
Universally Composable Efficient Priced Oblivious Transfer
from a Flexible Membership Encryption∗

Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics
Indian Institute of Technology Kharagpur

Kharagpur-721302, India
{pratishdatta,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. Membership encryption is a newly developed cryptographic primitive that combines
membership proof and encryption into an unified setting. This paper presents a new flexible mem-
bership encryption scheme which is provably secure and significantly more efficient than the previous
scheme. Further we apply our proposed membership encryption to construct a round optimal 1-out-
of-n priced oblivious transfer (POT) protocol which, unlike the existing 1-out-of-n POT schemes,
is proven secure under the universally composable (UC) security model and thus preserves secu-
rity when it is executed with multiple protocol instances that run concurrently in an adversarily
controlled way. Moreover, using our membership encryption, the POT protocol exhibits constant
communication complexity on the buyer’s side and O(n) communication cost on the vendor’s side,
which is so far the best known in the literature.

Keywords: membership encryption, priced oblivious transfer, universally composable security, bi-
linear maps, non-interactive proof of knowledge, P-Signature, non-interactive range proof.

1 Introduction

Membership proof and membership encryption are two important cryptographic primitives of which mem-
bership encryption has been developed very recently. Membership proof [9], [13], [2], [11] is useful and
nontrivial particularly when protecting the privacy is at prime concern. Membership encryption combines
encryption and membership proof into a unified setting, thereby improving the communication efficiency.
Further, while a membership proof cannot be converted to a membership encryption, a successful de-
cryption of the ciphertext in membership encryption naturally serves as a proof of membership. The idea
of membership encryption is that, if a message is encrypted using an attribute and a privacy preserving
token for a group attribute, decryption of the ciphertext is possible if and only if the used attribute is
a member of the used group attribute. The concept of membership encryption has been introduced by
Guo et al. [18] and, to the best of our knowledge, is so far the only membership encryption available in
the literature. Membership encryption is applicable in advanced cryptographic protocols where privacy
protection is important, e.g., priced oblivious transfer.

Priced oblivious transfer (POT) protocol aims at protecting the privacy of customers purchasing digital
goods. More specifically, POT allows a buyer to purchase digital goods from a vendor without letting the
vendor learn what it is buying. Usually after making a pre-payment to the vendor, the buyer engages in
an unlimited number of transactions such that, as long as the buyer’s balance contains sufficient funds it
will successfully retrieve the selected item and its balance will be debited by the item’s price. However,
the buyer should be unable to retrieve an item whose cost exceeds its remaining balance.

The first priced oblivious transfer scheme [1], as well as subsequent works [21] analyse security in
the half-simulation model, where simulation security is required against the buyer only and stand-alone
privacy is needed against the vendor. As explained in [14], these protocols fail even under sequential
composition and are shown to be vulnerable to practical attacks. Afterwards, a number of universally
composable (UC)-secure priced oblivious transfer protocols have been proposed [19], [10], [20]. The UC-
security paradigm [12] provides a framework for representing cryptographic protocols and analysing their
security. Protocols that are proven UC-secure maintain their security even when they are run concurrently
with an unbounded number of arbitrary protocol instances controlled by an adversary.

Our contributions: Our contribution in this paper is two fold:

∗ This is the full version of the paper that appeared in Proceedings of the 19th Australasian Conference on
Information Security and Privacy (ACISP 2014), LNCS 8544, pp. 98–114, Springer.

2 P. Datta, R. Dutta, S. Mukhopadhyay

– Firstly, we introduce a cost-effective flexible membership encryption scheme secure in the standard
model that outperforms the existing one [18].

– Secondly, we use our membership encryption scheme to construct a UC-secure 1-out-of-n priced
oblivious transfer protocol having the best computational and communication efficiency over the
previous similar schemes.

To be precise, our membership encryption scheme is built on a prime order bilinear group setup. Our
scheme is proven to be secure in the selective security model of [18] without using random oracles under
the Square Decisional Bilinear Diffie-Hellman and Simultaneous Square Decisional Bilinear
Diffie-Hellman assumptions. Unlike [18], our scheme is flexible in the sense that the universe of attributes
A can be changed at any time keeping the setup unaltered. This property is crucial for an application
such as priced oblivious transfer where item prices may change with time. Further in our membership
encryption, the group token and ciphertext respectively have one and two group elements, whereas, those
for [18] consists of three group elements each. Also, our scheme requires (n2+n)/2+2k+3 exponentiations
and 2 pairings compared to n2 + 3n + 4k + 12 exponentiations and 3 pairings for [18], where k is the
size of the group attribute. On a more positive note, our scheme, when applied with a fixed universe of
attributes, results in constant computational cost.

Next, we apply our proposed membership encryption scheme to construct an 1-out-of-n priced oblivi-
ous transfer protocol that is UC-secure under the assumption that there is an honestly generated common
reference string, employing Groth-Sahai non-interactive proof techniques [17], P-Signatures [3] and non-
interactive range proof [19]. Security is proven in a static corruption model without relying on random
oracles under the Hidden Strong Diffie-Hellman, Triple Diffie-Hellman, Decisional linear and
Square Decisional Bilinear Diffie-Hellman assumptions. Our protocol allows more than one item to
have the same price. After an initialization of complexity O(n), each transfer phase is optimal in terms of
rounds of communication. Moreover, the complexities of computation and communication are constant on
the buyer’s side whereas O(n) on the vendor’s side. When compared with [1], [21], which are the only two
existing 1-out-of-n priced oblivious transfer schemes, our construction is concrete, provides significantly
strong security guarantees and achieves the best known computational and communication efficiency.

Outline of the paper: The rest of the paper is organized as follows. We review the definitions and
security notions of membership encryption and priced oblivious transfer together with the security as-
sumptions we use in Section 2. Next, in Section 3 we present our membership encryption scheme along
with the security proof and efficiency comparison with existing scheme. After that, we demonstrate our
priced oblivious transfer protocol constructed using our proposed membership encryption providing the
complete security argument of the protocol in Section 4. Finally, Section 5 concludes the paper.

2 Preliminaries

A function ε is negligible if, for every integer c, there exists an integer K such that for all k > K,
|ε(k)| < 1/kc. A problem is said to be computationally hard (or intractable) if there exists no probabilistic
polynomial time (p.p.t.) algorithm that solves it with non-negligible probability (in the size of the input
or the security parameter).

2.1 Membership Encryption and Security Notions

Formally, a membership encryption A ∈ P(G) consists of the following four algorithms, where A is an
attribute, G is a group attribute and P(·) denotes some sort of privacy protection such that given P(G)
it is hard to determine G. Henceforth, we will refer P(G) a group token for G.
MSetup: Taking as input a security parameter 1λ and universe of attributes {A1, A2, . . . , An}, a trusted
authority generates and publishes the system parameter SP.
MGroupGen: The decryptor takes as input the system parameter SP and a group attribute G =
{Ai1 , Ai2 , ..., Aik} (1 ≤ k ≤ n), and determines the group token P(G) together with the secret key S. It
sends P(G) to the encryptor and keeps S secret to itself.
MEncrypt: On input the system parameter SP, an attribute A, a group token P(G) and a message M ,
the encryptor returns a ciphertext C. We define the ciphertext as C ←ME [A,P(G),M].
MDecrypt: Taking as input the attribute A, the group attribute G, the secret key S and the ciphertext
C, the decryptor retrieves the message M or a null string ⊥. We define the decryption as {M,⊥} ←

Universally Composable Efficient POT from a Flexible Membership Encryption 3

MD[C,G,S].
The membership encryption is said to be correct if

MD[ME [A,P(G),M],G,S] =

{
M, when A ∈ G
⊥, when A /∈ G

• Security Model: We adopt the security model of [18] to analyse the security of our membership
encryption scheme.

Definition 1 (Message Security). A membership encryption captures the message security if given a
ciphertext generated with attribute A and group token P(G) for a group attribute G, it is computationally
hard to decrypt the ciphertext when either the decryptor does not have the secret key S of P(G) or the
attribute A does not satisfy the membership, i.e., A /∈ G.

More formally, message security is captured by the following two games.

Game 1: Indistinguishability against Secret Key
Setup: The challenger runs the MSetup algorithm to generate the system parameter SP and sends it to

the adversary.
Phase 1: The adversary queries for group tokens and decryption which are answered by the challenger

as follows:
– For a token query on group attribute Gi that is adaptively chosen by the adversary, the challenger

responds by generating (P(Gi),Si) and sending P(Gi) to the adversary.
– For a decryption query on a ciphertext Ci for (A,P(Gi)) where P(Gi) is generated by the

challenger, the challenger returns ⊥ to the adversary if A /∈ Gi; otherwise, the challenger responds
by decrypting the ciphertext with Si, and sending the decryption result to the adversary.

Challenge: The adversary gives the challenger an attribute A∗, a group token P(G∗) and two messages
M0,M1, where P(G∗) was generated in the query phase. The challenger responds by randomly
choosing a coin c ∈ {0, 1}, generating a ciphertext C∗ ← ME [A∗,P(G∗),Mc], and sending the
challenge ciphertext to the adversary.

Phase 2: The adversary can continue the query as in Phase 1 except no decryption query on the
challenge ciphertext C∗ for (A∗, P(G∗)).

Win: The adversary outputs a guess c′ of c and wins the game if c′ = c.

We define the advantage of the adversary as AdvI1 = |Pr[c′ = c]− 1/2|.

Definition 2 (Security against Secret Key). A membership encryption generated with a security
parameter 1λ is (t, qk, qd, ε)-secure against secret key if ε = AdvI1 is a negligible function of λ for all
adversaries who make at most qk token queries, qd decryption queries and whose running time is at most
t where t is polynomial in the security parameter. We call the membership encryption selectively secure
[5] against secret key if the adversary outputs A∗ before the setup of system parameters.

Note 1. The security model presented above captures security against chosen ciphertext attack (CCA)
which is the strongest security notion. If we do not allow any decryption query in Phase 1 or Phase 2,
the resulting model is relatively weaker and is known as chosen plaintext attack (CPA) security model.

Game 2: Indistinguishability against Membership

Setup: The challenger runs the MSetup algorithm to generate the system parameter SP and sends it to
the adversary.

Challenge: The adversary gives the challenger an attribute A∗, a group token P(G∗), group attribute
G∗, secret key S and two messages M0,M1.The challenger first verifies that A∗ /∈ P(G∗) with G∗

and S. Then, the challenger responds by randomly choosing a coin c ∈ {0, 1}, generating a ciphertext
C∗ ←ME [A∗,P(G∗),Mc], and sending the challenge ciphertext to the adversary.

Win: The adversary outputs a guess c′ of c and wins the game if c′ = c.

The advantage of the adversary is defined as AdvI2 = |Pr[c′ = c]− 1/2|.

Definition 3 (Security against Membership). A membership encryption generated with a security
parameter 1λ is (t, ε)-secure against membership if ε = AdvI2 is a negligible function of λ for all adversaries
whose running time is at most t which is a polynomial in the security parameter. We call the membership
encryption selectively secure [5] against membership if the adversary outputs A∗ and G∗ before the setup
of system parameters.

4 P. Datta, R. Dutta, S. Mukhopadhyay

Definition 4 (Privacy). A membership encryption preserves the privacy of group attributes if given a
group token P(G) and two group attributes G0 = {Ai1 , Ai2 , . . . , Aik1 } and G1 = {Aj1 , Aj2 , . . . , Ajk2}, it
is computationally hard to decide whether G = G0 or G = G1.

The notion of privacy is formally defined by the following game.

Game 3: Privacy
Setup: The challenger runs the MSetup algorithm to generate the system parameter SP and sends it to

the adversary.
Challenge: The adversary gives the challenger two group attributes G0 = {Ai1 , Ai2 , . . . , Aik1 } and

G1 = {Aj1 , Aj2 , . . . , Ajk2}. The challenger responds by randomly choosing a coin c ∈ {0, 1}, generat-
ing P(Gc) for Gc and sending P(Gc) to the adversary.

Win: The adversary outputs a guess c′ of c and wins the game if c′ = c.

We define the advantage of adversary as AdvP = |Pr[c′ = c]− 1/2|.

Definition 5 (Privacy of Group Tokens). A membership encryption generated with a security pa-
rameter 1λ is said to (t, ε) preserves the privacy of group tokens if ε = AdvP is a negligible function of λ
for all adversaries whose running time is at most t, where t is a polynomial in the security parameter. We
say it unconditionally preserves the privacy of group tokens if ε = 0 for any time t and SP is generated
by the adversary.

2.2 Priced Oblivious Transfer and Security Notion

A 1-out-of-n priced oblivious transfer (POT) is an “on-line” protocol between a buyer B and a vendor
V. This enables the buyer and vendor to engage in multiple transactions. Both the buyer and the vendor
are allowed to store (short) state information between transactions. Below we describe the desired func-
tionality of a 1-out-of-n priced oblivious transfer protocol following [1].
Main Protocol:
Initialization phase: At time t = 0, the buyer initializes its balance with a pre-payment to the vendor.
Transfer phase: At time t > 0, (t = 1, 2, . . .)

– The vendor may choose a database M = (M1, . . . ,Mn) of n items for sale and some public information
Pub concerning the identity of these items. Pub contains a price list p = (p1, p2, . . . , pn).

– The buyer then may decide to buy the i-th item, where 1 ≤ i ≤ n. If the buyer’s remaining balance
is sufficiently large, i.e., the combined price of all items previously received plus the current price pi
does not exceed the initial deposit, the buyer receives Mi and obtains no information about the other
items. Besides, the vendor will not be able to know which item is bought.

Subscription: The main motivation of a subscription is to allow efficient one-way communication from
the vendor to the buyer. In the subscription setting we have the following operations:

– Subscribe to the i-th channel; by subscribing, the buyer indicates that it wishes to continue buying
the i-th item until overriding the subscription with a new request. We assume that throughout the
subscription, the buyer is charged the price pi effective when initiating the subscription (even though
p may change).

– Unsubscribe, i.e., terminate a previous “subscribe” request.
– Do nothing, i.e., maintain its default subscription (if any) or keep idle (otherwise).

•Universally Composable Security Model: We use the universally composable (UC) security frame-
work [12] with static corruptions to prove security of our POT construction. In this framework, parties are
modeled as probabilistic polynomial time interactive Turing machines (ITM). A protocol ψ is UC-secure
if there exists no environment Z that can distinguish whether it is interacting with the adversary A
and parties running the protocol ψ or with the ideal process for carrying out the desired task. In the
ideal process, the ideal adversary E and dummy parties interact with an ideal functionality Fψ which
acts as a trusted ITM that carries out the desired task. More formally, we say that the protocol ψ
emulates the ideal process when, for all environments Z, the ensembles IDEALFψ,E,Z and REALψ,A,Z
are computationally indistinguishable, where IDEALFψ,E,Z denotes the ensemble of random variables
{OUTZ,C(Fψ,E)(λ, x)}λ∈N,x∈{0,1}∗ and REALψ,A,Z denotes {OUTZ,C(ψ,A)(λ, x)}λ∈N,x∈{0,1}∗ , C being the
control function that determines which ITM can write to which tapes of which ITMs in the course of the
execution and OUTZ,C(·, ·)(λ, x) being the random variable that describes the output of the execution

Universally Composable Efficient POT from a Flexible Membership Encryption 5

with 1λ as Z’s security parameter together with x as Z’s input. The identity of an ITM is determined at
invocation time by the invoking instance and it is unchangeable. Each identity consists of two different
fields: a session id (sid) and a party id (pid). For a particular instance of the protocol, sid is fixed for all
the parties. This sid is determined by Z.

As in [19], our construction operates in the FCRS-hybrid plain model, where parties have access to an
honestly-generated common reference string crs and authenticated channels. Further, following [16], [19],
we assume the environment learns about the common reference string from the adversary, and thus the
ideal world adversary can setup a string with “trapdoor information”. This is at odds with the notion that
the crs is a “global” entity. However, as mentioned in [16], there are strong impossibility results for UC-
realising oblivious transfer in a setting where the crs is available to everyone (including the environment)
and can no longer be crafted by the ideal world adversary.

Below we present the description of the ideal functionality FCRS for generating common reference
string. FCRS is parameterized with a distribution D and a set of participants P. For the POT scheme, P
is restricted to contain only the buyer B and the vendor V. We also describe an ideal functionality FPOT

for 1-out-of-n POT.
FCRS: On input (sid, crs) from party P , it checks if P ∈ P. If not, it aborts. Otherwise, if there is no
value r recorded, it picks r ← D and records r. It sends (sid, crs, r) to P .
FPOT: Parameterized with integers (n, l), a maximum price pmax, a deposit upper bound A, and running
with a vendor V together with a buyer B, FPOT works as follows:
At time t = 0,

(a) On input a message (sid,V) from V, it sends sid to B and to the adversary.
(b) On input a message (sid,B, deposit), where deposit ∈ [0, . . . , A), it checks if a (sid,V) message was

received before. If not, it does nothing; otherwise, it stores deposit and sends (sid, deposit) to V.

At time t > 0,

(a) On input a message (sid,V,Pub) from V, where Pub contains the identities of the messages chosen
by V for sale and a price list {p1, . . . , pn} such that each pi ∈ [0, pmax], it does nothing if (sid,V) and
(sid,B, deposit) were not obtained previously. Otherwise, it stores {p1 . . . , pn} and sends (sid,Pub)
to B and to the adversary.

(b) On input a message (sid,B, σt) from B, it does nothing, if either (sid,V), (sid,B, deposit) and
(sid,V,Pub) were not received earlier or deposit − pσt < 0. Otherwise, it sends (sid, request) to
V and receives (sid, {M1, . . . ,Mn}) in response where Mi’s are the messages whose identities were
contained in Pub such that each Mi ∈ {0, 1}l. It updates deposit = deposit−pσt and hands (sid,Mσt)
to B as well as (sid, 1) to the adversary.

2.3 Bilinear Maps and Complexity Assumptions

Let G and GT be multiplicative groups of prime order p. A bilinear map e : G × G → GT must satisfy
the following properties:
(a) Bilinearity : A map e : G×G→ GT is bilinear if e(ax, by) = e(a, b)xy for all a, b ∈ G and x, y ∈ Zp;
(b) Non-degeneracy: For all generators g ∈ G, e(g, g) generates GT ;
(c) Efficiency: There exists an efficient algorithm that outputs the pairing group setup (p,G,GT , e, g)
and an efficient algorithm to compute e(a, b) for any a, b ∈ G.

Definition 6. [Hidden Strong DH (HSDH)]: On input (g, gα) ∈ G2, u ∈ G, and a set of tuples
(g1/(α+ci), gci , uci)li=1 for random exponents α ∈ Z∗p, c1, . . . , cl ∈ Zp, the l-HSDH assumption holds if it

is computationally hard to output a new tuple (g1/(α+c), gc, uc) for c ∈ Zp.

Definition 7. [Triple DH (TDH)]: On input (g, gx, gy) ∈ G3 and a set of tuples (ci, g
1/(x+ci))li=1 for

random exponents x, y ∈ Z∗p, c1, . . . , cl ∈ Zp, the l-TDH assumption holds if it is computationally hard
to output a tuple (gµx, gµy, gµxy) for µ ∈ Z∗p.

Definition 8. [Decisional Linear (DLIN)]: On input (g, ga, gb, gac, gbd, z) ∈ G6 for random exponents
a, b ∈ Z∗p, c, d ∈ Zp, the DLIN assumption holds if it computationally hard to decide whether z = gc+d.

The validity of the HSDH assumption in the generic group model is proven by Boyen and Waters
[8] and that of the DLIN assumption by Boneh et al. [6]. The TDH assumption has been introduced
by Belenkiy et al. [3]. We introduce two new assumptions, viz., the Square Decisional Bilinear DH
assumption, which is a derived version of the well-known Decisional Bilinear DH (DBDH) assumption
introduced by Boneh and Francklin [7], and an extended version of that, namely, the Simultaneous
Square Decisional Bilinear DH assumption.

6 P. Datta, R. Dutta, S. Mukhopadhyay

Definition 9. [Square Decisional Bilinear DH (SqDBDH)]: On input (g, ga, gb, z) ∈ G3 ×GT for
random exponents a, b ∈ Z∗p, the SqDBDH assumption holds if it computationally hard to decide whether

z = e(g, g)a
2b.

Definition 10. [Simultaneous Square Decisional Bilinear DH (SimSqDBDH)]: On input (g, ga,
gb, z1, z2) ∈ G3 × G2

T for random exponents a, b ∈ Z∗p, the SimSqDBDH assumption holds if it is

computationally hard to decide whether z1 = e(g, g)a
2b and z2 = e(g, g)ab

2

.

The SqDBDH problem and the SimSqDBDH problem in (G,GT , e) are no harder than the DBDH
problem in (G,GT , e). However, in both cases, the converse is currently an open problem. Nonetheless,
one can easily establish that the computational version of both of our new problems are exactly equivalent
to the Bilinear DH (BDH) problem. We believe the SqDBDH and the SimSqDBDH assumptions
hold in certain bilinear groups of prime order.

3 Our Membership Encryption

MSetup: On input a security parameter 1λ and universe of attributes A = {A1, . . . , An} ⊆ Zp, a trusted
authority runs the MSetup algorithm that works as follows:

– Choose a pairing group PG = (p,G,GT , e, g).

– Select distinct z1, . . . , zn
$←− Z∗p such that for all i 6= j, ziAi 6≡ zjAj mod p or equivalently gziAi 6=

gzjAj , and compute ui = gzi , ui,j = gzizj , i, j = 1, 2, . . . , n, i 6= j.
– Publish SP = (PG, {ui}ni=1, {ui,j}ni,j=1

i 6=j
).

MGroupGen: The decryptor takes as input a group attribute G = {Ai1 , . . . , Aik} ⊆ {A1, . . . , An} for

any k ≤ n, the system parameter SP, and computes the group token P(G) = (

k∏
l=1

u
Ail
il

)gr = w (say),

where r
$←− Zp is the secret key of the group token. The decryptor sends P(G) to the encryptor and keeps

r secret to itself.
MEncrypt: Taking as input an attribute Ai∗ ∈ A, a group token P(G) = w, a message M ∈ GT and
the system parameter SP, the encryptor prepares the ciphertext as follows:

– Choose S
$←− Zp.

– Compute the ciphertext C = (C1, C2) = (e(w/uAi∗i∗ , uSi∗)M, gS) and send C to the decryptor.

MDecrypt: On input the ciphertext C = (C1, C2), the secret key r, the attribute Ai∗ , the group attribute
G = {Ai1 , . . . , Aik} and the system parameter SP, the decryptor proceeds as follows:

– Compute Λ = (

k∏
l=1
il 6=i∗

u
Ail
i∗,il

)uri∗ .

– Retrieve the message as M = C1/e(Λ,C2).

• Correctness and Security Proof:
We have,

C1/e(Λ,C2) = Me(w/uAi∗i∗ , uSi∗)/e(Λ, g
S) = Me((

k∏
l=1
il 6=i∗

u
Ail
il

)gr, uSi∗)/e((

k∏
l=1
il 6=i∗

u
Ail
i∗,il

)uri∗ , g
S)

= Me(gγ , gzi∗S)/e(gδ, gS), where γ =

k∑
l=1
il 6=i∗

zilAil + r and δ = zi∗
k∑
l=1
il 6=i∗

zilAil + zi∗r

= Me(g, g)η/e(g, g)η, where η = zi∗(

k∑
l=1
il 6=i∗

zilAil + r)S

= M.

Theorem 1 (Indistinguishability against Secret Key). The above membership encryption scheme
is (t′, qk, ε

′)-selectively secure against secret key under the assumption that the SimSqDBDH problem is
(t, ε)-hard. Here, t′ = t−O(qknte), qk is number of group token query made by the adversary and ε′ = ε

qk
,

where te denotes the average time of an exponentiation in G.

Universally Composable Efficient POT from a Flexible Membership Encryption 7

Proof. Suppose there exists an adversary who can (t′, ε′) break the membership encryption against secret
key under the selective security model by a chosen-plaintext attack. We construct an algorithm B that
solves the SimSqDBDH problem in time t with advantage ε. B interacts with the adversary as follows:

Initialization: Let PG = (p,G,GT , e, g) be the pairing group and A = {A1, . . . , An} be the attribute
universe. The adversary outputs the attribute Ai∗ for challenge.
Setup: The algorithm B works as follows to simulate the system parameter.
Let (g, ga, gb, e(g, g)c1 , e(g, g)c2) be the given instance of the SimSqDBDH problem.

– B sets ui∗ = gb.
– For i 6= i∗, B randomly selects distinct zi ∈ Z∗p such that gziAi 6= gzjAj 6= gbAi∗ for all i 6= j 6= i∗ and

computes ui = gzi .
– For j = 1, 2, . . . , n,

For i = i∗, B sets ui∗,j = (gb)zj , j 6= i∗and
For i 6= i∗, B computes ui,j = gzizj , i 6= j.

B sends the system parameter SP = (PG, {ui}ni=1, {ui,j}ni,j=1
i 6=j

) to the adversary.

Phase 1: The algorithm B randomly chooses k∗ from [1, qk] and simulates the group tokens as follows:

– For a group token query on Gk, if k 6= k∗, B runs the MGroupGen algorithm to generate P(Gk).
– Otherwise, if k = k∗, B sets P(Gk∗) = ga.

Challenge: The adversary returns (P(G∗),M0,M1) for challenge. If G∗ 6= Gk∗ , B aborts; otherwise,
P(G∗) = ga. The algorithm B randomly chooses a coin c ∈ {0, 1} and simulates the challenge ciphertext
as follows:

C∗ = (C∗1 , C
∗
2) = (Mce(g, g)c1e(g, g)−c2Ai∗ , ga).

If c1 = a2b and c2 = ab2 then C∗1 = Mce(g, g)(a−bAi∗)ba and hence C∗ is a valid ciphertext. B sends the
ciphertext C∗ to the adversary.
Win: The adversary outputs c′ ∈ {0, 1}. Then B outputs 1 if the adversary outputs c′ = c, i.e., the
adversary wins, and outputs 0 otherwise.

This completes the description of the simulation. If c1 = a2b and c2 = ab2, the challenge ciphertext is
valid and the adversary will output c′ = c with probability (1

2 + ε′); otherwise, if c1 and c2 are random
then the challenge ciphertext is also random and hence the adversary outputs c′ = c with probability 1

2 .
The simulation is successful when G∗ = Gk∗ which holds with probability 1

qk
. Hence,

ε = |Pr[B(g, ga, gb, e(g, g)a
2b, e(g, g)ab

2

) = 1]− Pr[B(g, ga, gb, e(g, g)c1 , e(g, g)c2) = 1]|
= |Pr[Adversary wins when C∗ is valid | the simulation is perfect]

− Pr[Adversary wins when C∗ is random | the simulation is perfect]|

=
|(1

2 + ε′)− 1
2 |

1
qk

=⇒ ε′ =
ε

qk
.

In order to see the relationship between t and t′, note that the simulation time is mainly dominated by
the group token simulation and each group token requires O(n) exponentiations in G. ut

Theorem 2 (Indistinguishability against Membership). The membership encryption scheme in-
troduced above is (t′, ε′)-selectively secure against membership under the assumption that the SqDBDH
problem is (t, ε)-hard. Here, t′ = t − O(n2te) and ε′ = ε, where te denotes the average time of an expo-
nentiation in G.

Proof. Suppose there exist an adversary who can (t′, ε′) break the membership encryption against mem-
bership under selective security model. We construct an algorithm B that solves the SqDBDH problem
in time t with advantage ε. B interacts with the adversary as follows:
Initialization: Let PG = (p,G,GT , e, g) be the pairing group and A = {A1, . . . , An} be the attribute
universe. The adversary outputs (Ai∗ ,G

∗) for challenge where Ai∗ /∈ G∗.
Setup: Let (ga, gb, e(g, g)c1) be the given instance of the SqDBDH problem. B generates the system
parameter as follows:

– For i = i∗, B sets ui∗ = ga.
– For i 6= i∗, B randomly chooses distinct zi ← Z∗p such that gziAi 6= gzjAj 6= gaAi∗ for all i 6= j 6= i∗,

and computes ui = gzi .

8 P. Datta, R. Dutta, S. Mukhopadhyay

– Also B sets ui∗,j = (ga)zj , j 6= i∗.
– For i 6= i∗, B computes ui,j = gzizj , i 6= j.

B sends the system parameter SP = (PG, {ui}ni=1, {ui,j}ni,j=1
i 6=j

) to the adversary.

Challenge: The adversary returns (P(G∗),S∗,M0,M1) for challenge. Let the secret randomness or the
secret key in computation of P(G∗) as sent by the adversary be S∗ = r and G∗ = {Ai1 , . . . , Aik}. B
randomly chooses a coin c ∈ {0, 1} and simulates the challenge ciphertext as follows:

C∗ = (C∗1 , C
∗
2) = (Mce((

k∏
l=1

u
Ail
i∗,il

)uri∗ , g
b)e(g, g)−c1Ai∗ , gb).

If c1 = a2b then C∗1 = Mce(g, g)η, where η = a(

k∑
l=1

zilAil + r − aAi∗)b, which implies that C∗ is a valid

ciphertext on Mc for (Ai∗ ,P(G∗)). B sends the ciphertxet C∗ to the adversary.
Win: The adversary outputs c′ ∈ {0, 1}, and the algorithm B outputs 1 if c′ = c, i.e., the adversary wins,
and outputs 0 otherwise.

This completes the description of our simulation. If c1 = a2b, the challenge ciphertext is valid and the
adversary will output c′ = c with probability (1

2 + ε′); otherwise, the challenge ciphertext is universally
random and the adversary outputs c′ = c with probability 1

2 . Hence,

ε = |Pr[B(g, ga, gb, e(g, g)a
2b) = 1]− Pr[B(g, ga, gb, e(g, g)c1) = 1]|

= |Pr[adversary wins when the challenge ciphertext is valid]

− |Pr[adversary wins when the challenge ciphertext is random]|

= |(1

2
+ ε′)− 1

2
| =⇒ ε′ = ε.

In order to see the relationship between t and t′, note that the simulation time is mainly dominated by
the ui,j simulation each of which takes 1 exponentiation and there are O(n2) such ui,j ’s. ut

Theorem 3 (Privacy). P(G) unconditionally preserves the privacy of all attributes in G.

Proof. Let P(G0) be the group token generated from G0 = {Ai1 , . . . , Aik1 } and with secret randomness

(or the secret key) r. Then P(G0) = gγ , where γ =

k1∑
l=1

zilAil + r. Let G1 = {Aj1 , . . . , Ajk2 }. Since there

exists r′ ∈ Zp such that,

k1∑
l=1

zilAil + r =

k2∑
l=1

zjlAjl + r′(mod p), P(G0) can also be seen as a group

token generated from G1 with secret randomness r′. Thus, given P(Gc), c ∈ {0, 1} no adversary can
distinguish whether c = 0 or c = 1 with positive advantage for any G0 and G1. ut

Remark 1. As in [18], the membership encryption described above is secure against chosen-plaintext
attack (CPA). Let ME [σ, r] be the ciphertext on σ ∈ GT encrypted with the randomness r ∈ Zp. Using
the Fujisaki-Okamoto approach [15] in the random oracle model, our scheme can also be extended to
the security against chosen-ciphertext attack (CCA). Let I : GT → {0, 1}∗ be an efficiently computable
injective map and H1 : {0, 1}∗ → Zp, H2 : {0, 1}∗ → {0, 1}lm be cryptographic hash functions, where
{0, 1}lm denotes the new message space. IfME [σ, r] is secure against CPA then the membership encryption
construction ME [σ,H1(A,P(G), I(σ),M)], H2(I(σ))⊕M , for (A,P(G)), is secure against CCA.

• Efficiency: Table 1 presents the computation and communication complexities of our membership
encryption in comparison with that of [18]. Our construction has significantly less cost than [18] both in
terms of computation and communication. In Particular, the number of exponentiations is much smaller
in our scheme.

Note 2. Our membership encryption scheme has the advantage that, unlike [18] our scheme does not
involve the attributes explicitly in the setup parameter. As a result, the same setup can be used for
performing the operation using different universe of attributes A with the only restriction that |A| = n
and Ai’s are such that for all i 6= j, gziAi 6= gzjAj holds. Precisely, assume that initially the setup
parameter is constructed for some attribute universe A = {A1, . . . , An} and later we want to use the

Universally Composable Efficient POT from a Flexible Membership Encryption 9

Table 1: Comparison Summary
Membership
encryption

Number of
exponentiation

Number of
pairing

Public
key size

Group
token size

Ciphertext
size

[18] (n2 + 3n+ 4k + 10) in G, 2 in GT 3 (n2 + 3n+ 3) in G, 1 in GT 3 in G 2 in G, 1 in GT

Ours ((n2 + n)/2 + 2k + 3) in G 2 ((n2 + n)/2) in G 1 in G 1 in G, 1 in GT

Here, k denotes the size of the group attribute.

same setup for a different attribute universe A′ = {A′1, . . . , A′n}. Thus initially gziAi 6= gzjAj for all i 6= j

and now we require gziA
′
i 6= gzjA

′
j for all i 6= j. Note that if the condition is violated for some i 6= j, we

can slightly modify A′i or A′j , e.g., set A′i = A′i + 1 etc., to overcome such violation. In this sense our
scheme is more flexible than that of [18] which can be applied only with an universe of attributes fixed
before generation of the system parameters. This property makes our scheme particularly suitable for
application in POT where item prices may change with time.

Note 3. Our scheme, if applied with a constant universe of attributes, can be made much more simple and
efficient. Note that, if A is fixed then we can set ui = gziAi and ui,j = gziAizjAj , i 6= j. In that case the

group token P(G) will be (

k∏
l=1

uil)g
r (= w), the ciphertext will be C = (C1, C2) = (e(w/ui∗ , ui∗)

SM, gS),

and to decrypt C we need to compute M = C1/e((

k∏
l=1
il 6=i∗

ui∗,il)u
r
i∗ , C2). Thus if A is fixed for the entire

operation, then the MGroupGen, MEncrypt and MDecrypt algorithms will each require only a single
exponentiation resulting in a scheme with constant computation complexity. The security argument will
be similar for the modified scheme. On the contrary, the scheme of [18] is applicable only with a fixed
universe of attributes and has quite large computation complexity.

4 Our Priced Oblivious Transfer

In this section, we show how to construct an efficient 1-out-of-n priced oblivious transfer protocol (POT)
from our membership encryption. Our 1-out-of-n POT scheme is inspired from the k-out-of-n POT scheme
of [19]. To construct the POT we employ the Groth-Sahai proof system [17] for the DLIN instance
(Appendix A.1), the P-Signature scheme [3] (Appendix A.2) and the range prove [19] (Appendix A.3)
with our membership encryption. In our scheme, each transaction (a single ‘buy’ operation) requires two
passes of communication: (1) a message from the buyer; (2) the vendor’s reply. This is optimal since even
without privacy the buyer still needs to specify the item he wants to retrieve and the vendor needs to
send this item. Also our scheme allows more than one items to have the same price.
Protocol requirements: Our scheme is parameterized with integers (n, l) (for the number of messages and
their length), pmax (the upper bound for the prices) and A = da (the upper bound for the deposit). This
scheme is built on a pairing group setup (p,G,GT , e, g) such that pmax < A (mod p) holds. As in [1], [19],
we develop a prepaid scheme, where in the initialization phase the buyer B pays an initial deposit ac0 to
the vendor V and in subsequent transfer phases this deposit is subtracted by the price pσt of the message
Mσt that is being bought. The message space is {0, 1}l, but we abuse notation and write Mi to denote
the corresponding group element in GT assuming the existance of some efficient and invertible mapping.
Also the prices pi and the deposit ac0 are considered as elements of Zp.

Informally speaking, in our POT scheme, the buyer B communicates with the vendor V in an ini-
tialization phase to make a prepayment, followed by several transfer phases. In each transfer the vendor
chooses a set of messages {M1, . . . ,Mn} with prices {p1, . . . , pn} for sale and publishes an information
Pub regarding those messages. Pub contains specification of {p1, . . . , pn}. Then the buyer chooses to buy
a particular message Mσt and sends a request Q to V. The vendor V then returns a response R to B from
which B retrieves Mσt .

The POT scheme must ensure that V learns neither the price of the message being queried nor the
new value of the account, while B pays the correct price for the message updating the balance honestly
and that he has enough funds to buy it. To achieve this, in the initialization phase B sends the deposit ac0
from which V prepares a commitment on it. In the t-th transfer, B sends a commitment to the new value of

10 P. Datta, R. Dutta, S. Mukhopadhyay

the account act and proves that (1) this value is correct, i.e., that act = act−1−pσt and that (2) it is non-
negative. In order to allow for (1), we need to ensure that B uses the correct price. To accomplish this, V
uses membership encryption to encrypt each message Mi with its proper price pi and the group token sent
by B. To ensure that this group token is honestly computed, B proves non-interactively the possession
of a P-Signature [3] provided by the trusted authority as part of the common reference string on the
component of the common reference string that has been used in forming the group token. Then V sends
all these computed ciphertext to B. Now the property called ‘indistinguishability against membership’
of the membership encryption scheme ensures that B can decrypt the ciphertext Cσt to obtain Mσt if B
has paid the correct price pσt . To achieve (2), V computes in the initialization phase parameters of the
range proof [19] namely paramsRange and hands them to B. In each transfer phase, B proves that the
new value of the account act ∈ [0, . . . , A). We formally describe our POT scheme below.
Initialization phase: At time t = 0, on input (sid,V, n) for the vendor V and (sid,B, n, ac0) for the
buyer B,

1. V queries FCRS with (sid,V,B, n). FCRS generates crs by running POTGenCRS(1λ, pmax, A, n), as
discussed below, and sends (sid, crs) to V.
POTGenCRS(1λ, pmax, A, n): Given security parameter 1λ and the total number of messages n,
– FCRS generates a Groth-Sahai reference string crsPoK under DLIN instance for the pairing group

setup (p,G,GT , e, g) such that pmax < A (mod p) holds, i.e., crsPoK = (t1, t2, t3), where t1 =

(gα, 1, g), t2 = (1, gβ , g), t3 = (grα, gsβ , gr+s) = (y1, y2, y3), say, where α, β
$←− Z∗p and r, s

$←− Zp.
– FCRS picks distinct random z1, . . . , zn ∈ Z∗p and computes ui = gzi , ui,j = gzizj , i, j = 1, 2, . . . , n,
i 6= j. FCRS also computes vi = yzi3 , i = 1, 2, . . . , n.

– FCRS chooses random u← G and computes qi = uzi , i = 1, . . . , n.
– FCRS runs PKeyGen(crsSig) of the P-Signature scheme, discussed in Appendix A.2, where

crsSig = (crsPoK , u) to get a signing-verification key pair (sk = (γ, δ), pk = (gγ , gδ)), γ, δ
$←− Zp,

and for all i ∈ {1, . . . , n}, it computes si = PSign(crsSig, sk, zi).
– FCRS sets crs = (crsPoK , {ui}ni=1, {ui,j}ni,j=1

i 6=j
, {vi}ni=1, u, pk, {qi}ni=1, {si}ni=1). We mention that

vi’s help B to decrypt the ciphertext sent by V and (ui, qi, si) is used to construct a non-interactive
proof of possession of the P-Signature si on zi by B without knowing zi, as explained in Appendix
A.2, in the transfer phase.

2. B queries FCRS with (sid,V,B, n). FCRS sends (sid, crs) to B. This crs is the same as that generated
by FCRS following the procedure POTGenCRS.

3. V executes the following procedure POTInitVendor(crs,A) to obtain paramsRange and sends (sid,
paramsRange) to B.
POTInitVendor(crs,A): Taking input crs and A, V works as follows:
– V parses the crs to obtain crsSig = (crsPoK , u).
– V runs RPInitVerifier(crsSig, A), discussed in Appendix A.3, to obtain paramsRange.

4. Upon receiving (sid, paramsRange) from V, the buyer B computes (P,D
(Priv)
0) by invoking POTInit-

Buyer on input (crs, paramsRange, ac0) as follows.
POTInitBuyer(crs, paramsRange, ac0): On input paramsRange and a deposit ac0 ∈ [0, . . . , A);
– B parses crs to obtain crsSig = (crsPoK , u).
– B runs RPInitProver(crsSig, paramsRange), discussed in Appendix A.3 , to verify paramsRange.

– If the above check fails, B outputs reject. Otherwise, B sets P = ac0 and D
(Priv)
0 = (ac0, openac0

= (0, 0, 0)).

B aborts if the output is reject. Otherwise, B sends (sid, P) to V and keeps D
(Priv)
0 secret to itself.

Note that, B also needs to pay an amount of ac0 to V through an arbitrary payment channel.
5. After getting the initial deposit money, V runs the procedure POTGetDeposit(crs, P,A) described

below to check that ac0 corresponds to amount of money received.
POTGetDeposit(crs, P,A): Receiving P from B, V works as follows:
– V checks that ac0 ∈ [0, . . . , A)
– V sets D0 = Commit(gac0 , openac0 = (0, 0, 0)) = (1, 1, gac0) as explained in Appendix A.1.

6. V stores state information V0 = (paramsRange, D0) and B stores state informationB0 = (paramsRange,

D
(Priv)
0).

Transfer phase: At time t > 0, V with state information Vt−1 and input (sid,V, {M1,M2, ,Mn},
{p1, p2, . . . , pn}) and B with state information Bt−1 and input (sid,B, {p1, p2, . . . , pn}, σt) interact as
follows. Here prices pi of messages Mi are such that, for all i 6= j, gzipi 6= gzjpj . Note that this can always
be done while selecting pi’s. For instance, if it is found that gzipi = gzjpj for some i 6= j, then one can
choose pi = pi + 1 etc.

Universally Composable Efficient POT from a Flexible Membership Encryption 11

1. B invokes POTRequest(crs, paramsRange, {p1, . . . , pn}, D(Priv)
t−1 , σt) to set a request Q and to gen-

erate private state (Q(Priv), D
(Priv)
t) as detailed below. B sends (sid, Q) to V and stores (sid,

Q(Priv), D
(Priv)
t) as private information.

POTRequest(crs, paramsRange, {p1, . . . , pn}, D(Priv)
t−1 , σt): Taking input set of prices {p1, . . . , pn} and

a selection value σt ∈ {1, . . . , n}, B proceeds as follows:
– B parses crs to obtain crsPoK , u, {ui}ni=1, pk, {qi}ni=1, {si}ni=1.

– B parses D
(Priv)
t−1 as (act−1, openact−1

= (lt−1,1, lt−1,2, lt−1,3)), where (lt−1,1, lt−1,2, lt−1,3) ∈ Z3
p,

and computes Dt−1 = Commit(gact−1 , openact−1
) = (gα(lt−1,1+rlt−1,3), gβ(lt−1,2+slt−1,3),

glt−1,1+lt−1,2+(r+s)lt−1,3gact−1).
– B also picks fresh openpσt = (a1, a2, a3), openzσt = (b1, b2, b3), openzσtpσt = (r1, r2, r3), openact =

(lt,1, lt,2, lt,3) randomly from Z3
p, where act = act−1−pσt and computesDt = Commit(gact , openact),

h1 = Commit(gpσt , openpσt), h2 = Commit(uσt , openzσt), h3 = Commit(gzσtpσt , openzσtpσt) as
above for Dt−1.

– B runs PoKProve on input crsPoK to compute a witness indistinguishable proof pokt following
approaches discussed in Appendix A.1:

NIPK{(gact , gact−1 , gpσt , uσt , g
zσtpσt , qσt , sσt) : 0 ≤ act < A ∧ e(g, gact−1)e(g−1, gact)e(g−1, gpσt) = 1

∧ e(g, gzσtpσt)e(uσt , g
pσt)−1 = 1 ∧ PVerifySig(pk, sσt , zσt) = accept ∧ act in Dt

∧ act−1 in Dt−1 ∧ pσt in h1 ∧ uσt in h2 ∧ gzσtpσt in h3} (1)

Note that pokt includes range proof NIPK{(gact) : 0 ≤ act < A} = NIPK{(gact , {gαj , uαj , s′αj}
a−1
j=0) :

{PVerifySig(pk′, s′αj , αj) = accept}a−1j=0 ∧ e(g, gact)
a−1∏
j=0

e(g−d
j

, gαj) = 1 ∧ gact in Dt}, for act

committed in Dt, where pk′ and {gαj , uαj , s′αj}
a−1
j=0 are contained in paramsRange sent by V dur-

ing the initialization phase and act =

a−1∑
j=0

αjd
j . Also pokt contains a non-interactive proof of

possession of the P-Signature sσt on zσt using uσt and qσt following equation 3 of Appendix A.2.

– B sets Q = (h1, h2, h3, pokt, Dt), Q
(Priv) = (σt, openzσtpσt) and D

(Priv)
t = (act, openact).

2. Upon receiving (sid, Q) from B, V executes POTRespond on input (crs, {M1, . . . ,Mn}, {p1, . . . , pn},
Dt−1, Q) to obtain a response R and state Dt as explained below. V sends (sid, R) to B and stores
(sid,Dt) as private information.
POTRespond(crs, {M1, . . . ,Mn}, {p1, . . . , pn}, parmsRange, Dt−1, Q): Taking input paramsRange, a
set of messages {M1, . . . ,Mn} with prices {p1, . . . , pn}, private state Dt−1 and a request Q, V works
as follows:
– V parses crs to obtain (crsPK , u, {ui}ni=1, pk), Q to obtain (h1, h2, h3, pokt, Dt).
– V verifies pokt by running PoKVarify on input crsPoK and it aborts if the output is reject. For

this verification, V uses the commitments (h1, h2, h3, Dt−1, Dt). For a clear insight regarding such
verifications the reader is refer to Appendix A.1.

– V parses h3 = (w1, w2, w3) = (gα(r1+rr3), gβ(r2+sr3), gzσtpσt gr1+r2+(r+s)r3) where openzσtpσt =

(r1, r2, r3) ∈ Z3
p is not known to V. Note that w3 can be written as w3 = gzσtpσt gb, where b = r1 +

r2+(r+s)r3 ∈ Zp is random since openzσtpσt = (r1, r2, r3) ∈ Z3
p is random. Thus w3 can be viewed

as a group token P(G) for group attribute G = {pσt} according to our membership encryption
introduced in Section 3. However, in this case we are only able to guarantee computational
privacy of the group token since the group token in this case is part of a commitment of the
Groth-Sahai proof system which has computational witness indistinguishability, whereas, in the
original membership encryption scheme, the privacy of group tokens is unconditional.

– For i = 1, . . . , n, V selects random Si ← Zp and computes Ci = (C
(1)
i , C

(2)
i) = (e(w3/u

pi
i , u

Si
i)Mi,

gSi). Note that, Ci is essentially the membership encryption of Mi using pi and the group token
w3 for {pσt}.

– V sets R = (C1, . . . , Cn).
3. B, on receiving (sid, R) from V, runs the following procedure POTComplete(crs,R,Q(Priv)) to obtain
Mσt .
POTComplete(crs,R,Q(Priv)): Taking input R and private state Q(Priv),
– B extracts (crsPoK , {ui}ni=1, {vi}ni=1, {ui,j}ni,j=1

i 6=j
) from crs, parses R as (C1, . . . , Cn), Q(Priv) as

(σt, openzσtpσt) where openzσtpσt = (r1, r2, r3) is known to B.

12 P. Datta, R. Dutta, S. Mukhopadhyay

– B parses Cσt as (C
(1)
σt , C

(2)
σt) and it retrieves the message Mσt = C

(1)
σt /e(u

r1+r2
σt vr3σt , C

(2)
σt).

4. V stores state information Vt = (paramsRange, Dt) and B stores state information Bt = (paramsrange,

D
(Priv)
t) and outputs (sid,Mσt).

Theorem 4. The priced oblivious transfer protocol described above securely realizes FPOT under
{max{n, d}}-HSDH, {max{n, d}}-TDH, DLIN and SqDBDH assumptions, where n = no. of mes-
sages and A = da is the upper bound of the buyer’s account.

We prove Theorem 4 in Appendix B.

Remark 2. Note that, in the above protocol B can store Dt instead of D
(Prive)
t in each transfer phase.

However, D
(Prive)
t will be needed when we will fit our scheme in a subscription setting (Appendix C). In

a subscription setting B needs to store his remaining balance after each transaction. In case B wishes to

terminate his subscription before his legitimate period expires, he will have to use D
(Prive)
t corresponding

to the last transaction to open the respective Dt to a trusted third party or the court of law in the process
of claiming his remaining balance from V.

• A note on efficiency: The common reference string of our POT protocol consists of n2+6n+12 group
elements. Regarding the communication complexity of this scheme, we note that, in the initialization phase
V’s message contains 3d+ 2 group elements, which is the size of paramsRange, and that of B involves a
single element of Zp. In each transfer phase B’s request Q is composed of 30a+57 group elements and V’s
response R has 2n group elements. For the computational complexity of our POT scheme, observe that
the initialization phase requires n2 + 6n+ 7 exponentiations for FCRS, 3d+ 3 exponentiations for V and
d exponentiations along with 3d pairings for B. Further, each transfer phase involves 2 exponentiations,
1 pairings plus the complexity of constructing the NIPK (1), which involves the cost of generating a
range proof, a non-interactive proof of a P-Signature possession and Groth-Sahai non-interactive proof
of knowledge for two additional pairing product equations, for B and 3n exponentiations, n+ 87a+ 174
pairings for V. We note that A = da is the upper bound of buyer’s account.

Remark 3. Observe that, since in our POT construction the membership encryption discussed in Section
3 is applied for singleton group attributes {pσt}, ui,j ’s are not required for decrypting the ciphertext Cσt .
Thus we can omit {ui,j}i 6=j from the crs resulting in further reduction in crs size an well as the number
of exponentiations computed by FCRS by n2. This modification will not affect the security argument.

5 Conclusion

In this paper we have constructed a new efficient, provably secure membership encryption scheme and
have applied it to develop an efficient 1-out-of-n POT protocol. Privacy preserving membership proof
and encryption are both simultaneously used in many complex cryptographic protocols. Hence, it is
really beneficial to have more efficient scheme that combines both of them in a single framework, i.e., to
design efficient and practical membership encryption scheme. Our proposed membership encryption has
constant length group token and constant ciphertext size both of which is shorter than that of [18]. Also
unlike [18], our scheme is flexible in the sense that the same setup can be used with different universe of
attributes. This property is important for applications such as POT where item prices may change with
time. Moreover, computational complexity is constant, when applied with a fixed universe of attributes,
making our scheme significantly more efficient than that of [18] which has quite large complexity. Our
developed POT protocol is secure under universally composable framework and thus, unlike the existing
1-out-of-n schemes [1], [21] available in the literature, preserves security when it is executed with multiple
protocol instances that run concurrently in an adversarily controlled way.Further, the protocol is round
optimal having constant computation and communication cost on the buyer’s side and O(n) complexity
on the vendor’s side, which is so far the best known for 1-out-of-n POT.

References

1. Aiello, B., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital goods. In: Advances in
CryptologyEUROCRYPT 2001, pp. 119–135. Springer (2001)

2. Au, M.H., Tsang, P.P., Susilo, W., Mu, Y.: Dynamic universal accumulators for ddh groups and their applica-
tion to attribute-based anonymous credential systems. In: Topics in Cryptology–CT-RSA 2009, pp. 295–308.
Springer (2009)

Universally Composable Efficient POT from a Flexible Membership Encryption 13

3. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and noninteractive anonymous cre-
dentials. In: Theory of Cryptography, pp. 356–374. Springer (2008)

4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Proceedings of
the twentieth annual ACM symposium on Theory of computing. pp. 103–112. ACM (1988)

5. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In:
Advances in Cryptology-EUROCRYPT 2004. pp. 223–238. Springer (2004)

6. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Advances in Cryptology–CRYPTO 2004. pp.
41–55. Springer (2004)

7. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Advances in CryptologyCRYPTO
2001. pp. 213–229. Springer (2001)

8. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Public Key
Cryptography–PKC 2007, pp. 1–15. Springer (2007)

9. Camenisch, J., Chaabouni, R., et al.: Efficient protocols for set membership and range proofs. In: Advances
in Cryptology-ASIACRYPT 2008, pp. 234–252. Springer (2008)

10. Camenisch, J., Dubovitskaya, M., Neven, G.: Unlinkable priced oblivious transfer with rechargeable wallets.
In: Financial Cryptography and Data Security, pp. 66–81. Springer (2010)

11. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps and efficient revocation
for anonymous credentials. In: Public Key Cryptography–PKC 2009, pp. 481–500. Springer (2009)

12. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: Foundations
of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on. pp. 136–145. IEEE (2001)

13. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness
hiding protocols. In: Advances in CryptologyCRYPTO94. pp. 174–187. Springer (1994)

14. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable oblivious transfer. In:
Information Security and Cryptology–ICISC 2008, pp. 318–335. Springer (2009)

15. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Advances
in CryptologyCRYPTO99. pp. 537–554. Springer (1999)

16. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer. In: Advances in Cryptology-
ASIACRYPT 2008, pp. 179–197. Springer (2008)

17. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Advances in Cryptology–
EUROCRYPT 2008, pp. 415–432. Springer (2008)

18. Guo, F., Mu, Y., Susilo, W., Varadharajan, V.: Membership encryption and its applications. In: Information
Security and Privacy. pp. 219–234. Springer (2013)

19. Rial, A., Kohlweiss, M., Preneel, B.: Universally composable adaptive priced oblivious transfer. In: Pairing-
Based Cryptography–Pairing 2009, pp. 231–247. Springer (2009)

20. Rial, A., Preneel, B.: Optimistic fair priced oblivious transfer. In: Progress in Cryptology–AFRICACRYPT
2010, pp. 131–147. Springer (2010)

21. Tobias, C.: Practical oblivious transfer protocols. In: Information Hiding. pp. 415–426. Springer (2003)

A Some Necessary Cryptographic Tools

A.1 Non-interactive Zero-Knowledge Proofs of Knowledge of [17]

Let R be an efficiently computable relation and L = {y : R(y, w) = accept for some w} be an NP-
language. For tuples (y, w) ∈ R, we call y the instance and w the witness. A non-interactive proof of
knowledge system consists of algorithms PoKSetup, PoKProve and PoKVerify. PoKSetup(1λ) outputs a
common reference string crsPoK , PoKProve(crsPoK , y, w) computes a proof of knowledge pok of instance
y by using witness w and PoKVerify(crsPoK , y, pok) outputs accept if pok is correct.

Zero-knowledge captures the notion that a verifier learns nothing from the proof except the truth of
the statement. Witness-indistinguishability is a weaker property that guarantees that the verifier learns
nothing about the witness that was used in the proof. In either case, we will also require soundness, mean-
ing that an adversarial prover cannot convince an honest verifier of a false statement, and completeness,
meaning that all correctly computed proofs are accepted by the honest verification algorithm. See [4] for
formal definitions.

In addition, a proof of knowledge needs to be extractable. Extractability means that there exists
a polynomial time extractor (PoKExtractSetup,PoKExtract). Algorithm PoKExtractSetup(1λ) generates
parameters crsPoK that are identically distributed to the ones generated by algorithm PoKSetup and an
extraction trapdoor tdext. PoKExtract(crsPoK , tdext, y, pok) extracts the witness w with all but negligible
probability when PoKVerify(crsPoK , y, pok) outputs accept.

We recall the notion of f -extractability defined by Belenkiy et al. [3]. In an f -extractable proof system
the extractor PoKExtract extracts a value z such that z = f(w) ∧ (y, w) ∈ R for some w. If f(·) is the
identity function, we get the usual notion of extractability.

14 P. Datta, R. Dutta, S. Mukhopadhyay

Commitment schemes: A non-interactive commitment scheme consists of algorithms ComSetup and Com-
mit. ComSetup(1λ) generates the parameters of the commitment scheme paramsCom. The algorithm
Commit(paramsCom, x, open) outputs a commitment C to x using auxiliary information open. A commit-
ment C is opened by revealing (x, open) and checking Commit(paramsCom, x, open) = C. A commitment
scheme has a hiding property and a binding property. Informally speaking, the hiding property ensures
that a commitment C to x does not reveal any information about x, whereas the binding property ensures
that C cannot be opened to another value x′. When it is clear from the context, we omit the commitment
parameters paramsCom.
A notation for f-extractable non-interactive proofs of knowledge (NIPK): We are interested in NIPK
about (unconditionally binding) commitments. By ‘x in C’ we denote that there exists open such that
C = Commit(paramsCom, x, open). After Belenkiy et al. [3], we use the following notation to express an f -
extractable NIPK pok, on the instance (C1, . . . , Cm,Condition) with witness (x1, open1, . . . , xm, openm, s)
that allows to extract all the witnesses except the openings of the commitments. Here Condition stands
for a constraint on crs, x1, . . . , xm, s.

NIPK{(x1, . . . , xm, s) : Condition(crs, x1, . . . , xm, s) ∧ x1 in C1 ∧ . . . ∧ xm in Cm} (2)

The f -extractability of a NIPK ensures that, with overwhelming probability over the choice of crs, we
can extract (x1, . . . , xm, s) from pok, when PoKVerify accepts, xi is contained in commitment Ci, where
1 ≤ i ≤ m, and Condition(crs, x1, . . . , xm, s) is satisfied. To further abbreviate this notation, we omit crs
when it is understood from the context.
Applying the notation to Groth-Sahai proofs: We now illustrate below equation (2) by applying the
notation to Groth-Sahai proofs [17] which allow proving statements about pairing product equations. The
pairing group setup (p,G,GT , e, g) is part of the common reference string crsPoK output by PoKSetup(1λ)
and the instance consists of the constants {Ai}mi=1 ∈ G, tT ∈ GT , {γi,j}mi,j=1 ∈ Zp of the pairing product

equation:

m∏
i=1

e(Ai,Yi)
m∏
i=1

m∏
j=1

e(Yi,Yj)γi,j = tT . The prover knows {Yi}mi=1 satisfying this equation.

Internally, Groth-Sahai proofs prove relations between commitments. A homomorphism guarantees
that the same relations also hold for the committed values. Normally, as the first step in creating the
proof, the prover prepares commitments {Ci}mi=1 for all values Yi in G. Then, the instance, known to the
prover and the verifier, is the pairing product equation alone (i.e., its constants).

In addition, it is possible to add pre-existing Groth-Sahai commitments {Ci}ni=1, n ≤ m, to the in-
stance for some of the Yi values. The corresponding openings openYi become part of the witness. The
proof will be computed in the same way, except that for values with existing commitments no fresh
commitments need to be computed. We will write Ci = Commit(Yi, openYi) to create Groth-Sahai com-
mitments. Note that here Commit uses parameters contained in the crsPoK of the Groth-Sahai proof
systems. This proof system generates f -extractable witness indistinguishable1 NIPK pok of the form

NIPK{(Y1, . . . ,Yn,Yn+1, . . . ,Ym) :

m∏
i=1

e(Ai,Yi)
m∏
i=1

m∏
j=1

e(Yi,Yj)γi,j = tT ∧ Y1 in C1 ∧ . . . ∧ Ym in Cm}.

In order to construct NIPK for a system of pairing product equations, a separate proof is to be computed
for each equation. In [17], Groth and Sahai have given three different instantiations of their proof system.
(In fact, their proposed proof system also works in asymmetric pairing groups.) Groth-Sahai proofs are
extractable, composable witness-indistinguishable and composable zero-knowledge (given certain condi-
tions). For definitions of these notions the reader is referred to [17].

Out of the three instantiations presented in [17], we will consider the one based on the DLIN as-
sumption. In this instantiation, the common reference string crsPoK is of the form crsPoK = (t1, t2, t3),
where t1 = (gα, 1, g) = (x1, x2, x3) (say), t2 = (1, gβ , g) = (y1, y2, y3) (say), t3 = (grα, gsβ , gr+s) =

(z1, z2, z3) (say), α, β
$←− Z∗p, r, s

$←− Zp, where
$←− stands for random selection. The commitment on

a value Yi ∈ G is Ci = Commit(Yi, openYi) =
(
gα(ri,1+rri,3), gβ(ri,2+sri,3), gri,1+ri,2+(r+s)ri,3Yi

)
, where

openYi = (ri,1, ri,2, ri,3) ∈ Z3
p. For a linear equation

m∏
i=1

e(Ai,Yi) = tT , the proof pok has the form

pok =

(
m∏
i=1

Ari,1i ,

m∏
i=1

Ari,2i ,

m∏
i=1

Ari,3i

)
and for a quadratic equation

m∏
i=1

e(Ai,Yi)
m∏
i=1

m∏
j=1

e(Yi,Yj)γi,j = tT ,

pok consists of nine group elements in G of similar type.

1 Some classes of pairing product equations also admit zero-knowledge proofs.

Universally Composable Efficient POT from a Flexible Membership Encryption 15

The verification of the above proof is done by checking three and nine pairing product equalities in linear
and quadratic case respectively. Below we present a small example which is used in our POT construction.

Example 1. Consider the linear equation e(g,Y1)e(g−1,Y2)e(g−1,Y3) = 1. Let, C1 = Commit(Y1, openY1
)

= (u1, u2, u3), C2 = Commit(Y2, openY2
) = (v1, v2, v3), C3 = Commit(Y3, openY3

) = (w1, w2, w3). Further
suppose that the proof pok = (π1, π2, π3). All of Ci’s and pok are of the form as described above. The veri-
fication equalities for the above linear equation are e(g, ui)e(g

−1, vi)e(g
−1, wi) = e(π1, xi)e(π2, yi)e(π3, zi)

for i = 1, 2, 3.

A.2 P-Signature Scheme of [3]

P-Signatures introduced by Belenkiy et al. [3] are signatures equipped with a common reference string
crsSig and a NIPK that allows proving possession of a signature of a committed message. Belenkiy et
al. show in [3] how to use the Groth-Sahai proof system to build this proof. Since in their construction
M ∈ Zp and Groth-Sahai proofs prove knowledge of a witness in G, they need to compute a bijection
F (M) ∈ G and prove knowledge of F (M). The P-Signature scheme is said to be F -unforgeable if no
p.p.t. adversary can output (F (M), s) without previously obtaining a signature on M .

Below we present the P-Signature scheme of [3]. This P-Signature scheme is employed in the range
proof discussed in Appendix A.3 and in our POT scheme.
PSetup: Taking as input a security parameter 1λ, a trusted authority runs the Groth-Sahai PoKSetup
with input 1λ to obtain crsPoK for pairing groups (p,G,GT , e, g), picks random u ∈ G, and publishes
crsSig = (crsPoK , u).

PKeygen: On input crsSig, the signer picks a secret key sk = (α, β)
$←− Zp and computes a public key

pk = (v, w) = (gα, gβ).

PSign: The signer takes as input (crsSig, sk,M ∈ Zp), picks random r
$←− Zp/{α−Mβ } and computes

s = (s1, s2, s3) = (g1/(α+M+βr), wr, ur).
PVerifySig: On input (crsSig, pk,M, s), the verifier outputs accept when e(s1, vg

Ms2) = e(g, g), e(u, s2)
= e(s3, w). Otherwise, it outputs reject.

Using Groth-Sahai proofs, a NIPK of such a signature is constructed as follows. This is a proof of a
pairing product equation of the form

NIPK{(gM , uM , s1, s2, s3) : e(s1, vg
Ms2) = e(g, g) ∧ e(u, s2) = e(s3, w) ∧ e(u, gM) = e(uM , g)}. (3)

We abbreviate this expression as NIPK{(gM , uM , s) : PVerifySig(pk, s,M) = accept}. We would like to
highlight the fact that to construct this NIPK the knowledge of gM and uM is sufficient, no need to
know M explicitly. This scheme is F -unforgeable (F (M) = (gM , uM)) under the HSDH and the TDH
assumption.

A.3 Non-Interactive Range Proof of [19]

We use the efficient non-interactive range proof proposed by Rial et al. [19] to prove that a committed
value σ ∈ Zp lies in an interval [0, da) by representing σ in base d and employing P-Signature of [3]
discussed in Appendix A.2.
RPSetup(1λ): Given a security parameter 1λ, a trusted third party executes PSetup(1λ) to generate
crsSig = (crsPoK , u).
RPInitVerifier(crsSig, A): The verifier takes as input A = da, and runs PKeygen(crsSig) to get (sk, pk).
Then for all i ∈ Zd, it computes Si = PSign(crsSig, sk, i). It outputs paramsRange = (pk, {Si}i∈Zd).
RPInitProver(crsSig, paramsRange): The prover parses paramsRange as (pk, {Si}i∈Zd). It verifies the sig-
natures by running PVerifySig(crsSig, pk, Si, i), for all i ∈ Zd. If these verifications succeed, it outputs
accept. Otherwise it outputs reject.
RangeProve(crsSig, paramsRange, g, σ, openσ): The prover computes the following proof for a commit-
ment Cσ = Commit(gσ, openσ): NIPK{(gσ, {gσj , uσj , Sσj}a−1j=0) : {PVerifySig(pk, Sσj , σj) = accept}a−1j=0 ∧

e(g, gσ)

a−1∏
j=0

e(g−d
j

, gσj) = 1 ∧ gσ in Cσ}. The short form NIPK{(gσ) : 0 ≤ σ < A ∧ gσ in Cσ} is used to

refer to this proof. This proof is only witness indistinguishable. While this is sufficient for our application,
it is possible to make the proof zero-knowledge using techniques described in [17].

16 P. Datta, R. Dutta, S. Mukhopadhyay

B Proof of Theorem 4

In order to prove this theorem, we need to build a simulator E that invokes a copy of adversary A and
interacts with FPOT and environment Z in such a way that ensembles IDEALFPOT,E,Z and REALPOT,A,Z
are computationally indistinguishable.

In our proof we make use of the fact that Groth-Sahai proofs are extractable and composable witness-
indistinguishable. As we deal with static security, the adversary needs to chose which party to corrupt
before the protocol starts. We can, therefore, address the case of the malicious vendor and the malicious
buyer separately.

Case (I). Security against malicious vendor:
1. E runs algorithm PoKSetup to generate a Groth-Sahai reference string crsPoK under DLIN in-

stance for a pairing group setup (p,G,GT , e, g), where pmax < A (mod p) holds. E picks random
u ← G, selects distinct random z1, . . . , zn ← Z∗p and computes ui = gzi , ui,j = gzizj , vi =
yzi3 , qi = uzi , i, j = 1, . . . , n, i 6= j, where, crsPoK = (t1, t2, t3) and t3 = (y1, y2, y3), say.
E runs PKeyGen(crsSig) to obtain (pk, sk) where crsSig = (crsPoK , u). E computes si =
PSign(crsSig, sk, zi), i = 1, . . . , n. E sets crs = (crsPoK , {ui}i, {ui,j}i 6=j , {vi}i, u, pk, {qi}i, {si}i).
When FCRS is queried, E returns (sid, crs).

2. At time t = 0, upon receiving (sid, paramsRange) from A, E checks paramsRange as described in
POTInitBuyer and aborts when the check fails. Otherwise E sends (sid,V) to FPOT.

3. Upon receiving (sid, ac0) from FPOT, E computes (P,D
(Priv)
0) by running POTInitBuyer. E sends

(sid, P) to A and keeps D
(Priv)
0 .

4. At time t > 0, on publication of (sid,Pub) by A, E notes the set of item prices {p1, . . . , pn}
from Pub and sends (sid,V,Pub) to FPOT. Upon receiving (sid, request) from FPOT, E executes

POTRequest(crs, paramsRange, {p1, . . . , pn}, D(Priv)
t−1 , σmin), where σt = σmin corresponds to the

index of the message with the lowest price for that time, to obtain (Q,Q(Priv), D
(Priv)
t) and

sends (sid,Q) to A. Observe that, since we use the item with the lowest price, A never rejects
on the basis of not having enough funds. Upon receiving the response (sid,R) from A, E parses

R as (C1, C2, . . . , Cn), each Ci = (C
(1)
i , C

(2)
i) and computes Mi = C

(1)
i /e(w3/u

pi
i , C

(2)
i)zi using the

secret values zi known to itself, where Q = (h1, h2, h3, pokt, Dt) and h3 = Commit(gzσminpσmin ,
openzσminpσmin) = (w1, w2, w3) are as defined in the POT protocol of Section 4, i.e., w3 is the
group token for the group attribute {pσmin} according to the membership encryption discussed
in Section 3. E inputs (sid, {M1, . . . ,Mn}) to FPOT.

Claim (Buyer’s security). When V is corrupted, the ensembles IDEALFPOT,E,Z and REALPOT,A,Z are
computationally indistinguishable under the DLIN assumption.

Proof. We show by means of a series of hybrid games that environment Z cannot distinguish be-
tween the real execution ensembles REALPOT,A,Z and the simulated ensembles IDEALFPOT,E,Z with
non-negligible probability. We denote by Pr[Game i] the probability that Z distinguishes between
the ensembles of Game i and that of the real execution.

Game 0: This game corresponds to the execution of the real world protocol with an honest B.
Therefore, Pr[Game 0] = 0.

Game 1: This game differs from the previous game in that at each time t > 0, the request Q =

(h1, h2, h3, pokt, Dt) is computed by executing POTRequest(crs, paramsRange, {p1, . . . , pn}, D(Priv)
t−1

, σmin), where σmin corresponds to the message with the lowest price for that time. Since (h1, h2, h3,
pokt, Dt) are computationally witness indistinguishable under the DLIN assumption, Q cannot
be distinguished from a request computed by using another selection value σt ∈ {1, . . . , n}.
Therefore, |Pr[Game 1]−Pr[Game 0]| ≤ ε(λ), where ε(λ) is a negligible function of the security
parameter λ.

E performs the changes mentioned in Game 1 but for i = 1, . . . , n, E uses the ciphertexts sent by A
to compute messages Mi = C

(1)
i /e(w3/u

pi
i , C

(2)
i)zi using the secret values zi, where (w1, w2, w3) =

Commit(gzσminpσmin , openzσminpσmin) and sends (si, {M1, . . . ,Mn}) to FPOT. The crs generated by
E is identically distributed as the real crs. Also upon receiving P = ac0 from FPOT, E computes

and sends P by following POTInitBuyer and stores private state D
(Priv)
0 exactly as in real protocol.

At time t > 0, E notes {p1, . . . , pn} from Pub published by A and sends Pub to FPOT. Further, E

Universally Composable Efficient POT from a Flexible Membership Encryption 17

computes a request for σmin by using D
(Priv)
t−1 and stores private state information D

(Priv)
t . Note that

the distribution produced in Game 1 is identical to our simulation of the ideal ensemble. Therefore,
|Pr[Game 1]| ≤ ε(λ). ut

Case(II). Security against malicious buyer:

1. E sets crs = (crsPoK , {ui}i, {ui,j}i 6=j , {vi}i, u, pk, {qi}i, {si}i) exactly in the same way as in Step
1 of Case (I) except that to construct crsPoK , E executes algorithm PoKExtractSetup to obtain
an extraction trapdoor tdext along with crsPoK . E returns (sid, crs) when FCRS is queried.

2. Upon receiving sid from FPOT, E runs POTInitVendor(crs,A) to obtain paramsRange. E sends
(sid, paramsRange) to A.

3. Upon receiving (sid, P = ac0), E runs D0 ← POTGetDeposit(crs, P,A), sends (sid,B, ac0) to FPOT

and stores D0.
4. At time t > 0, after getting (sid,Pub) from FPOT, E notes {p1, . . . , pn} from Pub and publishes

(sid,Pub) to A. upon receiving (sid,Q) from A, E parses Q as (h1, h2, h3, pokt, Dt). Note that pokt
is of the form NIPK{w : Condition} where w is the witness consisting of (gact , gact−1 , gpσt , uσt , g

zσtpσt ,
qσt , sσt , {gαj , uαj , s′αj}

a−1
j=0) and y is the instance consisting of the commitments on w that in-

cludes (Dt, Dt−1, h1, h2, h3) together with Condition(w). For the exact form of Condition(w) see
the detail construction of pokt in equation (1) of Section 4. E verifies the proof pokt by run-
ning PoKVerify and utilizing the instance y. E aborts if verification fails, otherwise, E executes
PoKExtract(crsPoK , tdext, y, pokt) to extract the witness w. Then for i = 1, . . . , n, E compares
uσt and gpσt to all ui’s and gpi ’s respectively to determine A’s choice σt and to check whether
A has really paid the correct price corresponding to his choice. E also compares the signatures
{gαj , uαj , s′αj}

a−1
j=0 in the extracted witness that corresponds to the range proof with each of the

signatures that were sent to A in paramsRange and the signature {uσt , qσt , sσt} to all the signa-
tures {ui, qi, si}ni=1 that were sent to A in crs (this is done in order to ensure that A did not
compute a forgery) and aborts if in either case no match is found, i.e., a forgery is detected.

5. If E finds that A has actually paid the price pσt , i.e., extracted uσt , g
pσt match with some ui and

the corresponding gpi , E sends (sid,B, σt) to FPOT in order to obtain Mσt . Now E computes Cσt
exactly as V does in POTRespond of the real protocol. For i 6= σt, E randomly picks C

(1)
i ∈ GT

and C
(2)
i ∈ G and sets Ci = (C

(1)
i , C

(2)
i). On the other hand, if E finds that A has not paid the

correct price, it simply chooses C
(1)
i ∈ GT and C

(2)
i ∈ G and sets Ci = (C

(1)
i , C

(2)
i), i = 1, . . . , n.

E sends R = (C1, . . . , Cn) to A and stores Dt.

Claim (Vendor’s security). When B is corrupted, the ensembles IDEALFPOT,E,Z and REALPOT,A,Z
are computationally indistinguishable under the {max{n, d}}-HSDH, {max{n, d}}-TDH and the
Square DBDH assumptions, where n is the the number of messages and A = da is the upper bound
of the buyer’s account.

Proof. We show by means of a series of hybrid games that the environment Z cannot distinguish
between the real execution ensembles REALPOT,A,Z and the simulated ensembles IDEALFPOT,E,Z with
non-negligible probability. We again denote by Pr[Game i] the probability that Z distinguishes be-
tween the ensembles of Game i and that of the real execution.

Game 0: This game corresponds to the execution of the real-world protocol with an honest V.
Therefore, Pr[Game 0]=0.

Game 1: This game follows Game 0, except that to set crs we run PoKExtractSetup to ob-
tain crsPoK and an extraction trapdoor tdext for a bilinear group setup (p,G,GT , e, g), where
pmax < A (mod p) holds. Note that crsPoK so computed is identically distributed to the output
of PoKSetup and thus, |Pr[Game 1] − Pr[Game 0]| = 0.

Game 2: The difference between this game and the previous one consists in that, in each time
t > 0, we extract the witness of pokt by running PoKExtract(crsPoK , tdext, y, pokt), where y is the
instance of pokt as defined in the simulation. Groth-Sahai proofs being perfectly extractable, we
have |Pr[Game 2] − Pr[Game 1]| = 0.

Game 3: This game is identical to Game 2, except that Game 3 aborts if at least one of the
extracted signatures {gαj , uαj , s′αj}

a−1
j=0 that are employed in the range proof does not equal any

of the signatures {(gi, ui, s′i)}i∈Zd , where the signatures s′i are included in paramsRange. This
means that A computed a forgery of the P-Signature scheme. The probability that Z distinguishes
between Game 2 and Game 3 is bounded by the following lemma.

18 P. Datta, R. Dutta, S. Mukhopadhyay

Lemma 1. If the d-HSDH and the d-TDH assumptions hold, then |Pr[Game 3] − Pr[Game 2]|
≤ ε1(λ), where ε1(λ) is a negligible function of λ.

Proof. We build a forger D that breaks the F -unforgeability of the P-Signature scheme with
non-negligible probability. Given such a forger, it is shown in [3] how to construct an algorithm
E that breaks either the d-HSDH assumption or the d-TDH assumption with non-negligible
probability.
Given a buyer that causes Game 3 to abort with non-negligible probability, D works as follows:
1. D obtains the parameters of the P-Signature scheme crsSig = (p,G,GT , e, g, u) from E , runs

PoKExtractSetup to get (crsPoK , tdext) and computes ui = gzi , ui,j = gzizj , vi = yzi3 , qi =

uzi , i, j = 1, . . . , n, i 6= j,where, zi
$←− Z∗p are distinct and crsPoK = (t1, t2, t3), t3 = (y1, y2, y3).

D runs PKeyGen(crsSig), where crsSig = (crsPoK , u) to compute (pk, sk). Also D computes
si=PSign(crsSig, pk, zi), i = 1, . . . , n.D sets crs = (crsPoK , {ui}i, {ui,j}i 6=j , {vi}i, u, pk, {qi}i,
{si}i).

2. D obtains the public key of the signature scheme pk′ from E .
3. For each i ∈ Zd, D queries E to obtain a signature s′i=PSign(crsSig, pk

′, i) on the message i.
D uses these signatures to set paramsRange = (pk′, {s′i}i∈Zd).

4. Upon receiving a request Q = (h1, h2, h3, pokt, Dt) from B, D extracts the witnesses that
corresponds to the signatures {gαj , uαj , s′αj}

a−1
j=0 that are employed in the range proof. If

there exist a signature {gαj , uαj , x′αj} that does not equal any of the signatures {(gi, ui, s′i)}
in paramsRange, then D outputs this tuple {gαj , uαj , s′αj} as a forgery. ut

Game 4: This game is identical to Game 3, except that this game aborts if the extracted signature
{uσt , qσt , sσt} does not equal any of the signatures {(ui, qi, si)}ni=1 that are included in the crs.
Again this means thatA has computed a forged P-Signature . The probability that Z distinguishes
between Game 4 and Game 3 is bounded by the following lemma.

Lemma 2. If the n-HSDH and the n -TDH assumptions hold, then |Pr[Game 4] − Pr[Game 3]|
≤ ε2(λ), where ε2(λ) is a negligible function of λ.

Proof. The proof of this lemma is similar to that of Lemma 1 except the following. In the previous
case, the forger D queried E for signatures to form paramsRange and computed the signatures
included in the crs himself, whereas, in this case D does the other way round, i.e., computes
paramsRange itself and queries E for the signatures involved in crs. ut

Game 5: This game is same as the previous one except that the response R is computed as explained
in Step 5. of the simulation. The probability that Z distinguishes between Game 5 and Game
4 is bounded by the following lemma.

Lemma 3. If the SqDBDH assumption holds then |Pr[Game 5] − Pr[Game 4]| ≤ ε3(λ),
where ε3(λ) is a negligible function of λ.

Proof. We consider two cases separately- (a) proper price is paid and (b) proper price is not paid.

Case (a) It is verified that the proper price pσt corresponding to chosen index σt is paid. In this
case R contain Cσt which is a valid encryption of Mσt and random Ci’s for i 6= σt.
Without loss of generality, we may assume in Game 5, σt = 1 (can be reached by renumbering).
We define a series of intermediate distributions Dj for 1 ≤ j ≤ n. In distribution Dj the value Ci
is a valid ciphertext of the message Mi(1 ≤ i ≤ j), as generated in Game 4 and the remaining
Ci’s, j < i ≤ n, are random. Thus, for 1 ≤ i ≤ j, Ci = (e(w3/u

pi
i , u

Si
i)Mi, g

Si), where w3 = P(G)
for G = {p1} extracted from Q = (h1, h2, h3, pokt, Dt) by parsing h3, and for j < i ≤ n,

Ci = (C
(1)
i , C

(2)
i), where C

(1)
i

$←− GT and C
(2)
i

$←− G. Note that, we define distributions such that
D1 occurs in Game 5 and Dn occurs in Game 4. Now if an environment Z can distinguish
between D1 and Dn, then Z must also be able to distinguish the distributions Dµ and Dµ−1 for
index 1 < µ ≤ n, i.e., ∃ a polynomial p(·) such that, |Pr[Z(Dµ) = 1]− Pr[Z(Dµ−1) = 1]| > 1

p(λ) .

We use environment Z to construct an algorithm T that solves the SqDBDH problem. Given
an instance (g, ga, gb, e(g, g)c), T works as follows:

– Run PoKExtractSetup to generate crsPoK and tdext as follows. Pick (α, β)
$←− Z∗p; (r, s)

$←− Zp,
compute t1 = (gα, 1, g), t2 = (1, gβ , g), t3 = (grα, gsβ , gr+s), generate crsPoK = (t1, t2, t3) and

Universally Composable Efficient POT from a Flexible Membership Encryption 19

set the extraction trapdoor tdext = (α, β). Choose uniformly the index µ, 1 < µ ≤ n, of the
distribution and set crs = (crsPoK , {ui}i, {ui,j}i6=j , {vi}i, u, pk, {qi}i, {si}i) where

ui =

{
ga, i = µ
gzi , i 6= µ

, ui,j =

{
(ga)zj , j 6= µ
gzizj , j 6= i 6= µ

, si =

{
(gr, gr

−1

, g−r
−1

), i = µ
(g, ga−zi , gzi−a), i 6= µ

,

vi = ur+si , u = gτ , qi = uτi and pk = ((ga)−1, g−τ) so that implicitly sk = (−a,−τ), for

z1, . . . , zµ−1, zµ+1, . . . , zn, τ, r
$←− Z∗p such that zi’s are all distinct.

(Note that all the si’s are valid P-Signatures on zi’s,where implicitly zµ = a.
– Compute paramsRange as usual following POTInitVendor.
– Select some balance ac0, 0 ≤ ac0 < A, and perform POTInitBuyer to obtain P (= ac0).
– Choose messages {M1, . . . ,Mn} with prices {p1, . . . , pn} respectively from the same distri-

bution as in the POT protocol of Section 4 and compute a request Q for σt = 1 follow-
ingPOTRequest as in Game 4.

– Extract the witnesses from Q and compute the response R = (C1, . . . , Cn) as follows:

Ci =

(e(w3/u

pi
i , u

Si
i)Mi, g

Si), Si
$←− Zp, for 1 ≤ i < µ

(e(up1µ,1v
r3
µ u

r1+r2
µ , gb)(e(g, g)c)−pµMµ, g

b), for i = µ

(C
(1)
i , C

(2)
i), C

(1)
i

$←− GT , C(2)
i

$←− G, for µ < i ≤ n

where, Q = (h1, h2, h3, pokt, Dt), h3 = (w1, w2, w3) and (r1, r2, r3) is the randomness used in
the commitment h3 as explained in POTRequest.

– Give all outputs together with the messages {M1, . . . ,Mn} and prices {p1, . . . , pn} to Z and
outputs whatever is the output of Z.

If c = a2b, the resulting distribution equals Dµ, otherwise, it equals Dµ−1. It follows that,

|Pr[T (g, ga, gb, e(g, g)a
2b) = 1]− Pr[T (g, ga, gb, e(g, g)c) = 1]| > 1

np(λ)
.
The factor n comes from the choice of µ. Since n is a polynomial in λ, the fraction 1

np(λ) is

non-negligible in λ which contradicts the SqDBDH assumption.
Case (b) This case corresponds to the situation when it is found that the proper price for σt is not
paid. In this case the response R consists of all random Ci’s. Again in this case, we may assume,
without loss of generality, that σt = 1, i.e., the message M1 is queried but the price paid is not the
correct price p1. We define (n+1) distributions as above with D0 denoting the distribution where
R contains all random Ci’s. Clearly in this case D0 corresponds to the distribution in Game
5 and Dn that in Game 4. As above we can argue that, if the environment Z can distinguish
between D0 and Dn then Z must also be able to distinguish between Dµ and Dµ−1, 0 < µ ≤ n.
We use Z to construct an algorithm T which solves the SqDBDH problem as Case (a) with the
following modifications.
– T chooses 1 ≤ µ ≤ n, uniformly.
– While computing the request Q for σt = 1, T uses a different price p 6= p1.
– T computes the Ci’s as follows:

Ci =

(e(w3/u

pi
i , u

Si
i)Mi, g

Si), Si
$←− Zp, for 1 ≤ i < µ

(C
(1)
i , C

(2)
i), C

(1)
i

$←− GT , C(2)
i

$←− G, for µ < i ≤ n

Cµ =

(e(upµ,1v

r3
µ u

r1+r2
µ , gb)(e(g, g)c)−pµMµ, g

b), for 1 < µ ≤ n

(e(vr3µ u
r1+r2
µ , gb)(e(g, g)c)p−pµMµ, g

b), for µ = 1

With the above modified construction we can show as in Case (a) that T can solve the SqDBDH
problem with non-negligible probability, which is a contradiction to the SqDBDH assumption.
Thus if the SqDBDH assumption holds, then there exist a negligible function ε3(λ) such that
|Pr[Game 5]− Pr[Game 4]| ≤ ε3(λ). ut

20 P. Datta, R. Dutta, S. Mukhopadhyay

E performs all the changes described in Game 5, but in the initialization phase, E runs POTGetDeposit
and sends ac0 to FPOT, and in each transfer phase E stores {p1, . . . , pn} and publishes Pub after
getting Pub from FPOT; sends the choice σt to FPOT to obtain Mσt provided the price pσt is paid,
in which case E uses Mσt to compute Cσt ; otherwise E sets Cσt to be a random value in GT × G.
For all other i, E sets Ci’s as random elements in GT ×G. The distribution produced in Game 5 is
identical to our simulation of the ideal ensemble IDEALFPOT,E,Z . Therefore, by summation we have
that, |Pr[Game 5]| ≤ ε1(λ) + ε2(λ) + ε3(λ) = ε(λ). ut

ut

C Extending the Priced Oblivious Transfer of Section 4 to Subscription
Setting

The motivation of a subscription is to allow efficient one-way communication from the vendor to the
buyer. Here we will briefly sketch how our proposed POT can be modified to fit in a ‘subscription’ set-
ting. Note that for subscription a buyer B is charged the same price pi for the i-th message effective at
time of subscription even if prices may change over time. To initialize the protocol first both the vendor
V and the buyer B takes crs from FCRS and V sends (sid, paramsRange) to B by executing POTInitVendor
as in the POT of Section 4.

Subscribing: The buyer B computes (P,D
(Priv)
0) by running POTInitBuyer on input (crs, paramsRange,

ac0), chooses an index σ to subscribe and a time period τ for which he wants to subscribe. Now B picks
openpσ , openzσ , openzσpσ , {openact}τt=1 randomly from Z3

p and computes h1 = Commit(gpσ , openpσ),
h2 = Commit(uσ, openzσ), h3 = Commit(gzσpσ , openzσpσ), Dt = Commit(gact , openact), t = 1, . . . , τ. Also
for t = 1, . . . , τ , B runs PoKProve introduced in Section A.1 on input crsPoK to obtain non-interactive
proof of knowledge pokt:

NIPK{(gact , gact−1 , gpσ , uσ, g
zσpσ , qσ, sσ) : 0 ≤ act < A ∧ e(g, gact−1)e(g−1, gact)e(g−1, gpσ) = 1 ∧

e(g, gzσpσ)e(uσ, g
pσ)−1 = 1 ∧ PVerifySig(pk, sσ, zσ) = accept ∧

act in Dt ∧ act−1 in Dt−1 ∧ pσ in h1 ∧ uσ in h2 ∧ gzσpσ in h3}.

B sets Q = (h1, h2, h3, {(pokt, Dt)}τt=1), Q(Priv) = (σ, openzσpσ) and {D(Priv)
t = (act, openact)}τt=0.

B sends (sid, P,Q, τ) to V and stores (Q(Priv), {D(priv)
t }τt=0).

The vendor V runs D0 ← POTGetDeposit(crs, P,A) as in our POT protocol of Section 4. V sets
D = (Q, τ) after checking whether it really has received τ number of (pokt, Dt)’s.

Maintaining a subscription: At time t > 0 following a subscription, V runs POTRespond on input
Dt−1, Qt whereQt = (h1, h2, h3, pokt, Dt), sends response (sid,Rt) to B and setsD = (h1, h2, h3, {pokj}τj=t+1,
{Dj}τj=t, τ − t).

Upon receiving (sid,Rt), B executes POTComplete(crs,Rt, Q
(Priv)) to obtain M

(t)
σ . Also B updates

D
(Priv)
t = {(acj , openacj)}τj=t.

Unsubscribing: After time τ (for which B has subscribed), V finds D = (h1, h2, h3, φ, {Dτ}, 0) and
hence, V automatically unsubscribes B. However, if B wants to unsubscribe after l transfers, where l < τ ,
then V sends (sid, {Dt}τt=l) to B. Here Dl contains B’s remaining balance after l-th transaction. B can
open the commitment Dl to any trusted third party or the court of law to claim his remaining balance
from V. Note that, since Groth-Sahai commitments are perfectly binding, B cannot open Dl to any value
other than acl.

