
Authenticated Key Exchange from Ideal Lattices

Jiang Zhang1, Zhenfeng Zhang1,∗, Jintai Ding2,∗, Michael Snook2, and Özgür Dagdelen3

1 Institute of Software, Chinese Academy of Sciences, China
2 University of Cincinnati, Cincinnati, USA

3 Darmstadt University of Technology, Germany
jiangzhang09@gmail.com, zfzhang@tca.iscas.ac.cn, jintai.ding@gmail.com,

snookml@mail.uc.edu, oezguer.dagdelen@cased.de
* Correspoding Authors

Abstract. In this paper, we present a practical and provably secure two-pass AKE protocol from ideal lattices,
which is conceptually simple and has similarities to the Diffie-Hellman based protocols such as HMQV (CRYPTO
2005) and OAKE (CCS 2013). Our protocol does not rely on other cryptographic primitives—in particular, it does
not use signatures—simplifying the protocol and resting the security solely on the hardness of the ring learning
with errors problem. The security is proven in the Bellare-Rogaway model with weak perfect forward secrecy. We
also give a one-pass variant of our two-pass protocol, which might be appealing in specific applications. Several
concrete choices of parameters are provided, and a proof-of-concept implementation shows that our protocols are
indeed practical.

1 Introduction

Key Exchange (KE) is a fundamental cryptographic primitive, allowing two parties to securely generate
a common secret key over an insecure network. Because symmetric cryptographic tools (e.g. AES) are
reliant on both parties having a shared key in order to securely transmit data, KE is one of the most used
cryptographic tools in building secure communication protocols (e.g. SSL/TLS, IPSec, SSH). Following
the introduction of the Diffie-Hellman (DH) protocol [26], cryptographers have devised a wide selection of
KE protocols with various use-cases. One such class is Authenticated Key Exchange (AKE), a class of KE
protocols where each party is able to verify the other’s identity, so that an adversary cannot impersonate one
party in the conversation.

For an AKE protocol, each party has a pair of static keys: a static secret key and a corresponding static
public key. The static public key is certified to belong to its owner using a public-key or ID-based infras-
tructure. For each run of the protocol, the parties involved generate ephemeral secret keys and use these to
generate ephemeral public keys that they exchange. Then all the keys are used along with the transcripts of
the session to create a shared session state, which is then passed to a key derivation function to obtain the
final session key. Intuitively, such a protocol is secure if no efficient adversary is able to extract any informa-
tion about the session key from the publicly exchanged messages. More formally, Bellare and Rogaway [8]
introduced an indistinguishability-based security model for AKE, the BR model, which captures key au-
thentication such as implicit mutual key authentication and confidentiality of agreed session keys. The most
prominent alternatives stem from Canetti and Krawczyk [15] and LaMacchia et al.[48], that also accounts
for scenarios in which the adversary is able to obtain information about a static secret key or a session state
other than the state of the target session. In practice, AKE protocols are usually required to have a property,
Perfect Forward Secrecy (PFS), that an adversary cannot compromise session keys after a completed ses-
sion, even if it obtains the parties’ static secret keys (e.g., via a heartbleed attack4). As shown in [46], no
two-pass AKE protocol based on public-key authentication can achieve PFS. Thus, the notion of weak PFS

4 http://heartbleed.com/

(wPFS) is usually considered for two-pass AKE protocols, which states that the session key of an honestly
run session remains private if the static keys are compromised after the session is finished [46].

One approach for achieving authentication in KE protocols is to explicitly authenticate the exchanged
messages between the involved parties by using some cryptographic primitives (e.g., signatures, or MAC),
which usually incurs additional computation and communication overheads with respect to the basic KE
protocol, and complicates the understanding of the KE protocol. This includes several well-known protocols
such as IKE [39,44], SIGMA [45], SSL [31], TLS [25,47,56,36,12], as well as the standard in German elec-
tronic identity cards, namely EAC [14,22], and the standardized protocols OPACITY [23] and PLAID [24].
Another line of designing AKEs follows the idea of MQV [57,41,46,68] (which has been standardized by
ISO/IEC and IEEE, and recommended by NIST and NSA Suite B) by making good use of the algebraic
structure of DH problems to achieve implicit authentication. All the above AKEs are based on classic hard
problems, such as factoring, the RSA problem, or the computational/decision DH problem. Since these hard
problems are vulnerable to quantum computers [64] and as we are moving into the era of quantum comput-
ing, it is very appealing to find other counterparts based on problems believed to be resistant to quantum
attacks. For instance, post-quantum AKE is considered of high priority by NIST [17]. Due to the potential
benefits of lattice-based constructions such as asymptotic efficiency, conceptual simplicity, and worst-case
hardness assumptions, it makes perfect sense to build lattice-based AKEs.

1.1 Our Contribution

In this paper, we propose an efficient AKE protocol based on the Ring Learning With Errors (Ring-LWE),
which in turn is as hard as some lattice problems (e.g., SIVP) in the worst case on ideal lattices [54,29].
Our method avoids introducing extra cryptographic primitives, thus simplifying the design and reducing
overhead. In particular, the communicating parties are not required to either encrypt any messages with the
other’s public key, nor sign any of their own messages during key exchange. Furthermore, by having the
key exchange as a self-contained system, we reduce the security assumptions needed, and are able to rely
directly and solely on the hardness of Ring-LWE.

By utilizing many useful properties of Ring-LWE problems and discrete Gaussian distributions, we
establish an approach to combine both the static and ephemeral public/secret keys, in a manner similar to
HMQV [46]. Thus, our protocol not only enjoys many nice properties of HMQV such as two-pass messages,
implicit key authentication, high efficiency, and without using any explicit entity authentication techniques
(e.g., signatures), but also has many properties of lattice-based cryptography, such as asymptotic efficiency,
conceptual simplicity, worst-case hardness assumption, as well as resistance to quantum computer attacks.
However, there are also several shortcomings inherited from lattice-based cryptography, such as “handling
of noises” and large public/secret keys. Besides, unlike HMQV which works on “nice-behaving” cyclic
groups, the security of our protocol cannot be proven in the CK model [15] due to the underlying noise-
based algebraic structures. Fortunately, we prove the security in the BR model, which is the most common
model considered as it is usually strong enough for many practical applications and it comes with compos-
ability [13]. In addition, our protocol achieves weak PFS property, which is known as the best PFS notion
achievable by two-pass protocols [46].

As MQV [57] and HMQV [46], we present a one-pass variant of our basic protocol (i.e., the two parties
can only exchange a single message in order to derive a shared session key), which might be useful in client-
server based applications. Finally, we select concrete choices of parameters and construct a proof-of-concept
implementation to examine the efficiency of our protocols. Through the implementation has not undergone
any real optimization, the performance results already indicate that our protocols are practical.

2

We note that none of the techniques we use prevent us from instantiating our AKE protocol based on
standard lattices. One just has to keep in mind that key sizes and performance eventually become worse.

1.2 Techniques, and Relation to HMQV

Our AKE protocol is inspired by HMQV [46], which makes our protocol share some similarities to HMQV.
However, there are also many differences between our protocol and HMQV due to the different underly-
ing algebraic structures. To better illustrate the commons and differences between our AKE protocol and
HMQV, we first briefly recall the HMQV protocol [46]. Let G be a cyclic group with generator g ∈ G.
Let (Pi = gsi , si) and (Pj = gsj , sj) be the static public/secret key pairs of party i and party j, respec-
tively. During the protocol, both parties exchange ephemeral public keys, e.g., party i sends Xi = gri

to party j, and party j sends Yj = grj to party i. Then, both parties compute the same key material
ki = (P dj Yj)

sic+ri = g(sic+ri)(sjd+rj) = (P ci Xi)
sjd+rj = kj where c = H1(j,X) and d = H1(i, Y)

are computed by using a function H1, and use it as input of a key derivation function H2 to generate a
common session key, i.e., ski = H2(ki) = H2(kj) = skj .

As mentioned above, HMQV has many nice properties such as only two-pass messages, implicit key
authentication, high efficiency, and without using any explicit entity authentication techniques (e.g., signa-
tures). Our main goal is to construct a lattice-based counterpart such that it not only enjoys all those nice
properties of HMQV, but also belongs to post-quantum cryptography, i.e., the underlying hardness assump-
tion is believed to hold even against quantum computer. However, such a task is highly non-trivial since
the success of HMQV extremely relies on the nice property of cyclic groups such as commutativity (i.e.,
(ga)b = (gb)a) and perfect (and public) randomization (i.e. ga can be perfectly randomized by computing
gagr with a uniformly chosen r at random).

Fortunately, as noticed in [27,61,9], the Ring-LWE problem actually supports some kind of “approxi-
mate” commutativity, and can be used to build passive-secure key exchange protocol. Specifically, let Rq
be a ring, and χ be a Gaussian distribution over Rq. Then, given two Ring-LWE tuples with both se-
cret and errors choosing from χ, e.g., (a, b1 = as1 + e1) and (a, b2 = as2 + e2) for randomly chosen
a ←r Rq, s1, s2, e1, e2 ←r χ, the approximate equation s1b2 ≈ s1as2 ≈ s2b1 holds with overwhelming
probability for proper parameters. By the same observation, we construct an AKE protocol (as illustrated
in Fig. 1), where both the static and ephemeral public keys are actually Ring-LWE elements corresponding
to a globally public element a ∈ Rq. In order to overcome the inability of “approximate” commutativity,
our protocol has to send a signal information wj computed by using a function Cha. Combining this with
another useful function Mod2, both parties are able to compute the same key material σi = σj (from the
approximately equal values ki and kj) with a guarantee that σj = Mod2(kj , wj) has high min-entropy even
conditioned on the partial information wj = Cha(kj) of kj (thus it can be used to derive a uniform session
key skj).

However, the strategy of sending out the information wj = Cha(kj) inherently brings an undesired
byproduct. Specifically, unlike HMQV, the security of our AKE protocol cannot be proven in the CK model
which allows the adversaries to obtain the session state kj via session state reveal queries. This is because in
a traditional definition of session identifier that consists of all the exchanged messages, the two “different”
sessions sid = (i, j, xi, yj , wj) and sid′ = (i, j, xi, yj , w

′
j) in our protocol have the same session state, i.e.,

ki at party i.5 This also means that we cannot directly use σi = σj as the session key, because the binding
between the value of σi and the session identifier is too loose (especially for the signal part, wj’s). Since

5 We remark that this problem might not exist if we consider a different definition of session identifier, e.g., the one that was
uniquely determined at the beginning of each execution of the protocol.

3

Party i Party j

Public Key: pi = asi + 2ei ∈ Rq

Secret Key: si ∈ Rq

where si, ei ←r χα

xi = ari + 2fi ∈ Rq

where ri, fi ←r χβ

ki = (pjd+ yj)(sic+ ri) + 2dgi

where gi ←r χβ

σi = Mod2(ki, wj) ∈ {0, 1}n
ski = H2(i, j, xi, yj , wj , σi)

Public Key: pj = asj + 2ej ∈ Rq

Secret Key: sj ∈ Rq

where sj , ej ←r χα

yj = arj + 2fj ∈ Rq

kj = (pic+ xi)(sjd+ rj) + 2cgj

where rj , fj , gj ←r χβ

wj = Cha(kj) ∈ {0, 1}n
σj = Mod2(kj , wj) ∈ {0, 1}n
skj = H2(i, j, xi, yj , wj , σj)

xi

yj , wj

c = H1(i, j, xi) ∈ R, d = H1(j, i, yj , xi) ∈ R

Fig. 1. Our AKE protocol based on Ring-LWE, where Rq = Zq/(xn + 1) is a ring, χα and χβ are two
Gaussian distributions over Rq. The two functions Cha and Mod2 provide that σi = Mod2(ki, wj) =
Mod2(kj , wj) = σj .

both sessions sid and sid′ have the same session state ki, the value σ′i = Mod2(ki, w
′
j) corresponding to

sid′ is simply a shift of σi = Mod2(ki, wj) corresponding to sid (by the definition of the Mod2 function).
We prevent the adversary from utilizing this weakness by setting the session key as the output of the hash
functionH2 (which is modeled as a random oracle) which tightly binds the session identifier sid and the key
material σi (i.e., ski = H2(sid, σi)). Our technique works due to another useful property of Mod2, which
guarantees that σ′i = Mod2(ki, w

′
j) preserves the high min-entropy property of ki for any w′j (and thus is

enough to generate a secure session key by the property of random oracle H2).6

In order to finally get a security proof of our AKE protocol in the BR model with weakly perfect for-
ward secrecy, we have to make use of the following property of Gaussian distributions namely some kind of
“public randomization”. Specifically, let χα and χβ be two Gaussian distributions with standard deviation
α and β, respectively. Then, the summation of the two distributions is still a Gaussian distribution χγ with
standard deviation γ =

√
α2 + β2. In particular, if β � α (e.g., β/α = 2ω(log κ) for some security param-

eter κ), we have that the distribution χγ is statistically close to χβ . This technique is also known as “noise
flooding” and has been applied, for instance, in proving robustness of the LWE assumption [37]. 7 Using this
technique allows to statistically hide the distribution of χα in a bigger distribution χβ . The security proof of
our protocol is based on this observation, and for now let us keep it in mind that a large distribution will be
used to hide a small one.

To better illustrate our technique, we take party j as an example, who combines his static and ephemeral
secret keys by computing r̂j = sjd + rj where d = H1(j, i, yj , xi). We notice that the value r̂j actually
behaves like a “signature” on the messages that party j knows so far. In other words, it should be difficult to
compute r̂j if we do not know the corresponding “signing key” sj . Indeed, this combination is necessary to
provide the implicit entity authentication. However, it also posts an obstacle to get a security proof since the
simulator may also be unaware of sj . Fortunately, if the randomness rj is chosen from a big enough Gaussian

6 We remark that this is also the reason why the nice reconciliation mechanism in [61] cannot be used in our protocol. Specifically,
it is unclear whether the reconciliation function rec(·, ·) in [61] could also preserve the high min-entropy property of the first
input (i.e., which might not be uniformly random) for any (maliciously chosen) second input.

7 Actually, noise flooding works conditioned on the size of the random variable, and thus does not require to be distributed
according to χα.

4

distribution, then the value r̂j almost obliterates all information of sj . More specifically, the simulator can
directly choose r̂j such that r̂j = sjd + rj for some unknown rj by computing yj = (ar̂j + 2f̂j) − pjd,
and programming the random oracle d = H1(j, i, yj , xi) correspondingly. Combining the properties of
Gaussian distributions and the random oracle H1, we have that yj is almost identically distributed as that
in the real run of the protocol. Now, we check the randomness of kj = (pic + xi)r̂j + 2cgj . Note that for
the test session, we can always guarantee that at least one of pi and xi is honestly generated (and thus is
computationally indistinguishable from uniformly distributed element under the Ring-LWE assumption), or
else there is no “secrecy” to protect at all if both pi and xi are chosen by the adversary. That is, the value
pic + xi is always uniformly distributed if c is invertible in Rq. Again, by programming c = H1(i, j, xi),
the simulator can actually replace pic + xi with x̂i = c−1ui for a uniformly distributed ring element ui. In
this case, we have that kj = x̂ir̂j +2cgj = c(uir̂j +2gj) should be computationally indistinguishable from
a uniformly distributed element under the Ring-LWE assumption. In other words, kj can be used to derive a
high min-entropy key material σj as required by using the Mod2 function.

Unfortunately, directly using “noise flooding” has a significant drawback, i.e., the requirement of a
super-polynomially big standard deviation β, which may lead to a nightmare for practical performance due
to a super-polynomially big modulus q for correctness and a very large ring dimension n for the hardness of
the underlying Ring-LWE problems. Fortunately, we can somehow reduce the big cost by further employing
the rejection sampling technique [52]. Rejection sampling is a crucial technique in signature schemes to
make the distribution of signatures independent of the signing key. Since [52] it has been applied in many
other lattice-based signature schemes [38,30,3,40].

In our case the combination of the static and ephemeral secret keys, r̂j = sjd + rj , at party j is essen-
tially a signature on all the public messages under party j’s public key (we again take party j as an example,
but note that similar analysis also holds for party i). Thus, we can freely use the rejection sampling technique
to relax the requirement on a super-polynomially big β. In other words, we can use a much smaller β, but
require party j to use rj if r̂j = sjd + rj follows the distribution χβ , and to resample a new rj otherwise.
We note that by deploying rejection sampling in our AKE it is the first time that rejection sampling is used
beyond signature schemes. As for signatures, rejection sampling is done locally, and thus will not affect the
interaction between the two parties, i.e., two-pass messages. Even though the computational performance
of each execution might become worse with certain (small) probability (due to rejection and repeated sam-
pling), the average computational cost is much better than the setting of using a super-polynomially big
β.

1.3 Related Work, Comparison and Discussion

In the past few years, many cryptographers have put effort into constructing different kinds of KE protocols
from lattices. At Asiacrypt 2009, Katz and Vaikuntanathan [43] proposed the first password-based authen-
ticated key exchange protocol that can be proven secure based on the LWE assumption. Ding et al. [27]
proposed a passive-secure KE protocol based on (Ring-)LWE. Like the standard DH protocol, the protocol
in [27] could not provide authentication—i.e., it is not an AKE protocol—and is thus weak to man-in-the-
middle attacks. Lei et al. [49] presented a KE protocol based on NTRU encryption and a new “NTRU-KE”
assumption.

To the best of our knowledge, there are four papers focusing on designing AKEs from lattices [32,61,33,9].
In general, all known lattice-based AKE protocols work by following generic transformations from key en-
capsulation mechanisms (KEM) to AKEs and explicitly using signatures to provide authentication. Fujioka
et al. [32] proposed a generic construction of AKE from KEMs, which can be proven secure in the CK
model. Informally, they showed that if there is a CCA secure KEM with high min-entropy keys and a family

5

Table 1. Comparison of Lattice-based AKEs (CCA∗ means CCA-security with high min-entropy
keys [32], and EUF-CMA means existential unforgeability under chosen message attacks)

Protocols KEM/PKE Signature Message-pass Model RO? Num. of Rq

FSXY12 [32] CCA∗ - 2-pass CK × � 7

FSXY13 [33] OW-CCA - 2-pass CK
√

7

Peikert14 [61] CPA EUF-CMA 3-pass SK-security
√

> 2 a

BCNS14 [9] CPA EUF-CMA 4-pass ACCE
√

2 for KEM b

Ours - - 2-pass BR with wPFS
√

2

a The actual number of ring elements depends on the choice of the concrete lattice-based signatures.
b Since the protocol uses traditional signatures to provide authentication, it does not contain any other ring elements.

of pseudorandom functions (PRF), then there is a secure AKE protocol in the standard model. Instantiated
with lattice-based CCA secure KEMs such as [62,59], it is possible to construct lattice-based AKE protocols
in the standard model. However, as the authors commented, their construction was just of theoretic interest
due to huge public keys and the lack of an efficient and direct construction of PRFs from (Ring-)LWE. Fol-
lowing [32], the paper [33] tried to get a practical AKE protocol, and gave a generic construction from any
one-way CCA-secure KEM in the random oracle model. The two protocols in [32,33] share some similarities
such as having two-pass messages, and involving three times encryptions (i.e., two encryptions under each
party’s static public keys and one encryption under an ephemeral public key). For concreteness, instantiated
with the CPA-secure encryption from Ring-LWE [54] (i.e., by first transforming it into a CCA-secure one
using the Fujisaki-Okamoto (FO) transformation in the random oracle model), the protocol in [33] requires
to exchange seven ring elements in total.

Recently, Peikert [61] presented an efficient KEM based on Ring-LWE, which was then transformed
into an AKE protocol by using the same structure as SIGMA [45]. The resulting protocol involved one
encryption, and two signatures and two MACs for explicit entity authentication. As the SIGMA protocol, the
protocol in [61] has three-pass messages and was proven SK-secure [16] in the random oracle model. Bos et
al. [9] treated Peikert’s KEM as a DH-like KE protocol, and integrated it into the Transport Layer Security
(TLS) protocol. Thus, their AKE protocol also employed signatures to provide explicit authentication. In
fact, they used the traditional digital signatures such as RSA and ECDSA to provide authentication (i.e., it
is not a pure post-quantum AKE protocol). The security of their protocol was proven in the authenticated
and confidential channel establishment (ACCE) security model [42], which is based on the BR model, but
has many differences to capture entity authentication and channel security.

Since the lack of concrete security analysis and parameter choices in the literature, we only give a theo-
retical comparison of lattice-based AKEs in Table 1. In summary, our protocol only has two-pass messages
(about two ring elements) and does not use signatures/MACs at al, and its security solely relies on the
hardness of Ring-LWE. To the best of our knowledge there is not a single post-quantum authenticated key
exchange protocol (until this work) which solely relies on a quantum-hard computational problem and does
not make use of explicit cryptographic primitives except hash functions.

1.4 Roadmap

In the preliminaries section, we recall the BR model and several useful tools on lattices. Then, we give a two-
pass AKE protocol from ideal lattices in Section 3, and prove its security based on Ring-LWE problems in

6

Section 4. In Section 5, we present the one-pass variant of our protocol. The concrete choices of parameters
and timings are given in Section 6.

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter, and all quantities are implicitly dependent on κ. Let poly(κ) denote
an unspecified function f(κ) = O(κc) for some constant c. The function log denotes the natural logarithm.
We use standard notation O,ω to classify the growth of functions. If f(κ) = O(g(κ) · logc κ), we denote
f(κ) = Õ(g(κ)). We say a function f(κ) is negligible if for every c > 0, there exists a N such that
f(κ) < 1/κc for all κ > N . We use negl(κ) to denote a negligible function of κ, and we say a probability
is overwhelming if it is 1− negl(κ).

The set of real numbers (integers) is denoted by R (Z, resp.). We use←r to denote randomly choosing
an element from some distribution (or the uniform distribution over some finite set). Vectors are in column
form and denoted by bold lower-case letters (e.g., x). The `2 and `∞ norms we designate by ‖·‖ and ‖·‖∞.
The ring of polynomials over Z (Zq = Z/qZ, resp.) we denote by Z[x] (Zq[x], resp.).

Let X be a distribution over finite set S. The min-entropy of X is defined as

H∞(X) = − log(max
s∈S

Pr[X = s]).

Intuitively, the min-entropy says that if we (privately) choose x from X at random, then no (unbounded)
algorithm can guess the value of x correctly with probability greater than 2−H∞(X).

2.2 Security Model for AKE

We now recall the Bellare-Rogaway security model [8], restricted to the case of two-pass AKE protocol.

Sessions We fix a positive integerN to be the maximum number of honest parties that use the AKE protocol.
Each party is uniquely identified by an integer i in {1, 2, . . . , N}, and has a static key pair consisting of a
static secret key ski and static public key pki, which is signed by a Certificate Authority (CA). A single
run of the protocol is called a session. A session is activated at a party by an incoming message of the
form (Π, I, i, j) or the form (Π,R, j, i,Xi), where Π is a protocol identifier; I and R are role identifiers; i
and j are party identifiers. If party i receives a message of the form (Π, I, i, j), we say that i is the session
initiator. Party i then outputs the response Xi intended for party j. If party j receives a message of the form
(Π,R, j, i,Xi), we say that j is the session responder; party j then outputs a response Yj to party i. After
exchanging these messages, both parties compute a session key.

If a session is activated at party i with i being the initiator, we associate with it a session identifier
sid = (Π, I, i, j,Xi) or sid = (Π, I, i, j,Xi, Yj). Similarly, if a session is activated at party j with j
being the responder, the session identifier has the form sid = (Π,R, j, i,Xi, Yj). For a session identifier
sid = (Π, ∗, i, j, ∗[, ∗]), the third coordinate—that is, the first party identifier—is called the owner of the
session; the other party is called the peer of the session. A session is said to be completed when its owner
computes a session key. The matching session of sid = (Π, I, i, j,Xi, Yj) is the session with identifier
s̃id = (Π,R, j, i,Xi, Yj) and vice versa.

7

Adversarial Capabilities We model the adversary A as a probabilistic polynomial time (PPT) Turing ma-
chine with full control over all communications channels between parties, including control over session
activations. In particular, A can intercept all messages, read them all, and remove or modify any desired
messages as well as inject its own messages. We also suppose A is capable of obtaining hidden information
about the parties, including static secret keys and session keys to model potential leakage of them in genuine
protocol executions. These abilities are formalized by providing A with the following oracles (we split the
Send query in [15] into Send0, Send1 and Send2 queries for the case of two-pass protocols):

– Send0(Π, I, i, j): A activates party i as an initiator. The oracle returns a message Xi intended for
party j.

– Send1(Π,R, j, i,Xi): A activates party j as a responder using message Xi. The oracle returns a mes-
sage Yj intended for party i.

– Send2(Π,R, i, j,Xi, Yj): A sends party i the message Yj to complete a session previously activated
with a Send0(Π, I, i, j) query that returned Xi.

– SessionKeyReveal(sid): The oracle returns the session key associated with the session sid if it has
been generated.

– Corrupt(i): The oracle returns the static secret key belonging to party i. A party whose key is given to
A in this way is called dishonest; a party not compromised in this way is called honest.

– Test(sid∗): The oracle chooses a bit b←r {0, 1}. If b = 0, it returns a key chosen uniformly at random;
if b = 1, it returns the session key associated with sid∗. Note that we impose some restrictions on this
query. We only allow A to query this oracle once, and only on a fresh (see Definition 1) session sid∗.

Definition 1 (Freshness). Let sid∗ = (Π, I, i∗, j∗, Xi, Yj) or (Π,R, j∗, i∗, Xi, Yj) be a completed session
with initiator party i∗ and responder party j∗. If the matching session exists, denote it s̃id

∗
. We say that sid∗

is fresh if the following conditions all hold:

– A has not made a SessionKeyReveal query on sid∗.
– A has not made a SessionKeyReveal query on s̃id

∗
(if it exists).

– Neither party i∗ nor j∗ is dishonest if s̃id
∗

does not exist. I.e.,A has not made a Corrupt query on either
of them.

Recall that in the original BR model [8], no corruption query is allowed. In the above freshness defini-
tion, we allow the adversary to corrupt both parties of sid∗ if the matching session exists, i.e., the adversary
can obtain the parties’s secret key in advance and then passively eavesdrops the session sid∗ (and thus s̃id

∗
).

We remark that this is actually stronger than what is needed for capturing wPFS [46], where the adversary
is only allowed to corrupt a party after an honest session sid∗ (and thus s̃id

∗
) has been completed.

Security Game The security of a two-pass AKE protocol is defined in terms of the following game. The
adversary A makes any sequence of queries to the oracles above, so long as only one Test query is made
on a fresh session, as mentioned above. The game ends when A outputs a guess b′ for b. We say A wins the
game if its guess is correct, so that b′ = b. The advantage of A, AdvΠ,A, is defined as Pr[b′ = b]− 1/2.

Definition 2 (Security). We say that an AKE protocol Π is secure if the following conditions hold:

– If two honest parties complete matching sessions then they compute the same session key with over-
whelming probability.

– For any PPT adversary A, the advantage AdvΠ,A is negligible.

8

2.3 The Gaussian Distributions and Rejection Sampling

For any positive real α ∈ R, and vectors c ∈ Rm, the continuous Gaussian distribution over Rm with stan-
dard deviation α centered at v is defined by the probability function ρα,c(x) = (1√

2πσ2
)m exp

(
−‖x−v‖2

2σ2

)
.

For integer vectors c ∈ Rn, let ρs,c(Zm) =
∑

x∈Zm ρs,c(x). Then, we define the discrete Gaussian distri-
bution over Zm as DZm,s,c(x) =

ρs,c(x)
ρs,c(Zm) , where x ∈ Zm. The subscripts s and c are taken to be 1 and 0

(respectively) when omitted. The following lemma says that for large enough α, almost all the samples from
DZm,α are small.

Lemma 1 ([58]). Letting real α = ω(
√
logm), constant d > 1/

√
2π, then Prx←rDZm,α [‖x‖ > d·α

√
m] ≤

1
2D

n, where D = d
√
2πe · e−π·d2 . In particular, we have Prx←rDZm,α [‖x‖ > α

√
m] ≤ 2−m+1.

Now, we recall rejection sampling in Theorem 1 from [52], which will be used in the security proof of
our AKE protocol. Informally, the rejection sampling theorem says that for large enough α, the distributions
DZm,α,c and DZm,α are statistically indistinguishable even given vector c ∈ Z.

Theorem 1 (Rejection Sampling [52]). Let V be a subset of Zm in which all the elements have norms less
than T , α = ω(T

√
logm) be a real, and ψ : V → R be a probability distribution. Then there exists a

constant M = O(1) such that the distribution of the following algorithm Samp1 :

1: c←r ψ
2: z←r DZm,α,c

3: output (z, c) with probability min
(

DZm,α(z)
MDZm,α,c(z)

, 1
)

.

is within statistical distance 2−ω(logm)

M of the distribution of the following algorithm Samp2 :

1: c←r ψ
2: z←r DZm,α
3: output (z, c) with probability 1/M .

Moreover, the probability that Samp1 outputs something is at least 1−2−ω(logm)

M . More concretely, if α = τT

for any positive τ , then M = e12/τ+1/(2τ2) and the output of algorithm Samp1 is within statistical distance
2−100

M of the output of Samp2, and the probability that A outputs something is at least 1−2−100

M .

2.4 Ring Learning with Errors

Let the integer n be a power of 2, and consider the ring R = Z[x]/(xn + 1). For any positive integer q, we
define the ring Rq = Zq[x]/(xn+1) analogously. For any polynomial y(x) in R (or Rq), we identify y with
its coefficient vector in Zn (or Znq). Then we define the norm of a polynomial to be the norm of its coefficient
vector.

Lemma 2. For any s, t ∈ R, we have ‖s · t‖ ≤
√
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Besides, the discrete Gaussian distribution over the ring R can be naturally defined as the distribution
of ring elements whose coefficient vectors are distributed according to the discrete Gaussian distribution
over Zn, e.g., DZn,α for some positive real α. Letting χα be the discrete Gaussian distribution over Zn with
standard deviation α centered at 0, i.e., χα := DZn,α, we now adopt the following notational convention:
since bold-face letters denote vectors, x←r χα means we sample the vector x from the distribution χα; for

9

normal weight variables (e.g. y ←r χα) we sample an element of R whose coefficient vector is distributed
according to χα.

Now we come to the statement of the Ring-LWE assumption; we will use a special case detailed in [54].
Let Rq be defined as above, and s ←r Rq. We define As,χα to be the distribution of the pair (a, as + x) ∈
Rq ×Rq, where a←r Rq is uniformly chosen and x←r χα is independent of a.

Definition 3 (Ring-LWE Assumption). Let Rq and χα be defined as above, and let s ←r Rq. The Ring-
LWE assumption RLWEq,α states that it is hard for any PPT algorithm to distinguishAs,χα from the uniform
distribution on Rq ×Rq with only polynomially many samples.

The following lemma says that the hardness of the Ring-LWE assumption can be reduced to some hard
lattice problems such as the Shortest Independet Vectors Problem (SIVP) over ideal lattices.

Proposition 1 (A special case of [54]). Let n be a power of 2, let α be a real number in (0, 1), and q a prime
such that q mod 2n = 1 and αq > ω(

√
log n). Define Rq = Zq[x]/〈xn + 1〉 as above. Then there exists a

polynomial time quantum reduction from Õ(
√
n/α)-SIVP in the worst case to average-case RLWEq,β with

` samples, where β = αq · (n`/ log(n`))1/4.

It has been proven that the Ring-LWE assumption still holds even if the secret s is chosen according
to the error distribution χβ rather than uniformly [1,54]. This variant is known as the normal form, and
is preferable for controlling the size of the error term [11,10]. The underlying Ring-LWE assumption also
holds when scaling the error by a constant t relatively prime to q [11], i.e., using the pair (ai, ais + txi)
rather than (ai, ais+ xi). Several lattice-based cryptographic schemes have been constructed based on this
variant [11,10]. In our case, we will fix t = 2. Besides, recall that the RLWEq,β assumption guarantees that
for some prior fixed (but randomly chosen) s, the tuple (a, as + 2x) is computationally indistinguishable
from the uniform distribution over Rq × Rq if a ←r Rq and x ← χβ . In this paper, we will use a matrix
form ring-LWE assumption. Formally, let Bχβ ,`1,`2 be the distribution of (a,B = (bi,j)) ∈ R`1q × R`1×`2q ,
where a = (a0, . . . , a`1−1) ←r R

`1
q , s = (s0, . . . , s`2−1) ←r R

`2
q , ei,j ←r χβ , and bi,j = aisj + 2ei,j for

i ∈ {0, . . . , `1 − 1} and j ∈ {0, . . . , `2 − 1}. For polynomially bounded `1 and `2, one can show that the
distribution of Bχβ ,`1,`2 is pseudorandom based on the RLWEq,β assumption [62].

3 Authenticated Key Exchange from Ring-LWE

We now introduce some notation before presenting our protocol. For odd prime q > 2, denote Zq =
{− q−1

2 , . . . , q−12 } and define the subset E := {−b q4c, . . . , b
q
4e} as the middle half of Zq. We also de-

fine Cha to be the characteristic function of the complement of E, so Cha(v) = 0 if v ∈ E and 1 otherwise.
Obviously, for any v in Zq, v+Cha(v) · q−12 mod q belongs to E. We define an auxiliary modular function,
Mod2 : Zq × {0, 1} → {0, 1}:

Mod2(v, b) = (v + b · q − 1

2
) mod q mod 2.

In the following lemma, we show that given the bit b = Cha(v), and a valuew = v+2ewith sufficiently
small e, we can recover Mod2(v,Cha(v)). In particular, we have Mod2(v, b) = Mod2(w, b).

Lemma 3. Let q be an odd prime, v ∈ Zq and e ∈ Zq such that |e| < q/8. Then, for w = v + 2e, we have
Mod2(v,Cha(v)) = Mod2(w,Cha(v)).

10

Proof. Note that w + Cha(v) q−12 mod q = v + Cha(v) q−12 + 2e mod q. Now, v + Cha(v) q−12 mod q is
in E as we stated above; that is, −b q4c ≤ v + Cha(v) q−12 mod q ≤ b q4e. Thus, since −q/8 < e < q/8,
we have −b q2c ≤ v + Cha(v) q−12 mod q + 2e ≤ b q2e. Therefore, we have v + Cha(v) q−12 mod q + 2e =

v + Cha(v) q−12 + 2e mod q = w + Cha(v) q−12 mod q. Thus, Mod2(w,Cha(v)) = Mod2(v,Cha(v)).

Now, we extend the functions Cha and Mod2 to ring Rq by applying them coefficient-wise to ring ele-
ments. Namely, for ring element v = (v0, . . . , vn−1) ∈ Rq and binary-vector b = (b0, . . . , bn−1) ∈ {0, 1}n,

define C̃ha(v) = (Cha(v0), . . . ,Cha(vn−1)) and M̃od2(v,b) = (Mod2(v0, b0), . . . , Mod2(vn−1, bn−1)).
For simplicity, we slightly abuse the notations and still use Cha and Mod2 to denote C̃ha and M̃od2, re-
spectively. Clearly, the result in Lemma 3 still holds when extending to ring elements.

In our AKE protocol, the two involved parties will use Cha and Mod2 to derive a common key material.
Concretely, the responder will publicly send the result of Cha on his own secret ring element to the initiator
in order to compute a shared key material from two “closed” ring elements (by applying the Mod2 function).
Ideally, for uniformly chosen element v from Rq at random, we hope that the output of Mod2(v,Cha(v)) is
uniformly distributed {0, 1}n. However, this can never happen when q is a odd prime. Fortunately, we can
show that the output of Mod2(v,Cha(v)) conditioned on Cha(v) has high min-entropy, thus can be used to
extract an (almost) uniformly session key. Actually, we can prove a stronger result.

Lemma 4. Let q be any odd prime andRq be the ring defined above. Then, for any b ∈ {0, 1}n and any v′ ∈
Rq, the output distribution of Mod2(v + v′,b) given Cha(v) has min-entropy at least −n log(12 + 1

|E|−1),

where v is uniformly chosen fromRq at random. In particular, when q > 203, we have−n log(12 +
1

|E|−1) >
0.97n.

Proof. Since each coefficient of v is independently and uniformly chosen from Zq at random, we can simplify
the proof by focusing on the first coefficient of v. Formally, letting v = (v0, . . . , vn−1), v′ = (v′0, . . . , v

′
n−1)

and b = (b0, . . . , bn−1), we condition on Cha(v0):

– If Cha(v0) = 0, then v0 + v′0 + b0 · q−12 is uniformly distributed over v′0 + b0 · q−12 + E mod q. This
shifted set has (q+1)/2 elements, which are either consecutive integers—if the shift is small enough—
or two sets of consecutive integers—if the shift is large enough to cause wrap-around. Thus, we must
distinguish a few cases:
• If |E| is even and no wrap-around occurs, then the result of Mod2(v0 + v′0, b0) is clearly uniform on
{0, 1}. Namely, the result of Mod2(v0 + v′0, b0) has no bias.
• If |E| is odd and no wrap-around occurs, then the result of Mod2(v0 + v′0, b0) has a bias with

probability 1
2|E| over {0, 1}. In other words, the Mod2(v0 + v′0, b0) will output either 0 or 1 with

probability exactly 1
2 + 1

2|E| .

• If |E| is odd and wrap-around does occur, then the set v′0+ b0 ·
q−1
2 +E mod q splits into two parts,

one with an even number of elements, and one with an odd number of elements. This leads to the
same situation as with no wrap-around.
• If |E| is even and wrap-around occurs, then our sample space is split into either two even-sized sets,

or two odd sized sets. If both are even, then once again the result of Mod2(v0 + v′0, b0) is uniform.
If both are odd, it is easy to calculate that the result of Mod2(v0 + v′0, b0) has a bias with probability
1
|E| over {0, 1}.

– If Cha(v0) = 1, v0 + v′0 + b0 · q−12 is uniformly distributed over v′0 + b0 · q−12 + Ẽ, where Ẽ = Zq \E.
Now |Ẽ| = |E| − 1, so by splitting into the same cases as Cha(v0) = 0, the result of Mod2(v0 + v′0, b)
has a bias with probability 1

|E|−1 over {0, 1}.

11

In all, we have that the result of Mod2(v0 + v′0, b0) conditioned on Cha(v0) has min-entropy at least
− log(12 + 1

|E|−1). Since the bits in the result of Mod2(v + v′,b) are independent, we have that given
Cha(v), the min-entropy H∞(Mod2(v + v′,b)) ≥ −n log(12 + 1

|E|−1). This completes the first claim.
The second claim directly follows from the fact that − log(12 + 1

|E|−1) > − log(0.51) > 0.97 when
q > 203. �

Remark 1 (On Uniformly Distributed Keys). It is known that randomness extractor can be used to obtain an
almost uniformly distributed key from a biased bit-string with high min-entropy [19,66,67,28,4]. In practice,
as recommended by NIST [5], one can actually use the standard cryptographic hash functions such as SHA-
2 to derive a uniformly distributed key if the source string has at least 2κ min-entropy, where κ is the length
of the cryptographic hash function.

3.1 The Protocol

We now describe our protocol in detail. Let n be a power of 2, and q be an odd prime such that q mod 2n =
1. TakeR = Z[x]/(xn+1) andRq = Zq[x]/(xn+1) as above. For γ ∈ R+, letH1 : {0, 1}∗ → χγ = DZn,γ
be a hash function that always output invertible elements in Rq.8 Let H2 : {0, 1}∗ → {0, 1}κ be the key
derivation function, where κ is the bit-length of the final shared key. We model both functions as random
oracles [7]. Let χα, χβ be two discrete Gaussian distributions with parameters α, β ∈ R+. Let a ∈ Rq
be the global public parameter uniformly chosen from Rq at random, and M be a constant determined by
Theorem 1. Let pi = asi + 2ei ∈ Rq be party i’s static public key, where (si, ei) is the corresponding
static secret key; both si and ei are taken from the distribution χα. Similarly, party j has static public
key pj = asj + 2ej and static secret key (sj , ej).

Initiation Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;
3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and

z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
.

4. Send xi to party j.
Response After receiving xi from party i, party j proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;
3′. Letting z ∈ Z2n be the coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and

z1 ∈ Z2n be the coefficient vector of sjd concatenated with the coefficient vector of ejd, repeat the

steps 1′ ∼ 3′ with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4′. Sample gj ←r χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and send (yj , wj) to party i;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Finish Party i receives the pair (yj , wj) from party j, and proceeds as follows:

8 In practice, one can first use a hash function such as SHA-2 to obtain a uniformly random string, and then use it to sample from
DZn,γ . The algorithm output a sample only if it is invertible in Rq , otherwise, it tries another sample and repeats. By Lemma 10
in [65], we can have a good probability to sample an invertible element in each trial for an appropriate choice of γ.

12

5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i, yj , xi);
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

In the above protocol, both parties will make use of rejection sampling, i.e., they will repeat the first
three steps with certain probability. By Theorem 1, the probability that each party will repeat the steps
with probability about 1

M for some constant M and appropriately chosen β. Thus, one can hope that both
parties will send something to each other after an averaged M times repetitions of the first three steps. In
the following subsection, we will show that once they send something to each other, both parties will finally
compute a shared session key.

3.2 Correctness

To show the correctness of our AKE protocol, i.e., that both parties compute the same session key ski = skj ,
it suffices to show that σi = σj . Since σi and σj are both the output of Mod2 with Cha(kj) as the second
argument, we need only to show that ki and kj are sufficiently close by Lemma 3. Note that the two parties
will compute ki and kj as follows:

ki = (pjd+ yj)r̂i + 2dgi
= a(sjd+ rj)r̂i + 2(ejd+ fj)r̂i + 2dgi
= ar̂ir̂j + 2g̃i

kj = (pic+ xi)r̂j + 2cgj
= a(sic+ ri)r̂j + 2(eic+ fi)r̂j + 2cgj
= ar̂ir̂j + 2g̃j

where g̃i = f̂j r̂i + dgi, and g̃j = f̂ir̂j + cgj . Then ki = kj + 2(g̃i − g̃j), and we have σi = σj if
‖g̃i − g̃j‖∞ < q/8 by Lemma 3.

4 Security

Theorem 2. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the proposed AKE is secure with respect to Definition 2 in

the random oracle model.

The intuition behind our proof is quite simple. Since the public element a and the public key of each
party (e.g., pi = asi+2ei) actually consist of a RLWEq,α tuple with Gaussian parameter α (scaled by 2), the
parties’ static public keys are computationally indistinguishable from uniformly distributed elements in Rq
under the Ring-LWE assumption. Similarly, both the exchanged elements xi and yj are also computationally
indistinguishable from uniformly distributed elements in Rq under the RLWEq,β assumption.

Without loss of generality, we take party j as an example to check the distribution of the session key. Note
that if kj is uniformly distributed over Rq, we have σj ∈ {0, 1}n has high min-entropy even conditioned on
wj by Lemma 4 (e.g., 0.97n > 2κ). Since H2 is a random oracle, we have that skj is uniformly distributed
over {0, 1}κ as expected. Now, let’s check the distribution of kj = (pic+ xi)(sjd+ rj) + 2cgj . As one can
imagine, we want to establish the randomness of kj based on pseudorandomness of “Ring-LWE samples”
with public element âj = c−1(pic + xi) = pi + c−1xi, the secret ŝj = sjd + rj , as well as the error term
2gj (thus we have kj = c(âj ŝj + 2gj)). Actually, kj is pseudorandom due to the following fact: 1) c is
invertible in Rq; 2) âj is uniformly distributed over Rq whenever pi or xi is uniform, and ŝj has distribution
statistically close to χβ by the strategy of rejection sampling in Theorem 1. In other words, âj ŝj + 2gj is
statistically close to a RLWEq,β sample, and thus is pseudorandom.

Formally, let N be the maximum number of parties, and m be maximum number of sessions for each
party. We distinguish the following five types of adversaries:

13

Type I: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is output by a session activated at
party j by a Send1(Π,R, j

∗, i∗, xi∗) query.
Type II: sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) is the test session, and yj∗ is not output by a session activated

at party j∗ by a Send1(Π,R, j
∗, i∗, xi∗) query.

Type III: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is not output by a session acti-
vated at party i∗ by a Send0(Π, I, i

∗, j∗) query.
Type IV: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is output by a session activated

at party i∗ by a Send0(Π, I, i
∗, j∗) query, but i∗ either never completes the session, or i∗ completes it

with exact yj∗ .
Type V: sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) is the test session, and xi∗ is output by a session activated at

party i∗ by a Send0(Π, I, i
∗, j∗) query, but i∗ completes the session with another y′j 6= yj∗ .

The five types of adversaries give a complete partition of all the adversaries. The weak perfect forward
secrecy (wPFS) is captured by allowing Type I and Type IV adversaries to obtain the static secret keys of
both party i∗ and j∗ by using Corrupt queries. Since sid∗ definitely has no matching session for Type II,
Type III, and Type V adversaries, no corruption to either party i∗ or party j∗ is allowed by Definition 1.
The security proofs for the five types of adversaries are similar, except the forking lemma [6] is involved for
Type II, Type III, and Type V adversaries by using the assumption that H1 is a random oracle. Informally,
the adversary must first “commit” xi (or yj) before seeing c (or d), thus it cannot determine the value pic+xi
(or pjd + yi) in advance (but the simulator can determine the values by programming H1 when it tries to
embed Ring-LWE instances with respect to either pic+ xi or pjd+ yi as discussed before).

4.1 Type I Adversary

In this subsection, we prove that our AKE is secure against any PPT Type I adversary A.

Lemma 5. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the proposed AKE is secure against any PPT Type I

adversary A in the random oracle model.

Proof. We prove this lemma via a sequence of games G1,l for 0 ≤ l ≤ 7. Boxes are used to highlight the
changes of each game with respect to its previous game.

Game G1,0 S chooses i∗, j∗ ←r {1, . . . , N}, si∗ , sj∗ ←r {1, . . . ,m}, and hopes that the adversary will
use sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test session, where xi∗ is output by the si∗-th session of party
i∗, and yj∗ is output by the s∗j -th session of party j∗ activated by a Send1(Π,R, j

∗, i∗, xi∗) query. Then, S
chooses a←r Rq, generates static public keys for all parties (by choosing si, ei ←r χα), and simulates the
security game forA. Specifically, S maintains two tablesL1, L2 for the random oraclesH1, H2, respectively,
and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in L1, choose an element out ←r χγ , and add (in, out)
into L1. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in L2, choose a vector out ←r {0, 1}κ, and add
(in, out) into L2. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with intended party j, S proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;

14

3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and
z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
.

4. Return xi to A;
– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;
3′. Letting z ∈ Z2n be the coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and

z1 ∈ Z2n be the coefficient vector of sjd concatenated with the coefficient vector of ejd, repeat the

steps 1′ ∼ 3′ with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4′. Sample gj ←r χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:
5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i, yj , xi);
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session key of sid has been
generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), S aborts if (i, j) 6= (i∗, j∗), or xi and yj are not output by

the si∗-th session of i∗ and the s∗j -th session of j∗, respectively. Else, S chooses b ←r {0, 1}, returns
sk′i ←r {0, 1}κ if b = 0. Otherwise, return the session key ski of sid.

Claim 1 The probability that S will not abort in G1,0 is at least 1
m2N2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r {1, . . . , N} and
si∗ , s

∗
j ←r {1, . . . ,m} independently from the view of A. �

Game G1,1 S behaves almost the same as in G1,0 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G1,0. Otherwise, it proceeds as follows:
1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Sample an invertible element d←r χγ , compute r̂j = sjd+ rj and f̂j = ejd+ fj ;

3′. Letting z ∈ Z2n be the coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and
z1 ∈ Z2n be the coefficient vector of sjd concatenated with the coefficient vector of ejd, repeat the

steps 1′ ∼ 3′ with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1 . Then, sample gj ←r

χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

In the following, we denote F1,l as the event that A outputs a guess b′ that equals to b in Game G1,l.

15

Claim 2 If RLWEq,β is hard, then Pr[F1,l] = Pr[F1,0]− negl(κ).

Proof. Since H1 is a random oracle, Game G1,0 and Game G1,1 are identical if the adversary A does not
make a H1 query ((j, i, yj , xi), ∗) before S generates yj . Thus, the claim follows if the probability that A
makes such a query in both Games is negligible. Actually, if A can make the query before seeing yj with
non-negligible probability, we can construct an algorithm B that breaks the RLWEq,β assumption.

Formally, after given a ring-LWE challenge tuple (a,b) ∈ Rq×R`q in matrix form for some polynomially
bounded `, B sets a = u and behaves like in Game G1,0 until B has to generate yj for the s∗j -th session of
j∗ intended for party i∗. Instead of generating a fresh yj , B simply sets yj as the first unused elements in
b = (b0, . . . , b`−1), and checks if there is a tuple ((j, i, yj , xi), ∗) in L1. If yes, it returns 1 and aborts, else
it returns 0 and aborts.

It is easy to check thatA has the same view as in G1,0 and G1,1 until the point that B has to compute yj .
Moreover, if b = (b0 = us0 + 2x0, . . . , b` = us` + 2x`) for some randomly choose s, x ←r χβ , we have
the probability that A will make the H1 query with (j, i, yj , xi) is non-negligible by assumption. While if b
is uniformly distributed over R`q, we have the probability that A will make the H1 query with (j, i, yj , xi) is
negligible. This shows that B can be used to solve Ring-LWE assumption by interacting with A. �

Game G1,2 S behaves almost the same as in G1,1 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G1,1. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and z←r DZ2n,β ;

2′. Interpreting z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd .

3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1. Then, sample

gj ←r χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Claim 3 If β = ω(αγn
√
n log n), then Pr[F1,2] = Pr[F1,1]− negl(κ).

Proof. By Lemma 1 and Lemma 2, we have that both ‖sjd‖ ≤ αγn
√
n and ‖ejd‖ ≤ αγn

√
n (in Game

G1,1) hold with overwhelming probability. This means that β = ω(αγn
√
n log n) satisfies the requirement

in Theorem 1, and thus the distribution of (d, z) in GameG1,2 is statistically close to that inG1,1. The claims
follows from the fact that the equation yj = ar̂j + 2f̂j − pjd holds in both Game G1,1 and G1,2.

Game G1,3 S behaves almost the same as in G1,2, except for the following case:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers as in Game G1,2.
Otherwise, it proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Sample an invertible element c←r χγ , compute r̂i = sic+ ri and f̂i = eic+ fi;

3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and
z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
.

16

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1 . Return xi to A.

Claim 4 If RLWEq,β is hard, then Pr[F1,3] = Pr[F1,2]− negl(κ).

Proof. The proof is similar to the proof of Claim 2, we omit the details. �

Game G1,4 S behaves almost the same as in G1,3 except for the following case:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers as in Game G1,3.
Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and z←r DZ2n,β ;

2. Interpreting z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic .

3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1. Return xi to A.

Claim 5 If β = ω(αγn
√
n log n), then Pr[F1,4] = Pr[F1,3]− negl(κ).

Proof. The proof is similar to the proof of Claim 3, we omit the details. �

Game G1,5 S behaves almost the same as in G1,4 except for the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S behaves as in
Game G1,4. Otherwise, if (yj , wj) is output by the s∗j -th session of party j∗, S sets ski = skj , where
skj is the session key of sid = (Π,R, j, i, xi, (yj , wj)). Else, S samples gi ←r χβ and computes
ki = (pjd+ yj)r̂i+2dgi where d = H1(j, i, yj , xi). Finally, it computes σi = Mod2(ki, wj) and derive
the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 6 Pr[F1,5] = Pr[F1,4]− negl(κ).

Proof. This claim follows since G1,5 is just a conceptual change of G1,4 by the correctness of the protocol.�

Game G1,6 S behaves almost the same as in G1,5 except in the following case:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers as in Game G1,5.
Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and x̂i ←r Rq ;

2. Define xi = x̂i − pic .
3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1. Return xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, or (yj , wj) is
output by the s∗j -th session of party j∗, S behaves the same as inG1,5. Otherwise, it proceeds as follows:

5. Randomly choose ki ←r Rq ;
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

17

Note that in Game G1,6, we have made two changes: 1) The term ar̂i + 2f̂i in Game G1,5 is replaced
by a uniformly chosen element x̂ ∈ Rq at random; 2) The value ki = (pjd + yj)r̂i + 2dgi in Game G1,5

is replaced by a uniformly chosen string ki ←r Rq, when (yj , w
′
j) is output by the s∗j -th session of party

j∗ but wj 6= w′j . In the following, we will employ the “deferred analysis” proof technique in [34], which
informally allows us to proceed the security games by patiently postponing some tough probability analysis
to a later game. Specially, for ` = 5, 6, 7, denote Q1,l as the event in Game G1,` that 1) (yj , w′j) is output by
the s∗j -th session of party j∗ but wj 6= w′j , and 2)A makes a query to H2 that is exactly used to generate the
session key ski for the si∗-th session of party i∗, i.e., ski = H1(i, j, xi, yj , wj , σi) for σi = Mod2(ki, wj).
Ideally, if Q1,5 does not happen, then the adversary cannot distinguish whether a correctly computed ki or
a randomly chosen one is used (since H2 is a random oracle, and the adversary gains no information about
ki even if it obtains the session key ski). However, we cannot prove the claim immediately due to technical
reason. Instead, we will show that Pr[Q1,5] ≈ Pr[Q1,6] ≈ Pr[Q1,7] and Pr[Q1,7] is negligible in κ.

Claim 7 If RLWEq,β is hard, Pr[Q1,6] = Pr[Q1,5] − negl(κ), and Pr[F1,6|¬Q1,6] = Pr[F1,5|¬Q1,5] −
negl(κ).

Proof. Note that H2 is a random oracle, the event Q1,5 is independent from the distribution of the corre-
sponding ski. Namely, no matter whether or not A obtains ski, Pr[Q1,5] is the same, which also holds for
Pr[Q1,6]. In addition, under the RLWEq,β assumption, we have x̂i = ar̂i + 2f̂i in G1,5 is computation-
ally indistinguishable from uniform distribution over Rq, and thus the public information (i.e., static public
keys and public transcripts) in G1,5 and G1,6 is computationally indistinguishable. In particular, the view of
the adversary A before Q1,` happens for ` = 5, 6 is computationally indistinguishable, which implies that
Pr[Q1,6] = Pr[Q1,5] − negl(κ). Besides, if Q1,l for l = 5, 6 does not happen, the distribution of ski is the
same in both games. In other words, Pr[F1,6|¬Q1,6] = Pr[F1,5|¬Q1,5]− negl(κ). �

Game G1,7 S behaves almost the same as in G1,6 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G1,6. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and ŷj ←r Rq ;

2′. Define yj = ŷj − pjd .
3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) inL1. Else, add ((j, i, yj , xi), d) intoL1. Then, the simulator
S uniformly chooses kj ←r Rq at random ;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Claim 8 Let n be a power of 2, prime q > 203 satisfying q = 1 mod 2n, β = ω(αγn
√
n log n). Then,

if RLWEq,β is hard, Game G1,6 and G1,7 are computationally indistinguishable. In particular, we have
Pr[Q1,7] = Pr[Q1,6]− negl(κ), and Pr[F1,7|¬Q1,7] = Pr[F1,6|¬Q1,6]− negl(κ).

Proof. Assume there is an adversary that distinguishes Game G1,6 and G1,7, we now construct a distin-
guisher D that solves the Ring-LWE problem. Specifically, let (u = (u0, . . . , u`−1),B) ∈ R`q × R`×`q be
a challenge Ring-LWE tuple in matrix form for some polynomially bounded `, D first sets public param-
eter a = u0. Then, it randomly chooses invertible elements v = (v1, . . . , v`−1) ← χ`−1γ , and compute
û = (v1 · u1, . . . , v`−1u`−1). Finally, D behaves the same as S in Game G1,6, except for the following
cases:

18

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers as in Game G1,5.
Otherwise, it proceeds as follows:
1. Set c and x̂i be the first unused element in v and û, respectively ;
2. Define xi = x̂i − pic.
3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1. Return xi to A.

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G1,6. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and set ŷj be the first unused element in b0 = (b0,0, . . . , b0,`−1) ;
2′. Define yj = ŷj − pjd.
3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1. Then, let `1 ≥ 1

be the index that x̂i appears in û, and `2 ≥ 0 be the index that ŷj appears in b0, the simulator S
sets kj = cb`1,`2 ;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Since v is randomly and independently chosen from χ`−1γ , the distribution of c is identical to Game
G1,6 and G1,7. Besides, since each vi is invertible in Rq, we have û is uniformly distributed over R`−1q ,
which shows that the distribution of x̂i is identical to GameG1,6 andG1,7 except with negligible probability.
Moreover, if (u,B) ∈ R`q×R`×`q is a Ring-LWE challenge tuple in matrix form, we have ŷj = u0s`2+2e0,`2
and kj = cb`1,`2 = cu`1s`2 + 2ce`1,`2 = x̂is`2 + 2ce`1,`2 = (xi + pic)s`2 + 2ce`1,`2 for some randomly
chosen s`2 , e0,`2 , e`1,`2 ←r χβ . This shows that the view of A is the same as in Game G1,6. While if
(u,B) ∈ R`q × R`×`q is uniformly distributed over R`q × R`×`q , we have both ŷj and kj = cb`1,`2 are
uniformly distributed over Rq (since c is invertible). Thus, the view of A is the same as in G1,7. In all, we
have shown thatD can be used to break Ring-LWE assumption ifA can distinguish Game G1,6 and G1,7. �

Claim 9 If 0.97n > 2κ, we have Pr[Q1,7] = negl(κ)

Proof. Let ki,` be the element “computed” by S for the s∗i -th session at party i∗ in Games G1,`, and kj,`
be the element “computed” by S for the s∗j -th session at party j∗. By the correctness of the protocol, we
have that ki,5 = kj,5 + ĝ for some ĝ with small coefficients in G1,5. Since we have proven that the view
of the adversary before Q1,` happens in Game G1,5, G1,6 and G1,7 is computationally indistinguishable,
the equation ki,7 = kj,7 + ĝ′ should still holds for some ĝ′ with small coefficients in the adversary’s view
until Q1,7 happens in G1,7. Let (yj , wj) be output by the s∗j -th session of party j = j∗, and (yj , w

′
j) be

the message that is used to complete the test session (i.e., the si∗-th session of party i = i∗). Note that
kj,7 is randomly chosen from Rq, and the adversary can only obtain the information of kj,7 from the public
wj , the dependence of ĝ on kj should be totally determined by the information of wj . Thus, we have that
σ′i = Mod2(ki, w

′
j) = Mod2(kj + ĝ′, w′j) conditioned on wj has high min-entropy by Lemma 4. In other

words, the probability that the adversary makes a query H2(i, j, xi, yj , w
′
j , σ
′
i) is at most 2−0.97n+negl(κ),

which is negligible in κ. �

Claim 10 Pr[F1,7|¬Q1,7] = 1/2 + negl(κ)

Proof. Let (yj , wj) be output by the s∗j -th session of party j = j∗, (yj , w′j) be the message that is used to
complete the test session (i.e., the si∗-th session of party i = i∗). We distinguish the following two cases:

19

– wj = w′j : In this case, we have ski = skj = H2(i, j, xi, yj , wj , σi), where σi = σj = Mod2(kj , wj).
Note that in G1,7, kj is randomly chosen from the uniform distribution over Rq, we have that σj ∈
{0, 1}n (conditioned on wj) has min-entropy at least 0.97n by Lemma 4. Thus, the probability that A
has made a H2 query with σi is less than 2−0.97n + negl(κ).

– wj 6= w′j : By assumption that Q1,7 does not happen, we have A will never make a H2 query with σi.

In all, the probability thatA has made aH2 query with σi is negligible. This claim follows from the fact that
if the adversary doesn’t make a query with σi exactly, the distribution of ski is uniform over {0, 1}k due to
the random oracle property of H2, i.e., Pr[F1,7|¬Q1,7] = 1/2 + negl(κ). �

Combining the claims 1∼10, we have that Lemma 5 follows.

4.2 Type II Adversary

In this subsection, we prove that our AKE is secure against any PPT Type II adversary A.

Lemma 6. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the proposed AKE is secure against any PPT Type II

adversary A in the random oracle model.

Proof. We prove this lemma via a sequence of games G2,l for 0 ≤ l ≤ 6.

Game G2,0. S chooses i∗, j∗ ←r {1, . . . , N} and si∗ ←r {1, . . . ,m}, and hopes that the adversary will
choose sid∗ = (Π, I, i∗, j∗, xi∗ , (yj∗ , wj∗)) as the test session, where xi∗ is output by the si∗-th session
of party i∗ with intended party j∗ (note that sid∗ has no matching session for Type II adversary). Then, S
chooses a←r Rq, honestly generates static public keys for all parties (by randomly choosing si and ei from
χα), and simulates the attack environment forA. Specifically, S maintains two tables L1, L2 for the random
oracles H1, H2, respectively, and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1 list, choose an element out ←r χγ , and add
(in, out) to the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in the L2 list, choose an element out←r {0, 1}k,
and add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with intended party j, S proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;
3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and

z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4. Return xi to A.
– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;
3′. Letting z ∈ Z2n be the coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and

z1 ∈ Z2n be the coefficient vector of sjd concatenated with the coefficient vector of ejd, repeat the

steps 1′ ∼ 3′ with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

20

4′. Sample gj ←r χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:
5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i, yj , xi);
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session key of sid has been
generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6= (i∗, j∗), or xi and yj are not output by the si∗-th

session of i∗ and the s∗j -th session of j∗, respectively, S aborts. Otherwise, S chooses b ←r {0, 1} and
sk′i ←r {0, 1}k. If b = 0, S returns sk′i, else it returns the real session ski of sid.

Claim 11 The probability that S will not abort in G2,0 is at least 1
mN2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r {1, . . . , N} and si∗ ←r

{1, . . . ,m} without A knowing it. �

Game G2,1. S behaves almost the same as in G2,0, except in the following cases:

– Send0(Π, I, i, j): If i 6= j∗, S answers the query as in Game G2,0. Otherwise, it proceeds as follows:

1. Sample an invertible element c←r χγ , and z←r DZ2n,β ;

2. Interpreting z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic .

3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1 . Return xi to A.

– Send1(Π,R, j, i, xi): If j 6= j∗, S answers the query as in Game G2,0. Otherwise, it proceeds as
follows:
1′. Sample an invertible element d←r χγ , and z←r DZ2n,β ;

2′. Interpreting z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd .

3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1 . Then, sample gj ←r

χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

In the following, let F2,l denote the event that A outputs a guess b′ that equals to b in Game G2,l.

Claim 12 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F2,1] = Pr[F2,0]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,0 to G1,4, we omit the
details. �

21

Game G2,2. S behaves almost the same as in G2,1, except it replaces the public key for party j∗ with a
uniformly chosen pj∗ ←r Rq .

Claim 13 If RLWEq,α is hard, then Pr[F2,2] = Pr[F2,1]− negl(κ).

Proof. Since the only difference betweenG2,1 andG2,2 is that S replaces pj∗ = asj∗+2ej∗ with a randomly
chosen element in Rq, an adversary that can distinguish the difference between G2,1 and G2,2 could be
directly used to solve the RLWEq,α problem. �

Game G2,3. S behaves almost the same as in G2,2, except in the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers the query as in Game
G2,2. Otherwise, it proceeds as follows:

1. Sample an invertible element c←r χγ , and z←r DZ2n,β ;

2. Interpreting z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic .

3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1 . Return xi to A.

Claim 14 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F2,3] = Pr[F2,2]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,2 to G1,4, we omit the
details. �

Game G2,4. S first randomly chooses u ←r Rq, then computes v0 = (v0,1, . . . , v0,`−1) ∈ R`q and v1 =

(v1,1, . . . , v1,`−1) ∈ R`q where v0,`′ = ar̂`′ + 2f̂`′ , v1,`′ = ur̂`′ + 2g`′ for r̂`′ , f̂`1 , g`′ ← χβ . Then, it
sets pj∗ = u , and behaves almost the same as in G2,3, except in the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers the query as in Game
G2,3. Otherwise, it proceeds as follows:

1. Sample an invertible element c←r χγ , and set x̂i be the first unused element in v0 ;

2. Define xi = x̂i − pic .
3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1. Return xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers the
query as in Game G2,3. Otherwise, it proceeds as follows::
5. Let `∗ be the index that x̂i appears in v0, namely, x̂i = ar̂`∗+2f̂`∗ , the simulator S sets d = H1(j, i,

yj , xi), and computes ki = dv1,`∗ + yj r̂`∗ = d(ur̂`∗ + 2g`∗) + yj r̂`∗ = (pjd+ yj)r̂`∗ + 2dg`∗ ;

6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 15 Game G2,4 is identical to Game G2,3. In particular, we have Pr[F2,4] = Pr[F2,3].

Proof. This claim simply from the fact that Game G2,4 is just a conceptual change of Game G2,3. �

22

Game G2,5. S choosesu0, u1 ←r Rq, and v0 = (v0,1, . . . , v0,`−1),v1 = (v1,1, . . . , v1,`−1)←r R
`
q . Then,

it sets a = u0 and pj∗ = u1, and behaves almost the same as in G2,4, except in the following case:

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers the
query as in Game G2,3. Otherwise, it proceeds as follows:
5. Randomly choose ki ←r Rq ;
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 16 Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n, β =
ω(αγn

√
n log n). Then, if RLWEq,β is hard, Game G2,5 is computationally indistinguishable from G2,4. In

particular, Pr[F2,4] = Pr[F2,5] + negl(κ) = 1/2 + negl(κ).

Proof. Note that before generating ki, the only difference betweenG2,4 and G2,5 is that S replaces the Ring-
LWE tuple ((u0, u1), (v0, v1)) ∈ R2

q×R2×`
q with randomly chosen elements in R2

q×R2×`
q . In other words,

under the Ring-LWE assumption, we have that the adversary’s views before generating ki in both G2,4 and
G2,5 are computationally indistinguishable. Besides, since H2 is a random oracle, no matter whether A
obtains ski or not, the value of ski will not affect the view of the adversary, especially about the knowledge
of ki.

Now, let ki = dv1,`∗ + yjr`∗ be the element computed by using d = H1(j
∗, i∗, yj , xi) in Game G2,4

with non-negligible probability δ. Fixing v0 and v1 (note that all those values are chosen by S, and are
independent from the adversary’s behaviors), S reprograms the hash query H1(j

∗, i∗, yj , xi) = d̃ 6= d by
using another randomly chosen d̃←r χγ (recall that yj is not generated by the simulator S, such aH1 query
is made by the adversary A). According to the forking lemma [6], A will use the same yj to complete the
test session with probability at least δ(δ/qh − 2−n), where qh is maximum number of H1 queries. In such a
case, we have k̃i = d̃v1,`∗ + yj r̂`∗ and k̃i = ki + (d̃− d)v1,`∗ .

Denote k̂′i and k′i (i.e., the values determined before and after S reprograms the H1 query) as the target
values in theA’s view in Game G2,5, we have that k̃′i = k′i+(d̃−d)v1,`∗ should still hold in the adversary’s
view. Considering the fact that v1,`∗ is uniformly and randomly chosen from Rq and (d̃ − d) is invertible
with overwhelming probability for appropriate choice of γ and q by Lemma 10 in [65], we have that the
adversary essentially has no knowledge of k̃′i and k′i. Therefore, the choice of kj ←r Rq in Game G2,5 is
correctly distributed in the adversary’s view, and thus will not help the adversaryA to distinguish G2,5 from
G2,4. In other words, we have that Pr[F2,4] = Pr[F2,5] + negl(κ).

Finally, since ki is randomly and uniformly chosen from Rq in Game G2,5, and is independent fromA’s
view, we have σi = Mod2(ki, wj) ∈ {0, 1}n has very high min-entropy by Lemma 4. In other words, the
probability that the adversary makes a query H2(i, j, xi, yj , wj , σi) is at most 2−0.97n + negl(κ), which is
negligible in κ. SinceH2 is a random oracle, we have Pr[F2,5] = 1/2+negl(κ), which completes the proof.

�

4.3 Type III Adversary

In this subsection, we prove that our AKE is secure against any PPT Type III adversary A.

Lemma 7. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the proposed AKE is secure against any PPT Type III

adversary A in the random oracle model.

Proof. We prove this lemma via a sequence of games G3,l for 0 ≤ l ≤ 6.

23

Game G3,0. S chooses i∗, j∗ ←r {1, . . . , N} and sj∗ ←r {1, . . . ,m}, and hopes that the adversary will
choose sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test session, where (yj∗ , wj∗) is output by the s∗j -th
session of party j∗ activated by a Send0(Π,R, j

∗, i∗, xi∗) for some xi∗ . Then, S chooses a←r Rq, honestly
generates static public keys for all parties (by randomly choosing si and ei from χα), and simulates the attack
environment forA. Specifically, S maintains two tables L1, L2 for the random oracles H1, H2, respectively,
and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1 list, choose an element out ←r χγ , and add
(in, out) to the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in the L2 list, choose an element out←r {0, 1}k,
and add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with intended party j, S proceeds as follows:

1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;
3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and

z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
.

4. Return xi to A.

– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;
3′. Letting z ∈ Z2n be the coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and

z1 ∈ Z2n be the coefficient vector of sjd concatenated with the coefficient vector of ejd, repeat the

steps 1′ ∼ 3′ with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4′. Sample gj ←r χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:

5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i, yj , xi);
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session key of sid has been
generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6= (i∗, j∗), or xi and yj are not output by the si∗-th

session of i∗ and the s∗j -th session of j∗, respectively, S aborts. Otherwise, S chooses b ←r {0, 1} and
sk′i ←r {0, 1}k. If b = 0, S returns sk′i, else it returns the real session ski of sid.

Claim 17 The probability that S will not abort in G3,0 with probability at least 1
mN2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r {1, . . . , N} and s∗j ←r

{1, . . . ,m} independently from the view of A. �

24

Game G3,1. S behaves almost the same as in G3,0, except in the following cases:

– Send0(Π, I, i, j): If i 6= i∗, S answers the query as in Game G2,0. Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and z←r DZ2n,β ;

2. Interpreting z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic .

3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1 . Return xi to A.
– Send1(Π,R, j, i, xi): If j 6= i∗, S answers the query as in GameG2,0. Otherwise, it proceeds as follows:

1′. Sample an invertible element d←r χγ , and z←r DZ2n,β ;

2′. Interpreting z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd .

3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1 . Then, sample gj ←r

χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

In the following, we use F3,l to denote the event thatA outputs a guess b′ that equals to b in Game G3,l.

Claim 18 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F3,1] = Pr[F3,0]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,0 to G1,4, we omit the
details. �

Game G3,2. S behaves almost the same as in G3,1, except it replaces the public key for party i∗ with a
randomly chosen pi∗ ←r Rq .

Claim 19 If RLWEq,α is hard, then Pr[F3,2] = Pr[F3,1]− negl(κ).

Proof. Since the only difference between G3,1 and G3,2 is that S replaces pi∗ = asi∗+2ei∗ with a randomly
chosen element in Rq, an adversary that can distinguish the difference between G3,1 and G3,2 could be
directly used to solve the RLWEq,α problem. �

Game G3,3. S behaves almost the same as in G3,2, except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G3,2. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and z←r DZ2n,β ;

2′. Interpreting z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd .

3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1 . Then, sample gj ←r

χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Claim 20 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F3,3] = Pr[F3,2]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,0 to G1,2, we omit the
details. �

25

Game G3,4. S first randomly chooses u ←r Rq, then computes v0 = (v0,1, . . . , v0,`−1) ∈ R`q and v1 =

(v1,1, . . . , v1,`−1) ∈ R`q where v0,`′ = ar̂`′ + 2f̂`′ , v1,`′ = ur̂`′ + 2g`′ for r̂`′ , f̂`1 , g`′ ← χβ . Then, it
sets pi∗ = u , and behaves almost the same as in G3,3, except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G3,2. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and set ŷj be the first unused element in v0 ;

2′. Define yj = ŷj − pjd ;
3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1. Then, the simula-

tor S sets kj = cv1,`∗ + xir̂`∗ = c(ur̂`∗ + 2g`∗) + xir̂`∗ = (pic+ xi)r̂`∗ + 2cg`∗ , where `∗ is the

index that ŷj appears in v0 (i.e., ŷj = ar̂`∗ + 2f̂`∗) and c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Claim 21 Game G3,4 is identical to Game G3,3. In particular, we have Pr[F3,4] = Pr[F3,3].

Proof. This claim simply from the fact that Game G3,4 is just a conceptual change of Game G3,3. �

Game G3,5. S chooses u0, u1 ←r Rq, and v0 = (v0,1, . . . , v0,`−1),v1 = (v1,1, . . . , v1,`−1)←r R
`
q . Then,

it sets a = u0 and pj∗ = u1, and behaves almost the same as in G3,4 except the following cases:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G3,2. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and set ŷj be the first unused element in v0;
2′. Define yj = ŷj − pjd;
3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1. Then, S randomly

chooses kj ←r Rq ;
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Claim 22 Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n, β =
ω(αγn

√
n log n). Then, if RLWEq,β is hard, Game G3,5 is computationally indistinguishable from G3,4. In

particular, Pr[F3,4] = Pr[F3,5] + negl(κ) = 1/2 + negl(κ).

Proof. Note that before generating kj , the only difference betweenG3,4 andG3,5 is that S replaces the Ring-
LWE tuple ((u0, u1), (v0, v1)) ∈ R2

q×R2×`
q with randomly chosen elements in R2

q×R2×`
q . In other words,

under the Ring-LWE assumption, we have that the adversary’s views before generating kj in both G3,4 and
G3,5 are computationally indistinguishable. Besides, since H2 is a random oracle, no matter whether A
obtains skj or not, the value of skj will not affect the view of the adversary, especially about the knowledge
of kj .

Now, let kj = cv1,`∗ + xir`∗ be the element computed by using c = H1(i
∗, j∗, xi) in Game G3,4

with non-negligible probability δ. Fixing v0 and v1 (note that all those values are chosen by S, and are
independent from the adversary’s behaviors), S reprograms the hash query H1(i

∗, j∗, xi) = c̃ 6= c by using

26

another randomly chosen c̃ ←r χγ (recall that xi is not generated by the simulator S, such a H1 query is
made by the adversary A). According to the forking lemma [6], A will use the same xi to complete the test
session with probability at least δ(δ/qh−2−n), where qh is maximum number ofH1 queries. In such a case,
we have k̃j = c̃v1,`∗ + xir̂`∗ and k̃j = kj + (c̃− c)v1,`∗ .

Denote k̃′j and k′j (i.e., the values determined before and after S reprograms the H1 query) as the target
values in theA’s view in Game G3,5, we have that k̃′j = k′j +(c̃− c)v1,`∗ should still hold in the adversary’s
view before seeing corresponding wj’s. Considering the fact that v1,`∗ is uniformly and randomly chosen
fromRq and (c̃−c) is invertible with overwhelming probability for appropriate choice of γ and q by Lemma
10 in [65], we have that the adversary essentially has no knowledge of k̃′j and k′j before seeing wj’s. In other
words, before seeing wj , the distribution of kj in the adversary’s view should be uniformly distributed over
Rq. Therefore, the choice of kj ←r Rq in Game G3,5 is correctly distributed in the adversary’s view, and
thus the adversary should not distinguish the difference between G3,5 and G3,4 without the knowledge of
wj’s. Note that the wj’s in both G3,5 and G3,4 are computed from kj following the protocol, the knowledge
of wj will not help the adversary A to distinguish G3,5 from G3,4. In other words, we have that Pr[F3,4] =
Pr[F3,5] + negl(κ).

Finally, since kj is randomly and uniformly chosen from Rq in Game G3,5, and is independent fromA’s
view, we have σj = Mod2(kj , wj) ∈ {0, 1}n has very high min-entropy by Lemma 4. In other words, the
probability that the adversary makes a query H2(i, j, xi, yj , wj , σj) is at most 2−0.97n + negl(κ), which is
negligible in κ. SinceH2 is a random oracle, we have Pr[F3,5] = 1/2+negl(κ), which completes the proof.

�

4.4 Type IV Adversary

In this subsection, we prove that our AKE is secure against any PPT Type IV adversary A.

Lemma 8. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the proposed AKE is secure against any PPT Type IV

adversary A in the random oracle model.

Proof. We prove this lemma via a sequence of games G4,l for 0 ≤ l ≤ 4.

GameG4,0. S first chooses i∗, j∗ ←r {1, . . . , N} and si∗ , sj∗ ←r {1, . . . ,m}, and hopes that the adversary
will choose sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test session, where xi∗ is output by the si∗-th session
of party i∗, and (yj∗, wj∗) is output by the s∗j -th session of party j∗ activated by a Send1(Π,R, j

∗, i∗, xi∗).
Then, S chooses a ←r Rq, honestly generates static public keys for all parties (by randomly choosing si
and ei from χα), and simulates the attack environment for A. Specifically, S maintains two tables L1, L2

for the random oracles H1, H2, respectively, and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1 list, choose an element out ←r χγ , and add
(in, out) to the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in the L2 list, choose an element out←r {0, 1}k,
and add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with intended party j, S proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;

27

3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and
z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
.

4. Return xi to A.
– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;
3′. Letting z ∈ Z2n be the coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and

z1 ∈ Z2n be the coefficient vector of sjd concatenated with the coefficient vector of ejd, repeat the

steps 1′ ∼ 3′ with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4′. Sample gj ←r χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:
5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i, yj , xi);
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session key of sid has been
generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6= (i∗, j∗), or xi and yj are not output by the si∗-th

session of i∗ and the s∗j -th session of j∗, respectively, S aborts. Otherwise, S chooses b ←r {0, 1} and
sk′i ←r {0, 1}k. If b = 0, S returns sk′i, else it returns the real session ski of sid.

Claim 23 The probability that S will not abort in G4,0 is at least 1
m2N2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r {1, . . . , N} and
si∗ , s

∗
j ←r {1, . . . ,m} independently from the view of A. �

Game G4,1. S behaves almost the same as in G4,0, except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G4,0. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and z←r DZ2n,β ;

2′. Interpreting z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd .

3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1 . Then, sample gj ←r

χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

In the following, we define F4,l as the event that A outputs a guess b′ that equals to b in Game G4,l.

Claim 24 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F4,1] = Pr[F4,0]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,0 to G1,2, we omit the
details. �

28

Game G4,2. S behaves almost the same as in G4,1, except for the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers the query as in Game
G4,1. Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and z←r DZ2n,β ;

2. Interpreting z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic .

3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1 . Return xi to A.
– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers the

query as in Game G4,1. Otherwise, if (yj , wj) is output by the s∗j -th session of party j∗, let skj be the

session key of session sid = (Π,R, j, i, xi, (yj , wj)), S sets ski = skj . Else, S samples gi ←r χβ and
computes ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i, yj , xi). Finally, it computes σi = Mod2(ki, wj)
and derive the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 25 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F4,2] = Pr[F4,1]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,3 to G1,5, we omit the
details. �

Game G4,3 S behaves almost the same as in G4,2 except in the following case:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers as in Game G4,2.
Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and x̂i ←r Rq ;

2. Define xi = x̂i − pic .
3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1. Return xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, or (yj , wj) is
output by the s∗j -th session of party j∗, S behaves the same as inG4,2. Otherwise, it proceeds as follows:

5. Randomly choose ki ←r Rq ;
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

DenoteQ4,l be event that in GameG4,l for l = 2, 3, 4,Amakes aH2 query with σi for the si∗-th session
of party i∗, when (yj , w

′
j) is output by the s∗j -th session of party j∗ but wj 6= w′j .

Claim 26 If RLWEq,β is hard, Pr[Q4,3] = Pr[Q4,2] − negl(κ), and Pr[F4,3|¬Q4,3] = Pr[F4,2|¬Q4,2] −
negl(κ).

Proof. The proof is similar to the proof of Claim 7, we omit the details. �

Game G4,4 S behaves almost the same as in G4,3 except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G4,3. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and ŷj ←r Rq ;

29

2′. Define yj = ŷj − pjd .
3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) inL1. Else, add ((j, i, yj , xi), d) intoL1. Then, the simulator
S uniformly chooses kj ←r Rq at random ;

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Claim 27 Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n, β =
ω(αγn

√
n log n). Then, if RLWEq,α is hard, Game G4,3 and G4,4 are computationally indistinguishable. In

particular, we have Pr[Q4,4] = Pr[Q4,3], and Pr[F4,4|¬Q4,4] = Pr[F4,3|¬Q4,3]− negl(κ).

Proof. The proof is similar to the proof of Claim 8, we omit the details. �

Claim 28 If 0.97n > 2κ, we have Pr[Q4,4] = negl(κ).

Proof. The proof is similar to the proof of Claim 9, we omit the details. �

Claim 29 Pr[F4,4|¬Q4,4] = 1/2 + negl(κ).

Proof. The proof is similar to the proof of Claim 10, we omit the details. �
Combining the claims 23∼29, we have that Lemma 8 follows. �

4.5 Type V Adversary

In this subsection, we prove that our AKE is secure against any PPT Type V adversary A.

Lemma 9. Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n,
β = ω(αγn

√
n log n). Then, if RLWEq,α is hard, the proposed AKE is secure against any PPT Type V

adversary A in the random oracle model.

Proof. We prove this lemma via a sequence of games G5,l for 0 ≤ l ≤ 4.

GameG5,0. S chooses i∗, j∗ ←r {1, . . . , N} and si∗ , sj∗ ←r {1, . . . ,m}, and hopes that the adversary will
choose sid∗ = (Π,R, j∗, i∗, xi∗ , (yj∗ , wj∗)) as the test session, where xi∗ is output by the si∗-th session of
party i∗, and (yj∗, wj∗) is output by the s∗j -th session of party j∗ activated by a Send1(Π,R, j

∗, i∗, xi∗).
Then, S chooses a ←r Rq, honestly generates static public keys for all parties (by randomly choosing si
and ei from χα), and simulates the attack environment for A. Specifically, S maintains two tables L1, L2

for the random oracles H1, H2, respectively, and answers the queries from A as follows:

– H1(in): If there doesn’t exist a tuple (in, out) in the L1 list, choose an element out ←r χγ , and add
(in, out) to the L1 list. Then, return out to A.

– H2(in) queries: If there doesn’t exist a tuple (in, out) in the L2 list, choose an element out←r {0, 1}k,
and add (in, out) to the L2 list. Then, return out to A.

– Send0(Π, I, i, j): A activates a new session of i with intended party j, S proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;

30

3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and
z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4. Return xi to A.
– Send1(Π,R, j, i, xi): S proceeds as follows:

1′. Sample rj , fj ←r χβ and compute yj = arj + 2fj ;
2′. Compute d = H1(j, i, yj , xi), r̂j = sjd+ rj and f̂j = ejd+ fj ;
3′. Letting z ∈ Z2n be the coefficient vector of r̂j concatenated with the coefficient vector of f̂j , and

z1 ∈ Z2n be the coefficient vector of sjd concatenated with the coefficient vector of ejd, repeat the

steps 1′ ∼ 3′ with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
;

4′. Sample gj ←r χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

– Send2(Π, I, i, j, xi, (yj , wj)): S computes ki and ski as follows:
5. Sample gi ←r χβ and compute ki = (pjd+ yj)r̂i + 2dgi where d = H1(j, i, yj , xi);
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

– SessionKeyReveal(sid): Let sid = (Π, ∗, i, ∗, ∗, ∗, ∗), S returns ski if the session key of sid has been
generated.

– Corrupt(i): Return the static secret key si of i to A.
– Test(sid): Let sid = (Π, I, i, j, xi, (yj , wj)), if (i, j) 6= (i∗, j∗), or xi and yj are not output by the si∗-th

session of i∗ and the s∗j -th session of j∗, respectively, S aborts. Otherwise, S chooses b ←r {0, 1} and
sk′i ←r {0, 1}k. If b = 0, S returns sk′i, else it returns the real session ski of sid.

Claim 30 The probability that S will not abort in G5,0 with probability at least 1
m2N2 .

Proof. This claim directly follows from the fact that S randomly chooses i∗, j∗ ←r {1, . . . , N} and
si∗ , s

∗
j ←r {1, . . . ,m} independently from the view of A. �

Game G5,1. S behaves almost the same as in G5,0, except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G5,0. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and z←r DZ2n,β ;

2′. Interpreting z as two ring elements r̂j , f̂j ∈ Rq, and define yj = ar̂j + 2f̂j − pjd .

3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;

4′. Abort if there is a tuple ((j, i, yj , xi), ∗) in L1. Else, add ((j, i, yj , xi), d) into L1 . Then, sample gj ←r

χβ and compute kj = (pic+ xi)r̂j + 2cgj where c = H1(i, j, xi);
5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

In the following, let F5,l denote the event that A outputs a guess b′ that equals to b in Game G5,l.

Claim 31 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F5,l] = Pr[F5,0]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,0 to G1,2, we omit the
details. �

31

Game G5,2. S behaves almost the same as in G5,1, except for the following cases:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers the query as in Game
G5,1. Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and z←r DZ2n,β ;

2. Interpreting z as two ring elements r̂i, f̂i ∈ Rq, and define xi = ar̂i + 2f̂i − pic .

3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;

4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1 . Return xi to A.

Claim 32 If β = ω(αγn
√
n log n) and RLWEq,β is hard, then Pr[F5,2] = Pr[F5,1]− negl(κ).

Proof. This claim can be proven via a sequence of games similar to that from G1,2 to G1,4, we omit the
details. �

Game G5,3 S behaves almost the same as in G5,2 except in the following case:

– Send0(Π, I, i, j): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, S answers as in Game G5,2.
Otherwise, it proceeds as follows:
1. Sample an invertible element c←r χγ , and x̂i ←r Rq ;

2. Define xi = x̂i − pic .
3. Repeat the steps 1 ∼ 3 with probability 1− 1/M ;
4. Abort if there is a tuple ((i, j, xi), ∗) in L1. Else, add ((i, j, xi), c) into L1. Return xi to A.

– Send2(Π, I, i, j, xi, (yj , wj)): If (i, j) 6= (i∗, j∗), or it is not the si∗-th session of i∗, or yj is output by
the s∗j -th session of party j∗, S behaves the same as in G5,2. Otherwise, it proceeds as follows:
5. Randomly choose ki ←r Rq ;
6. Compute σi = Mod2(ki, wj) and derive the session key ski = H2(i, j, xi, yj , wj , σi).

Claim 33 Pr[F5,3] = Pr[F5,2]− negl(κ).

Proof. To prove this claim, we have to distinguish two cases: 1) yj is output by party j = j∗ at session
sj 6= s∗j in response to a Send1(Π,R, j, i

∗, xi) query; 2) yj is not output by party j = j∗ at any session
in response to a Send1(Π,R, j, i

∗, xi) query. For the first case, the adversary just replays the messages to
activate two sessions at party j. This situation is very similar to a Type I adversary, and one can prove this
calim via a sequence of games as that from Game G1,5 to G1,7. While for the second case, this claim can
also be proven via a sequence of games as that from Game G2,3 to G2,5. We omit the details here. �

Game G5,4. S behaves almost the same as in G5,3, except in the following case:

– Send1(Π,R, j, i, xi): If (i, j) 6= (i∗, j∗), or it is not the s∗j -th session of j∗, S answers the query as in
Game G5,3. Otherwise, it proceeds as follows:
1′. Sample an invertible element d←r χγ , and ŷj ←r Rq ;

2′. Define yj = ŷj − pjd .
3′. Repeat the steps 1′ ∼ 3′ with probability 1− 1/M ;
4′. Abort if there is a tuple ((j, i, yj , xi), ∗) inL1. Else, add ((j, i, yj , xi), d) intoL1. Then, the simulator
S uniformly chooses kj ←r Rq at random ;

32

5′. Compute wj = Cha(kj) ∈ {0, 1}n and return (yj , wj) to A;
6′. Compute σj = Mod2(kj , wj) and derive the session key skj = H2(i, j, xi, yj , wj , σj).

Claim 34 Let n be a power of 2 satisfying 0.97n ≥ 2κ, prime q > 203 satisfying q = 1 mod 2n, β =
ω(αγn

√
n log n). Then, if RLWEq,α is hard, Game G5,3 and G5,4 are computationally indistinguishable. In

particular, we have that Pr[F5,4] = Pr[F5,3]− negl(κ).

Proof. The proof is similar to Claim 8, we omit the details. �

Claim 35 If 0.97n > 2κ, Pr[F5,4] = 1/2 + negl(κ).

Proof. Let (yj , wj) be output by the s∗j -th session of party j = j∗, we have skj = H2(i, j, xi, yj , wj , σj),
where σj = Mod2(kj , wj). Note that in G5,4, kj is randomly chosen from the uniform distribution over Rq,
we have σj ∈ {0, 1}n (conditioned onwj) has min-entropy at least 0.97n by Lemma 4. Thus, the probability
that A has made a H2 query with σj is less than 2−0.97n + negl(κ). This claim follows from the fact that
if the adversary doesn’t make a query with σj exactly, the distribution of skj is uniform over {0, 1}k due to
the random oracle property of H2, i.e., Pr[F5,4] = 1/2 + negl(κ). �

Combining the claims 30∼35, we have that Lemma 9 follows. �

5 One-Pass Protocol from Ring-LWE

As MQV [57] and HMQV [46], our AKE protocol has a one-pass variant, which only consists a single
message from one party to the other. Let a ∈ Rq be the global public parameter uniformly chosen from Rq
at random, and M be a constant. Let pi = asi + 2ei ∈ Rq be party i’s static public key, where (si, ei) is
the corresponding static secret key; both si and ei are taken from the distribution χα. Similarly, party j has
static public key pj = asj + 2ej and static secret key (sj , ej). The other parameters and notations used in
this section are the same as before.

Initiation Party i proceeds as follows:
1. Sample ri, fi ←r χβ and compute xi = ari + 2fi;
2. Compute c = H1(i, j, xi), r̂i = sic+ ri and f̂i = eic+ fi;
3. Letting z ∈ Z2n be the coefficient vector of r̂i concatenated with the coefficient vector of f̂i, and

z1 ∈ Z2n be the coefficient vector of sic concatenated with the coefficient vector of eic, repeat the

steps 1 ∼ 3 with probability 1−min

(
DZ2n,β(z)

MDZ2n,β,z1
(z) , 1

)
.

4. Sample gi ←r χβ and compute ki = pj r̂i + 2gi where c = H1(i, j, xi);
5. Compute wi = Cha(ki) ∈ {0, 1}n and send (yi, wi) to party j;
6. Compute σi = Mod2(ki, wi) and derive the session key ski = H2(i, j, xi, wi, σi).

Finish Party j receives the pair (xi, wi) from party i, and proceeds as follows:
1′. Sample gj ←r χα and compute kj = (pic+ xi)sj + 2cgj where c = H1(i, j, xi);
2′. Compute σj = Mod2(kj , wi) and derive the session key skj = H2(i, j, xi, wi, σj).

The correctness of the protocol simply follows from the fact that ki = pj r̂i + 2gi = (asj + 2ej)(sic+
ri) + 2gi ≈ a(sic + ri)sj + 2(eic + fi)sj + 2cgj = kj . The security of the protocol cannot be proven in
the BR model with party corruption, since the one-pass protocol inherently can never provide wPFS due to
the lack of message from the receiver j. Besides, the protocol cannot prevent the adversary from replaying
a previous message, even though this can be detected in practice by using other measures such as keeping

33

a state or using synchronized time. However, we can prove it in a weak model similar to [46] which avoids
the (above) inherent insufficiencies for one-pass protocol. Since the proof goes the lines with the previous
one, we omit the details.

Finally, we remark that the one-pass protocol can essentially be used as a KEM, and can be transformed
into a CCA encryption in the random oracle model by combining it with a CPA-secure symmetric-key en-
cryption together with a MAC algorithm in a standard way (where both keys are derived from the session
key in the one-pass protocol). The resulting encryption has two interesting properties: 1) it allows the re-
ceiver to verify the sender’s identity, but no one else can verify it (since only the receiver can compute the
session key, i.e., it provides some kind of sender authentication); 2) the sender can deny having created such
a ciphertext, because the receiver can also create such a ciphertext by itself (i.e., it is a deniable encryption).

6 Concrete Parameters and Timings

In this section, we present concrete choices of parameters, and the timings in a proof-of-concept implemen-
tation. Our selection of parameters for our AKE protocols can be found in Table 2. Those parameters were
chosen such that the correctness property is satisfied with high probability and with the choice of different
levels of security.

For correctness we must satisfy that the error term ‖g̃i − g̃j‖∞ < q/8. Note that g̃i = (ejd+ fj)(sic+
ri)+dgi, and g̃j = (eic+fi)(sjd+rj)+cgj , where ei, ej ←r χα, c, d←r χγ , and fi, fj , ri, rj , gi, gj ←r χβ .
Due to the symmetry, we only estimate the size of ‖g̃i‖∞. At this point, we use the following fact about the
product of two Gaussian distributed random values (as stated in [9]). Let x ∈ R and y ∈ R be two polyno-
mials whose coefficients are distributed according to a discrete Gaussian distribution with standard deviation
σ and τ , respectively. The individual coefficients of the product xy are then (approximately) normally dis-
tributed around zero with standard deviation στ

√
n where n is the degree of the polynomial.

In our case, it means that we have ‖(ejd + fj)(sic + ri)‖∞ ≤ 6β2
√
n and ‖dgi‖∞ ≤ 6γβ

√
n with

overwhelming probability (since erfc(6) is about 2−55). Note that the distributions of ejd+ fj and sic+ ri
are both according to χβ since we use the rejection sampling in the protocol. Now, to choose an appropriate
β we set d = 1/2 in Lemma 1 such that ‖ejd‖, ‖sic‖ ≤ 1/2αγnwith probability at most 2·0.943−n. Hence,
for n ≥ 1024, we get a potential decryption error with only a probability about 2−87. In order to make the
rejection sampling work, it is sufficient to set β ≥ τ ∗ 1/2αγn = 1/2ταγn for some constant τ (which
is much better than the worst-case bound β = ω(αγ

√
n log n) in Theorem 1). For instance, if τ = 12,

we have an expect number of rejection sampling about M = 2.72 and a statistical distance about 2−100

M by
Theorem 1. For such a choice of β, we can safely assume that ‖g̃i‖∞ ≤ 6β2

√
n+6γβ

√
n ≤ 7β2

√
n. Thus,

it is enough to set 16 ∗ 7β2
√
n < q for correctness of the protocol.

Though the Ring-LWE problem enjoys a worst-case connection to some hard problems (e.g., SIVP [54])
on ideal lattices, the connection as summarized in Proposition 1 seems less powerful to estimate the actual
security for concrete choices of parameters. In order to assess the concrete security of our parameters, we
use the approach of [21], which investigates the two most efficient ways to solve the underlying (R)LWE
problem, namely the embedding and decoding attacks. As opposed to [21], the decoding attack is more
efficient against our instances because in RLWE with m ≥ 2n one typically is close to the optimal attack
dimension for the corresponding attacks. The decoding attack first uses a lattice reduction algorithm, such as
BKZ [63] / BKZ 2.0 [18] and then applies a decoding algorithm, such as Babai’s nearest plane [2], Lindner
and Peikert’s nearest planes [50], or Liu and Nguyen’s pruned enumeration approach [51]. Finally, the
closest vector is returned which coincides with the error polynomial, and the secret polynomial is recovered.

34

Table 2. Choices of Parameters (The bound 6α with erfc(6) ≈ 2−55 is used to estimate the size of secret keys)

Protocol
Choice of

n Security α τ log β log q (bits)
Size (KB)

Parameters pk sk (expt.) init. msg resp. msg

Two-pass

I1 1024
80 bits 3.397 12 16.1 45 5.625 KB 1.5 KB 5.625 KB 5.75 KB

I2 75 bits 3.397 24 17.1 47 5.875 KB 1.5 KB 5.875 KB 6.0 KB
II1 2048

230 bits 3.397 12 17.1 47 11.75 KB 3.0 KB 11.75 KB 12.0 KB
II2 210 bits 3.397 36 18.7 50 12.50 KB 3.0 KB 12.50 KB 12.75 KB

One-pass

III1 1024
160 bits 3.397 12 16.1 30 3.75 KB 1.5 KB 3.75 KB 3.875 KB

III2 140 bits 3.397 36 17.7 32 4.0 KB 1.5 KB 4.0 KB 4.125 KB
IV1 2048

360 bits 3.397 12 17.1 32 8.0 KB 3.0 KB 8.0 KB 8.25 KB
IV2 350 bits 3.397 36 18.7 33 8.25 KB 3.0 KB 8.25 KB 8.5 KB

As recommended in [50,35], it is enough to set the Gaussian parameter α ≥ 3.2 so that the discrete
Gaussian DZn,α approximates the continuous Gaussian Dα extremely well9. In our experiment, we fix
α = 3.397 for a better performance of the Gaussian sampling algorithm in [30]. As for the choices of γ, we
set γ = α for simplicity (actually such a choice in our experiments works very well: no rejection happened
for 1000 times hash evaluations). In Table 1, we set all other parameters β, n, q for our two-pass protocol
to satisfy the correctness condition. We also give the parameter choices of our one-pass protocol (in this
case, we can save a factor of β in q due to the asymmetry). Note that n is required to be a power of 2 in
our protocol (i.e., it is very sparsely distributed10), we present several candidate choices of parameters for
n = 1024, 2048, and estimate the sizes of public keys, secret keys, and communication overheads in Table 2.

Table 3. Timings of proof-of-concept implementations in ms.

Protocol Parameters τ Initiation Response Finish

Two-pass

I1 12 22.05 ms 30.61 ms 4.35 ms
I2 24 14.26 ms 19.18 ms 4.41 ms
II1 12 49.77 ms 60.31 ms 9.44 ms
II2 36 25.40 ms 36.96 ms 9.59 ms

Protocol Parameters τ Initiation Finish

One-pass

III1 12 26.17 ms 3.64 ms
III2 36 14.57 ms 3.70 ms
IV1 12 53.78 ms 7.75 ms
IV2 36 32.28 ms 7.94 ms

We implement our AKE protocol by using the NTL library compiled with the option NTL GMP LIP=on
(i.e., building NTL using the GNU Multi-Precision package). The implementations are written in C++ with-
out any parallel computations or multi-threads programming techniques. The program is run on a Dell
Optiplex 780 computer with Ubuntu 12.04 TLS 64-bit system, equipped with a 2.83GHz Intel Core 2 Quad
CPU and 3.8GB RAM. We use a n-dimensional Fast Fourier Transform (FFT) for the multiplications of two
ring elements [20,53]. We use the CDT algorithm [60] as a tool for hashing to DZn,γ and sampling from
DZn,α, but use the DDLL algorithm [30] for sampling from DZn,β (because the CDT algorithm has to store
large precomputed values for a big β). In Table 3, we present the timings of each operation, and the fig-
ures represent the averaged timing (in millisecond, ms) for 1000 executions. Since our protocols also allow
some kind of precomputations such as sampling Gaussian distributions offline, the timings can be greatly
reduced if one consider it in practice. Finally, we note that our implementation has not undergone any real
optimization, and it can much improved in practice.

9 Only α is considered because β � α, and the (R-)LWE problem becomes harder as α grows bigger (for a fixed modulus q).
10 We remark such a choice of n is not necessary, but it gives a simple analysis and implementation. In practice, one might use the

techniques for Ring-LWE cryptography in [55] to give a tighter choice of parameters for desired security levels.

35

References

1. Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and circular-secure encryption
based on hard learning problems. In CRYPTO, pages 595–618. 2009.

2. László Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1–13, 1986.
3. Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning with errors. In CT-RSA,

pages 28–47, 2014.
4. B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness using few independent sources. SIAM Journal on

Computing, 36(4):1095–1118, 2006.
5. E. Barker and A. Roginsky. Recommendation for the entropy sources used for random bit generation. Draft NIST Special

Publication 800-90B, August 2012.
6. Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking lemma. In CCS, pages

390–399, 2006.
7. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In CCS, pages

62–73, 1993.
8. Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In CRYPTO, volume 773, pages 232–249. 1994.
9. Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-quantum key exchange for the TLS protocol from

the ring learning with errors problem. Cryptology ePrint Archive, Report 2014/599, 2014.
10. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without bootstrapping. Innovations in Theo-

retical Computer Science, ITCS, pages 309–325, 2012.
11. Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security for key dependent

messages. In CRYPTO, pages 505–524. 2011.
12. Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi, and Stephen C. Williams. Less is more: relaxed yet

composable security notions for key exchange. Int. J. Inf. Sec., 12(4):267–297, 2013.
13. Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Composability of bellare-rogaway key ex-

change protocols. In CCS, pages 51–62, 2011.
14. BSI. Advanced security mechanism for machine readable travel documents extended access control (eac). Technical Report

(BSI-TR-03110) Version 2.05 Release Candidate, Bundesamt fuer Sicherheit in der Informationstechnik (BSI), 2010.
15. Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building secure channels. In EURO-

CRYPT, pages 453–474. 2001.
16. Ran Canetti and Hugo Krawczyk. Security analysis of IKEs signature-based key-exchange protocol. In CRYPTO, pages

143–161. 2002.
17. Lily Chen. Practical impacts on qutumn computing. Quantum-Safe-Crypto Workshop at the European Telecommunications

Standards Institute, 2013. http://docbox.etsi.org/Workshop/2013/201309_CRYPTO/S05_DEPLOYMENT/
NIST_CHEN.pdf.

18. Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT, pages 1–20, 2011.
19. Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complex-

ity. In FOCS, pages 429–442, 1985.
20. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al. Introduction to algorithms, volume 2. MIT

press Cambridge, 2001.
21. Özgür Dagdelen, Rachid El Bansarkhani, Florian Göpfert, Tim Güneysu, Tobias Oder, Thomas Pöppelmann, Ana Helena

Snchez, and Peter Schwabe. High-speed signatures from standard lattices. In to appear at LATINCRYPT. 2014.
22. Özgür Dagdelen and Marc Fischlin. Security analysis of the extended access control protocol for machine readable travel

documents. In ISC, pages 54–68, 2010.
23. Özgür Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra Marson, Arno Mittelbach, and Cristina Onete. A

cryptographic analysis of OPACITY - (extended abstract). In ESORICS, pages 345–362, 2013.
24. Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Günther, Giorgia Azzurra Marson, Arno

Mittelbach, and Kenneth G. Paterson. Unpicking PLAID - a cryptographic analysis of an ISO-standards-track authentication
protocol. Cryptology ePrint Archive, Report 2014/728, 2014.

25. Tim Dierks. The transport layer security (TLS) protocol version 1.2. 2008.
26. W. Diffie and M. Hellman. New directions in cryptography. Information Theory, IEEE Transactions on, 22(6):644 – 654, nov

1976.
27. Jintai Ding, Xiang Xie, and Xiaodong Lin. A simple provably secure key exchange scheme based on the learning with errors

problem. Cryptology ePrint Archive, Report 2012/688, 2012.
28. Yevgeniy Dodis, Rosario Gennaro, Johan Håstad, Hugo Krawczyk, and Tal Rabin. Randomness extraction and key derivation

using the CBC, Cascade and HMAC modes. In CRYPTO, pages 494–510. 2004.

36

29. Léo Ducas and Alain Durmus. Ring-LWE in polynomial rings. In PKC, pages 34–51, 2012.
30. Lo Ducas, Alain Durmus, Tancrde Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal Gaussians. In CRYPTO,

pages 40–56. 2013.
31. Alan Freier. The SSL protocol version 3.0. http://wp. netscape. com/eng/ssl3/draft302. txt, 1996.
32. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure authenticated key exchange from

factoring, codes, and lattices. In PKC, pages 467–484. 2012.
33. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Practical and post-quantum authenticated key

exchange from one-way secure key encapsulation mechanism. In ASIACCS, pages 83–94, 2013.
34. Rosario Gennaro and Victor Shoup. A note on an encryption scheme of Kurosawa and Desmedt. Cryptology ePrint Archive,

Report 2004/194, 2004.
35. Craig Gentry, Shai Halevi, and NigelP. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO, pages 850–867.

2012.
36. Florian Giesen, Florian Kohlar, and Douglas Stebila. On the security of TLS renegotiation. In CCS, pages 387–398, 2013.
37. Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the learning with errors

assumption. In Innovations in Computer Science, pages 230–240, 2010.
38. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography: A signature scheme for

embedded systems. In CHES, pages 530–547, 2012.
39. Dan Harkins, Dave Carrel, et al. The internet key exchange (IKE). Technical report, RFC 2409, november, 1998.
40. Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, and William Whyte. Practical signatures from the partial

fourier recovery problem. In ACNS, pages 476–493, 2014.
41. ISO/IEC. 11770-3:2008 information technology – security techniques – key management – part 3: Mechanisms using asym-

metric techniques.
42. Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE in the standard model. In CRYPTO,

pages 273–293. 2012.
43. Jonathan Katz and Vinod Vaikuntanathan. Smooth projective hashing and password-based authenticated key exchange from

lattices. In ASIACRYPT, pages 636–652. 2009.
44. Charlie Kaufman, Paul Hoffman, Yoav Nir, and Pasi Eronen. Internet key exchange protocol version 2 (IKEv2). Technical

report, RFC 5996, September, 2010.
45. Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-Hellman and its use in the IKE protocols.

In CRYPTO, pages 400–425. 2003.
46. Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In CRYPTO, pages 546–566. 2005.
47. Hugo Krawczyk, KennethG. Paterson, and Hoeteck Wee. On the security of the TLS protocol: A systematic analysis. In

CRYPTO, pages 429–448. 2013.
48. Brian A. LaMacchia, Kristin E. Lauter, and Anton Mityagin. Stronger security of authenticated key exchange. In ProvSec,

pages 1–16, 2007.
49. Xinyu Lei and Xiaofeng Liao. NTRU-KE: A lattice-based public key exchange protocol. Cryptology ePrint Archive, Report

2013/718, 2013.
50. Richard Lindner and Chris Peikert. Better key sizes (and attacks) for LWE-based encryption. In CT-RSA, pages 319–339.

2011.
51. Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In CT-RSA, pages 293–309. 2013.
52. Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas Johansson, editors, EURO-

CRYPT, pages 738–755. 2012.
53. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest proposal for FFT hashing. In

FSE, pages 54–72. 2008.
54. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT,

pages 1–23. 2010.
55. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for Ring-LWE cryptography. In EUROCRYPT, pages 35–54.

2013.
56. Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart Preneel. A cross-protocol attack on the TLS

protocol. In CCS, pages 62–72, 2012.
57. A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols providing mutual implicit authentication. In SAC,

1995.
58. Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput.,

37:267–302, 2007.
59. Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In STOC, pages

333–342, 2009.

37

60. Chris Peikert. An efficient and parallel Gaussian sampler for lattices. In CRYPTO, pages 80–97. 2010.
61. Chris Peikert. Lattice cryptography for the Internet. Cryptology ePrint Archive, Report 2014/070, 2014.
62. Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC, pages 187–196, 2008.
63. Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms and solving subset sum problems.

Math. Program., 66:181–199, 1994.
64. P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on

Computing, 26(5):1484–1509, 1997.
65. Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices. In EUROCRYPT, pages

27–47. 2011.
66. L. Trevisan and S. Vadhan. Extracting randomness from samplable distributions. In FOCS, pages 32–, 2000.
67. Luca Trevisan. Extractors and pseudorandom generators. J. ACM, 48(4):860–879, July 2001.
68. Andrew Chi-Chih Yao and Yunlei Zhao. OAKE: A new family of implicitly authenticated Diffie-Hellman protocols. In CCS,

pages 1113–1128, 2013.

38

