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Abstract

Structure-preserving signature schemes can be very useful in the construction of new cryp-
tographic operations like blind signatures. Recently several of these schemes have been pro-
posed. The security of signature-preserving signature schemes is still proved by hand, which
can be a laborious task. One of the ways to prove security of these schemes algebraic analysis
can be used. We present an approach to perform this analysis and the first tool, CheckSPS ,
that can do an algebraic security analysis of these schemes, using SMT solvers as backend.
This can help in constructing new schemes and analyse existing schemes. Our tool can handle
all the common security objectives for signature schemes, i.e. existential unforgeability and
strong existential unforgeability, and all the common capabilities for adversaries, i.e. random
message attacks, non-adaptive chosen message attacks and adaptive chosen message attacks.
The tool is sound, so if an attack is found it is actually possible to construct a forged signature.

1 Introduction

Digital signatures are widely used in today’s information systems. When combining digital sig-
natures with zero-knowledge proofs we can construct powerful new operations like, for example,
blind signatures, where a proof is given that a ciphertext contains a signature over a given mes-
sage without revealing the actual signature. To combine a signature scheme and zero-knowledge
proofs, structure-preserving signature schemes are particularly useful. Structure-preserving sig-
nature (SPS) schemes use group elements for all elements of the messages and signatures. The
groups that are used are bilinear groups and the operations used for signing are generic group op-
erations. Verification of signatures is done using bilinear pairing equations. These kind of schemes
are perfect to be used with Groth-Sahai non-interactive zero-knowledge (NIZK) proofs, because
these proofs are efficient and usable for equations using bilinear pairings [1].

To prove security of SPS schemes there are two approaches that can be used: an algebraic
analysis and a reduction to a hard problem. Where with algebraic analysis we make assumptions
on the messages the attacker can construct, with reduction based proofs we assume the attacker
cannot efficiently solve one or more hard problems. Until now SPS schemes are usually constructed
based on a particular hard problem and proven by hand, a very laborious task. We discuss an
approach to perform an algebraic analysis and introduce the first tool, CheckSPS , that can aid in
these proofs by automating the algebraic analysis of SPS schemes. The tool is sound, meaning all
attacks that are found lead to actual forgeries. Completeness can be provided, for a given number
of oracle queries, depending on the mode that is used as we will discuss is Section 4. Ultimately,
automation of the proofs could be used to automatically synthesise SPS schemes following the
approach by Barthe et al. presented in [2] for padding-based encryption schemes.

∗Most of this work was carried out while visiting Microsoft Research in Cambridge for an internship
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Scheme Type |message| |vk| |signature| |V| Assumptions

[4] 1 n O(n) O(n) Many DLIN

[5] 1 2 1 5 3 q-DHSDW, WFCDH

[5] 3 1 (1, 1) (3, 2) 3 q-ADHSDW, AWFCDH

[7] 3 (n, 0) (4, 2n+ 8) (5, 2) 2 q-SFP

[8] 3 (n, 0) (1, n+ 4) (3, 1) 2 q-type

[9] 3 (n, 0) (7, n+ 13) (7, 4) 4 SXDH, XDLIN1

[7] 3 (n,m) (m+ 5, n+ 12) (10, 3) 3 q-SFP

[8] 3 (n,m) (m+ 3, n+ 4) (3, 3) 2 q-type

[9] 3 (n,m) (m+ 8, n+ 14) (8, 6) 5 SXDH, XDLIN1

[14] 3 (1, 0) (0, 1) (2, 1) 2 q-type

Table 1: Overview of existing SPS schemes. |message|, |vk| and |signature| are the number of
group elements in the messages, verification keys and signatures respectively. |V| is the number
of verification equations. For schemes using Type 3 bilinear groups, (n,m) indicates the number
of elements from the different groups (i.e. n group elements from G1 and m from G2).

2 Structure-preserving signature schemes

An structure-preserving signature scheme consists of system parameters (SP) and sets of all
plaintext messages (M), signatures (S), signing keys (SK), verification keys (VK), a signing
algorithm (sign) and verification equations (V) used in a verification algorithm (verify).

The schemes make use of bilinear pairings. Following [3], we can distinguish between different
types of bilinear pairings. In this paper we will consider Type 3 bilinear pairings. For these there
are three finite cyclic groups (G1, G2 and Gt) of order q and a bilinear map e : G1 × G2 → Gt

such that e(ga1 , g
b
2) = gabt and there are no efficiently computable isomorphisms between groups

G1 and G2. If G1 and G2 are equal, this would be considered a Type 1 bilinear pairing. We use
g1, g2 and gt as generators for the groups G1, G2 and Gt respectively.

The verification equations in SPS schemes are pairing product equations:∏
i

∏
j

e(Ai, Bj)
ci,j = Z,

where Ai and Bj are terms from the system parameters, signature, message or verification key. The
terms from the system parameters and verification key are constants in the verification process.
The ones from the signature and message are variables, as these are provided as external input to
the verifier.

The first SPS scheme was introduced in [4]. This scheme is not practical though as it requires
thousands of group elements for the signatures. The term ’structure-preserving signatures’ was
only introduced in later publications. After this first work, more efficient schemes were introduced
and different security assumptions used [5–14]. Structure-preserving signature schemes can be
characterised by the number of elements in the messages, verification keys, signatures and the
number of verification equations. In Table 1 we give an overview of various schemes, that all were
proved secure by hand. For the definitions of the different security assumptions we refer the reader
to the corresponding papers, as we will not discuss these in detail here.

3 Algebraic analysis

To prove a signature scheme secure, we want to proof that an adversary can construct a valid
signature without knowing the secret key only with negligible probability. Here we distinguish
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between two security objectives:

• EUF (Existential Unforgeability): the adversary cannot construct a valid signature on
a message for which he hasn’t seen a signature yet.

• sEUF (Strong Existential Unforgeability): the adversary cannot construct a valid
signature for any message. This includes constructing new signatures for messages he has
already seen a signature for.

In general the second notion would be preferred. However, EUF is, for example, useful for schemes
allowing re-randomisation of signatures. For these schemes it is by definition possible to construct
a new signature by randomising an old one and sEUF would thus never hold. Next to the security
objective we want to proof, we need to define the capabilities of the adversary. Traditionally, when
proving security of signature schemes the adversary is assumed to have access to a signing oracle.
The signing oracle can be used to obtain signatures on messages. The messages that the adversary
can request signatures for from the oracle define how powerful the attacker is. We consider three
different models for the adversary:

• RMA (Random Message Attack): the adversary is given access to an oracle that outputs
a signature/message pair for a random message. The adversary cannot influence the messages
he gets the signatures for. This is the weakest form of a signing oracle we consider.

• NA-CMA (Non-Adaptive Chosen Message Attack): the adversary is given access to
an oracle that outputs a signature for given messages. He has to decide on the messages to
be signed on beforehand and receives the signatures only after picking the messages. The
messages are thus independent from the signatures but the different messages could depend
on each other.

• CMA (Adaptive Chosen Message Attack): the adversary is given access to an oracle
that outputs a signature for a given message, which might depend on previous messages or
signatures. This oracle is the most powerful the adversary can be given access to.

Next we will discuss an approach to perform an algebraic security analysis of structure-
preserving signatures schemes. In the algebraic analysis we assume the adversary tries to construct
a forgery by combining known terms like elements from, for example, signatures, messages or the
verification key. This is by definition interactive and relies on a q-type assumption, where the
security bound depends on the number of oracle queries made by the adversary, in this case the
number of signatures he requests.

To decide whether the adversary can construct a valid message/signature pair using his knowl-
edge we need to represent all the possible terms he can construct. Assuming his initial knowledge
contains the list T1 ← Gn

1 of n terms from group G1, the terms in G1 that can be constructed are
given by

⋃
C∈Z|T |q

∏
t∈T1

∏
0≤i<|C| t

Ci . The same can be done to determine the possible knowledge

of terms from G2. As all terms in the messages and signatures are either an element in G1 or G2

we do not need to consider the construction of knowledge of terms from GT . In the analysis of
SPS schemes, the adversary has an initial knowledge K0 consisting of the public parameters of the
SPS scheme and possible messages he is given or can construct.

When considering RMA security, the adversary does not have any influence on the messages
that are being signed. Therefore, as messages that the attacker obtains from the oracle we simply
take random group elements. The initial knowledge is as follows

K0 = SP ∪ VK ∪M,

whereM is a set of random messages. The size ofM is equal to the number of oracle queries the
adversary is given. The final knowledge of the adversary, that he can use to construct forgeries, is
the following in this case

K = K0 ∪
⋃

m∈M
sign(SK,m).
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For non-adaptive CMA security the messages are chosen by the adversary and can thus de-
pend on terms from the system parameters SP and the verification key VK. The knowledge is
constructed as with RMA, however, the initial knowledge is now defined as follows:

K0 =
⋃

i∈{1,2}

⋃
t∈P(SPi∪VKi)

∏
a∈t

a,

where SPi and VKi are all terms in SP and VK in Gi. K0 thus contains all possible combinations
of elements from the system parameters and verification key. The final knowledge is now defined
as

K = K0 ∪
⋃

m∈K0

sign(SK,m).

SP and VK are no longer explicitly included as they are already part of K0.
As with adaptive CMA, new messages can depend on previous messages or signatures, so we

get a recursive definition for the knowledge in this case. The initial knowledge of the adversary is
the same as for non-adaptive CMA:

K0 =
⋃

i∈{1,2}

⋃
t∈P(SPi∪VKi)

∏
a∈t

a

Now the adversary’s knowledge after n oracle queries is

Kn =
⋃

i∈{1,2}

⋃
t∈P(Kn−1,i∪{sign(SK,m)})

∏
a∈t

a,

where m ∈ Kn−1 and n > 0.
As we only check one instance of the scheme at a time, we will include the system parameters

in the verification key.

4 Automated analysis

To check the security of an SPS scheme we want to decide whether it is possible for an adversary
to come up with terms, constructed from his knowledge, that satisfy the verification equations,
i.e., whether he can come up with a forged signature. In the analysis we replace every variable in
the verification equations by the product of terms from the adversary’s knowledge that correspond
to the same group. We then try to find coefficients such that the equations hold. If we can find
these coefficients, it means there is an attack against the scheme. The message/signature pairs
that are requested by the adversary from the oracle are discarded as these are trivially correct
solutions. If we want to check for strong unforgeability (sEUF), we also discard all solutions that
are exactly the same as the given message/signature pairs. A solution with a new signature for an
old message is thus considered a valid attack in this case. For regular unforgeability (EUF), we
exclude all solutions with messages for which the signature was requested by the adversary. For
an attack it is thus necessary in this case to come up with a valid signature for a message that
was not signed before.

For the analysis all the verification equations are rewritten to normal form. For this we make
use of the static equivalence properties for bilinear pairings as shown in [15]. This is done by
representing all terms by multivariate polynomials and combining these polynomials. If we only
consider constant terms and we, for example, have the term ga1g

bc
1 , this will be represented by

the polynomial a + bc. Now the equation e(ga1 , g
b
2g

c
2)de(g1, g

e
2) = gft is rewritten to the equation

a ∗ (b + c) ∗ d + e = f , making use of the property of bilinear pairings as given in Section 2. Next
we consider the case where the knowledge of the adversary consists of the two terms ga1 and gb1.
Assume we have the verification equation e(v, gc2)e(w, g2) = gdT , where v and w are variables. This
equation results in the polynomial equation (x0 ∗a+x1 ∗b)∗c+(y0 ∗a+y1 ∗b) = d. We would now
look for values for the coefficients x0, x1, y0 and y1 that satisfy the equation to find an attack. To
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do this, first, the polynomial is converted to normal form by simplifying it and ordering it based
on lexicographic ordering of the variables: y0 ∗ a + y1 ∗ b + x0 ∗ ac + x1 ∗ bc = d. By rewriting all
the verification equations to normal form we end up with two polynomials that need to be equal
for each equation. If we have one verification equation for two polynomials, for every monomial
the coefficients have to be equal on both sides of the equation. This results in an equation system
with an equation for every coefficient on either side of the equation. If we would have the following
example x0 ∗ a + x1 ∗ b + x2 ∗ cd = y0a + y1 ∗ c + y2 ∗ cd, this would give the equation system
x0 = y0, x! = 0, x2 = y2, y1 = 0. A solution to these equation equals a valid signature.

Our tool CheckSPS performs the algebraic analysis described above for a fixed number of oracle
queries. The tool is written in OCaml and is about 2000 lines of code. It makes use of Why3, which
functions as an intermediate layer between our tool and several SMT solvers, such as Z3, Alt-Ergo
and CVC3 [16–19]. Using Why3 has the advantage that the user can use any solver, including
future ones, he prefers as long as it is supported by Why3. The tool can perform a sanity check
on the verification equations to decide whether they are valid. For the actual analysis, the tool
supports the different adversary capabilities (RMA, non-adaptive CMA and adaptive CMA) and
security objectives (EUF and sEUF) for a fixed number of oracle queries. The tool first reduces an
SPS scheme to normal form and constructs the equation system corresponding to the adversary’s
capabilities and the security objective. This equation system is then passed to Why3, which in
turn gives it to an SMT solver. The solver that is to be used can be given to CheckSPS as an
argument.

The tool has two different modes. The first mode tries to find solutions for the equation system
in Z instead of Zq. As we do not have the inverse operation in Z, a consequence of this is that the
tool is not complete in this mode. Solutions where two coefficients are the inverse of each other
might thus be missed. The second mode uses a type for generic fields provided by Why3. Though
complete, this mode is unfortunately very slow or solvers do not succeed in solving the equations
at all, usually because the system runs out of memory.

5 Performance

We will now discuss the performance of the tool on two schemes proposed by Abe et al. in [8].
Below we give the input to our tool for the minimal scheme presented in Section 4 of [8]:

vk {

g = g1;

h = g2;

gu = g1^u;

hv = g2^v;

hw = g2^w;

hz = g2^z

}

sk {

u: Zq;

v: Zq;

w: Zq;

z: Zq

}

message {

gm: G1;

hn: G2

}

signature {
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#queries EUF sEUF

2 0.23s 0.26s

3 0.38s 0.52s

4 1.19s 1.07s

5 3.80s 2.32s

6 9.06s 5.08

7 21.01s 10.34s

8 60.39s 20.38s

9 82.86s 31.97s

10 175.24s 69.49s

Table 2: Timings for different number of oracle queries with RMA for minimal SPS scheme from [8]
(average over 10 runs)

gr: G1 = g^r;

gs: G1 = g^(z-(r*v)) * gm^-w;

ht: G2 = (h * hn^-u)^(1/r)

}

equations {

e(g, hz) = e(gr, hv) * e(gs, h) * e(gm, hw);

e(g, h) = e(gr, ht) * e(gu, hn)

}

The tests were performed on a standard laptop with an Intel Core i5 M540 CPU and 4GB
RAM. We picked Z3 as solver to be used by the tool and used the mode for solving the equations
in Z. We start by considering RMA analysis for up to 10 oracle queries for the scheme from
Section 4 in [8]. The results can be found in Table 2. Though the running time seems to increase
exponentially, for a low number of queries the tool is still very fast. As the number of queries
increases, the analysis for sEUF becomes faster than the one for EUF. This is probably due to
the fact that with sEUF there are more side conditions that the solvers can use to optimise the
computations. With sEUF there are restrictions that previous message/signature pairs cannot
be used as a valid attack, whereas with EUF only previous messages are considered to be invalid
solutions. In Table 3 we can see the difference between the analysis for the different capabilities.
The polynomials representing the knowledge of the adversary become increasingly complex for
RMA, NA-CMA and CMA. This is clearly visible in the table and the EUF analysis for CMA
could not finish for this scheme within 24 hours. However, for sEUF the timings are still very
reasonable. This analysis provides stronger security guarantees than EUF and is therefore more
useful in most cases.

In Section 5.3 in [8], a re-randomisable scheme is presented. When analysing this scheme we
can see the difference between EUF and sEUF analysis. For the EUF no attack is found but
sEUF the tool does find an attack. This is as expected as due to the re-randomisation any given
signature can be transformed in a new signature on a previously signed message.

The current version of the tool does not yet return an actual attack if one is found. This
is because Why3 does not return counterexamples from the underlying solvers. However, using
output from, for example, Z3 directly this could be possible.
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EUF sEUF

2-RMA 0.21s 0.25s

2-NA-CMA 9.33s 2.06s

2-CMA N/A 24.18s

Table 3: Timings for minimal structure-preserving signatures from [8] (average over 10 runs)

6 Conclusion

We presented a method for algebraic analysis of structure-preserving signature schemes and the
tool CheckSPS , that can be used in the security analysis of these schemes for different security
objectives (EUF and sEUF) and using different capabilities for the adversary (RMA, NA-CMA and
CMA). In the same way that protocol verification tools such as ProVerif provides valuable support
in finding security flaws in security protocols, we now have the very first tool that can find flaws in
SPS schemes [20]. The tool can easily cope with schemes that are proposed in the literature and
can provide results in a less than a second to several minutes for more complicated analysis. Even
support is provided for a mode for complete analysis for a given number of oracle queries, though
in practice this is a challenge for SMT solvers. In future work we would like to extend the tool such
that attacks are automatically returned in a readable form. Also, it is interesting to find bounds
for SPS schemes that determine the maximum number of oracle queries for which a scheme has
to be proved correct for it to be secure for an unbounded number of queries. Another direction of
research is to look at automating proofs based on hardness assumptions instead of only algebraic
analysis. This is not as deterministic as the analysis discussed in this paper and is actually an
NP hard problem. Ultimately these automated proving techniques could be used to automatically
synthesise structure-preserving signature schemes and find efficient minimal schemes.
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