalues). Decryption is a ring homomorphism from the ring of matrices having ~t as an
eigenvector to the corresponding eigenvalue.

Unfortunately, this scheme is easy to attack. The encryptions of 0 form a subspace that
is easily identified (via linear algebra) once enough encryptions of 0 are collected. More
broadly, this eigenvector-based FHE scheme falls within the so-far-unsuccessful hidden ring
homomorphism approach to FHE. In this approach, the message space M and ciphertext
space C are rings, and decryption Dsk : C →M is a ring homomorphism that depends on the
secret key sk. Addition and multiplication of ciphertexts induce addition and multiplication
of plaintexts. Encryptions of 0 form an ideal I in C, while encryptions of 1 are in 1 +
I. Semantic security relies on the hardness of the ideal membership problem: roughly,
distinguish whether an element of C is in I. Another example in this framework is the Polly
Cracker scheme proposed by Fellows and Koblitz [13], where the secret key is a secret point
in ~s ∈ Fnq , and µ is encrypted as a “random” multivariate polynomial that evaluates to µ at
~s. Unfortunately, so far, there are no FHE schemes based on hidden ring homomorphisms
that are both compact and secure (though the approach has not been ruled out).

5.2. Error-Preserving transformations. As we will see, the GSW scheme uses exactly
the above eigenvector approach, but adds noise to it. In GSW, the secret key is a vector ~v
with a special form, and an encryption of µ is a matrix C such that C ·~v = µ ·~v+~e for small
error vector ~e – that is, ~v is an approximate eigenvector of the ciphertext, with the message

3Note that since we work modulo q, eigenvectors here do not have the usual geometric interpretation.

Computing on the edge of chaos: Structure and randomness in encrypted computation 623

as the eigenvalue. The noise makes multiplication tricky again, since

C1 · C2 · ~v = C1 · (µ2 · ~v + ~e2) = µ1 · µ2 · ~v + (µ2 · ~e1 + C1 · ~e2).

The new noise µ2 · ~e1 + C1 · ~e2 depends not only on the old noises, but also on the second
message and the first ciphertext. To ensure that the magnitude of the noise grows at most by
a polynomial factor with each circuit level of multiplication, we need to keep the messages
small (we do this by restricting messages to {0, 1} and using NAND gates) and also keep
the ciphertexts small.

Here, we describe embarrassingly simple (but very useful) error-preserving transforma-
tions that an Evaluator can apply to make the entries of a ciphertext matrix small (in {0, 1})
without knowing or altering what the ciphertext encrypts. The idea is simply to use binary
decomposition: we decompose each mod-q coefficient into log2 q coefficients in {0, 1}.

Specifically, let ~c, ~t be vectors in (Z/qZ)k. Let ` = blog2 qc + 1 and N = k · `. Let
BitDecomp(~c) = (c1,0, . . . , c1,`−1, . . . , ck,0, . . . , ck,`−1), a N -dimensional vector where
ci,j is the j-th bit in ci’s binary representation, bits ordered least significant to most sig-
nificant. For ~c∗ = (c1,0, . . . , c1,`−1, . . . , ck,0, . . . , ck,`−1), let BitDecomp−1(~c∗) = (

∑
2j ·

c1,j , . . . ,
∑

2j · ck,j) be the inverse of BitDecomp, but well-defined even when the input is
not a 0/1 vector. For N -dimensional ~c∗, let Flatten(~c∗) = BitDecomp(BitDecomp−1(~c∗)),
a N -dimensional vector with 0/1 coefficients. When A is a matrix, let BitDecomp(A),
BitDecomp−1(A), or Flatten(A) be the matrix formed by applying the operation to each row
of A separately. Finally, let Powersof2(~t) = (t1, 2t1, . . . , 2

`−1t1, . . . , tk, 2tk, . . . , 2
`−1tk),

a N -dimensional vector. Here are some obvious facts:

• 〈~c,~t〉 = 〈BitDecomp(~c),Powersof2(~t)〉.
• For any N -dimensional ~c∗:
〈~c∗,Powersof2(~t)〉 = 〈BitDecomp−1(~c∗),~t〉 = 〈Flatten(~c∗),Powersof2(~t)〉.

In the GSW scheme, which we finally formally describe in the next subsection, we will
use ~v ← Powersof2(~t) as the secret key vector, rather than ~t. The salient feature of Flatten
is that we can apply it to a matrix C that encrypts a message under Powersof2(~t) without
affecting its product with Powersof2(~t) and hence what it encrypts, and (importantly) without
knowing ~t. By Flattening ciphertexts after each operation, we ensure that the next operation
will increase the magnitude of the error by only a polynomial factor.

5.3. The GSW leveled FHE scheme from LWE. Brakerski and Vaikuntanathan were the
first to construct a leveled FHE scheme based on LWE [10]. However, the scheme by Gentry,
Sahai and Waters is particularly simple. It uses a “compiler” that transforms any LWE-
based public-key encryption scheme (K,E,D) that has certain natural properties into a LWE-
based leveled FHE scheme (GSW.K,GSW.E,GSW.D,GSW.NAND) capable of Evaluating
circuits of NAND gates. Regev’s scheme has the needed properties. The properties are:

1. Property 1 (Vectors and parameters): The ciphertext and decryption key are vectors
~c,~t ∈ (Z/qZ)n′

for some n′. The first coefficient of ~t is 1 and q is odd.

2. Property 2 (Small dot product): If ~c encrypts 0, then 〈~c,~t〉 is “small”.

3. Property 3 (Security): Encryptions of 0 are indistinguishable from uniform vectors
over Z/qZ (under LWE).

624 Craig Gentry

The parameters n, q, χ of the underlying encryption scheme determine the depth L of the
circuits that GSW can Evaluate. So, the compiler is not completely black box; K must be
tweaked to depend on L. (We will discuss how L affects parameter sizes later.) The GSW
scheme works as follows.

• GSW.K(1λ, 1L): Compute K(1λ, 1L) to obtain parameters params, secret vector
sk = ~t ∈ (Z/qZ)n′

and public key pk. Let ` = blog qc + 1 and N = n′ · `. Set
~v = Powersof2(~t).

• GSW.E(params, pk, µ ∈ {0, 1}): Set ~c′i ← E(params, pk, 0) for i from 1 to N .
(Remark: These are just N encryptions of 0 under the public key encryption scheme.)
Set C ′ ∈ (Z/qZ)N×n′

to be the matrix with rows {~c′i}. Output the ciphertext C given
below. (IN is the N -dimensional identity matrix.)

C = Flatten
(
µ · IN + 2 · BitDecomp(C ′)

)
∈ (Z/qZ)N×N .

• GSW.D(params, sk, C): Let ~c1 be the first row of C. Output [[〈~c1, ~v〉]q]2.

• NAND(C1, C2): To NAND two ciphertextsC1, C2 ∈ (Z/qZ)N×N , output Flatten(IN−
C1 · C2).

Decryption works, since if C is as above, then

C · ~v = (µ · IN + 2 · BitDecomp(C ′)) · ~v [Flatten preserves product with ~v]
= µ · ~v + 2 · C ′ · ~t [BitDecomp(C ′) · Powersof2(~t) = C ′ · ~t]
= µ · ~v + 2 · small [By Property 2 above].

Since v1 = 1, the integer [〈~c1, ~v〉]q = µ · v1 + 2 · small is small and has the same parity as
µ, allowing recovery of µ ∈ {0, 1} when |small| < q/4− 1.

NAND works, since if C1, C2 happen to be valid encryptions of µ1, µ2 ∈ {0, 1} with
errors ~e1, ~e2, then:

NAND(C1, C2) · ~v = (IN − C1 · C2) · ~v = (1− µ1 · µ2) · ~v − µ2 · ~e1 − C1 · ~e2

Note that NAND maintains the invariant that if the input messages are in {0, 1}, then so is
the output message. With this invariant, and using Flatten to ensure that C1’s coefficients
are in {0, 1}, the output error is at most N + 1 times larger than the bigger input error.

Theorem 5.1. GSW is semantically secure under the LWE assumption.

Proof. By Property 3, C ′ is indistinguishable from a uniform matrix under LWE. Thus,
since q is odd, BitDecomp−1(C) = µ ·BitDecomp−1(IN)+2 ·C ′ is indistinguishable from
uniform U . But then C = Flatten(C) is indistinguishable from BitDecomp(U), where the
latter is independent of µ.

5.4. Parameters and performance. Suppose that we would like to use GSW to evaluate
NAND circuits with up to L levels. How should we set the parameters to ensure correctness
and security? How much computation does the Evaluate algorithm use per NAND gate?

We have seen that each NAND gate multiplies the magnitude of the error by a factor of
at most N + 1. If β is a bound on the error magnitude of fresh ciphertexts, then L levels

Computing on the edge of chaos: Structure and randomness in encrypted computation 625

of NAND gates amplify the error magnitude to at most β · (N + 1)L. Decryption works
correctly despite such large error, as long as q/4− 1 > β · (N + 1)L q/β > 4NL. The
ratio q/β must grow exponentially with L to “accommodate” the noise.

Using the rule of thumb that solving GAPSVP2k in n-dimensional lattices takes time
roughly 2n/k, and acknowledging that a GAPSVPq/β solver would break the scheme, the
lattice dimension n (hence N) must increase linearly with log(q/β) to maintain fixed 2λ

security against known attacks. But let us brush this issue under the rug and view n as a fixed
parameter. Choosing χ so that β is not too large, and since in practice there is no reason
to have log q grow super-linearly with n, we have log q = O(L logN) = O(L(log n +
log log q)) = O(L log n). Given that the NAND procedure is dominated by multiplication
of two N × N matrices for N = O(n log q) = Õ(nL), we have the following theorem to
characterize the performance of GSW.

Theorem 5.2. For dimension parameter n and depth parameter L, GSW correctly evaluates
depth-L circuits of NAND gates with Õ((nL)ω) field operations per gate, where ω < 2.3727
is the matrix multiplication exponent.

Thus, we obtain a leveled FHE scheme with poly(λ, L) computation per NAND gate that
achieves 2λ security against known attacks.

However, even the most theoretical mathematician or computer scientist should be able
to see that this scheme will be too slow in practice to Evaluate even moderately complex
functions. While LWE-based GSW is far from being the fastest FHE scheme, a big open
problem remains: construct a FHE scheme that is truly practical!

As described so far, GSW may leave even a theoretician unsatisfied, as it leaves ample
room for qualitative improvement. It begs some questions: Can we make per-gate computa-
tion independent of L? Can we Evaluate a priori unbounded depth circuits? Can we actually
reduce the noise rather than merely “accommodating” it? For example, can we devise a “re-
fresh” procedure that reduces the noise level of a ciphertext without altering what it encrypts,
so that we can Evaluate ad infinitum, refreshing when needed?

The theoretician, at least, may find some solace in the answers we provide in the next
section, where we describe precisely such a “refresh” procedure, called bootstrapping, that
allows Evaluation of unbounded-depth circuits with per-gate computation independent of the
depth.

6. Bootstrapping: Homomorphic encryption for unbounded depth circuits

In GSW and all current FHE schemes, ciphertexts are “noisy”. Computing over the cipher-
texts increases the noise, until eventually the noise becomes bigger than the modulus q, and
all hope of reliably decrypting the message correctly is lost. Must we surrender to this life-
destroying entropy? Or is there some way to “rejuvenate” an old noisy ciphertext, to create
a new ciphertext that encrypts the same value but with much less noise, so that it can safely
participate in more computation? Here, we describe a procedure called bootstrapping that
refreshes ciphertexts, gives them a sort of immortality, so that we can Evaluate unbounded
depth circuits with per-gate computation independent of the depth.

6.1. Self-Referentiality in encrypted computation. Can the brain understand itself? Philo-
sophically, it seems appealing to think that, as a brain becomes more complex, so does the

626 Craig Gentry

task of understanding it, so that self-understanding remains eternally just out of reach.
Here we consider a somewhat similar question: Can a homomorphic encryption scheme

decrypt itself? The decryption function of a homomorphic encryption scheme is, after all,
just another function that we can try to plug into the Evaluate algorithm. But does it work?
Or, is it the case that, for any L, the decryption function of a leveled FHE scheme capable
of Evaluating depth-L circuits has depth greater than L, beyond the Evaluation capacity of
scheme?

This is no idle brain-teaser. Actually, among the functions than an FHE scheme can Eval-
uate, its own decryption function is not only the most interesting, but perhaps also the most
useful. Let us consider what we can do with such self-referential encrypted computation.
Suppose c encrypts µ under (pk, sk). Set ski ← E(pk, ski) for all of the bits {ski} of sk –
that is, the ciphertexts {ski} are an encryption of the key under itself. We will publish this
encryption of the secret key, so that Evaluators can use it. Set ci ← E(pk, ci) for all of the
bits {ci} of c – that is, these ciphertexts are a double encryption of µ. Now, suppose that the
leveled FHE scheme can correctly Evaluate L levels, but Evaluating the decryption function
D requires only L− 1 levels. Consider the following ciphertext:

c′ ← V(pk,D, ({ski}, {ci})).

By the correctness of Evaluate:

D(sk, c′) = D({ski}, {ci}) = µ.

That is, the new ciphertext c′ encrypts the same value as the old ciphertext c. (Interestingly,
Evaluating the decryption function on the double encryption {ci} removes the inner encryp-
tion.) Moreover, since c′ is the result of Evaluating a circuit of only L − 1 < L levels on
fresh ciphertexts {ski}, {ci}, it (possibly unlike c) can be used safely as input to one more
NAND gate. Of course, an Evaluator can use this refreshing trick as often as necessary to
ensure the noise level of the ciphertexts remains safely bounded. In short, if we have a mag-
ical homomorphic encryption scheme capable of Evaluating its own decryption circuit with
room to spare, then that homomorphic encryption scheme can be bootstrapped into a pure
FHE scheme capable of evaluating unbounded depth circuits.4

More formally, Gentry [16] defined and proved the following.

Definition 6.1 (Bootstrappable encryption scheme). A homomorphic encryption scheme E
is called bootstrappable if E compactly evaluates all circuits of depth at most (D+1), where
D is the depth of E’s decryption circuit, and the computational complexity of E’s algorithms
is polynomial in the security parameter and (in the case of the evaluation algorithm) the size
of the circuit.

Theorem 6.2 (Bootstrapping Theorem). For any bootstrappable encryption scheme E , there
exists a leveled FHE scheme {E(L)} with related security.

Letting S be the size of E’s decryption circuit, the per-gate evaluation complexity of
the leveled FHE is exactly the complexity of evaluating a (2S + 1)-gate circuit using the
bootstrappable scheme: independent of the depth of the circuit.

Under an assumption of circular security – that is, an assumption that semantic security
is preserved despite publishing an encryption of the secret key under its corresponding public
key – one obtains a pure FHE scheme.

4For more intuition, see Gentry’s (somewhat dated) 2010 survey [17] on FHE for a full-fledged physical analogy
for bootstrapping in terms of gloveboxes inside gloveboxes.

Computing on the edge of chaos: Structure and randomness in encrypted computation 627

Gentry also provided the first bootstrappable and fully homomorphic encryption schemes
based on plausible assumptions.

Circular encryptions sound dangerous, but for most encryption schemes it appears that
revealing an encryption of sk under pk does not lead to any attack. On the other hand, it is
typically difficult to prove that an encryption scheme is circular-secure, hence the need for
the additional assumption.

To avoid the circular-security assumption, one can instead provide an acyclic chain of
encrypted secret keys. One generates a key pair (pki, ski) for each level of the circuit, and
provides an encryption of ski under pki+1. In this case, one can prove that the encrypted
secret key bits are indistinguishable from encryptions of 0 as long as E is semantically secure.

6.2. Evaluating the GSW decryption circuit. So, can GSW decrypt itself? It turns out
it can, but we need one more trick. The concept of the trick is that, before we bootstrap,
we can pre-process the ciphertext into a form that does not permit any more homomorphic
operations, but is much less complex to decrypt (and hence to bootstrap).

In more detail, recall that a GSW ciphertext is a matrix, but we use only the first row
of the matrix during decryption: µ = [[〈~c1, ~v〉]q]2. Also, we can use ~t rather than ~v =
Powersof2(~t) as the secret key: µ = [[〈BitDecomp−1(~c1),~t〉]q]2. Now, we only need to
decrypt (bootstrap) BitDecomp−1(~c1). However, there is still a problem: the complexity
of decrypting it depends on q and hence on L, the number of levels the scheme can Evalu-
ate. Can we remove this dependence, to obtain a ciphertext whose decryption complexity is
polynomial in the security parameter λ and completely independent of L? If so, then we are
done.

Brakerski and Vaikuntanathan [10] gave a particularly clean way of removing this de-
pendence. They showed that we can apply modulus reduction and dimension reduction to
a Regev-type ciphertext ~c (like our BitDecomp−1(~c1) above), so that the complexity of de-
crypting the final ciphertext becomes independent of L. Modulus reduction takes an initial
ciphertext ~c that encrypts µ modulo q, and outputs a new ciphertext that encrypts µ modulo
a smaller modulus p. Dimension reduction reduces the dimension of the ciphertext vector.
After applying modulus and dimension reduction, we obtain a ciphertext ~c∗ of poly(λ) di-
mension such that µ = [[〈~c∗,~t〉]p]2 for small p (e.g., p may even be only polynomial in the
security parameter). The size of ~c∗ is independent of L.

Let us sketch how modulus reduction works. (We omit a description of dimension re-
duction.) Recall that Applebaum et al. [2] showed that the hardness of LWE is unaffected
when the coefficients of secret key are chosen from the small error distribution χ. When ~t is
small and [〈~ci,~t〉]q is small, then [〈~c∗i ,~t〉]p is also small, where ~c∗i = b(p/q) · ~cie is simply
p/q times ~ci rounded. The following easy lemma makes this more precise, and also shows
that we can preserve other aspects of the noise, such as its parity.

Lemma 6.3. Let p and q be two odd moduli, and let ~c be an integer vector. Define ~c∗ to
be the integer vector closest to (p/q) · ~c such that ~c∗ = ~c mod 2. Then, for any ~t with
|[
〈
~c,~t
〉
]q| < q/2− (q/p) · `1(~t), we have

[
〈
~c∗,~t

〉
]p = [

〈
~c,~t
〉
]q mod 2 and

|[
〈
~c∗,~t

〉
]p| < (p/q) · |[

〈
~c,~t
〉
]q|+ `1(~t)

where `1(~t) =
∑
|ti| is the `1-norm of ~t.

628 Craig Gentry

Proof. For some integer k, we have [
〈
~c,~t
〉
]q =

〈
~c,~t
〉
− kq. For the same k, let ep =〈

~c∗,~t
〉
−kp ∈ Z. Since ~c∗ = ~c and p = q modulo 2, we have ep = [

〈
~c,~t
〉
]q mod 2. To finish

the proof, it suffices to prove that ep = [
〈
~c∗,~t

〉
]p and that it has small enough norm. We have

ep = (p/q)[
〈
~c,~t
〉
]q +

〈
~c∗ − (p/q)~c,~t

〉
, and therefore |ep| ≤ (p/q)[

〈
~c,~t
〉
]q + `1(~t) < p/2.

The latter inequality implies ep = [
〈
~c∗,~t

〉
]p.

An alternative view of modulus reduction is that we might as well divide ~c by q and
consider its dot product with ~t modulo 1 – the q merely represents the fact that we represent
coefficients of ~c with log q bits of precision. When we begin to Evaluate a deep circuit, we
need lots of precision, since many noise-increasing operations remain. But as we complete
the circuit, we can drop precision, allowing the ciphertext to become smaller.

To make a homomorphic encryption scheme bootstrappable, one merely sets the param-
eters of the scheme so that it is capable of Evaluating the reduced decryption circuit (plus
one more NAND gate). The reduced decryption circuit has depth logarithmic in the security
parameter. Since each level of NAND gates increases the noise by a polynomial factor, we
can bootstrap GSW by setting q to be quasi-polynomial, and (modulo the circular security
issue) we can base the security of GSW on LWE for quasi-polynomial factors. Very recently,
Brakerski and Vaikuntanathan [11] showed how to go from quasi-polynomial to polynomial
by devising a decryption algorithm that, when Evaluated with GSW, increases the noise by
only a polynomial factor.

7. Looking beyond bootstrapping

In some sense, the current approach to FHE using noise and bootstrapping has been enor-
mously successful. As we have seen, we can Evaluate arbitrary encrypted functions over
encrypted data with overhead only polynomial in the security parameter, independent of the
complexity of the function. In fact, we can do even better. We can pack many plaintexts
into each ciphertext, and perform batch SIMD (simultaneous instruction multiple data) on
encrypted arrays, so as to Evaluate a function many times in parallel without additional com-
putation over many encrypted data-sets [7, 8, 19, 35]. Using a variant of LWE called ring
LWE in which the coefficient vectors are over the ring of integers of a cyclotomic number
field, we can even move data in encrypted arrays between different array “slots” by using
automorphisms of the ring. Using ring LWE with ciphertext-packing and automorphisms,
we can get the overhead of FHE down to polylogarithmic in the security parameter [19].

Unfortunately, it turns out that polylogarithmic can still be impractically large. The
overhead of current FHE schemes is still at least in the high millions for reasonable values of
the security parameter. The problem is noise and bootstrapping: Evaluating the decryption
circuit after Evaluating each NAND gate in our function seems to inherently require huge
overhead, even it is batched to refresh multiple ciphertexts simultaneously. Can we do better?
Can we eliminate bootstrapping, or even eliminate noise altogether?

7.1. Can we refresh ciphertexts without bootstrapping? Bootstrapping reduces the noise
of a ciphertext by applying Decryption to it inside an Evaluation. But is there a more direct
way to reduce the noise so as to Evaluate unbounded depth circuits? This is a fascinating
open problem.

Quantum error correction (QEC) has a high-level similarity to ciphertext refreshing. To

Computing on the edge of chaos: Structure and randomness in encrypted computation 629

correct noise in a quantum computation (e.g., phase errors in the qubits), QEC introduces
some ancillary bits to the computation, uses them to compute an error correction syndrome
over the primary qubits, measures the syndrome, and uses the result to adjust the quantum
state of the primary qubits. A peculiarity of QEC is that measurement of the ancillary bits
must not reveal anything about the correct values of the primary bits; else, the measurement
would collapse the computation. Can we construct an analogous noise reduction technique
for FHE, where an Evaluator can compute a syndrome that allows it to reduce ciphertext
noise, but still cannot learn what the ciphertext encrypts?

Tao’s computational program for Navier-Stokes [36] might be another place to look for
new ideas to reduce ciphertext noise. Part of the reason bootstrapping is slow is that it goes
“outside of the system”: it refreshes a ciphertext not by acting on it directly, but rather by
using the ciphertext to construct a function that is Evaluated over fresh encryptions of the
secret key bits. If, instead, we could manage ciphertext noise endogenously (like Tao’s water-
based circuits), one could hope that eliminating the layer of indirection would also reduce
computational complexity.

7.2. Can we eliminate noise altogether? The noisiness of LWE-based ciphertexts is the
basis of their security, but also an obstacle to making FHE practical. Can we construct an
FHE scheme without noise?

Without noise, decryption in GSW is a purely linear function, and the system can be
broken easily using linear algebra. More generally, for any encryption scheme in which
D(sk, c) is a degree k polynomial, we can view D(sk, c) as a dot product 〈M(sk),M(c)〉 of
the vectors of monomials of degree at most k associated to sk and c, and an attacker can use
linear algebra to break semantic security in time λO(k). So, to get 2λ security, the degree of
D(sk, c) must be essentially linear in λ, a “complex” function. And yet, for an FHE scheme,
D(sk, c) must also be robust and flexible enough to allow computation.

Interestingly, the noise in LWE-based schemes boosts the degree of the decryption func-
tion. Although [[~c,~t]q]2 looks “almost linear”, the rounding makes it high degree both mod-
ulo q and modulo 2. On the other hand, the “almost linearity” of decryption allows compu-
tation.

As some some final food for thought, we sketch an interesting but so-far-unrealized
framework due to Nuida [28] for constructing pure noise-free FHE using non-abelian groups.
Unfortunately, the framework also illustrates the difficulty of avoiding linear algebra attacks,
even in contexts (using groups rather than rings) where one might hope they are inapplicable.
First, a couple of definitions:

Definition 7.1 (Perfect Group Pairs). We call (G,H) a perfect group pair if G and H are
both finite perfect groups (equal to their commutator subgroups) andH is a normal subgroup
of G. We also require that G and H have efficient (polylog(|G|)) operations – in particular,
given a set of group generators of G or H , one can re-randomize them to obtain a random
set of B group elements (for some polynomial bound B) that generate the same group.

Definition 7.2 (Perfect Group Pair Decision (PGP) Problem). Given (generators for) a per-
fect group pair G and H , and a third set of generators that generates G or H , distinguish
which.

The form of the ciphertexts is simple: an encryption of 1 is a set of generators of G,
while an encryption of 0 is a set of generators of H . The public key contains encryptions
of ‘1’ and ‘0’ that the encrypter can randomize to generate its ciphertext. Decryption will

630 Craig Gentry

use some (unspecified) secret key τG,H that allows the keyholder to distinguish between
generators for G and H . Semantic security follows directly from the PGP assumption and
the re-randomizability of the group generators.

We describe homomorphic operations only for AND and OR gates (monotone circuits).
Suppose the inputs to the gate are generators of (unknown) groups K1,K2. To Evaluate an
OR gate, output (randomized) generators for the join of K1 and K2. (The output group is G
iff an input group is G and H otherwise, and thus computes OR correctly.) To Evaluate an
AND gate, output (randomized) generators for the commutator [K1,K2]. (SinceH is normal
inG, the output group isH iff an input group isH andG otherwise, and thus computes AND
correctly.)

The main open problem for this framework is to find suitable perfect group pairs. It
is easy to find perfect group pairs for which the PGP problem is easy: for example, take
G = H ×K for perfect groups H and K, where the extra coordinate makes elements of G
easy to identify. Also, there are various perfect matrix group pairs (G,H) where the PGP
problem is less trivial, but still ultimately solvable via linear algebra. Even if the groups
are not initially presented as matrices, one must avoid groups with efficiently computable
representations that enable linear algebra attacks. Still, this framework, though unrealized,
serves as a useful counterpoint to the notion that noise and bootstrapping may be necessary
to obtain FHE.

References

[1] Daniel Apon, Xiong Fan, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng
Zhou, Non-interactive cryptography in the ram model of computation, IACR Cryptol-
ogy ePrint Archive, 2014:154, 2014.

[2] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai, Fast cryptographic
primitives and circular-secure encryption based on hard learning problems, In
CRYPTO, Springer, 2009, pp. 595–618.

[3] Sanjeev Arora and Rong Ge, New algorithms for learning in presence of errors, In
ICALP, Springer, 2011, pp. 403–415.

[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang, On the (im)possibility of obfuscating programs, In CRYPTO,
Springer, 2001, pp. 1–18.

[5] Dan Boneh, Amit Sahai, and Brent Waters, Functional encryption: Definitions and
challenges In TCC, Springer, 2011, pp. 253–273.

[6] Zvika Brakerski, Fully homomorphic encryption without modulus switching from clas-
sical gapsvp, In CRYPTO, Springer, 2012, pp. 868–886.

[7] Zvika Brakerski, Craig Gentry, and Shai Halevi, Packed ciphertexts in lwe-based ho-
momorphic encryption In PKC, Springer, 2013, pp. 1–13.

[8] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, (leveled) fully homomor-
phic encryption without bootstrapping, In ITCS, ACM, 2012, pp, 309–325.

Computing on the edge of chaos: Structure and randomness in encrypted computation 631

[9] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé,
Classical hardness of learning with errors, In STOC, ACM, 2013, pp. 575–584.

[10] Zvika Brakerski and Vinod Vaikuntanathan, Efficient fully homomorphic encryption
from (standard) LWE, In FOCS, IEEE, 2011, pp. 97–106.

[11] Zvika Brakerski and Vinod Vaikuntanathan, Lattice-based fhe as secure as pke, In
ITCS, ACM, 2014, pp. 1–12.

[12] Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE Trans-
actions on Information Theory 22(6) (1976), 644–654.

[13] Michael Fellows and Neal Koblitz, Combinatorial cryptosystems galore!, Contempo-
rary Mathematics 168 (1994), 51–51.

[14] Sanjam Garg, Craig Gentry, and Shai Halevi, Candidate multilinear maps from ideal
lattices, In EUROCRYPT, Springer, 2013, pp. 1–17.

[15] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters, Candidate indistinguishability obfuscation and functional encryption for all
circuits, In FOCS, IEEE, 2013, pp. 40–49.

[16] Craig Gentry, Fully homomorphic encryption using ideal lattices In STOC, ACM,
2009, pp. 169–178.

[17] , Computing arbitrary functions of encrypted data, Commun. ACM, 53(3)
(2010), 97–105.

[18] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs, Outsourcing private
ram computation, IACR Crypt. ePrint Arch., 2014:148, 2014.

[19] Craig Gentry, Shai Halevi, and Nigel P. Smart, Fully homomorphic encryption with
polylog overhead, In EUROCRYPT, Springer, 2012, pp. 465–482.

[20] Craig Gentry, Amit Sahai, and Brent Waters, Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based, In CRYPTO,
Springer, 2013, pp. 75–92.

[21] Shafi Goldwasser and Silvio Micali, Probabilistic encryption and how to play mental
poker keeping secret all partial information, In STOC, ACM, 1982, pp. 365–377.

[22] Shafi Goldwasser and Guy N. Rothblum, On best-possible obfuscation, In TCC,
Springer, 2007, pp. 194–213.

[23] Russell Impagliazzo, A personal view of average-case complexity, In Structure in
Complexity Theory Conference, IEEE, 1995, pp. 134–147.

[24] Joe Kilian, Founding cryptography on oblivious transfer, In STOC, ACM, 1988, pp.
20–31.

[25] Silvio Micali, 1988, Personal communication to Joe Kilian in [24].

[26] Daniele Micciancio and Petros Mol, Pseudorandom knapsacks and the sample com-
plexity of lwe search-to-decision reductions, In CRYPTO, Springer, 2011, pp. 465–484.

632 Craig Gentry

[27] Daniele Micciancio and Chris Peikert, Trapdoors for lattices: Simpler, tighter, faster,
smaller In EUROCRYPT, Springer, 2012, pp. 700–718.

[28] Koji Nuida, A simple framework for noise-free construction of fully homomorphic
encryption from a special class of non-commutative groups, IACR Cryptology ePrint
Archive, 2014:097, 2014.

[29] Chris Peikert, Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract, In STOC, ACM, 2009, pp. 333–342.

[30] Nicholas Pippenger and Michael J Fischer, Relations among complexity measures,
Journal of the ACM (JACM) 26(2) (1979), 361–381.

[31] Oded Regev, On lattices, learning with errors, random linear codes, and cryptography,
In STOC, ACM, 2005, pp. 84–93.

[32] Ron Rivest, Leonard Adleman, and Michael Dertouzos, On data banks and privacy
homomorphisms, In Found. of Sec. Comp., 1978, pp. 169–180.

[33] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, A method for obtaining
digital signatures and public-key cryptosystems, Commun. ACM 21(2) (1978), 120–
126.

[34] Claus-Peter Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms
Theor. comp. sci. 53(2) (1987), 201–224.

[35] Nigel P. Smart and Frederik Vercauteren, Fully homomorphic simd operations, Des.
Codes Cryptography 71(1) (2014), 57–81.

[36] Terence Tao, Finite time blowup for an averaged three-dimensional navier-stokes equa-
tion, arXiv:1402.0290, 2014.

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598
E-mail: cbgentry@us.ibm.com

