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Abstract

The existence of succinct non-interactive arguments for NP (i.e., non-interactive computationally-
sound proofs where the verifier’s work is essentially independent of the complexity of the NP nonde-
terministic verifier) has been an intriguing question for the past two decades. Other than CS proofs in
the random oracle model [Micali, FOCS ’94], the only existing candidate construction is based on an
elaborate assumption that is tailored to a specific protocol [Di Crescenzo and Lipmaa, CiE ’08].

We formulate a general and relatively natural notion of an extractable collision-resistant hash func-
tion (ECRH) and show that, if ECRHs exist, then a modified version of Di Crescenzo and Lipmaa’s
protocol is a succinct non-interactive argument for NP. Furthermore, the modified protocol is actually a
succinct non-interactive adaptive argument of knowledge (SNARK). We then propose several candidate
constructions for ECRHs and relaxations thereof.

We demonstrate the applicability of SNARKs to various forms of delegation of computation, to suc-
cinct non-interactive zero knowledge arguments, and to succinct two-party secure computation. Finally,
we show that SNARKs essentially imply the existence of ECRHs, thus demonstrating the necessity of
the assumption.

Going beyond ECRHs, we formulate the notion of extractable one-way functions (EOWFs). As-
suming the existence of a natural variant of EOWFs, we construct a 2-message selective-opening-attack
secure commitment scheme and a 3-round zero-knowledge argument of knowledge. Furthermore, if
the EOWFs are concurrently extractable, the 3-round zero-knowledge protocol is also concurrent zero-
knowledge. Our constructions circumvent previous black-box impossibility results regarding these pro-
tocols by relying on EOWFs as the non-black-box component in the security reductions.
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1 Introduction

For the Snark’s a peculiar creature, that won’t
Be caught in a commonplace way.
Do all that you know, and try all that you don’t:
Not a chance must be wasted to-day!

The Hunting of the Snark,
Lewis Carroll

The notion of interactive proof systems [GMR89] is central to both modern cryptography and complex-
ity theory. One extensively studied aspect of interactive proof systems is their expressiveness; this study
culminated with the celebrated result that IP = PSPACE [Sha92]. Another aspect of such systems, which
is the focus of this work, is that proofs for rather complex NP-statements can potentially be verified much
faster than by direct checking of an NP witness.

We know that if statistical soundness is required then any non-trivial savings would cause unlikely
complexity-theoretic collapses (see, e.g., [BHZ87, GH98, GVW02, Wee05]). However, if we settle for
proof systems with only computational soundness (also known as interactive arguments [BCC88]) then
significant savings can be made. Indeed, using collision-resistant hash functions (CRHs), Kilian [Kil92]
shows a four-message interactive argument for NP: the prover first uses a Merkle hash tree to bind itself
to a polynomial-size PCP (Probabilistically Checkable Proof) string for the statement, and then answers the
PCP verifier’s queries while demonstrating consistency with the Merkle tree. This way, membership of an
instance y in an NP language L can be verified in time that is bounded by p(k, |y|, log t), where t is the time
to evaluate the NP verification relation for L on input y, p is a fixed polynomial independent of L, and k is a
security parameter that determines the soundness error. Following tradition, we call such argument systems
succinct.

Can we have succinct argument systems which are non-interactive? Having posed and motivated this
question, Micali [Mic00] provides a one-message succinct non-interactive argument for NP, in the random
oracle model, by applying the Fiat-Shamir paradigm [FS87] to Kilian’s protocol. In the standard model, such
“totally non-interactive” succinct arguments (against non-uniform provers) do not exist except for “quasi-
trivial” languages (i.e., languages in BPtime(npolylogn)), because the impossibility results for statistical
soundness can be directly extended to this case. Nonetheless, it may still be possible to obtain a slightly
weaker notion of non-interactivity:

Definition 1.1. A succinct non-interactive argument (SNARG) is a succinct argument where the verifier (or
a trusted entity) generates ahead of time a succinct verifier-generated reference string (VGRS) and sends
it to the prover. The prover can then use the VGRS to generate a succinct non-interactive proof π for a
statement y of his choice. (The VGRS is thus independent of the statements to be proven later, and the
definition requires “adaptive soundness”, since y is chosen by the prover, potentially based on the VGRS.)

In this paper, we consider the following questions:

Can SNARGs for NP exist in the standard model?
And if so, under what assumptions can we prove their existence?

Attempted solutions. To answer the above question, Aiello et al. [ABOR00] propose to avoid Kilian’s
hash-then-open paradigm, and instead use a polylogarithmic PIR (Private Information Retrieval) scheme
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to access the PCP oracle as a long database. The verifier’s first message consists of the queries of the
underlying PCP verifier, encrypted using the PIR chooser algorithm. The prover applies the PIR sender
algorithm to the PCP oracle, and the verifier then runs the underlying PCP verifier on the values obtained
from the PIR protocol. However, Dwork et al. [DLN+04] point out that this “PCP+PIR approach” is
inherently problematic, because a cheating prover could “zigzag” and answer different queries according to
different databases.1 (Natural extensions that try to force consistency by using multiple PIR instances run
into trouble due to potential PIR malleability.)

Di Crescenzo and Lipmaa [DCL08] propose to address this problem by further requiring the prover to
bind itself (in the clear) to a specific database using a Merkle Tree (MT) as in Kilian’s protocol. Intuitively,
the prover should now be forced to answer according to a single PCP string. In a sense, this “PCP+MT+PIR
approach” squashes Kilian’s four-message protocol down to two messages “under the PIR”. However, while
initially appealing, it is not a-priori clear how this intuition can be turned into a proof of security under some
well defined properties of the Merkle tree hash. Indeed, to prove soundness of their protocol Di Crescenzo
and Lipmaa use an assumption that is non-standard in two main ways: first, it is a “knowledge assumption,”
in the sense that any adversary that generates a value of a certain form is assumed to “know” a corresponding
preimage (see more discussion on such assumptions below). Furthermore, their assumption is very specific
and intimately tied to the actual hash, PIR, and PCP schemes in use, as well as the language under consid-
eration. Two other non-interactive arguments for NP, based on more concise knowledge assumptions, are
due to Mie [Mie08] and Groth [Gro10]. However, neither of these protocols is succinct: in both protocols
the verifier’s runtime is polynomially related to the time needed to directly verify the NP witness.

Recently, Gentry and Wichs [GW11] showed that some of the difficulty is indeed inherent by proving
that no SNARG construction can be proved secure via a black-box reduction to an efficiently falsifiable
assumption [Nao03]. For example, the assertion that one-way functions exist or that fully-homomorphic
encryption exists are both falsifiable assumptions; in general, an assumption is efficiently falsifiable if it can
be modeled as a game between an adversary and a challenger, where the challenger can efficiently decide
whether the adversary has won the game. The impossibility result of Gentry and Wichs holds even for
designated-verifier protocols, where the verifier needs secret randomness in order to verify. This suggests
that non-standard assumptions, such as the knowledge (extractability) assumptions described next, may be
inherent.

Knowledge (extractability) assumptions. Knowledge (or extractability) assumptions capture our belief
that certain computational tasks can be achieved efficiently only by (essentially) going through specific
intermediate stages and thereby obtaining, along the way, some specific intermediate values. Such an as-
sumption asserts that, for any efficient algorithm that achieves the task, there exists a knowledge extractor
algorithm that efficiently recovers the said intermediate values.

A number of different extractability assumptions exist in the literature, most of which are specific num-
ber theoretic assumptions (such as several variants of the knowledge of exponent assumption [Dam92]). It
is indeed hard to gain assurance regarding their relative strengths. Abstracting from such specific assump-
tions, one can formulate general notions of extractability for one-way functions and other basic primitives
(see [CD09, Dak09]). That is, say that a function family F is extractable if, given a random f ← F , it is
infeasible to produce y ∈ Image(f) without actually “knowing” x such that f(x) = y. This is expressed
by saying that for any efficient adversary A there is an efficient extractor EA such that, if A(f) = f(x)
for some x, then EA(f) almost always outputs x′ such that f(x′) = f(x). Typically, for such a family

1The problem becomes evident when implementing the PIR using fully-homomorphic encryption; indeed, since any efficient
adversarial strategy can be executed “under the encryption”, such a solution would be as insecure as sending the PCP queries in the
clear.
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to be interesting, F should also have some sort of hardness property, e.g., one-wayness. Assuming that a
certain function family is extractable does not typically fit in he mold of efficiently falsifiable assumptions.
In particular, the impossibility result of Gentry and Wichs [GW11] does not apply to such assumptions.

1.1 Summary of Our Results

• We formulate a general and relatively-natural notion of extractable collision-resistant hash functions
(ECRHs). We then show that if ECRHs exist then the modified construction is a SNARG for NP.
Concretely, we revisit the PCP+MT+PIR approach of [DCL08], and show that it can be modified in a
way that allows us to prove (adaptive) soundness when using an ECRH to construct the Merkle tree.

Furthermore, we show that the construction is a proof of knowledge. We are thus able to obtain a
SNARG of knowledge (SNARK) for NP.

• We propose a candidate ECRH construction, based on a Knowledge of Exponent assumption (that
is a variant of the one found in [Gro10]) and the hardness of taking discrete logs. We also define
proximity ECRHs, a weaker variant of ECRHs that are still sufficient for the construction of SNARKs;
we propose two candidate PECRH constructions, based on knapsack (subset-sum) problems related
to hard problems on lattices. Finally, we show how proximity ECRHs can be further weakened to
obtain a (still sufficient) primitive for which it seems plausible to conjecture that “unstructured” hash
functions such as (randomized) SHA-2 satisfy it.

• We show that existence of SNARKs for NP implies existence of (the weaker variants of) ECRHs,
as well as extractable variants of some other cryptographic primitives; in other words, (proximity)
ECRHs are not only sufficient but also necessary for the existence of SNARKs.

• We describe some applications of SNARKs: (a) to delegation of computations (even with long delega-
tor input and with worker input), (b) to constructing zero-knowledge SNARKs, and (c) for constructing
succinct non-interactive secure computation (in the common reference string model). See more below.

• We consider the related notion of extractable one-way functions (EOWFs). We formulate two natural
variants of EOWFs and show that as ECRHs they help circumvent previous black-box impossibility
results. Namely, we construct a two-message selective-opening-attack secure commitment scheme
and a 3-round public-coin concurrent zero-knowledge (ZK) argument-of-knowledge, which in turn
implies a 3-round simultaneously-resettable ZK protocol, (all assuming additionally the existence
of enhanced trapdoor permutations). Previous works have shown that (under standard assumptions)
these protocols can not be proven secure from standard assumptions using black-box reductions or
simulation [Pas11, CKPR01].

The rest of the introduction describes these results in more detail. Before proceeding, though, we wish to
highlight a prominent application of SNARGs that further motivates the need for proofs of knowledge.

Delegation of computation and adaptive arguments of knowledge. In the problem of delegation of
computation, which has become ever more relevant with the advent of cloud computing, a client has some
computational task (typically in P) and wishes to delegate the task to an untrusted worker, who responds
with a claimed result along with a proof that the result is correct. Current delegation schemes, such as
[KR06, GKR08, KR09, GGP10, CKV10], require either more than two messages of interaction between the
client and the untrusted worker, or much work to be done by the verifier in a preprocessing stage.
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A SNARG for NP could improve on these by minimizing both interaction and the verifier’s computa-
tional effort. (Note that adaptive soundness of the SNARG seems crucial for this application since a cheating
worker might choose a bogus result of the computation based on the delegators first message.2)

However, the application to delegation schemes brings with it additional security concerns.
For example, the untrusted worker may store a long database z whose short Merkle hash h = MT(z)

is known to the delegator; the delegator may then ask the worker to compute F (z) for some function F .
However, from the delegator’s perspective, merely being convinced that “there exists z̃ such that h = MT(z̃)
and F (z̃) = f” is not enough. The delegator should also be convinced that the worker knows such a z̃, which
implies due to collision resistance of MT that indeed z̃ = z.

Thus, the delegator may not only be interested in establishing that a witness for a claimed theorem
exists, but also want that such a witness can be extracted from a convincing prover. That is, we require proof
of knowledge (or rather, an argument of knowledge) and thus SNARKs (rather than merely SNARGs) are
needed. The ability to efficiently extract a witness for an adaptively-chosen theorem seems almost essential
for making use of a delegation scheme when the untrusted worker is expected to contribute its own input
(such as a database, as in the above example, or a signature, and so on) to a computation.

Another application where adaptive proofs of knowledge are crucial is recursive proof composition,
a technique that has already been shown to enable desirable cryptographic tasks [Val08, CT10, BSW11,
BCCT13].

1.2 ECRHs, SNARKs, and Applications

(i) Extractable collision-resistant hash functions. We start by defining a natural strengthening of collision-
resistant hash functions (CRHs): a function ensembleH = {Hk}k is an extractable CRH (ECRH) if (a) it is
collision-resistant in the standard sense, and (b) it is extractable in the sense that for any efficient adversary
that is able to produce a valid evaluation of the function there is an extractor that is able to produce a
corresponding preimage. More precisely, extractability is defined as follows:

Definition 1. A function ensemble H = {Hk}k mapping {0, 1}`(k) to {0, 1}k is extractable if for any
polynomial-size adversaryA there exists a polynomial-size extractor EA such that for large enough security
parameter k ∈ N and any auxiliary input z ∈ {0, 1}poly(k):

Pr
h←Hk

[
y ← A(h, z)
∃x : h(x) = y

∧ x′ ← E(h, z)
h(x′) 6= y

]
≤ negl(k) .

We do not require that there is an efficient way to tell whether a given string in {0, 1}k is in the image of a
given h ∈ Hk. We note that:

• For extractability and collision resistance (or one-wayness) to coexist, it should be hard to “obliviously
sample images”; in particular, this implies that the image of almost any h ∈ Hk should be sparse in
{0, 1}k, i.e., with cardinality at most 2k−ω(log k). (This remark is a bit over-simplified and not entirely
accurate; see discussion in Section 6.1.)

• For simplicity of exposition, the above definition accounts for the most general case of arbitrary
polynomial-size auxiliary-input; this is, in fact, too strong and cannot be achieved assuming indistin-
guishability obfuscation [BCPR14, BP13]. However, for our main result, we can actually settle for a

2More precisely, this seems to be the case when the worker contributes an input to the computation. In contrast, when the worker
does not contribute any inputs, the delegator can use a SNARG with non-adaptive soundness by requesting two proofs for each bit
of the claimed output.
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relaxed definition that only considers a specific distribution over auxiliary inputs of a-priori bounded
size. See further discussion in Section 6.1.

(ii) From ECRHs to adaptive succinct arguments of knowledge, and back again. We modify the
“PCP+MT+PIR” construction of [DCL08] and show that the modified construction can be proven to be
a SNARK based solely on the existence of ECRHs and PIR schemes with polylogarithmic complexity.3

Theorem 1 (informal). If there exist ECRHs and (appropriate) PIRs then there exist SNARKs (for NP).

A single VGRS in our construction suffices for only logarithmically many proofs; however, since the VGRS
can be succincly generated, the cost of occasionally resending a new one is limited.

We complement Theorem 1 by showing that ECRHs are in fact essential for SNARKs:

Theorem 2 (informal). If there exist SNARKs and (standard) CRHs then there exist ECRHs.

More accurately, we show that SNARKs and CRHs imply a slightly relaxed notion of ECRHs that we call
proximity ECRHs, and which is still sufficient for our construction of SNARKs. To simplify the exposition
of our main results we defer the discussion of the details of this relaxation to Section 1.3.

We also show that SNARKs can be used to construct extractable variants of other cryptographic primitives.
A naı̈ve strategy to obtain this may be to “add a succinct proof of knowledge of a preimage to the output”.
While this strategy does not work as such because the proof may leak secret information, we show that in
many cases this difficulty can be overcome by combining SNARKs with (non-extractable) leakage-resilient
primitives. For example, since CRHs and subexponentially-hard OWFs are leakage-resilient, we obtain:

Theorem 3 (informal). Assume SNARKs and (standard) CRHs exist. Then there exist extractable one-
way functions and extractable computationally hiding and binding commitments. Alternatively, if there
exist SNARKs and (standard) subexponentially-hard one-way functions then there exist extractable one-
way functions. Furthermore, if these functions are one-to-one, then we can construct perfectly-binding
computationally-hiding extractable commitments.

We believe that this approach merits further investigation. One question, for example, is whether extractable
pseudorandom generators and extractable pseudorandom functions can be constructed from generic ex-
tractable primitives (as was asked and left open in [CD09]). Seemingly, our SNARK-based approach can
be used to obtain the weaker variants of extractable pseudo-entropy generators and pseudo-entropy func-
tions, by relying on previous results regarding leakage-resilience of PRGs [DK08, RTTV08, GW11] and
leakage-resilient pseudo-entropy functions [BHK11].

(iii) Applications of SNARKs. As discussed earlier, SNARKs directly enable non-interactive delegation
of computation, including settings where the delegator has a very long input or where the worker supplies
his own input to the computation. An important property of SNARK-based delegation is that it does not
require expensive preprocessing and (as a result) soundness can be maintained even when the prover learns
the verifier’s responses between successive delegation sessions because a fresh VGRS can simply be resent
for each time.

In addition, SNARKs can be used to obtain zkSNARKs, that is, zero-knowledge succinct non-interactive
arguments of knowledge in the common reference string (CRS) model. We provide two constructions to do
so, depending on whether the succinct argument is “on top or below” the NIZK.

3More precisely, we shall require PIR schemes with polylogarithmic complexity where a fixed polynomial bound for the
database size is not required by the query algorithm. See Section 1.4 for more details.
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In an additional step, it is possible to obtain non-interactive two party secure computation (against ma-
licious adversaries) between a powerful sender and a weak receiver. To do so, start with a non-interactive
two-party computation protocol that is secure against “almost” honest-but-curious adversaries, who are al-
lowed to choose arbitrary randomness; such protocols are known to exist, e.g., based on fully-homomorphic
encryption [Gen09]. Then, to make the protocol resilient to malicious adversaries, let the sender attach to
his message a zkSNARK that his computation was performed honestly. The succinct receiver can use a
standard NIZK to prove knowledge of his inputs. As for the sender, if his input is short he can also prove
knowledge using a standard NIZK (as also done in [DFH11]); otherwise, he must rely on the zkSNARK
proof of knowledge. In particular, in the latter case, we only get non-concurrent security (rather than UC
security) as the simulation relies on the non-black-box SNARK extractor.

In summary, SNARKs can be used for a number of applications:

Corollary 1.2 (informal). If there exist SNARKs, then:

1. There exist non-interactive delegation schemes where the verifier’s response need not remain secret.

(Furthermore, there are such schemes that allow the worker to contribute it own input, as well as ones
allowing to delegate memory and data streams [CTY10, CKLR11].)

2. In the CRS model, there exist zero-knowledge SNARKs.

3. In the CRS model, there exist succinct non-interactive secure computation schemes (with UC security
for short sender input and non-concurrent security for long sender input).

For more details on the aforementioned applications see the respective sections Section 9, Section 10.1, and
Section 10.2.

(iii) Applications of EOWFs. As demonstrated by the construction of SNARK from ECRHs, extractable
functions can be used to circumvent impossibilities of constructing certain primitives using black-box secu-
rity reductions. We explore this direction, and show that new feasibility results can be shown using EOWFs.
Specifically, we first formalize a stronger variant of EOWFs—called strong EOWFs (sEOWF)—where ev-
ery function in the ensemble is one-to-one and every sequence of functions is one-way. Using sEOWFs,
we construct a two-message selective-opening-attack-secure (SOA-secure) commitment scheme. It was
shown by Pass [Pas11] that such a commitment scheme cannot be proven secure via black-box security
reductions from any assumptions that can be formulated as a game between a challenger and an adversary
(a.k.a. falsifiable assumptions [Nao03]) of bounded rounds. In contrast, our scheme is proven secure using
a non-black-box reduction from enhanced trapdoor permutations.

Furthermore, sEOWFs can be used to construct a 3-round zero-knowledge argument of knowledge
(ZKAOK), and if the sEOWFs are “concurrently extractable” then the protocol is also concurrent ZK. Addi-
tionally, the 3-round protocol is public-coin; thus by applying standard transformations [BGGL01, DGS09],
it yields a 3-round simultaneously resettable ZK protocol. It is known that these protocols do not admit
black-box simulation [GK96, CKPR01]; our constructions indeed have non-black-box simulation utilizing
the extractability of EOWFs.
For more details on the definitions and applications of (variants of) EOWFs see Section 11.

1.3 ECRH Candidate Constructions and Sufficient Relaxations

We propose a natural candidate ECRH based on a generalization of the knowledge of exponent assumption
in large algebraic groups [Dam92]. The assumption, which we call t-Knowledge-of-Exponent Assumption
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(or t-KEA for short) proceeds as follows. For any polynomial-size adversary, there exists a polynomial-size
extractor such that, on input g1, . . . , gt, g

α
1 , . . . , g

α
t where each gi is a random generator (of an appropriate

group) and α is a random exponent: if the adversary outputs (f, fα), then the extractor finds a vector of
“coefficients” (x1, . . . , xt) such that f =

∏
i∈[t] g

xi
i . This assumption can be viewed as a simplified version

of the assumption used by Groth in [Gro10] (the formal relation between the assumptions is discussed in
Section 8.1). Similarly to Groth’s assumption, t-KEA holds in the generic group model.

Theorem 4 (informal). If t-KEA holds in a group where taking discrete logs is hard, then there exists an
ECRH whose compression is proportional to t.

The construction is straightforward: the function family is parameterized by (g1, . . . , gt, g
α
1 , . . . , g

α
t ). Given

input (x1, . . . , xt), the function outputs the two group elements (
∏
i∈[t] g

xi
i ,
∏
i∈[t] g

αxi
i ). Extractability

directly follows from t-KEA, while collision resistance is ensured by the hardness of taking discrete logs.
See Section 8.1 for more details.

Next we proceed to propose ECRH candidates that are based on the subset sum problem in finite groups.
Here, however, we are only able to construct candidates for somewhat weaker variants of ECRHs that are
still sufficient for constructing SNARKs. While these variants are as not elegantly and concisely stated as
the “vanilla”ECRH notion, they are still natural. Furthermore, we can show that these variants are necessary
for SNARKs. We next proceed to formulate these weaker variants.

1.3.1 Proximity ECRH

We say thatH defined on domainD is a proximity ECRH (PECRH) if (for any h ∈ H) there exist a reflexive
“proximity” relation

h
≈ on values in the range and an extension of the hash to a larger domain Dh ⊇ D

fulfilling the following: (a) proximity collision resistance: given h← H, it is hard to find x, x′ ∈ Dh such
that h(x)

h
≈ h(x′), and (b) proximity extraction: for any poly-time adversary A there exists an extractor

E such that, whenever A outputs y ∈ h(D), E outputs x ∈ Dh such that h(x)
h
≈ y. (See Definition 6.2 for

further details.)

Harder to find collisions, easier to extract. The notions of proximity extraction and proximity collision
resistance are the same as standard extraction and collision resistance in the “strict” case, where x

h
≈ y is

the equality relation and the domain is not extended (Dh = {0, 1}`(k), h̄ = h).
However, in general, proximity collision resistance is stronger than (standard) collision resistance, be-

cause even “near collisions” (i.e., x 6= y such that h̄(x)
h
≈ h̄(y)) must not be efficiently discoverable, not

even over the extended domain Dh. Conversely, proximity extraction is weaker than (standard) extraction,
since it suffices that the extractor finds a point mapping merely close the the adversary’s output (i.e., finds x′

such that h̄(x′)
h
≈ y); moreover, it suffices that the point is in the extended domain Dh. Thus, the notion of

PECRH captures another, somewhat more flexible tradeoff between the requirements of extractability and
collision resistance.

We show that any point on this tradeoff (i.e., any choice of
h
≈,Dh and h̄ fulfilling the conditions) suffices

for the construction of SNARKs:

Theorem 5 (informal). If there exist PECRHs and (appropriate) PIRs then there exist SNARKs for NP.

Candidate PECRHs based on knapsack (subset sum) problems. A necessary property of ECRHs is that
the image should be sparse; knapsack-based CRHs, which typically rely on a proper algebraic structure,
can often be tweaked to obtain this essential property. For example, in the t-KEA-based ECRH that we
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already discussed, we start from a standard knapsack hash f =
∏
i∈[t] g

xi
i and extend it to a “sparsified”

knapsack hash (f, fα) for a secret α. While for t-KEA this step is enough for plausibly assuming precise
extractability (leading to a full fledged ECRH), for other knapsack-based CRHs this is not the case.

For example, let us consider the task of sparsifying modular subset-sum [Reg03]. Here, the hash function
is given by random coefficients l1, . . . , lt ∈ ZN and the hash of x ∈ {0, 1}t is simply the corresponding
modular subset-sum

∑
i:xi=1 li mod N . A standard way to sparsify the function is, instead of drawing

random coefficients, drawing them from a distribution of noisy multiples of some secret integer. However,
by doing so, we lose the “algebraic structure” of the problem. Hence, now we also have to deal with new
“oblivious image-sampling attacks” that exploit the noisy structure. For example, slightly perturbing an
honestly computed subset-sum is likely to “hit” another image of the function. This is where the relaxed
notion of proximity extraction comes into play: it allows the extractor to output the preimage of the nearby
(honest) image and, more generally, to thwart “perturbation attacks”.

Sparsification of modular subset-sum in fact introduces additional problems. For instance, an attacker
may take “small-norm” combinations of the coefficients that are not 0/1 and still obtain an element in the
image (e.g., if there are two even coefficients); to account for this, we need to further relax the notion
of extraction by allowing the extractor to output a preimage in an extended domain, while ensuring that
(proximity) collision resistance still holds for the extended domain too. Additionally, in some cases a direct
naı̈ve sparsification is not sufficient and we also need to consider amplified knapsacks.

The relaxations of extractability discussed above have to be matched by a corresponding strengthening
of collision resistance following the definition of PECRH. Fortunately, this can still be done under standard
hardness assumptions.

A similar approach can be taken in order to sparsify the modular matrix subset-sum CRH [Ajt96,
GGH96], resulting in a a noisy inner-product knapsack hash based on the LWE assumption [Reg05]. Over-
all, we propose three candidate for PECRHs:

Theorem 6 (informal). There exist PECRHs under any of the following assumptions:

1. A Knowledge of Knapsack of Exponent assumption (which in fact follows from t-KEA) and hardness
of discrete logs.

2. A Knowledge of Knapsack of Noisy Multiples assumption and lattice assumptions.

3. A Knowledge of Knapsack of Noisy Inner Products assumption and learning with errors.

1.3.2 Weak PECRHs4

Our second weakening is essentially orthogonal to the first one and relates to the condition that determines
when the extractor has to “work”. The ECRH and PECRH definitions required extraction whenever the ad-
versary outputs a valid image; here the sparseness of the image appears to be key. In particular, unstructured
CRHs where one can sample elements in the image obliviously of their preimage have no hope to be either
ECRH or PECRH. However, for our purposes it seems sufficient to only require the extractor to “work”
when the adversary outputs an image y together with extra encoding of a preimage that can be verified given
proper trapdoor information; oblivious image-sampling, on its own, is no longer sufficient for failing the
extractor.

More formally, a familyH of functions is weakly extractable if for any efficient adversaryA there exists
an efficient extractor EHA such that for any auxiliary input z and efficient decoder Y , the probability of the

4This further weakening was inspired by private communication with Ivan Damgård.
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event that A outputs, given z and a random function h from the family, values y and e such that: (a) EHA ,
given z and h, does not find a preimage of y, but (b) Y , given e, does find a preimage of y, is negligible. See
Definition 6.3 for further details.

We stress that the decoder circuit Y is allowed to arbitrarily depend on the auxiliary input z. This is Y’s
advantage over the extractor EHA (that must be efficient in z); in particular, the extractability condition is not
trivially true. Another interpretation of the above definition is the following: The definition requires that
there exists a single extractor EHA that does as well as any other efficient extractor (that may depend on z);
namely, any given decoder circuit Y can be thought of as a candidate extractor and the extractor EHA has to
succeed whenever Y does despite being efficient in the auxiliary input. In particular, whenever extraction is
possible when given a trapdoor information related to the auxiliary input, it should also be possible without
such trapdoor information. Indeed, the ability of the extractor to forgo the trapdoor is the key to a successful
use of the above definition in our construction of SNARKs:

Theorem 7 (informal). If there exist weak PECRHs and (appropriate) PIRs then there exist SNARKs for NP.

Unlike ECRHs and PECRHs, weak ECRHs may in principle not require sparsity of the image or al-
gebraic structure. For example, it may be plausible to assume that (a properly keyed) SHA-2 is a weak
ECRHs.

We remark that the notion of weak ECRH is somewhat reminiscent of the notion of preimage awareness
considered by Dodis et al. [DRS09]. Their notion, however, is set in an idealized model where the hash
function can only be accessed as a black-box. When ported to such an ideal model, our definition can
be viewed as a strengthening of the [DRS09] definition to account for auxiliary input. Similarly to the
[DRS09] definition, the idealized version of our definition also holds in the (compressing) random oracle
model. (We do not know if an idealized ECRH or PECRH can be constructed unconditionally in the random
oracle model; however, assuming the existence of standard CRHs, so that a concise description for a CRH
is available, it is possible to construct PECRHs in the random oracle model using CS proofs of knowledge.)

1.4 High-Level Proof Strategy for Theorem 1

In this section we provide some high level intuition for the proof of our main technical result: showing
that the existence of ECRHs and (appropriate) PIR schemes imply the existence of SNARKs. At a very
high-level, our construction follows the “PCP+MT+PIR approach” of [DCL08], which in turn is build upon
Kilian’s 4-message succinct interactive argument system [Kil92]. So let’s start by reviewing them.

Kilian’s Construction: In [Kil92], Kilian presents a succinct special zero-knowledge argument for NP,
(Pk, Vk), where the prover Pk uses a Merkle tree in order to provide to Vk “virtual access” to a PCP proof.
More precisely, to prove a statement x ∈ L, the verifier Vk starts by sending the prover a CRHF H . The
prover on private input a witness w, constructs a PCP-proof π. In order to yield efficient verifiability, Pk
cannot send Vk the witnessw nor π. Rather, Pk builds a Merkle tree with the proof π as the leaf values (using
the collision-free hash function H from the verifier) producing a root value rv. It then “commits” itself to
π by sending rv to the verifier Vk. The verifier Vk tosses a fixed polynomial number of random coins r and
sends them to the prover. Both the prover Pk and the verifier Vk computes the PCP queries by internally
running the PCP verifier on input x and r. The prover Pk sends back answers to those queries, together
with “proofs”—called authentication paths—that each answer is consistent with the root of the Merkle tree.
Finally, the verifier accepts if all the answers are consistent with the root value rv, and convinces the PCP
verifier.

Killan’s protocol is succint, because the verifier, invoking the PCP verifier, makes only a fixed polyno-
mial number of queries and each query is answered with an authentication path of some fixed polynomial
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length, all independent of the length of the witness. At a very high-level, the soundness follows from the
fact that the Merkle tree provides the verifier “virtual access” to the PCP proof, in the sense that given the
root value of the Merkle tree, for every query q, it is infeasible for a cheating prover to answer q differently
depending on the queries. Therefore, interacting with the prover is “equivalent” to having access to a PCP
proof oracle. Then it follows from the soundness of the PCP system that Kilian’s protocol is sound.

The “PCP+MT+PIR approach”: The work of [DCL08] proposed the “PCP+MT+PIR approach” to “squash”
Kilian’s four-message protocol into a two-message protocol as follows. In Kilian’s protocol, the verifier ob-
tains from the prover a Merkle hash to a PCP oracle and only then asks the prover to locally open the queries
requested by the PCP verifier. In [DCL08]’s protocol, the verifier sends also in the first message, a PIR-
encrypted version of the PCP queries (the first message of a PIR scheme can be viewed as an encryption to
the queries); the prover then prepares the required PCP oracle, computes and sends a Merkle hash of it, and
answers the verifier’s queries by replying to the PIR queries according to a database that contains the answer
(as well as the authentication path with respect to the Merkle hash) to every possible verifier’s query.

[DCL08] proved the soundness of the above scheme based on the assumption that any convincing prover
P∗ must essentially behave as an honest prover: Namely, if a proof is accepting, then the prover must have
in mind a full PCP oracle π, which maps under the Merkle hash procedure to the claimed root, and such a
proof π can be obtained by an efficient extractor EP∗ .5 [DCL08] then showed that, if this is the case, the
extracted string π must be consistent with the answers the prover provides to the PCP queries, for otherwise
the extractor can be used to obtain collisions of the hash function underlying the Merkle tree. Therefore,
the extracted string π also passes the PCP test, where the queries are encrypted under PIR. Then, it follows
from the privacy of the PIR scheme that, the string π is “computationally independent” of the query. Hence
from the soundness of PCP, they conclude that the statement must be true.

1.4.1 The main challenges and our solutions.

Our goal is to obtain the stronger notion of SNARK, based on the more restricted assumption that ECRHs
exist. At a very high-level, our construction follows the “PCP+MT+PIR approach” but replacing the CRH
underlying the Merkle tree in their construction with an ECRH. Unlike[DCL08] which directly assumed the
“global extraction” guarantees from a Merkle tree, we show that we can lift the “local extraction” guarantee
provided by the ECRH, to the “global extraction” guarantee on the entire Merkle tree. More precisely,
by relying on the (local) ECRH extraction guarantee, we show that for every convincing prover, there is
an extractor that can efficiently extract a PCP proof π̃ that is “sufficiently satisfying” (i.e., a PCP verifier
given π̃ accepts with high probability). Furthermore, to obtain the argument of knowledge property, we
instantiate the underlying PCP system with PCPs of knowledge, which allows for extracting a witness from
any sufficiently-satisfying proof oracle. (See details for the requisite PCP system in Section 3.7.) We next
describe the high-level ideas for achieving global extraction guarantees from the local extraction of ECRHs.
Full details are contained in Section 5, and the construction is summarized in Figure 1.

From local to global extraction. The main technical challenge lies in establishing a “global” knowledge
feature (i.e., informally, extraction of a sufficiently satisfying proof π̃ from a convincing prover given that it
outputs the root of a Merkle tree) from a very “local” one (namely, extraction of a preimage from a machine
that outputs a valid hash value of the ECRH h). A natural attempt is to start from the root of the Merkle tree

5 Note that, as originally formulated, the assumption of [DCL08] seems to be false; indeed, a malicious prover can always start
from a good PCP oracle π for a true statement and compute an “almost full” Merkle hash on π, skipping very few branches —
so one should at least formulate an analogous but more plausible assumption by only requiring “sufficient consistency” with the
claimed root.
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and extract the values of the intermediate nodes of the Merkle tree layer by layer towards the leaves; that is,
to extract a candidate proof π̃ by recursively applying the ECRH-extractor to extract the entire Merkle tree
M̃T, where the leaves should correspond to π̃.

However, recursively composing ECRH-extractors encounters a difficulty: each time applying the ECRH
extraction incurs a polynomial blowup in extraction time. Therefore, (without making a very strong assump-
tion on the amount of “blowup” incurred by the extractor,) we can only apply the ECRH extraction recur-
sively a constant number of times; as a result, we can only extract from Merkle trees of a constant depth.
We address this problem by opting to use a “squashed” Merkle tree, where the fan-in of each intermediate
node is polynomial rather than binary as in the traditional case. Consequently, for every NP-statement, since
its PCP proof is of polynomial length, the depth ` of the Merkle tree built over the PCP proof is a constant.
Then, we can apply the ECRH extraction procedure recursively to extract the whole Merkle tree, while
overall incurring polynomial overhead in the size of the extractor.

A technical problem that arises when applying the above recursive extraction procedure is that we might
not be able to extract out a full Merkle tree (where all paths have the same length). More precisely, after
applying the ECRH extraction recursively ` times, we obtain the values for the intermediate nodes up to
level ` (thinking about the root as level zero). However, at each intermediate node, when applying the
ECRH extractor, extraction could have failed to extract a preimage if the given intermediate node is not
a valid hash image under the ECRH. Hence, the extracted tree might be at some points “disconnected”.6

Nevertheless, we show (relying solely on ECRH extraction) that the leaves in the extracted (perhaps partial)
tree connected to the root are sufficiently satisfying for witness-extraction.

Proof at high level. Given the foregoing discussion, we show the correctness of the extraction procedure in
two steps:

• Step 1: “local consistency”. We first show that whenever the verifier is convinced, the recursively
extracted string π̃ contains valid answers to the verifier’s PCP queries specified in its PIR queries.
Otherwise, it is possible to find collisions within the ECRH h as follows. A collision finder could
simulate the PIR-encryption on its own, invoke both the extraction procedure and the prover, and
obtain two paths that map to the same root but must differ somewhere (as one is satisfying and the
other is not) and therefore obtain a collision.

• Step 2: “from local to global consistency”. Next, using the privacy guarantees of the PIR scheme, we
show that, whenever we extract a set of leaves that are satisfying with respect to the PIR-encrypted
queries, the same set of leaves must also be satisfying for almost all other possible PCP queries and
is thus sufficient for witness-extraction. Indeed, if this was not the case then we would be able to use
the polynomial-size extraction circuit to break the semantic security of the PIR.

For further details of the proof we refer the reader to Section 5.2.
Our construction ensures that the communication complexity and the verifier’s time complexity are

bounded by a polynomial in the security parameter, the size of the instance, and the logarithm of the time it
takes to verify a valid witness for the instance; furthermore, this polynomial is independent of the specific
NP language at hand.

On Adaptive Soundness: The soundness requirement of SNARK prevents a cheating prover from proving
any false statement even if it is allowed to choose the statement after seeing the verifier’s first message
(or, rather, the verifier-generated reference string). In the above construction, the verfier sends in the fisrt
message the PIR-encrypted PCP queries. However, in general, the PCP queries may depend on the statement

6This captures for example the behavior of the prover violating the [DCL08] assumption described above.
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to be proven, and hence limit the construction to be only statically sound. To resolve this problem, we modify
the above protocol as follows: In the first message, the verifier PIR-encrypt the PCP verifier’s random coins
rather than its actual queries (as the former are independent of the statement), and require the prover to
prepare an appropriate database (containing all the possible answers for each setting of the coins, rather
than a proof oracle). One subtle problem with this approach is that in general, the number of random coins
tossed by the PIR verifier may depend on the size of the database (or a known upper bound on the size of
the database). Therefore, to handle the case where no a-priori bound on the time of verifying the witness is
given, and thus no a-priori bound on the size of the corresponding PCP oracle (which is the database), we
require that the PIR supports random queries with respect to a-priori unknown database size.

On Universal Soundness: As for soundness, our main construction is not universal, in the sense that the
verifier needs to know a constant c such that the verification time of an instance y does not exceed |y|c.
Fortunately, this very weak dependence on the specific NP language at hand (weak because it does not even
depend on the Turing machine verifying witnesses) does not affect the application to delegation of computa-
tion, because the delegator, having in mind a specific poly-time task to delegate, knows c. Furthermore, we
also show how, by assuming the existence of exponentially-hard one-way functions, our main construction
can be extended to be a universal SNARK, that is, a single protocol that can simultaneously work with all
NP languages.

1.5 Discussion

We conclude the introduction with an attempt to briefly motivate the premise of this work. Our main contri-
bution can be seen as providing additional understanding of the security of a construction that has frustrated
researchers. Towards this goal we prove strong security properties of the scheme based on a new cryp-
tographic primitive, ECRHs, that, while not fitting into the mold of “standard cryptographic primitives or
assumptions”, can be defined concisely and investigated separately.

Furthermore, we investigate a number of relaxations of ECRHs as well as a number of candidate con-
structions that have quite different underlying properties. Looking beyond the context of our particular
protocol, this work can be seen as another step towards understanding the nature of extractability assump-
tions and their power in cryptography.

1.6 Organization

In Section 2, we discuss more related work. In Section 3, we give basic definitions for the cryptographic
primitives that we use (along with any non-standard properties that we may need). In Section 4, we give
the definitions for SNARKs. In Section 5, we give our main construction showing that ECRHs, along with
appropriate PIRs, imply SNARKs. In Section 6, we discuss two relaxations of ECRHs, namely PECRHs
and weak PECRHs, that still suffice for SNARKs. In Section 7, we explain how SNARKs imply proximity
PECRHs, thus showing an almost tight relation between the existence of SNARKs and PECRHs. In Sec-
tion 8, we propose candidate constructions for ECRHs and PECRHs. In Section 9, we show how to obtain
zero-knowledge SNARKs. In Section 10, we provide further discussion for how SNARKs can be used in the
setting of delegation of computation and secure computation. Finally, in Section 11 we define two notions
of extractable one-way functions and show how to use them to construct, respectively, non-interactive (two-
message) selective-opening-attack secure commitments and 3-round concurrent zero-knowledge protocols.
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2 Other Related Work

Knowledge assumptions. A popular class of knowledge assumptions, which have been successfully used
to solve a number of (at times notoriously open) cryptographic problems, is that of Knowledge of Exponent
assumptions. These have the following flavor: if an efficient circuit, given the description of a finite group
along with some other public information, computes a list of group elements that satisfies a certain algebraic
relation, then there exists a knowledge extractor that outputs some related values that “explain” how the
public information was put together to satisfy the relation. Most such assumptions have been proven secure
against generic algorithms (see Nechaev [Nec94], Shoup [Sho97], and Dent [Den06]), thus offering some
evidence for their truth. In the following we briefly survey prior works which, like ours, relied on Knowledge
of Exponent assumptions.

Damgård [Dam92] first introduced a Knowledge of Exponent assumption to construct a CCA-secure
encryption scheme. Later, Hada and Tanaka [HT98] showed how to use two Knowledge of Exponent as-
sumptions to construct the first three-round zero-knowledge argument. Bellare and Palacio [BP04] then
showed that one of the assumptions of [HT98] was likely to be false, and proposed a modified assumption,
using which they constructed a three-round zero-knowledge argument.

More recently, Abe and Fehr [AF07] extended the assumption of [BP04] to construct the first perfect
NIZK for NP with “full” adaptive soundness. Prabhakaran and Xue [PX09] constructed statistically-hiding
sets for trapdoor DDH groups [DG06] using a new Knowledge of Exponent assumption. Gennaro et al.
[GKR10] used another Knowledge of Exponent assumption (with an interactive flavor) to prove that a modi-
fied version of the Okamoto-Tanaka key-agreement protocol [OT89] satisfies perfect forward secrecy against
fully active attackers.

In a different direction, Canetti and Dakdouk [CD08, CD09, Dak09] study extractable functions. Roughly,
a function f is extractable if finding a value x in the image of f implies knowledge of a preimage of x. The
motivation of Canetti and Dakdouk for introducing extractable functions is to capture the abstract essence of
prior knowledge assumptions, and to formalize the “knowledge of query” property that is sometimes used in
proofs in the Random Oracle Model. They also study which security reductions are “knowledge-preserving”
(e.g., whether it possible to obtain extractable commitment schemes from extractable one-way functions).

[BCPR14, BP13] show that, assuming indistinguishability obfuscation [BGI+12], extractable one-way
functions (and thus also ECRHs) cannot be constructed against adversaries with arbitrary polynomial-size
auxiliary-input if the (efficient) extractor is universally fixed before the adversary’s auxiliary input. On
the other hand, they show that, under standard assumptions, extractable one-way functions are achievable
against adversaries with a-prori bounded auxiliary input. (It is still not known whether such ECRHs can also
be constructed under standard assumptions).

Prior (somewhat) succinct arguments from Knowledge of Exponent assumptions. Knowledge of Ex-
ponent assumptions have been used to obtain somewhat succinct arguments, in the sense the non-interactive
proof is short, but the verifier’s running time is long.

Recently, Groth [Gro10] introduced a family of knowledge of expenonent assumptions, generalizing
those of [AF07], and used them to construct extractable length-reducing commitments, as a building block
for short non-interactive perfect zero-knowledge arguments system for circuit satisfiability. These arguments
have very succinct proofs (independent of the circuit size), though the public key is large: quadratic in the
size of the circuit. Groth’s assumption holds in the generic group model. For a comparison between our
t-KEA assumption and Groth’s assumptions see Section 8.1.

Mie [Mie08] observes that the PCP+MT+PIR approach works as long as the PIR scheme is database
aware — essentially, a prover that is able to provide valid answers to PIR queries must “know” their de-
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crypted values, or, equivalently, must “know” a database consistent with those answers (by arbitrarily setting
the rest of the database). Mie then shows how to make the PIR scheme of Gentry and Ramzan [GR05] PIR-
aware, based on Damgård’s Knowledge of Exponent assumption [Dam92]; unfortunately, while the commu-
nication complexity is very low, the receiver in [GR05], and thus also the verifier in [Mie08], are inefficient
relative to the database size. We note that PIR schemes with database awareness can be constructed directly
from ECRHs (without going through the PCPs of a SNARK construction); moreover, if one is willing to use
PCPs to obtain a SNARK, one would then be able to obtain various stronger notions of database awareness.

Delegation of computation. An important application of succinct arguments is delegation of computation
schemes, where one usually also cares about privacy, and not only soundness, guarantees. Specifically, a
succinct argument can be usually combined in a trivial way with fully-homomorphic encryption [Gen09] (in
order to ensure privacy) to obtain a delegation scheme where the delegator runs in time polylogarithmic in
the running time of the computation (see Section 10.1).

Within the setting of delegation, however, where the same weak delegator may be asking a power-
ful untrusted worker to evaluate an expensive function on many different inputs, a weaker preprocessing
approach may still be meaningful. In such a setting, the delegator performs a one-time function-specific
expensive setup phase, followed by inexpensive input-specific delegations to amortize the initial expensive
phase. Indeed, in the preprocessing setting a number of prior works have already achieved constructions
where the online stage is only two messages [GGP10, CKV10, AIK10]. These constructions do not al-
low for an untrusted worker to contribute his own input to the computation, namely they are “P-delegation
schemes” rather than “NP-delegation schemes”. Note that all of these works do not rely on any knowledge
assumption; indeed, the impossibility results of [GW11] only apply for NP and not for P.

However, even given that the preprocessing model is very strong, all of the mentioned works maintain
soundness over many delegations only as long as the verifier’s answers remain secret. (A notable exception
is the work of Benabbas et al. [BGV11], though their constructions are not generic, and are only for specific
functionalities such as polynomial functions.)

Goldwasser et al. [GKR08] construct interactive proofs for log-space uniform NC where the verifier run-
ning time is quasi-linear. When combining [GKR08] with the PIR-based squashing technique of Kalai and
Raz [KR06], one can obtain a succinct two-message delegation scheme. Canetti et al. [CRR11] introduce
an alternative way of squashing [GKR08], in the preprocessing setting; their scheme is of the public coin
type and hence the verifier’s answers need not remain secret (another bonus is that the preprocessing state is
publicly verifiable and can thus be used by anyone).

3 Preliminaries

In this section we give basic definitions for the cryptographic primitives that we use (along with any non-
standard properties that we may need). Throughout, negl(k) is any negligible function in k.

3.1 Interactive Proofs, Zero Knowledge and Witness Indistinguishability

We use the standard definitions of interactive proofs (and interactive Turing machines) [GMR89] and argu-
ments (also known as computationally-sound proofs) [BCC88]. Given a pair of interactive Turing machines,
P and V , we denote by 〈P (w), V 〉(x) the random variable representing the final (local) output of V , on com-
mon input x, when interacting with machine P with private inputw, when the random input to each machine
is uniformly and independently chosen.
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Definition 3.1 (Interactive Proof System). A pair (P, V ) of interactive machines is called an interactive
proof system for a language L if there is a negligible function ν(·) such that the following two conditions
hold :

• Completeness: For every x ∈ L and w ∈ RL(x), Pr[〈P (w), V 〉(x) = 1] = 1.

• Soundness: For every x ∈ {0, 1}n \ L, and every interactive machine B, Pr[〈B, V 〉(x) = 1] ≤ ν(n)

In case that the soundness condition is required to hold only with respect to a computationally bounded
prover, the pair 〈P, V 〉 is called an interactive argument system.

Zero-Knowledge. An interactive proof is said to be zero-knowledge (ZK) if a verifier V learns nothing
beyond the validity of the assertion being proved. Because “feasible computation” is typically captured
through the notion of probabilistic polynomial-time, the ZK property is formalized by requiring that the
output of every (possibly malicious) verifier interacting with the honest prover P can be simulated by a
probabilistic (expected) polynomial-time machine S, known as the the simulator. The idea behind this
definition is that the anyone can learn by himself, by running the simulator S, whatever V ∗ learns by
interacting with P .

The notion of ZK was introduced and formalized by Goldwasser, Micali and Rackoff in [GMR89]. We
present their definition below.

Definition 3.2 (ZK). Let L be a language in NP, RL a witness relation for L, (P, V ) an interactive
proof (argument) system for L. We say that (P, V ) is statistical/computational ZK, if for every prob-
abilistic polynomial-time interactive machine V there exists a probabilistic algorithm S whose expected
running-time is polynomial in the length of its first input, such that the following ensembles are statistically
close/computationally indistinguishable over L.

•
{

ViewV [〈P (y), V (z)〉(x)]
}
n∈N,x∈{0,1}n∩L,y∈RL(x),z∈{0,1}∗

•
{
S(x, z)

}
n∈N,x∈{0,1}n∩L,y∈RL(x),z∈{0,1}∗

where View[〈P (y), V (z)〉(x)] denote the random variable describing the view of V in interaction with P
on common input x and private inputs y and z respectively.

Witness-Indistinguishable Proofs. An interactive proof is said to be witness indistinguishable (WI) if
the verifier’s output is “computationally independent” of the witness used by the prover for proving the
statement. In this context, we focus on languages L ∈ NP with a corresponding witness relation RL.
Namely, we consider interactions in which, on common input x, the prover is given a witness in RL(x).
By saying that the output is computationally independent of the witness, we mean that for any two possible
NP-witnesses that could be used by the prover to prove the statement x ∈ L, the corresponding outputs are
computationally indistinguishable.

Definition 3.3 (Witness indistinguishability). Let (P, V ) be an interactive proof system for a language
L ∈ NP . We say that (P, V ) is witness-indistinguishable for RL, if for every probabilistic polynomial-
time interactive machine V ∗ and for every two sequences {w1

n,x}n∈N,x∈L and {w2
n,x}n∈N,x∈L, such that

w1
n,x, w

2
n,x ∈ RL(x) for every x ∈ L ∩ {0, 1}n, the following probability ensembles are computationally

indistinguishable over n ∈ N .

• {ViewV [〈P (w1
n,x), V ∗(z)〉(x)]}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

• {ViewV [〈P (w2
n,x), V ∗(z)〉(x)]}n∈N,x∈L∩{0,1}n,z∈{0,1}∗
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3.2 Proofs and Arguments of Knowledge

Given a language L ∈ NP and an instance x, a proof or argument of knowledge (POK or AOK) not only
convinces the verifier that x ∈ L, but also to demonstrate that the prover possesses an NP-witness for x. This
is formalized by the existence of an extractor: given black-box access to a machine that can successfully
complete the proof or argument of knowledge on input x, the extractor can compute a witness for x.

Definition 3.4 (Proofs and arguments of knowledge). An interactive protocol Π = (P, V ) is a proof of
knowledge (resp. argument of knowledge) of NP-language L with respect to witness relation RL if Π is
indeed an interactive proof (resp. argument) for L. Additionally, there exists a polynomial q, a negligible
function ν, and a PPT oracle machine E, such that for every interactive machine P ∗ (resp. for every
polynomially-sized machine P ∗), every x ∈ L and every auxiliary input z ∈ {0, 1}∗, the following holds:
On input x and oracle access to P ∗(x, z), machine E outputs a string from the RL(x) with probablity at
least q(Pr[〈P ∗(z), V 〉(x) = 1])− ν(|x|). The machine E is called the knowledge extractor.

3.3 Commitment Scheme

A commitment scheme (C,R) consists of a pair of PPT ITMs C and R that interact in a commit stage
and a reveal stage. In this work, we consider commitment schemes that are computationally binding and
computationally hiding. The computational-binding property asserts that the probability that a malicious
commitment, after the interaction with an honest receiver, can decommit to two different values is negligi-
ble. The computational-hiding property guarantees that commitments to any two different values are com-
putationally indistinguishable. (See [Gol01] for a formal definition.) Furthermore, we restrict our attention
to commitment schemes where the reveal phase is non-interactive—the committer decommits to value v by
simply sending a decommitment pair (v, d). One-message statistically-binding commitment schemes can be
constructed using any one-to-one one-way function (see Section 4.4.1 of [Gol01]). Allowing some minimal
interaction (in which the receiver first sends a single random initialization message), statistically-binding
commitment schemes can be obtained from any one-way function [Nao91, HILL99].

3.4 Collision-Resistant Hashes

A collision-resistant hash (CRH) is a function ensemble for which it is hard to find two inputs that map to
the same output. Formally:

Definition 3.5. A function ensemble H is a CRH if it is collision-resistant in the following sense: for every
polynomial-size adversary A,

Pr
h←Hk

[
x 6= y

h(x) = h(y)
: (x, y)← A(h)

]
≤ negl(k) .

We say that a function ensemble H is (`(k), k)-compressing if each h ∈ Hk maps strings of length `(k) to
strings of length k < `(k).

3.5 Merkle Trees

Merkle tree (MT) hashing [Mer89] enables a party to use a CRH to compute a succinct commitment to
a long string π and later to locally open to any bit of π (again in a succinct manner). Specifically, given
a function h : {0, 1}`(k) → {0, 1}k randomly drawn from a CRH ensemble, the committer divides π into
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|π|/`(k) parts (padding with 0’s if needed) and evaluates h on each of these; the same operation is applied
to the resulting string, and so on, until one reaches the single k-bit root. For |π| = (`/k)d+1, this results in
a tree of depth d, whose nodes are all the intermediate k-bit hash images. An opening to a leaf in π (or any
bit within it) includes all the nodes and their siblings along the path from the root to the leaf, and is of size
`d. Typically, `(k) = 2k, resulting in a binary tree of depth log π. In this work, we shall also be interested
in “wide trees” with polynomial fan-in (relying on CRHs with polynomial compression); see Section 5.1.

3.6 Private Information Retrieval

A (single-server) polylogarithmic private information retrieval (PIR) scheme [CMS99] consists of a triple
of algorithms (PEnc,PEval,PDec) where:

• PEncR(1k, i) outputs an encryption Ci of query i to a database DB using randomness R,

• PEval(DB, Ci) outputs a succinct blob ei “containing” the answer DB[i], and

• PDecR(ei) decrypts the blob ei to an answer DB[i].

Formally:

Definition 3.6. A triple of algorithms (PEnc,PEval,PDec) is a PIR if it has the following properties:

1. Correctness. For any database DB, any query i ∈ {1, . . . , |DB|}, and security parameter k ∈ N,

Pr
R

[
PDecR(ei) = DB[i] :

Ci ← PEncR(1k, i)
ei ← PEval(DB, Ci)

]
= 1 ,

where PEval(DB, Ci) runs in poly(k, |DB|) time.

2. Succinctness. The running time of both PEncR(1k, i) and PEval(DB, Ci) is bounded by

poly(k, log |DB|) .

In particular, the sizes of the two messages Ci and ei are also so bounded.

3. Semantic security. The query encryption is semantically secure for multiple queries, i.e., for any
polynomial-size A, all large enough security parameter k ∈ N and any two tuples of queries i =
(i1 · · · iq), i′ = (i′1 · · · i′q) ∈ {0, 1}poly(k),

Pr
[
A(PEncR(1k, i)) = 1

]
− Pr

[
A(PEncR(1k, i′)) = 1

]
≤ negl(k) ,

where PEncR(1k, i) the coordinate-wise encryption the tuple i.

PIR schemes with the above properties have been constructed under various hardness assumptions such as
ΦHA [CMS99] or LWE [BV11].

A-priori unknown database size. In certain cases, we want the server to be able to specify the database DB
only after receiving the query. In such cases, the client might not known the database’s size when generating
his query, but will only know some superpolynomial bound, such as |DB| ≤ 2log2 k. In this case we require
that the PIR scheme allows the server to deduce from an encrypted (long) query r ∈ {0, 1}log2 k a shorter
ρ-bit query r̂ ∈ {0, 1}ρ that works for |DB| = 2ρ. In FHE-based schemes, such as the one in [BV11]
(which is in turn based on LWE), this extra property can be easily supported. In other cases (as in delegation
of computation), even if an adversary is adaptive, an a-priori bound on the database size is still available;
whenever this is the case, then no additional properties are required of the PIR scheme.
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3.7 Probabilistically Checkable Proofs of Knowledge

A (verifier-efficient) probabilistically checkable proof (PCP) of knowledge for the universal relationRU is a
triple of algorithms (Ppcp, Vpcp, Epcp), where Ppcp is the prover, Vpcp is the (randomized) verifier, and Epcp

is the knowledge extractor.
Given (y, w) ∈ RU , Ppcp(y, w) generates a proof π of length poly(t) and runs in time poly(|y|, t). The

verifier V π
pcp(y, r) runs in time poly(|y|) = poly(|M | + |x| + log t), while accessing polylog(t) locations

in the proof π and using ρ = O(log t) random bits. We require:

1. Completeness. For every (y, w) =
(
(M,x, t), w

)
∈ RU , π ← Ppcp(y, w):

Pr
r←{0,1}ρ(t)

[
V π
pcp(y, r) = 1

]
= 1 .

2. Proof of knowledge (PoK). There is a constant ε such that for any y = (M,x, t) if

Pr
r←{0,1}ρ(t)

[
V π
pcp(y, r) = 1

]
≥ 1− ε ,

then Epcp(y, π) outputs a witness w such that (y, w) ∈ RU , and runs in time poly(|y|, t).

(Note that proof of knowledge in particular implies that the soundness error is at most ε.)

PCPs of knowledge as defined above can be based on the efficient-verifier PCPs of [BSS08, BSGH+05].
(See [Val08] for a simple example of how a PCP of proximity can yield a PCP with a proof of knowledge.)
Moreover, the latter PCPs’ proof length is quasi-linear in t; for simplicity, we shall settle for a bound of t2.

We shall typically invoke the verifier Vpcp for q(k) times to reduce the proof-of-knowledge threshold
to (1 − ε)q(k), where k is the security parameter and q(k) = ω(log k). Namely, extraction should succeed
whenever Prr

[
V π
pcp(y, r) = 1

]
≥ (1− ε)q, where r = (ri)i∈[q] and V π

pcp(y, r) =
∧
i∈[q] V

π
pcp(y, ri).

4 SNARKs

In this section we formally introduce the main cryptographic primitive studied in this paper — the SNARK.

4.1 The Universal Relation and NP Relations

The universal relation [BG08] is defined to be the set RU of instance-witness pairs (y, w), where y =
(M,x, t), |w| ≤ t, and M is a Turing machine, such that M accepts (x,w) after at most t steps. While the
witness w for each instance y = (M,x, t) is of size at most t, there is no a-priori polynomial bounding t in
terms of |x|.

Also, for any c ∈ N, we denote byRc the subset ofRU consisting of those pairs (y, w) =
(
(M,x, t), w

)
for which t ≤ |x|c. This is a “generalized” NP relation, where we do not insist on the same Turing machine
accepting different instances, but only insist on a fixed polynomial bounding the running time in terms of
the instance size.
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4.2 Succinct Non-Interactive Arguments

A succinct non-interactive argument (SNARG) is a triple of algorithms (P,GV ,V). For a security parameter
k, the verifier runs GV(1k) to generate (vgrs, priv), where vgrs is a (public) verifier-generated reference string
and priv are corresponding private verification coins; the honest prover P(y, w, vgrs) produces a proof Π for
the statement y = (M,x, t) given a witness w; then V(priv, y,Π) verifies the validity of Π. The SNARG is
adaptive if the prover may choose the statement after seeing the vgrs, otherwise, it is non-adaptive.

Definition 4.1. A triple of algorithms (P,GV ,V) is a SNARG for the relation R ⊆ RU if the following
conditions are satisfied:

1. Completeness. For any (y, w) ∈ R,

Pr

[
V(priv, y,Π) = 1 :

(vgrs, priv)← GV(1k)
Π← P(y, w, vgrs)

]
= 1 .

In addition, P(y, w, vgrs) runs in time poly(k, |y|, t).

2. Succinctness. The length of the proof Π that P(y, w, vgrs) outputs, as well as the running time of
V(priv, y,Π), is bounded by

p(k + |y|) = p(k + |M |+ |x|+ log t) ,

where p is a universal polynomial that does not depend on R. In addition, GV(1k) runs in time
poly(k); in particular, (vgrs, priv) are of length poly(k).

3. Soundness. Depending on the notion of adaptivity:

• Non-adaptive soundness. For all polynomial-size prover P∗, large enough k ∈ N, and y /∈ LR,

Pr

[
V(priv, y,Π) = 1 :

(vgrs, priv)← GV(1k)
Π← P∗(y, vgrs)

]
≤ negl(k) .

• Adaptive soundness. For all polynomial-size prover P∗ and large enough k ∈ N,

Pr

V(priv, y,Π) = 1 :
(vgrs, priv)← GV(1k)

(y,Π)← P∗(vgrs)
y /∈ LR

 ≤ negl(k) .

A SNARG of knowledge, or SNARK for short, is a SNARG where soundness is strengthened as follows:

Definition 4.2. A triple of algorithms (P,GV ,V) is a SNARK if it is a SNARG where adaptive soundness is
replaced by the following stronger requirement:

• Adaptive proof of knowledge.7 For any polynomial-size prover P∗ there exists a polynomial-size
extractor EP∗ such that for all large enough k ∈ N and all auxiliary inputs z ∈ {0, 1}poly(k),

Pr

 (vgrs, priv)← GV(1k)
(y,Π)← P∗(z, vgrs)
V(priv, y,Π) = 1

∧ (y, w)← EP∗(z, vgrs)
w /∈ R(y)

 ≤ negl(k) .

7One can also formulate weaker proof-of-knowledge notions; in this work we focus on the above strong notion.

19



Universal arguments vs. weaker notions. A SNARG for the relation R = RU is called a universal argu-
ment.8 A weaker notion that we will also consider is a SNARG for the relationR = Rc for a constant c ∈ N.
In this case, soundness is only required to hold with respect to Rc; in particular, the verifier algorithm may
depend on c . Nevertheless, we require (and achieve) universal succinctness, where a universal polynomial
p, independent of c, upper bounds the length of every proof and the verification time.

Designated verifiers vs. public verification. In a publicly-verifiable SNARG the verifier does not require
a private state priv. In this work, however, we concentrate on designated verifier SNARGs, where priv must
remain secret for soundness to hold.

The verifier-generated reference string. A very desirable property is the ability to generate the verifier-
generated reference string vgrs once and for all and then reuse it in polynomially-many proofs (potentially
by different provers). In publicly verifiable SNARGs, this multi-theorem soundness is automatically guar-
anteed; in designated verifier SNARGs, however, multi-theorem soundness needs to be required explicitly
as an additional property. Usually, this is achieved by ensuring that the verifier’s response “leaks” only
a negligible amount of information about priv. (Note that O(log k)-theorem soundness always holds; the
“non-trivial” case is whenever ω(log k). Weaker solutions to support more theorems include assuming that
the verifier’s responses remain secret, or re-generating vgrs every logarithmically-many rejections, e.g., as
in [KR06, Mie08, GKR08, KR09, GGP10, CKV10].)

The SNARK extractor E and auxiliary input. Above, we require that any polynomial-size family of
circuits P∗ has a specific polynomial-size family of extractors EP∗ ; in particular, we allow the extractor to
be of arbitrary polynomial-size and to be “more non-uniform” than P∗. In addition, we require that for
any prover auxiliary input z ∈ {0, 1}poly(k), the polynomial-size extractor manages to perform its witness-
extraction task given the same auxiliary input z. As shown in [BCPR14, BP13], this aspect of the definition
is too strong assuming indistinguishability obfuscation [BGI+12]. The definition can be naturally relaxed to
consider only specific distributions of auxiliary inputs according to the required application. (In our setting,
the restrictions on the auxiliary-input handled by the knowledge extractor will be related to the auxiliary-
input that the underlying ECRH extractor can handle. See further discussion in Section 6.1.)

5 From ECRHs to SNARKs

In this section we describe and analyze our construction of adaptive SNARKs for NP based on ECRHs.
(Recall that an ECRH is a CRH as in Definition 3.5 that is extractable as in Definition 1).

In Section 5.3 we discuss the universal features of our constructions, and the difficulties in extending
it to a full-fledged universal argument; we propose a solution that can overcome the difficulties based on
exponentially hard one-way functions.

Our modified approach. We modify the PCP+MT+PIR approach of [DCL08] and show that the knowledge
assumption of [DCL08] (which involves the entire PIR+MT structure) can be replaced by the simpler generic
assumption that ECRHs exist. Furthermore, our modification enables us to improve the result from a two-
message succinct argument with non-adaptive soundness to an adaptive SNARG of knowledge (SNARK)
— this improvement is crucial cryptographic applications. Specifically, we perform two modifications:

1. We instantiate the Merkle tree hash using an ECRH and, unlike the traditional construction where a
8Barak and Goldreich [BG08] define universal arguments for R with a black-box “weak proof-of-knowledge” property; in

contrast, our proof of knowledge property is not restricted to black-box extractors, and does not require the extractor to be an
implicit representation of a witness.
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(2k, k)-CRH is used, we use a polynomially-compressing (k2, k)-ECRH; in particular, for kd+1-long
strings the resulting tree will be of depth d (rather than d log k).9 As we shall see later, doing so allows
us to avoid superpolynomial blowup of the final knowledge extractor that will be built via composition
of ECRH extractors. The initial construction we present will be specialized for “generalized” NP-
relations Rc; after presenting and analyzing it, we propose an extension to the universal relation RU
by further assuming the existence of exponentially-hard one-way functions.

2. In order to ensure that the first message of the verifier does not depend on the theorem being proved,
the database that we use does not consist of (authenticated) bits of π; rather, the r-th entry of the
database corresponds to the authenticated answers to the queries of V π

pcp(y, r) where y is chosen by
the prover and, of course, the authentication is relative to a single string π (to avoid cheating provers
claiming one value for a particular location of π in one entry of the database, and another value for
the same location of π in another entry of the database). An additional requirement for this part is the
use of a PIR scheme that can support databases where the exact size is a-priori unknown (and only a
superpolynomial bound is known).

5.1 Construction Details

We start by providing a short description of our MT and then present the detailed construction of the protocol
in Figure 1.

The shallow Merkle tree. By padding when required, we assume without loss of generality that the com-
pressed string π is of size kd+1 (where d is typically unknown to the verifier). A node in the MT of distance
j from the root can be represented by a string i = i1 · · · ij ∈ [k]j containing the path traversal indices (and
the root is represented by the empty string). We then label the nodes with k-bit strings according to π and
the hash h : {0, 1}k2 → {0, 1}k as follows:

• The leaf associated with i = i1 · · · id ∈ [k]d ∼= [kd] is labeled by the i-th k-bit block of π, denoted by
`i (here i is interpreted as number in [kd]).

• An internal node associated with i = i1 · · · ij ∈ [k]j is labeled by h(`i1`i2 · · · `ik), denoted by `i.

• Thus, the label of the root is h(`1`2 . . . `k), which we denote by `ε.

The MT commitment is the pair (d, `ε). An opening dcomi to a leaf i consists of all the labels of all the
nodes and their siblings along the corresponding path. To verify the opening information, evaluate the hash
h from the leaves upwards. Specifically, for each node i′ = ij along the opening path labeled by `i′ = `ij
and his siblings’ labels `i1, `i2, . . . , `i(j−1), `i(j+1), . . . , `ik, verify that h(`i1, . . . , `ik) = `i.

We shall prove the following theorem:

Theorem 5.1. For any NP-relation Rc, the construction in Figure 1 yields a SNARK that is secure against
adaptive provers. Moreover, the construction is universally succinct: the proof’s length and verifier’s
running-time are bounded by the same universal polynomials for allRc ⊆ RU .

The completeness of the construction follows directly from the completeness of the PCP and PIR. In Sec-
tion 5.2, we give a security reduction establishing the PoK property (against adaptive provers). In Sec-
tion 5.3, we discuss universal succinctness and possible extensions of our construction to a full-fledged
universal argument.

9We note that any (kε, kε
′
)-compressing ECRH would have sufficed (for any constants ε > ε′); for the sake of simplicity, we

stick with (k2, k)-compression.
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Ingredients.
• A universal efficient-verifier PCP of knowledge (Ppcp, Vpcp, Epcp) for RU ; for ((M,x, t), w) ∈ RU , a

proof π is s.t. |π| ≤ t2 and the non-repeated verifier uses ρ = O(log t) coins and O(1) queries.

• A succinct PIR (PEnc,PEval,PDec) that supports an a-priori unknown database size.a

• An (k2, k)-ECRH.

Setup GV(1k).
• Generate private verification state:

– Sample coins for q = ω(log k) repetitions of Vpcp: r = (r1, . . . , rq)
U← {0, 1}(log2 k)×q .

– Sample coins for encrypting q PIR-queries: R U← {0, 1}poly(k).
– Sample an ECRH: h← Hk.

– Set priv := (h, r, R).

• Generate corresponding verifier-generated reference string:

– Compute Cr ← PEncR(1k, r).

– Set vgrs := (h,Cr).

Proof generation by P .
• Input: 1k, vgrs, (y, w) ∈ Rc where y = (M,x, t) and t ≤ |x|c.

• Proof generation:

– Compute a PCP proof π ← Ppcp(y, w) of size |π| = kd+1 ≤ t2.

– Compute an MT commitment for π: `ε = MTh(π) of depth d.

– Let ρ = O(log t) < log2 k be the amount of coins required by Vpcp. Compute a database DB with
2ρ entries; in each entry r̂ ∈ {0, 1}ρ store the openings dcomr̂ for all the locations of π that are
queried by V πpcp(y, r̂).b

– Compute Cdcomr̂
← PEval(DB, Cr). Here, each coordinate rj ∈ {0, 1}log

2 k of r is interpreted by
the PIR as a shorter query r̂j ∈ {0, 1}ρ.

– The proof is set to be Π := (d, `ε, Cdcomr̂
).

Proof verification by V .
• Input: 1k, priv, y,Π, where y = (M,x, t),Π = (d, `ε, Cdcomr̂

).

• Proof verification:

– Verifyc that kd+1 ≤ t2 ≤ |x|2c.
– Decrypt PIR answers dcomr̂ = PDecR(Cdcomr̂

), and verify opened paths (against h and `ε).

– Let π|r̂ be the opened values of π in the locations corresponding to r̂ (where again r̂ is the interpre-
tation of r ∈ {0, 1}log2 k as r̂ ∈ {0, 1}ρ). Check whether V π|r̂pcp (y, r̂) accepts.

– In case any of the above fail, reject.

aSuch a PIR interprets a “long” query r ∈ {0, 1}log
2 k as a shorter one r̂ ∈ {0, 1}ρ, the ρ-bit prefix of r (see Section 3.6).

bVpcp’s queries might be adaptive; such behavior can be simulated by the prover.
cThis is the single place where the verification algorithm depends on c. See further discussion in Section 5.3.

Figure 1: A SNARK for the relationRc.
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5.2 Proof of Security

A high-level overview of the proof and main technical challenges are presented in Section 1.4. We now turn
to the detailed proof, which concentrates on establishing and proving the validity of the knowledge extractor.

Proposition 5.2 (adaptive proof of knowledge). For any polynomial-size P∗ there exists a polynomial-size
extractor EP∗ , such that for all large enough k ∈ N and any auxiliary input z ∈ {0, 1}poly(k):

Pr
h,r,R

[
(y,Π)← P∗(z, h,PEncR(r))
V((1k, h,R, r), y,Π) = 1

∧ (y, w)← EP∗(1k, z, h,PEncR(r))
w /∈ Rc(y)

]
≤ negl(k) ,

where h is an ECRH, r are the PCP coins and R are the PIR coins.

We start by describing how the extraction circuit is constructed and then prove that it satisfies Proposi-
tion 5.2. In order to simplify notation, we will address provers P∗ that get as input only (h,Cr), where
Cr = PEncR(r); the analysis can be extended to the case that P∗ also gets additional auxiliary input
z ∈ {0, 1}poly(k). We note that, formally, a prover P∗ is a family {P∗k} of polynomial-size circuits, and so
is its corresponding extractor EP∗ ; for notational convenience, we omit the subscript k.

The extraction procedure. As discussed in Section 1.4, extraction is done in two phases: first, we recur-
sively extract along all the paths of the Merkle tree (MT); doing so results in a string (of leaf labels) π̃; then,
we apply to π̃ the PCP witness-extractor Epcp. As we shall see, π̃ will exceed the knowledge-threshold ε of
the PCP and hence Epcp will produce a valid witness.

We now describe the recursive extraction procedure of the of the ECRH-based MT. Given a polynomial-
size prover P∗, let d be such that |P∗| ≤ kd. We derive 2cd circuit families of extractors, one for each
potential level of the MT. Define E1 := EHP∗ to be the ECRH extractor for P∗; like P∗, E1 also expects
input (h,Cr) ∈ {0, 1}poly(k) and returns a string (˜̀

1, . . . , ˜̀
k) ∈ {0, 1}k×k (which will be a preimage in

case P∗ produces a valid image). We can interpret the string output by E1 as k elements in the range of the
hash. Since the ECRH extraction guarantee only considers a single image, we define an augmented family
of circuits E ′1 that expects input (h,Cr, i1), where i1 ∈ [k], and returns ˜̀

i1 , which is the i1-th k-bit block of
E1(h,Cr).

Next, we define E2 := EHE ′1 to be the extractor for E ′1. In general, we define Ej+1 := EHE ′j to be the

extractor for E ′j , and E ′j expects an input (h,Cr, i), where i ∈ [k]j . For each i ∈ [k]j , Ej+1(h,Cr, i) is meant
to extract the labels ˜̀

i1, . . . , ˜̀
ik.

Recall, however, that the ECRH extractor Ej+1 is only guaranteed to output a preimage whenever the
corresponding circuit E ′j outputs a true image. For simplicity, we assume that in case E ′j doesn’t output a
true image, Ej+1 still outputs some string of length k2 (without any guarantee on this string).

Overall, the witness extractor EP∗ operates as follows. Given input (1k, h, Cr), (a) first invokeP∗(h,Cr)

and obtain (y,Π); (b) obtain the depth d̃ from Π, and abort if d̃ > 2cd; (c) otherwise, for each i ∈ [k]d̃−1,
extract the labels (˜̀

i1, . . . , ˜̀
ik)← Ed̃(h,Cr, i); (d) letting π̃ be the extracted PCP-proof given by the leaves,

apply the PCP witness extractor w̃ ← Epcp(y, π̃) and output w̃.

We now turn to prove that (except with negligible probability), whenever the verifier is convinced, the
extractor EP∗ outputs a valid witness. The proof is divided into two main claims as outlined in Section 1.4.

A reminder and some notation. Recall that prior to the prover’s message, the randomness for the PCP
verifier is of the form r = (ri)i∈[q] ∈ {0, 1}(log2 k)×q (and q = ω(log k) is some fixed function). Once
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the verifier receives (y,Π), where y = (M,x, t) and Π = (d̃, `ε, Cdcom), he computes the amount of coins
required ρ = O(log t) < log2 k and interprets each rj as a shorter r̂j ∈ {0, 1}ρ. (Recall that r̂j is the ρ-bit
prefix of rj ; in particular, when rj is uniformly-random, so is r̂j .) The corresponding PCP proof π (or the
extracted π̃) is of size kd̃+1. We shall denote by π̃ = Ed̃(h,PEncR(r)) = ∪

i∈[k]d̃−1Ed̃(h,PEncR(r), i) the
extraction of the full set of leaves.

Using collision resistance and ECRH extraction, we show that (almost) whenever the verifier is convinced,
we extract a proof π̃ that locally satisfies the queries induced by the encrypted PEncR(r).

Claim 5.3 (local consistency). Let P∗ be a polynomial-size prover strategy, where |P| ≤ kd, and let
(E1, . . . , E2cd) be its ECRH extractors as defined above. Then for all large enough k ∈ N,

Pr
(h,R,r)←GV (1k)

 (y,Π)← P∗(h,PEncR(r))

y = (M,x, t),Π = (d̃, `ε, Cdcom)
V(1k, (h,R, r), y,Π) = 1

∧ π̃ ← Ed̃(1
k, h,PEncR(r))

V π̃
pcp(y, r̂) = 0

 ≤ negl(k) ,

where r̂ ∈ {0, 1}ρ×q is the interpretation of r ∈ {0, 1}(log2 k)×q as (a vector of) shorter random strings (as
detailed above.)

Proof. Let us say that a tuple (h,R, r) is “bad” if it leads to the above event. Assume towards contradiction
that for infinitely many k ∈ N, there is a noticeable fraction ε(k) of bad tuples (h,R, r). We show how to
find collisions inH.

Given h ← H, sample coins R for the PIR encryption and coins r for the PCP verifier to simulate
PEncR(r). Given that the resulting (h,R, r) is bad, let us show how to produce a collision in h.

First, invoke P∗(h,PEncR(r)) to obtain (y,Π), where y = (M,x, t) and Π = (d̃, `ε, Cdcom). Next,
decrypt Cdcom (using R) and obtain a set S of O(q) opened paths (each rj in r = (ri)i∈[q] induces a

constant amount of queries). Each path corresponds to some leaf i ∈ [k]d̃ and contains d̃ k2-bit strings
li1, . . . , l

i
d̃
∈ {0, 1}k2×d̃; each string lij contains the label of the j-th node along the path and the labels of all

its siblings.
Next, note that d̃ ≤ 2cd. Indeed, if the verifier accepts then: kd̃ ≤ |x|2c, and in our case |x| ≤

|P∗|;≤ kd. Accordingly, we can use our extractors as follows: for each opened path in i ∈ S, where
i = i1 · · · id̃ ∈ [k]d̃, invoke:

E1(h,PEncR(r))

E2(h,PEncR(r), i1)

...

Ed̃(h,PEncR(r), i1 · · · id̃−1)

and obtain l̃i1, . . . , l̃
i
d̃
∈ {0, 1}k2×d̃.

Let π|S =
(
li
d̃

)
i∈S

be the leaves P∗ opened and let π̃|S =
(̃
li
d̃

)
i∈S

be the extracted leaves. Since

(h,R, r) are bad, it holds that V π|S
pcp (x, r̂) = 1 while V π̃|Spcp (x, r̂) = 0; in particular, there exist some i ∈ S

such that li
d̃
6= l̃i

d̃
. We focus from hereon on this specific i. Let j ∈ [d̃] be the smallest index such that

lij 6= l̃ij (we just established that such an index exists); then it holds that lij−1 = l̃ij−1. Furthermore, since
(h,R, r) are bad, V accepts; this in turn implies that h compresses lij to the ij−1-th block of lij−1 = l̃ij−1,
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which we will denote by `∗. However, the latter is also the output of E ′j−1(h,PEncR(r), i1 · · · ij−1), which
in turn implies that Ej(h,PEncR(r), i1 · · · ij−1) = l̃ij is also compressed by h to the same `∗ (except when
extraction fails, which occurs with negligible probability). It follows that lij 6= l̃ij form a collision in h.

The second step in the proof of Proposition 5.2, is to show that if the aforementioned extractor outputs a
proof π̃ that convinces the PCP verifier with respect to the encrypted randomness, then the same proof π̃
must be globally satisfying (at least for witness extraction); otherwise, the polynomial-size extractor can be
used to break the semantic security of the PIR.

Claim 5.4 (from local satisfaction to extraction). Let P∗ be a polynomial-size prover and let EP∗ be its
polynomial-size extractor.10. Then for all large enough k ∈ N,

Pr
(h,R,r)←GV (1k)

 t ≤ |x|c
V π̃
pcp(y, r̂) = 1

Epcp(y, π̃) /∈ Rc(y)
:

(y,Π)← P∗(h,PEncR(r))

y = (M,x, t),Π = (d̃, `ε, Cdcom)
π̃ ← EP∗(1k, h,PEncR(r))

 ≤ negl(k) ,

where r̂ ∈ {0, 1}ρ×q is the interpretation of r ∈ {0, 1}(log2 k)×q as (a vector of) shorter random strings (as
detailed above.)

Proof. Assume towards contradiction that for infinitely many k ∈ N the above event occurs with noticeable
probability δ = δ(k); we show how to break the semantic security of PEnc. First note that whenever the
event occurs, it holds that Pr

r̂
U←{0,1}ρ×q

[V π̃
pcp(y, r̂) = 1] ≤ (1 − ε)q, where ε is the (constant) knowledge

threshold of the PCP (see Section 3.7), and q = ω(log k) is the number of repetitions.
To break semantic security, we consider the following CPA game, where a breaker B hands its challenger

two independent strings of PCP randomness, (r0, r1) ∈ {0, 1}(log2 k)×2, and gets back PEncR(rb) for a
random b ∈ {0, 1}. Now, B samples a random h, and runs P∗(h,PEncR(rb)) and EP∗(1k, h,PEncR(rb)) to
obtain an instance y = (M,x, t) from the prover and an extracted PCP proof π̃ from the extractor. Then, B
computes the amount of coins required for Vpcp, ρ = ρ(t), and derives the corresponding ρ-prefixes (r̂0, r̂1)
of (r0, r1).

The breaker now runs the PCP extractor Epcp on input (y, π̃) to obtain a string w̃ and verifies whether
it is a valid witness for y (which can be done in poly(|x|) = poly(k) time). In case the witness w̃ is valid
or V π̃

pcp(y, r̂0) = V π̃
pcp(y, r̂1), the breaker B outputs a random guess for the bit b. Otherwise, the breaker

outputs the single b′ such that V π̃
pcp(y, r̂b′) = 1.

We now analyze the success probability of B. We define two events F and E over a random choice of
(h,R, r̂0, r̂1, b); note that any choice of (h,R, r̂0, r̂1, b) induces a choice of y = (M,x, t) and π̃. Define F
to be the event that t ≤ |x|c and Epcp(y, π̃) fails to output a valid witness w̃; next, define E to be the event
that V π̃

pcp(y, r̂0) 6= V π̃
pcp(y, r̂1).

First, since we have assumed by way of contradiction that the event in the statement of the claim occurs
with probability δ, we know that

Pr
[
V π̃
pcp(y, r̂b) = 1

∣∣ F ] =
δ

Pr[F ]
.

Second, since Epcp cannot extract a valid witness from π̃ and r̂1−b are random coins independent of (π̃, y),
we also know that

Pr
r̂1−b

U←{0,1}ρ×q
[
V π̃
pcp(y, r̂1−b) = 1

∣∣ F ] ≤ (1− ε)q .

10The claim actually holds for any circuit family E , but we’ll be interested in the extractor of P∗
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Combining these two facts, we deduce that

Pr
[
E
∣∣ F ]

≥ Pr
[
V π̃
pcp(y, r̂b) = 1 ∧ V π̃

pcp(y, r̂1−b) = 0
∣∣ F ]

≥ Pr
[
V π̃
pcp(y, r̂b) = 1

∣∣ F ]− Pr
[
V π̃
pcp(y, r̂1−b) = 1

∣∣ F ]
≥ Pr

[
V π̃
pcp(y, r̂b) = 1

∣∣ F ]− (1− ε)q =
δ

Pr[F ]
− negl(k) ,

so that, in particular, we can also deduce that

Pr
[
F ∧ E

]
≥ δ − negl(k) .

Therefore,

Pr
[
B guesses b

∣∣ F ∧ E]
≥ 1− Pr

[
V π̃
pcp(y, r̂1−b) = 1

∣∣ F ∧ E ]
= 1−

Pr
[
V π̃
pcp(y, r̂1−b) = 1 ∧ E

∣∣ F ]
Pr
[
E
∣∣ F ]

≥ 1− (1− ε)q

δ/Pr
[
F
]

≥ 1− negl(k) .

We now deduce that the breaker B guesses b with a noticeable advantage; indeed,

Pr
[
B guesses b

]
= Pr

[
F ∧ E

]
Pr
[
B guesses b

∣∣ F ∧ E ]+
(
1− Pr

[
F ∧ E

])
Pr
[
B guesses b

∣∣ F̄ ∨ Ē ]
= Pr

[
F ∧ E

]
Pr
[
B guesses b

∣∣ F ∧ E ]+
(
1− Pr

[
F ∧ E

])
· 1

2

=
1

2
+ Pr

[
F ∧ E

](
Pr
[
B guesses b

∣∣ F ∧ E ]− 1

2

)
≥ 1

2
+ (δ − negl(k))

(
1

2
− negl(k)

)
≥ 1

2
+
δ − negl(k)

2
,

thus completing the proof of the claim.

Putting it all together. By Claim 5.3 we conclude that whenever the verifier accepts, EP∗ almost always
extracts a proof π̃ which locally satisfies the PCP verifier on the encrypted randomness. By Claim 5.4, we
deduce that whenever this occurs, π̃ must satisfy sufficiently many queries for PCP witness-extraction. This
completes the proof of Proposition 5.2 and thus of Theorem 5.1.

Efficiency: “universal succinctness”. For input y = (M,x, t) (where t < klog k for a security parameter
k), the proof Π = (`ε, d, Cdcomr̂

) is essentially dominated by the PIR answers Cdcomr̂
; this includes q =

polylog(k) PIR answers for entries of size Õ(k2).11 In the PIR scheme of [BV11] the size of each PIR-
answer is bounded byE ·k ·polylog(k)+logD, whereE is the size of an entry andD is the size of the entire

11Recall that d = logk t < log k.
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DB. Hence, the overall length of the proof is bounded by a fixed polynomial Õ(k2), independently of |x|, |w|
or c. The verifier’s and prover’s running time are bounded respectively by fixed universal polynomials
poly(|y|, k), poly(k, t), again independently of c.

Parameter scaling. In Kilian’s original protocol, succinctness of the proof could be improved by making
stronger hardness assumptions. For example, for security parameter k, if one is willing to assume collision-
resistant hash functions with a polylog(k)-long output, the proof length would be polylog(k), rather than
poly(k). Unfortunately, in our construction we use a Merkle tree with poly(k) fan-in; therefore, we cannot
afford the same scaling. Specifically, even if we assume that our hash and PIR scheme have polylogarithmic-
size output, each node in the Merkle tree still has poly(k) siblings.12 Nonetheless, scaling can be performed
if we make a stronger extractability assumption, such as the interactive one of [DFH11], because in such a
case there is no need to consider Merkle trees with polynomial fan-in as binary Merkle trees suffice for the
security reduction.

5.3 Extension to Universal Arguments

We now discuss the possibility of extending our construction to a full-fledged universal argument, namely
an argument for the universal relationRU as defined in Section 4.1.

Indeed, Theorem 5.1 tells us that for every c ∈ N we obtain a specific protocol that is sound with
respect to Rc. The dependence on c, however, only appears in the first step of V , where it is checked that
kd+1 ≤ |x|2c. In particular, as we already discussed, the running time of both the prover and verifier, as well
as the proof-length, are universal and do not depend on c.

Towards a full-fledged universal argument. To obtain a full-fledged universal argument we might try to
omit the above c-dependent size check. However, now we encounter the following difficulty: for the proof
of knowledge to go through, we must ensure that the number of recursive extractions is a-priori fixed to
some constant d̃ (that may depend on the prover). In particular, we need to prevent the prover P∗ from
convincing the verifier of statements y = (M,x, t) with t > kd̃. The natural candidate for d̃ is typically
related to the polynomial-size bound on the size of P∗. Indeed, any prover that actually “writes down” a
proof of size t should be of size at least t; intuitively, one could hope that being able to convince the verifier
should essentially amount to writing down the proof and computing a Merkle hash of it. However, we have
not been able to prove this. Instead, we propose the following modification to the protocol to make it a
universal argument.

Proofs of work. For the relationRc, the above problem of P∗ claiming an artificially large t can be avoided
by ensuring that the size of a convincing proof t can only be as large as |x|c, where |x| is a lower-bound
on the prover’s size. More generally, to obtain a universal argument, we can omit the verifier’s check (thus
collapsing the family of protocols to a single protocol) and enhance the protocol of Figure 1 with a proof of
work attesting that the prover has size at least tε for some constant ε > 0. Concretely, if we are willing to
make an additional (though admittedly quite strong) assumption we can obtain such proofs of work:

Theorem 5.5. If there exist 2εn-hard one-way functions (where n is the input size), then, under the same
assumptions as Theorem 5.1, we can modify the protocol in Figure 1 to obtain a universal argument.

Proof sketch. Let f : {0, 1}∗ → {0, 1}∗ a 2εn-hard one-way function. Modify GV(1k) to also output
z1, . . . , z`, with ` := log2 k and zi := f(si), where each si is drawn at random from {0, 1}i. Then,
when claiming a proof Π for an instance y = (M,x, t), the prover must also present s′i such that f(s′i) = zi

12We thank Kai-Min Chung and the anonymous referees of ITCS for pointing out the scaling problem.
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where i > log t.13 The verifier V can easily check that this is the case by evaluating f . (Note also that the
honest prover will have to pay at most an additive factor of Õ(t) in its running time when further requested
to present this challenge.) Then, by the hardness of f , we know that if the prover has size kd, then it must
be that kd > 2εi > tε, so that we conclude that kd/ε > t. Therefore, in the proof of security, we know that
the claimed depth of the prover is a constant depending only on d and ε, and thus the same proof of security
as that of Theorem 5.1 applies.

Admittedly, assuming exponentially-hard one-way functions is unsatisfying, and we hope to remove the
assumption with further analysis; in the meantime, we would like to emphasize that his assumption has
already been made, e.g., in natural proofs [RR94] or in works that improve PRG constructions [HHR06].

6 ECRHs: a Closer Look

In this section we take a closer look at the notion of ECRH, and propose relaxations of this notion that still
suffice for constructing SNARKs. These relaxations are crucial to expand our set of candidate constructions;
for more details on the constructions, see Section 8.

6.1 ECRHs

We begin by discussing several technical aspects regarding the definition of ECRH. Recall that an ECRH is a
collision-resistant function ensembleH that is extractable in the sense of Definition 1, which we reproduce:

Definition 6.1. An efficiently-samplable function ensembleH = {Hk}k is an (`(k), k)-compressing ECRH
if it is (`(k), k)-compressing, collision-resistant, and moreover extractable: for any polynomial-size adver-
sary A, there exists a polynomial-size extractor EHA , such that for all large enough k ∈ N and any auxiliary
input z ∈ {0, 1}poly(k):

Pr
h←Hk

[
y ← A(h, z)
∃x : h(x) = y

∧ x′ ← EHA (h, z)
h(x′) 6= y

]
≤ negl(k) . (1)

In other words, the only way an adversary A can sample elements in the image of the hash is by knowing a
corresponding preimage (which an extractor EHA could in principle find).

Image verification. In known applications of extractable primitives (e.g., 3-round zero knowledge [HT98,
BP04, CD09]), an extra image-verifiability feature is required. Namely, given y ∈ {0, 1}k and h, one
should be able to efficiently test whether y ∈ Image(h). Here, there are two flavors to consider: (a) public
verifiability, where to verify an image all that is required is the (public) seed h; and (b) private verifiability;
that is, the seed h is generated together with private verification parameters priv, so that anyone in hold of
priv may perform image verification. We emphasize that our main ECRH-based construction (presented in
Section 5.1) does not require any verifiability features.

Necessity of sparseness. For H to be collision-resistant, it must also be one-way; namely, the image
distribution

Ih =
{
h(x) : x

U← {0, 1}`(k)
}

13 Note that in any case the verifier will reject any claim for t above the superpolynomial universal bound 2log
2 k; hence,

` = log2 k challenges are sufficient for any polynomial-size prover.
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should be hard to invert (except with negligible probability over h). In particular, Ih must be very far from
the uniform distribution over {0, 1}k (for almost all h).

Indeed, suppose that the statistical distance between Ih and uniform is 1 − 1/poly(k) and consider an
adversary A that simply outputs range elements y ∈ {0, 1}k uniformly at random, and any EAH . In this
case, there is no “knowledge” to extract from A, so EAH has to invert uniformly random elements of the
range {0, 1}k. Thus, the success probability of EAH will differ by at most 1 − 1/poly(k) from its success
probability had the distribution been Ih, which is negligible (by one-wayness); hence EAH will still fail with
probability 1− 1/poly(k) often, thereby violating Equation (1).

A simple way to ensure that the image distribution Ih is indeed far from uniform is to make the support
of Ih sparse. We will take this approach when constructing candidates, making sure that all h(x) fall into
a superpolynomially sparse subset of {0, 1}k: Image(h) < 2k−ω(log k) (except with negligible probability
over h← Hk).

Of course, this merely satisfies one necessary condition, and is a long way off from implying extractabil-
ity. Still, this rules out one of the few generic attacks about which we can reason without venturing into the
poorly-charted territory of non-black-box extraction. Moreover, the sparseness (or more generally, statisti-
cal distance) requirement rules out many natural constructions; for example, traditional cryptographic CRH
ensembles, and heuristic constructions such as the SHA family, have an image distribution Ih that is close
to uniform (by design) and are thus not extractable.

On auxiliary input. The ECRH definition requires that for any adversary auxiliary input z ∈ {0, 1}poly(k),
the polynomial-size extractor manages to perform its extraction task given the same auxiliary input z. As
observed by Hada and Tanaka [HT98], and by Goldreich [Gol04], this requirement is rather strong consid-
ering the fact that z could potentially encode arbitrary circuits. Indeed, [BCPR14, BP13] show that such a
definition cannot be satisfied, assuming indistinguishability obfuscation [BGI+12]. The mentioned impos-
sibility results strongly rely on the fact that the auxiliary input can be of arbitrary polynomial size, and can
be taken from an arbitrary distribution.

While for presentational purposes the above definition may be simple and convenient, for our main
application (i.e., SNARKs) we can actually settle for definition that is weaker in both aspects—it can be
restricted to a specific “benign distribution” on auxiliary inputs, which is also of a-priori bounded polynomial
size, a setting in which no negative results are known. (Naturally, when relying on ECRHs with respect to
such restricted auxiliary-input distributions, the resulting SNARK will account for the same auxiliary-input
distributions.)

Specifically, in our setting the extractor is required to handle an auxiliary input (C, I) consisting of
(honestly-generated) PIR-encryptionsC of random strings, whose length is a-priori bounded by a fixed poly-
nomial poly(k) in the security parameter k, and a short path index I of lengthO(log k). The logarithmically-
short auxiliary input I can be shown not to give any additional power to the adversary. Specifically, an ECRH
for auxiliary input distribution C is also an ECRH for auxiliary input (C, I) as long as |I| = O(log k).
(Roughly, the extractor of an adversary A for auxiliary input (C, I) can be constructed from a polynomial
number of extractors, obtained by considering the extractor of AI(C) := A(C, I) for every possible value
of I; for the formal argument one has to adapt this intuition to circuit families.)

As for the “main” part C of the auxiliary input, we note that by using a PIR scheme where honestly
generated ciphers are pseudo-random, we can actually restrict the “main” part C of the auxiliary input to
be a random string (for example, the LWE-based PIR scheme of [BV11] has this property), as long as the
ECRH is has efficient (even private) image verification. Indeed, an extractor that does noticeably better for
random auxiliary-input than for pseudo-random auxiliary-input, can be used to distinguish the two cases.
For this we should be able to efficiently check when that adversary produces an actual image (whereas the
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extractor fails to produce a corresponding preimage), which is why efficient image verification is needed.

6.2 PECRHs

As discussed in Section 1.3.1, our first weakening of ECRH, namely proximity ECRH, captures a more
flexible tradeoff between the requirements of extractability and collision resistance. Formally:

Definition 6.2. An efficiently-samplable function ensembleH = {Hk}k is an (`(k), k)-compressing PECRH
if it is (`(k), k)-compressing and, for every h in the support of Hk, there exist a reflexive “proximity

relation”
h
≈ over pairs in {0, 1}k × {0, 1}k, an “extended domain”Dh ⊇ {0, 1}`(k), and an extension

h̄ : Dh → {0, 1}k consistent with h (i.e., ∀x ∈ {0, 1}`(k) it holds that h(x) = h̄(x)), such that:

1. H is proximity-extractable in the following weakened sense: for any polynomial-size adversary A
there exists a polynomial-size extractor EHA such that for large enough security parameter k ∈ N and
any auxiliary input z ∈ {0, 1}poly(k):

Pr
h←Hk

[
y ← A(h, z)

∃x ∈ {0, 1}`(k) : y = h(x)
∧

x′ ← EHA (h, z)

¬
(
x′ ∈ Dh ∧ h̄(x′)

h
≈ y
) ] < negl(k) .

2. H is proximity-collision-resistant in the following strengthened sense: for any polynomial-size adver-
sary A,

Pr
h←Hk

[
(x, x′)← A(h) ∧ x, x′ ∈ Dh ∧ x 6= x′ ∧ h̄(x)

h
≈ h̄(x′)

]
< negl(k) .

We now discuss why any point on the tradeoff (i.e., any choice of
h
≈, Dh and h̄ fulfilling the conditions)

suffices for the construction of SNARKs as claimed in Theorem 5 in Section 1.3.1.

Proof sketch for Theorem 5. We argue that the same construction the we use in the proof of Theorem 1 to
construct SNARKs from ECRHs still suffices even when the underlying hash function is only a PECRH.

First, observe that moving from ECRHs to PECRHs only affects the “local consistency” step of our
proof (as described in our high-level description in Section 1.4 and then formally as Claim 5.3). Indeed,
in the proof based on ECRHs, the local-consistency step is where we employ collision resistance to claim
that the Merkle tree output by the extractor locally agrees with the opened paths (except with negligible
probability).

The same argument holds. By the proximity extraction guarantee, it must be that the hash image of
every node label that appears in an opened path is “close” to the image of the corresponding node label in
the extracted tree. By the proximity collision resistance, however, these two node labels must in fact be the
same; for if they were not, then we could utilize the prover and extractor for finding “proximity collisions”.
The rest of the proof of Theorem 1 remains unchanged.

We emphasize that the proximity relation
h
≈ need not be efficiently computable for the above to hold.

6.3 Weak PECRHs

As discussed in Section 1.3.2, our second weakening of ECRH, namely weak PECRH, relaxes the condition
that determines when the extractor has to work. Formally:
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Definition 6.3. An efficiently-samplable function ensemble H = {Hk}k is a (`(k), k)-compressing weak
PECRH if it satisfies Definition 6.2 with the following modified first condition:

1. H is weak proximity-extractable in the following sense: for any polynomial-size adversary A there
exists a polynomial-size extractor EHA such that for large enough security parameter k ∈ N and any
auxiliary input z ∈ {0, 1}poly(k) and polynomial-size decoder circuit Y:

Pr
h←Hk

[
(y, e)← A(h, z)
h(Y(e)) = y

∧
x′ ← EHA (h, z)

¬
(
x′ ∈ Dh ∧ h̄(x′)

h
≈ y
) ] < negl(k) .

We show that even weak PECRHs are enough for the construction of SNARKs as claimed in Theorem 7.

Proof sketch of Theorem 7. We argue that the same construction that we use in the proof of Theorem 1 to
construct SNARKs from ECRHs also obtains SNARKs even when the underlying hash function is only a
weak PECRH. As was the case when moving from ECRHs to PECRHs, moving from PECRHs to weak
PECRHs only affects the “local consistency” step of our proof (as described in our high-level description in
Section 1.4 and then formally as Claim 5.3); specifically, we must still be able to guarantee local consistency
even when the condition under which the extractor is guaranteed to work is weakened to the case where the
adversary outputs an encoding of a preimage (as opposed to when the adversary merely outputs a value in
the image).

In the construction, this is always the case, because preimages along the opened path are provided as
encrypted authentication paths, which can be “decoded” by a decoder that knows encryption the secret key
(i.e., the PIR private coins). Therefore, we are still able to show local consistency.

Unlike PECRHs, weak PECRHs may in principle not require sparsity of the image or special algebraic
structure. While an attacker trying to fool a PECRH extractor only has to obliviously sample an image of
the function, now, to fool a weak PECRH extractor, it needs to simultaneously obliviously sample an image
of the function and an encoding of a corresponding preimage. This raises the following natural question: “is
any CRH also a weak PECRH?” We believe this to be unlikely; indeed, the following example shows that
(assuming the existence of one-way permutations) there exists a CRH that is not a weak PECRH when the
proximity relation is forced to be equality. (To extend this to an actual counter-example, one would have to
rule out all proximity relations.)

Let H = {Hk} be any CRH mapping {0, 1}2k to {0, 1}k and P any one-way permutation mapping
{0, 1}k to itself. Consider the (contrived) new CRH H′, mapping {0, 1}2k to {0, 1}k+1, that is defined as
follows. A seed h′ ∈ H′k corresponds to a seed h ∈ Hk; each (x1||0k) ∈ {0, 1}k ×

{
0k
}

is mapped by h′

to 0||P (x1) and each (x1||x2) ∈ {0, 1}k × ({0, 1}k \
{

0k
}

) is mapped by h′ to 1||h(x1||x2).
Since P is one-to-one and the intersection of the image sets h′({0, 1}k ×

{
0k
}

) and h′({0, 1}k ×
({0, 1}k) \

{
0k
}

)) is empty, any collision in h′ implies a corresponding collision in h and, therefore,
H′ is also a CRH (that is, a proximity CRH relative to the equality proximity relation). However, H′ is
not weakly proximity extractable relative to the equality proximity relation; indeed, consider the auxil-
iary input distribution z = P (x1) for a random x1 ← {0, 1}k, with a corresponding (correlated) decoder
Y that always outputs x1||0k. In addition, consider a dummy adversary that given z, h simply outputs
0||z = 0||P (x1) = h(x1||0k). Note that since the decoder always outputs a valid preimage, any extractor
would have to do the same. However, any efficient extractor that manages to do so has to invert the one-way
permutation P .
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7 From SNARKs to PECRHs (and More)

In this section we provide more details about Theorem 2 and Theorem 3, which were only informally
stated in the introductory discussion of Section 1.2. That is, we show that (proximity) extractable collision-
resistant hash functions (PECRHs) are in fact not only sufficient (together with appropriate polylog PIRs) but
also necessary for SNARKs (assuming standard CRHs). We then describe a general method for obtaining
additional (non-interactive) extractable primitives.

Extractability and proximity extractability. We say that a function ensemble F = {Fk}k is extractable
if, given a random f ← Fk, it is infeasible to produce y ∈ Image(f) without actually “knowing” x ∈
Domain(f) such that f(x) = y. This is formalized by the requirement that for any polynomial-size adver-
sary A there is a polynomial-size extractor EA such that for any auxiliary input z and randomly chosen f :
if A(z, f) outputs a proper image, EA(z, f) outputs a corresponding preimage. Typically, for such a family
to be interesting, it is required that F also has some hardness property, e.g., one-wayness; in particular, for
the two features (of hardness and extractability) to coexist, Image(f) must be sparse in the (recognizable)
range of the function.

As explained (for ECRHs) in Section 1.3.1 and later in Section 6.1, the above notion of extraction can
be relaxed to consider proximity extraction, according to which it is infeasible to produce y ∈ Image(f)
without knowing an x such that f(x) is proximate to y relative to some given reflexive proximity relation
(e.g, relative hamming distance at most 1/2). For such a notion of extraction to be useful, the corresponding
hardness of f should be upgraded accordingly. For example, a proximity extractable one-way function
(f,≈), where ≈ is some proximity relation, is such that, given f(x) for a random x, it is infeasible to find
an x′ for which f(x′) ≈ f(x) (and it is proximity extractable in the sense that we just described).

In Section 6 we discussed even further relaxations: in one, the extractor also had the freedom to output
elements x from an extended domain Df ⊇ Domain(f); in another, the extractor only had to work when
the adversary manages to output not only an image but also an encoding of a corresponding preimage. In
this section, however, we do not consider these further relaxations.

Note that, naturally, known cryptographic schemes (e.g., 3-round zero-knowledge) have relied on stan-
dard extraction rather than proximity extraction; however, to the best of our knowledge we can safely replace
standard extraction in these schemes with proximity extraction (as we did for the purpose of constructing
SNARKs).

Verification and proximity verification. Another extraction-related issue is image verification; here, there
are two notions that can be considered:

• Public verification: Given f and y ∈ Range(f), one can efficiently test whether y ∈ Image(f).

• Private verification: Together with the function f , Fk also generates a private verification state privf .
Given f, privf and y ∈ Range(f), one can efficiently test whether y ∈ Image(f).

In addition, when considering proximity extractability, we can consider a corresponding notion of proximity
verifiability, where the verifier should only check whether y ∈≈ Image(f), namely there is some element
y′ ∈ Image(f) for which y ≈ y. Again we note that for the known applications of (verifiable) extractable
primitives, proximity verification is sufficient.

Also note that the weaker notion of extractability with no efficient verification might also be meaningful
in certain scenarios. Indeed, for our main ECRH-based construction of SNARKs (presented in Section 5.1),
this weak notion of extractability with no efficient verification suffices, and in fact ultimately allows us to
deduce, through the SNARK construction, many extractable primitives with efficient private (proximity)
verification.
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7.1 From SNARKs to PECRHs

We now present the implications of SNARKs to the existence of extractable primitives, starting with the
necessity of PECRHs:

Proposition 7.1. If there exist SNARKs and (standard) CRHs, then there exist proximity verifiable PECRHs.

Proof sketch. We show that designated-verifier SNARKs imply PECRHs with private proximity verifi-
cation. The proof can be easily extended to the case of public verifiability (where publicly-verifiable
SNARKs imply PECRHs with public proximity verification). Let H be a (tk, k)-compressing CRH, where
t = t(k) > 1 is a compression parameter. Let (P,GV ,V) be an (adaptive) SNARK such that, given se-
curity parameter k̂, the length of any proof is bounded by k̂c.14 We define a (tk, 2k)-compressing ECRH,
H̃ = {H̃k}k. A function h̃ and private verification state privh̃ are sampled by H̃k as follows:

1. Draw a function h← Hk,

2. Draw public and private parameters (vgrs, priv)← GV(k1/c), and

3. Set h̃ = (h, vgrs), privh̃ = priv.

Then, for an input x and defining y = h(x), we define h̃(x) = (y,Π) where Π = P(vgrs, thm, x) is a proof
of knowledge for the NP-statement thm = “there exists an x ∈ {0, 1}tk such that h(x) = y”.

We now show that the above is a PECRH with respect to the relation ≈, where (y,Π) ≈ (y′,Π′) if and
only if y = y′.

The proximity collision resistance of H̃ follows directly from the collision resistance ofH, because any
proximity-colliding pair (x, x′) for H̃ is a colliding pair for H. The proximity extractability property of H̃
follows from the (adaptive) proof of knowledge of the SNARK (P,GV ,V); that is, for any image-computing
polynomial-size adversaryA, the ECRH extractor is set to be the SNARK witness-extractor EA. In addition,
an image can be proximity-verified (with respect to ≈) by invoking the SNARK verifier V with the private
verification state priv, the proof Π, and the corresponding statement. We note that, for the proposition to go
through, it is crucial for the SNARK to hold against adaptive provers; indeed, the adversary gets to choose on
which inputs to compute the hash function, and these may very well depend on the public parameters.

Why PECRH and not ECRH? At first glance, it is not clear why the above does not imply an (“exact”)
ECRH rather than a PECRH. The reason lies in the fact that the extractor is only guaranteed to output one
of many possible witnesses (preimages). In particular, given an honest image (h(x),Πx) (corresponding to
some preimage x), the extractor may output x′ such that h(x′) = h(x) but applying the honest prover to x′

(or, more precisely, the NP-statement proving knowledge of x′) results in a proof Πx′ 6= Πx.

We now can immediately deduce that SNARKs also imply proximity extractable one-way functions
(PEOWFs) and proximity extractable computationally binding and hiding commitments (PECOMs):

Corollary 7.2. If there exist SNARKs and (standard) CRHs, then there exist PEOWFs and PECOMs. More-
over, the verifiability features of the SNARK carry over to the implied primitives.

14More precisely, the length of any proof is bounded by (k̂+ log t)c, where t is the computation time; however, we only address
statements where the computation is poly-time and in particular log t < k̂.
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Proof sketch. First, note that any (`(k), k)-compressing PECRH is also a (keyed) PEOWF (with respect
to the same image proximity relation). Indeed, it is a proximity OWF since it is a proximity CRH and
independently of that it is also proximity extractable (and verifiable).

Second, to get an extractable bit-commitment scheme, one can use the classic CRH plus hardcore bit
construction of Blum [Blu81]. Specifically, the commitment scheme is keyed by a seed h for the PECRH
and a commitment to a bit b is obtained by sampling r, r̂ U← {0, 1}`(k) and computing

EvalCom(h; b; r, r̂) := (h(r), r̂, b⊕ 〈r, r̂〉) .

The fact that this is a computationally binding and hiding commitment holds for any CRH (note that any
proximity CRH is in particular a CRH). Moreover, any adversary that computes a valid commitment c =
(y, r̂, b) (under the random seed h) also computes a valid image y under h; hence, we can use the PECRH
extractor to extract the commitment randomness r, such that y ≈ h(r) and c ≈ EvalCom(h; b⊕ 〈r, r̂〉; r, r̂),
where c = (y, r̂, b) ≈ c′ = (y′, r̂′, b′) if and only if y ≈ y, r̂ = r̂′, b = b′.

In addition, verifying a proximity commitment is done by verifying that y is proximate to an image
under h.

7.2 From Leakage-Resilient Primitives and SNARKs to Extractable Primitives

Given the results in the previous section, naı̈vely, it seems that non-interactive adaptive arguments of knowl-
edge offer a generic approach towards constructing extractable primitives: “simply add a non-interactive
proof of preimage knowledge” (which might seem to be applicable even without succinctness when com-
pression is not needed). However, this approach may actually compromise privacy because the attached
proofs may leak too much information about the preimage.

One may try to overcome this problem by using non-interactive zero-knowledge proofs of knowledge;
however, this can only be done in the common reference string model, which typically trivializes the notion
of extractable functions. (Nonetheless, in later sections, we will still discuss zero-knowledge SNARKs and
some of their meaningful applications in the CRS model.)

In this section, we consider a different approach towards overcoming the problem of proof-induced
preimage leakage: we suggest to consider stronger (non-extractable) primitives that are resilient to bounded
amounts of leakage on the preimage. Then, we can leverage the succinctness of SNARKs to claim that
proving knowledge of a preimage does not leak too much and hence does not compromise the security
of the primitive. Indeed, CRHs are in a sense optimally leakage-resilient OWFs; hence, the first part of
Corollary 7.2 can be viewed as an application of this paradigm. Moreover, in this approach, there is no need
to assume a trusted third party to set up a common reference string (as would be the case if we were to use
zero-knowledge techniques).

Applying this paradigm to one-to-one subexponentially hard OWFs, yields:

Proposition 7.3. Given any 2|x|
ε
-hard OWF f : {0, 1}∗ → {0, 1}∗ and SNARKs, there exist extractable

PEOWFs (against polynomial-size adversaries). Moreover, the verifiability features of the SNARK carry
over to the implied PEOWF.

Proof sketch. Let f : {0, 1}∗ → {0, 1}∗ be any 2|x|
ε
-hard OWF, where n is the size of the input. As in

Proposition 5.2, we define an extractable function F = {Fk}k. Let c be the constant such that any SNARK
proof is bounded by k̂c for security parameter k̂c. The functions generated by Fk are defined on the domain
{0, 1}k2c/ε and are indexed by a vgrs ← GV(1k). For x ∈ {0, 1}k2c/ε , fvgrs(x) = (f(x),Π), where Π is a
SNARK for the statement that “there exists an x ∈ {0, 1}k2c/ε such that f(x) = y”. As for PECRHs, we

34



define the proximity relation to be (y,Π) ≈ (y′,Π′) if and only if y = y′. As in the proof of Proposition 7.1,
proximity extraction and verifiability follow directly from the extraction and verifiability of the SNARK.
We claim that F is one-way with respect to≈; namely, given the image (y,Π) of a random x in the domain,
it is infeasible to come up with an x′ such that f(x′) = y. This follows from the fact that f is 2|x|

ε
-hard, and

the proof Π is of length at most |x|ε/2. In particular, any polynomial-size adversary which proximity-inverts
F , can be transformed to a 2|x|

ε
-size adversary that inverts f by simply enumerating all the (short) proofs

π.

Note that, given SNARK with proof size polylog(k), one can start from f that is only hard against quasipolynomial-
size adversaries. (As noted in Section 5.3 our SNARK security proof does not scale in this way, but given
stronger extractability assumptions it would.) We also note that the above reduction essentially preserves
the structure of the original OWF f ; in particular, if f is one-to-one so is F . Moreover, in such a case in
the NP-language corresponding to f , any theorem claiming that y = f(x) is a proper image has a single
witness x. In this case we would get (exact) EOWF rather than PEOWF. We thus get:

Corollary 7.4. Given any 2|x|
ε
-hard one-to-one OWF and SNARKs, there exist (exactly) extractable com-

mitments that are perfectly binding and computationally hiding (against polynomial-size adversaries).

Proof sketch. Indeed, the EOWFs given by Proposition 7.3 would now be one-to-one, which in turn imply
perfectly-binding ECOMs, using the hardcore bit construction as in Corollary 7.2 instantiated with a one-
to-one EOWF. (The fact that one-to-one EOWFs imply perfectly binding ECOMs was already noted in
[CD09].)

More extractable primitives based on SNARKs and leakage-resilience. We believe there is room to fur-
ther investigate the above approach towards obtaining more powerful extractable primitives. In this context,
one question that was raised by [CD09] is whether extractable pseudorandom generators and pseudorandom
functions can be constructed from generic extractable primitives, e.g., EOWFs. (They show that the generic
constructions of [HILL99] are not knowledge preserving.)

Our SNARK-based approach can seemingly be used to obtain two weaker variants; namely, extractable
pseudo-entropy generators and pseudo-entropy functions. Specifically, the results of [DK08, RTTV08,
GW11] imply that any strong enough PRG is inherently also leakage-resilient, in the sense that, even given
leakage on the seed, the PRG’s output still has high pseudo-entropy (specifically, HILL entropy). The
results of Braverman et. al. [BHK11] show how to obtain the more general notion of leakage-resilient
pseudo-entropy functions. We leave the investigation of these possibilities and their applicability for future
work.

Non-verifiable extractable primitives. Perfectly-binding ECOMs (as given by Corollary 7.4) provide a
generic way of obtaining limited extractable primitives that do not admit efficient verification (and if com-
pression is needed SNARKs can be used on top). Specifically, one can transform a function F to an ex-
tractable F̃ as follows. The seed f̃(f,g) generated by F̃k includes f ← Fk and a seed for the perfectly
binding ECOM g ← GenCom(1k). To apply the sampled function on x, sample extra randomness r for the
commitment, and define f̃(f,g)(x; r) = (f(x),EvalCom(g;x; r)). That is, add to f(x) a perfectly-binding
commitment to a preimage. The hiding property of the commitment clearly prevents the problem of leakage
on x. The fact that the commitment is perfectly-binding and extractable implies that F̃ is also extractable.
Indeed, any adversary that produces a valid image, also produces a valid perfectly-binding commitment to a
valid preimage; hence, using the extractor for the commitment, we obtain a valid preimage. A major caveat
of this approach is that the resulting F̃ does not support efficient image-verification; indeed, the commit-
ment is never opened, and the seed generator does not have any trapdoor on it. At this time we are not
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aware of applications for non-verifiable extractable primitives other than our non-verifiable ECRH-based
SNARK construction. We leave an investigation of other possible applications of non-verifiable extractable
primitives for future work.

8 Candidate ECRH and PECRH Constructions

In this section we discuss:

• a candidate construction for an ECRH, based on a Knowledge of Exponent assumption and the hard-
ness of discrete logs; and

• a generic technique for obtaining candidate constructions for PECRHs, which we instantiate in three
different ways.

As already discussed, the relaxation of ECRHs to PECRHs is crucial for (a) obtaining more candidate
constructions, and (b) arguing the necessity of PECRHs to the construction of SNARKs.

8.1 ECRHs from t-Knowledge of Exponent

Recall that ECRHs are formally discussed in Definition 6.1. The Knowledge of Exponent assumption (KEA)
[Dam92] states that any adversary that, given a generator g and a random group element gα, manages to
produce gx, gαx, must “know” the exponent x. The assumption was later extended in [HT98, BP04], by
requiring that given gr1 , gr1α, gr2 , gr2α it is infeasible to produce f, fα without “knowing” x1, x2 such that
f = gx1r1gx2r2 = gx1r1+x2r2 . The t-KEA assumption is a natural extension to t = poly(k) pairs gri , gαri .

Assumption 8.1 (t-KEA). There exists an efficiently-samplable ensemble G = {Gk} where each (G, g) ∈
Gk consists of a group of prime order p ∈ (2k−1, 2k) and a generator g ∈ G, such that the following holds.
For any polynomial-size adversary A there exists a polynomial-size extractor EA such that for all large
enough k ∈ N and any auxiliary input z ∈ {0, 1}poly(k),

Pr
(G,g)←Gk

(α,r)
U←Zp×Ztp

[
(f, f ′)← A(gr, gαr, z)

f ′ = fα
∧ x← EA(gr, gαr, z)

g〈x,r〉 6= f

]
≤ negl(k) ,

where |G| = p, r = (r1, . . . , rt), gr = (gr1 , . . . , grt), x = (x1, . . . , xt), and 〈·, ·〉 denotes inner product.

A related assumption was made by Groth [Gro10]; there, instead of random r1, . . . , rt, the exponents are
powers of the same random element, i.e., ri = ri. (As formalized in [Gro10], the assumption does not
account for auxiliary inputs, but it could naturally be strengthened to do so.)

Our assumption can be viewed as a simplified version of Groth’s assumption; in particular, we could use
Groth’s assumption directly to get ECRHs. Furthermore, Groth’s assumption is formally stated in bilinear
groups, while in our setting bilinearity is not necessary. When considered in (non bilinear) groups where
t-DDH is assumed to hold, the two assumptions are actually equivalent.15 Therefore, as Groth shows that
his assumption holds in the generic group model (independently of the bilinear structure) and as t-DDH is
also known to hold in this model, our assumption holds in the generic group model as well.

A candidate ECRH from t-KEA. A (k · t(k), 2k)-compressing ECRH H can now be constructed in the
natural way:

15t-DDH asserts that, over suitable groups, tuples of the form gx, gx
2

, . . . , gx
t

are indistinguishable from random tuples.
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• To sample fromHk: sample (G, g)← Gk and (α, r)
U← Zp × Ztp, and output h := (G, gr, gαr).

• To compute h(x1, . . . , xt): output the pair (g〈r,x〉, g〈αr,x〉) =
(∏

i∈[t] g
rixi ,

∏
i∈[t] g

αrixi
)

.

The extractability of H easily follows from the t-KEA assumption. We show that H is collision-resistant
based on the hardness of computing discrete logarithms in G.

Claim 8.2. If C finds a collision withinH w.p. ε, then we can compute discrete logarithms w.p. ε/t.

Proof sketch. Given gr, where r U← Zp, choose a random i ∈ [t] and sample α, r1, . . . ri−1, ri+1, . . . , rt.
Denote ri = r and r = (r1, . . . , rt). Feed C with gr, gαr. By our initial assumption and the independent
choice of i, C outputs x,x′ such that xi 6= x′i and g〈x,r〉 = g〈x

′,r〉 w.p. at least ε/t. It follows that
ri = (xi − x′i)−1

∑
j∈[k]−{i}

(xj − x′j)rj .

8.2 PECRHs from Knowledge of Knapsack

In Section 8.1 we presented a candidate ECRH based on a generalization of the Knowledge of Exponent
assumption in large algebraic groups. We are now going to introduce a class of knowledge assumptions with
a “lattice flavor”, which we call Knowledge of Knapsack, to construct candidates for the weaker notion of a
proximity ECRH (PECRH). Recall that PECRHs are formally discussed in Definition 6.2.

Indeed, we are not able to achieve the strict notion of ECRH from “lattice-flavor” Knowledge of Knap-
sack assumptions; instead, we only obtain the “noisy” notion of ECRH that we have formalized as a PECRH
(which yet is still sufficient, and essentially necessary, for constructing SNARKs, as discussed in Sec-
tion 6.2). This might not be surprising, given that problems about lattices tend to involve statements about
noise distributions, rather than about exact algebraic relations as in the case of t-KEA.

At high level, we define a candidate PECRH family based on knowledge assumptions of the following
form: given a set of elements l1, . . . , lt in some group, the only way to compute a subset sum is (essentially)
to pick a subset S ⊆ [t] and output the subset sum

∑
i∈S li. As before, this is expressed by saying that for

any adversary there exists an extractor such that whenever the adversary outputs a value y which happens to
be a subset sum, the extractor “explains” this y by outputting a corresponding subset.

For convenience of exposition, we first define a very general “Knowledge of Knapsack” template, where
the set size t, the group, and the distribution of li are left as parameters, along with an amplification factor λ
(saying how many such subset-sum instances are to be solved simultaneously).

Hashes from knapsacks. A knapsack is a tuple K = (H, l1, . . . , lt), such that H is (the description of) an
additive finite group and l1 . . . , lt ∈ H.

We construct hash function ensembles out of knapsack ensembles in a natural way. Given a size pa-
rameter t = t(k), amplification parameter λ = λ(k), and an ensemble of knapsacks K = {Kk}k, we

define the hash function ensemble Ht,λ,K =
{
Ht,λ,Kk

}
k

as follows. For K = (H, l1, . . . , lt) ← Kk, let

ht,K : {0, 1}t → H be given by ht,K(~s) :=
∑

i:si=1 li represented in {0, 1}dlog |H|e, where the summa-
tion is over H. Then to sample Ht,λ,Kk , draw K1, . . . ,Kλ ← Kk and output the hash function h(x) :=

(ht,K
1
(x), . . . , ht,K

λ
(x)). (That is, h is the λ-wise repetition of ht,K .)

Knowledge of knapsack. The Knowledge of Knapsack assumption with respect to (t, λ,K,
h
≈, Dh) asserts

that the function ensembleHt,λ,K is proximity-extractable with respect to some proximity relation
h
≈, some

extended domain Dh ⊆ Zt, and extended function h̄ : Dh → H defined by taking a linear combinations
with coefficients in Dh (rather than just subset sums). Explicitly:
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Definition 8.3 (Knowledge of Knapsack). Let t = t(k) ∈ N (size parameter) and let λ = λ(k) ∈ N
(amplification parameter). Let K = {Kk}k be an efficiently-samplable ensemble of knapsacks. For each

h in the support of Kk, let
h
≈ be a relation on the image of h and let Dh be an extended domain Dh ⊆ Zt

where Dh ⊇ {0, 1}.
The Knowledge of Knapsack assumption with respect to (t, λ,K,

h
≈, Dh) states the following: for any

polynomial-size adversary A there exists a polynomial-size extractor EA which outputs subsets of [t] such
that for all large enough k ∈ N and any auxiliary input z ∈ {0, 1}poly(k),

Pr
(Hj ,lj1,...,l

j
t )
λ
j=1←Kk

[
(y1, . . . , yλ)← A(K1, . . . ,Kλ, z)
∃ ~x ∈ {0, 1}t ∀j : yj =

∑
i xiji

∧
~x′ ← EA(K1, . . . ,Kλ, z)

¬
(
~x′ ∈ Dh ∧ ∀j : yj

h
≈
∑

i∈[t] x
′
il
j
i

) ] ≤ negl(k)

where j ranges over {1, . . . , λ}, the summations are in the group H, and the multiplications mean adding
an (integer number of) elements of H.

Compression. If the groups in all the knapsacks in K are of size s = s(k) then the function ensemble
Ht,λ,K compresses (λt)-bit strings to (λ log s)-bit strings.

Discussion: sparseness and amplification. As discussed in Section 6.1, we wish the candidate PECRH
(just like a candidate ECRH) to be superpolynomially sparse. Sparseness grows exponentially with the
amplification parameter λ: if each knapsack K ← Kk is ρ-sparse (i.e., |Image(ht,K)|/|H| < ρ), then with
amplification λ we obtain the candidate PECRHHt,λ,K that is ρλ-sparse. Thus, for example, as long as ρ is
upper-bounded by some nontrivial constant, λ > ω(log k) suffices to get superpolynomial sparseness. We
will indeed use this below, in candidates where the basic knapsacks K must be just polynomially sparse for
the proof of (proximity) collision resistance to go through.

We now proceed to propose instantiations of the Knowledge of Knapsack approach.

8.2.1 Knowledge of Knapsack of Exponents

We first point out that the Knowledge of Knapsack template can be used to express also the Knowledge of
Exponent assumptions, by considering subset-sums on pairs of the form (f, fα). The result is similar to the
t-KEA assumption (see Section 8.1), albeit with inferior parameters:

Assumption 8.4 (t-KKE). For t = t(k) ∈ N, the t-KKE (Knowledge of Knapsack of Exponents) states that
there exists an efficiently-samplable ensemble G = {Gk} where each (G, g) ∈ Gk consists of a multiplica-
tive group of prime order p in (2k−1, 2k) and a generator g ∈ G, such that the Knowledge of Knapsack
assumption with respect to (t, 1,KE,≡H, {0, 1}t) holds for the ensemble KE =

{
KE
k

}
k

defined as follows
(where ≡H is equivalence in the group H given below):

To sample from KE
k , draw (G, g)← Gk, let H = G×G considered as an additive group, draw α← Zp

and r← Ztp, let li = (gri , gαri) ∈ H, and output (H, l1, . . . , lt).

The hash function ensemble Ht,1,KE
is readily verified to be (t(k), 2k)-compressing, and collision-

resistant assuming the hardness of taking discrete logs. Note that its range is indeed sparse, as prescribed in
Section 6.1: for h ← Ht,1,KE

, |Image(h)|/|H| = |G|/|G × G| ≈ 1/2k. Alas, we lost a factor of k in the
compression compared to directly using t-KEA, since we hash t bits as opposed to t group elements as in
t-KEA.
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8.2.2 Knowledge of Knapsack of Noisy Multiples

Next, we propose a new knowledge assumption based on the following problem: given noisy integer mul-
tiples L = (li, . . . , lt) in ZN of a secret real number α (of magnitude about

√
N ), find a subset-sum of

these multiples.16 The knowledge assumption says (roughly) that whenever an efficient adversary produces
such a subset sum, it knows the corresponding subset. This however requires care, since, taken literally, the
assumption is clearly false. To motivate our definition, we describe several attempted attacks, and how the
definition avoids them.

• Perturbation attack. Any small integer is close to a multiple of α (i.e., 0), and is thus likely to be a
sum of some subset of L (when L is long enough, as it is in our setting). Thus, the adversary A could
simply output a random small integer and thereby challenge the extractor E to find a corresponding
subset. We let the extractor avoid this difficult task by using the notion of PECRHs defined above,
with the proximity relation

h
≈ chosen so that the extractor only needs to output a subset that sums to

approximately the adversary’s output (in the above example, the extractor can output the empty set).

• Integer-coefficients attack. An adversary A could pick an integer combination of L with coefficients
that are small but not all 0 and 1. Even though this is not a valid computation of a sum over a subset
of L, the result y is still close to a multiple of the secret real number, and thus, as above, is likely
to be a subset sum of for some subset, so the extractor E must “explain” y. We aid E by enlarging
the extended domain Dh to allow small integer coefficients, so that the (non-blackbox) extractor may
output the coefficients used by the adversary.

• Fractional-coefficients attack. An adversary A could pick a fractional combination of elements of L.
For example, l1/2 will be close to a multiple of α whenever l1 happens to be close to an even multiple
of α (that is, with probability half). However, we amplify our knapsack to consider λ instances
concurrently (each consisting of noisy multiples L of some different α), so the extractor is challenged
only in the exponentially-unlikely event that all λ instances have l1 that is close to an even multiple.

Comparison to t-KKE. The above complications arise due to the addition of noise to li in the generation
of the knapsack instances (otherwise α would be found computing the greatest common divisor on L, easily
leading to collisions). Thus the collection of resulting subset-sums constitutes a train of “hills” (each clus-
tered around a multiple of α), which an adversary can traverse by the aforementioned attacks. Conversely, in
t-KKE from Section 8.2.1, the underlying discrete log problem does not require injection of noise, hence the
subset sums constitute a set of distinct “well-spaced” points in G×G and so (one may hope) the adversary
can navigate the structure of the image only by algebraic operations that the extractor can unravel.

Definition. Let N ∈ Z, α ∈ R and σ̄ ∈ (0, 1). We define the distribution NMα,σ̄,N of noisy multiples
of α in the range [0, . . . , N − 1), with relative noise of standard deviation σ̄, as follows. Draw an integer
x

U← {0, . . . , bN/αc} and a noise fraction y ← N0,σ̄2 (the normal distribution with mean 0 and variance
σ̄2). Output bα(x+ y) mod Nc.

Assumption 8.5 ((t , σ)-KKNM). For t = t(k) > k ∈ N and noise parameter σ = σ(k) ∈ (0, 1), the
(t , σ)-KKNM (Knowledge of Knapsack of Noisy Multiples) states that the Knowledge of Knapsack assump-

tion with respect to (t,KNM,t,σ,
h
≈, Dh) holds for the following distribution of knapsack elements.

16Our construction is inspired by a cryptosystem of Regev [Reg03, Reg04], where the public key is sampled from a similar
distribution, and indeed our analysis of collision resistance and sparsity invokes Regev’s. This is elaborated below.
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The ensemble KNM,t,σ =
{
KNM,t,σ
k

}
k

is sampled as follows. To sample from KNM,t,σ
k do the following:

let N = 28k2 , draw h
U←
{
h ∈ [

√
N, 2
√
N ) : |h− bhe| < 1

16t

}
and draw σ̄ such that σ̄2 U← [σ2, 2σ2 ).

Let α = N/h. Draw t values l1, . . . , lt ← NMα,σ̄,N . Output (ZN , l1, . . . , lt).

For h← KNM,t,σ
k , let Dh =

{
~x ∈ Zt : ||~x||2 < t log2 t

}
, and let

h
≈ be s.t. for y, y′ ∈ ZN , y

h
≈ y′ if their

distance in ZN is at most
√
N/9.

Relation to Regev’s cryptosystem [Reg03, Reg04]. The above distributions are essentially the same as
in Regev’s cryptosystem, with minor changes for clarity in the present context. Explicitly, the mapping is
as follows. The distribution Qβ = (N0,β/2π mod 1) from [Reg04, Section 2.1] is replaced by N0,σ̄2 , for
β = 2πσ̄2 (the statistical difference between the two is negligible because σ̄ will be polynomially small).
The distribution NMα,σ̄,N is a scaling up by N of Th,β as defined in [Reg04, above Definition 4.3], for
h = N/d (except for the above deviation, and a deviation due to the event x + y > h which is also
negligible in our setting). Thus, the distribution (l1, . . . , lt) sampled by KNM is negligibly close to that of
public keys in [Reg04, Section 5] on parameters n = k, m = t, γ(n) =

√
2/π / σ(k).

Collision resistance. We show that the hash function ensemble HKKNM = Ht,λ,KNM,t,σ
is proximity-

collision-resistant for any t = O(k2) and suitable λ and σ, assuming on the hardness of the Unique Shortest
Vector Problem (uSVP) in lattices. Recall that f(µ)-uSVP is the computational problem of finding a shortest
vector in a lattice of dimension µ given that the shortest vector is at least f(µ) times shorter than any other
(non-parallel) lattice vector (see [Reg04, LM09].

Claim 8.6. The samples l1, . . . , lt drawn by KNM,t,σ are pseudorandom (i.e., indistinguishable from t ran-
dom integers in the interval {0, . . . , N − 1}), assuming hardness of (

√
2/πµ/σ(µ))-uSVP.

Proof sketch. It suffices to show pseudorandomness for the distribution obtained by modifying KNM,t,σ to
sample h U← [

√
N, 2
√
N ) (for the same reason as in [Reg04, Lemma 5.4]). This pseudorandomness follows

from [Reg04, Theorem 4.5] with g(n) =
√

2µ/π/σ(µ).

Claim 8.7. The function ensemble HKKNM is proximity-collision-resistant, with
h
≈, Dh, h̄ defined as in As-

sumption 8.5, for t = O(k2), assuming hardness of Õ
(
max

(
µ3/2,

√
µ/σ(µ)

))
-uSVP.

Proof sketch. By Claim 8.6, the hash functions drawn by HKKNM are indistinguishable from the ensemble
U of uniformly-random modular subset sums (as defined in [Reg04, Section 6]), assuming Õ(

√
µ/σ(µ))-

uSVP. It thus suffices to show that U is proximity-collision-resistant, since this implies finding collisions
in HKKNM would distinguish it from U . The ensemble U is collision-resistant assuming Õ(µ3/2)-uSVP, by
[Reg04, Theorem 6.5]. Moreover, the proximity relation

h
≈ is accommodated by noting that the theorem still

holds if in its statement,
∑m

i=1 biai ≡ 0 (modN) is generalized to frc ((
∑m

i=1 biai)/N) < 1/9
√
N ; inside

that theorem’s proof, this implies frc ((
∑m

i=1 bizi)/N) < 1/8
√
N and thus, in the one-but-last displayed

equation, h · frc ((
∑m

i=1 bizi)/N) < h/9
√
N < 1/9 so the last displayed equation still holds and the

proof follows. The extended domain Dh and induced h̄ are accommodated by noting that Regev’s bound
||b|| ≤

√
m (in his notation) generalizes to ||b|| ≤ Õ(

√
m).

Sparseness and parameter choice. To make the extractability assumption plausible, we want the func-
tion’s image to be superpolynomially sparse within its range, as discussed in Section 6.1. Consider first the
distribution HKKNM = Ht,1,KNM,t,σ

(i.e., λ = 1, meaning no amplification). The image of h drawn from
HKKNM becomes “wavy” (hence sparse) when the noise (of magnitude σα) added to each multiple of α
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is sufficiently small, resulting in distinct peaks, so that any subset sum of t noisy multiples is still a noisy
multiple:

Claim 8.8. For σ(k) = 1/16t log2 k, the ensemble KNM,t,σ is 1
2 -sparse:

Pr
h←Ht,1,K

NM,t,σ

k

[|Image(h)|/N > 1/2] < negl(k)

Proof sketch. In terms of the corresponding Regev public key, this means decryption failure become impos-
sible with all-except-negligible probability over the keys. For this, it clearly suffices that each of the t noisy
multiples is at most α/16t away from a multiple of α, so that any sum of them will have accumulated noise
at most α/16 (plus another α/16 term due to modular reductions, as in Regev’s decryption lemma [Reg04,
Lemma 5.2]). This indeed holds for σ(k) = 1/16t log2 k, by a tail bound on the noise terms αN0,σ followed
by a union bound over the t samples.

Thus, the image becomes somewhat sparse when σ = õ(1/t). However, superpolynomial sparseness
would require making σ superpolynomially small (and likewise a tighter distribution over h), in which
case Claim 8.7 would require assuming hardness of µω(1)-uSVP; this assumption is unmerited in light of
the excellent heuristic performance of LLL-type lattice reduction algorithms on lattices with large gaps
(e.g., [GN08] conjecture, from experimental evidence, that 1.02µ-uSVP is easy). Instead, we can set
σ = Ω̃(1/k2) so that Claim 8.7 needs to assume merely hardness of Õ(µ3/2)-uSVP, and then amplify
via repetition, by choosing sufficiently large λ. In particular, by setting σ(k) = õ(1/t), λ = ω(log(k)) and
t = O(k2), we indeed obtain superpolynomial sparseness.

Regarding the aforementioned integer-coefficient attack, note that the extended domain Dh allows E to
explain y via any vector using a linear combination whose coefficients have `2 norm at most t log2 t, since
beyond this norm, the linear combination is unlikely to be in the image of h.

Lastly, note that k = n2 (or, indeed, any k = n1+ε) suffices for the SNARK construction.

Relation to other lattice hardness assumptions. The collision resistance is shown assuming hardness
of the uSVP lattice problem. This can be generically translated to other (more common) lattice hardness
assumptions following Lyubashevsky and Micciancio [LM09].

8.2.3 Knowledge of Knapsack of Noisy Inner Products

Further PECRH candidates can be obtained from Knowledge of Knapsack problems on other lattice-based
problems. In particular, the Learning with Error problem [Reg05] problem leads to a natural knapsack en-
semble, sampled by drawing a random vector ~s ∈ Znp and then outputting a knapsack K = (Zn+1

p , l1, ..., lt)

where each li consists of a random vector ~x U← Znp along with the inner product ~s · ~x + ε where ε is
independently-drawn noise of small magnitude in Zp. For suitable parameters this ensemble is sparse, and
proximity-collision-resistant following an approach similar to KKNM above: first show pseudorandomness
assuming hardness of LWE [Reg05], and then rely on the collision resistance of the uniform case (e.g.,
[Ajt96, GGH96, MR07]).

In this case, amplification can be done more directly, by reusing the same ~x with multiple si instead of
using the generic amplification of Definition 8.3.
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9 Zero-Knowledge SNARKs

In this section we consider the problem of constructing zero-knowledge SNARKs (zkSNARKs); that is, we
want to ensure that the succinct proof does not leak information about the witness used to generate it.

Recall that SNARKs do not require any set-up assumptions (i.e., are in the plain model). However,
now that we seek the additional property of zero-knowledge, we cannot proceed in the plain model because
otherwise we would obtain a two-message zero-knowledge protocol in the plain model, which is impossible
[GO94]. We thus work in the standard common reference string (CRS) model.

There are two natural candidate zkSNARK constructions that one could consider, both starting with a
NIZK system in the CRS model and making it succinct:

• “SNARK on top of NIZK”. At high level, the prover first produces a (non-succinct) NIZK argument
πZK for the statement y (given a valid witness w), and then produces a non-interactive succinct argu-
ment π for the statement y′ that the ZK verifier would have accepted the proof πZK for y.

• “NIZK on top of SNARK”. At high level, the prover first produces a non-interactive succinct argument
π for the statement y (given a valid witness w), and then produces a NIZK argument πZK for the
statement y′′ that the verifier would have accepted the (succinct) proof π for y.

In both constructions, one needs the ZK system to be adaptively sound. We now describe in further detail
each of the above approaches.

9.1 SNARK on top of NIZK

Theorem 9.1. If there exist adaptively-sound NIZK arguments and SNARKs, then there exist zkSNARGs. If
furthermore the NIZK argument has a proof of knowledge then we obtain zkSNARKs.

Proof sketch. The setup phase consists of generating a common reference string crsZK and publishing it. A
verifier then generates (vgrs, priv) and sends vgrs to the prover, and keeps the private verification state priv
for later use. In order to prove membership for an instance y with valid witness w, the prover performs the
following steps:

1. Generate, using crsZK, a (non-succinct) NIZK argument of knowledge πZK for the instance y using the
valid witness w.

2. Generate, using vgrs, a (succinct) SNARK proof π for the NP statement “there exists a proof πZK that
makes the NIZK verifier accept it as a valid proof for the instance y, relative to crsZK”.

3. Send (y, π) to the verifier.

The verifier can now use (vgrs, priv) and crsZK to verify (y, π) by running the SNARK verifier on the above
NP statement.

By using the SNARK extractor, we can obtain (efficiently) a valid NIZK proof πZK for the claimed
theorem y. Invoking the (computational) soundness of the NIZK argument, it must be that y is a true
theorem (with all except negligible probability). If the NIZK argument also guarantees an extractor, we
could use it to also extract a witness for y.

As for the zero-knowledge property, it follows from the zero-knowledge property of the NIZK argument:
the proof πZK is “already” zero knowledge, and thus using it as a witness in the SNARK implies that the
resulting succinct proof will also be zero knowledge. More formally, we can first run the simulator of the
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NIZK system to obtain a simulated proof π′ZK for y, and then honestly generate the proof π using π′ZK as the
witness to the NP statement. (We note that as long as the simulator for the NIZK is black-box, so will be
the simulator of the zkSNARK.)

We note that:

• If the NIZK argument extractor requires a trapdoor for the common-reference string crsZK, so will the
extractor for the resulting zkSNARK.

• The common-reference string crsZK of the NIZK argument needs to be of size polynomial in the
security parameter (and must not depend on the theorem being proved).

• Even if zkSNARKs “live” in the common-reference string model, proofs are still only privately ver-
ifiable (if indeed the SNARK that we start with requires a designated verifier): the verifier generates
(vgrs, priv) and sends vgrs to the prover; the prover uses both the vgrs and the common reference
string crsZK to produce a proof π for a theorem of his choice; the verifier then uses both (vgrs, priv)
and crsZK to verify the proof. In other words, the crsZK can be used by multiple verifiers, each one of
which will generate a (vgrs, priv) pair “on the fly” whenever they want to contact a prover. (Moreover,
if the vgrs of the underlying SNARK can be reused, so can the vgrs of the resulting zkSNARK.)

For example, to obtain zkSNARKs, one may combine any SNARKs with the NIZK arguments of knowledge
of Abe and Fehr [AF07] (which are based on an extended Knowledge of Exponent assumption, and happen
to have an extractor that does not require a trapdoor).

Proof of knowledge strikes again. We emphasize that, in the “SNARK on top of NIZK” approach, the proof
of knowledge of the SNARK was crucial for obtaining Theorem 9.1, even when only aiming for (only-sound)
zkSNARGs. (Other instances where proof of knowledge played a crucial role were the results of Section 7,
and thus in particular the “converse” of our main technical theorem, as well as some applications discussed
in Section 10.)

9.2 NIZK on top of SNARK

Theorem 9.2. If there exist adaptively-sound NIZK arguments of knowledge, SNARGs, and function-hiding
FHE, then there exist zkSNARGs. If furthermore there exist SNARKs then we obtain zkSNARKs.

Proof sketch. The setup phase again consists of generating a common reference string crsZK and publishing
it. A verifier then generates (sk, pk) for the FHE and (vgrs, priv) for a SNARG; then, it sends vgrs and
e := Encpk(priv) to the prover, and keeps e and sk for later use. In order to prove membership for an
instance y with valid witness w, the prover performs the following steps:

1. Generate, using vgrs, a (succinct) SNARG proof π for y,

2. Sample randomnessR for the (function-hiding) homomorphic evaluation and compute ê = EvalR(e, Cy,π),
where Cy,π is a circuit that given input priv computes V(priv, y, π), where V is the SNARG verifier.

3. Generate using crsZK, a NIZK argument of knowledge πZK for the the NP statement “there exist R, π
such that ê = EvalR(e, Cy,π)”. (Note that verifying this NP statement is a succinct computation!)

4. Send (y, πZK, ê) to the verifier.
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The verifier can now use y, e, ê and crsZK to verify the proof, by running the NIZK verifier and then verifying
that ê decrypts to 1.

By using the NIZK extractor, we can obtain (efficiently) a valid SNARG proof π for the claimed theorem
y. Invoking the semantic security of the FHE and the (computational) soundness of the SNARG, it must be
that y is a true theorem (with all except negligible probability). If the SNARG also guarantees an extractor
(i.e., it’s a SNARK), we could use it to also extract a witness for y.

The proof (πZK, ê) is zero-knowledge, because we can simulate ê (from the evaluation result “1”) by the
function-hiding of the FHE and then simulate πZK by running the NIZK simulator. (We note that as long as
the simulator for the NIZK is black-box, so will be the simulator of the zkSNARK.)

Unlike in the “SNARK on top of NIZK” approach, in the “NIZK on top of SNARG” approach the knowledge
property of the SNARG was not needed, but we had to additionally assume the existence of function-hiding
FHE. Had the SNARG been publicly verifiable this assumption would not have been needed.

10 Applications of SNARKs and zkSNARKs

In this section we discuss applications of SNARKs and zkSNARKs to delegation of computation (Sec-
tion 10.1) and secure computation (Section 10.2).

10.1 Delegation of Computation

Recall that, in a two-message delegation scheme (in the plain model): to delegate a T -time function F on
input x, the delegator sends a message σ to the worker; the worker computes an answer (z, π) to send
back to the delegator; the delegator outputs z if π is a convincing proof of the statement “z = F (x)”.
The delegator and worker time complexity are respectively bounded by p(|F |+ |x|+ |F (x)|+ log T ) and
p(|F |+ |x|+ |F (x)|+ T ), where p is a universal polynomial (not depending on the specific function being
delegated).

(Throughout this section we ignore the requirement for input privacy because it can always be achieved
by using a semantically-secure fully-homomorphic encryption scheme.)

10.1.1 Folklore Delegation from Succinct Arguments

There is a natural method to obtain a two-message delegation scheme from a designated-verifier non-
interactive succinct argument for NP with adaptive soundness: the delegator sends the desired input x and
function F to the worker (along with the verifier-generated reference string vgrs, which is independent of the
statement being proved), and asks him to prove that he evaluated the claimed output z for the computation
F (x) correctly.

In the above paragraph, “for NP” indicates that it is enough for there to exist a protocol specialized
for each NP relation (as the delegator, at delegation time, does know which NP relation is relevant for the
function being delegated), but the succinctness requirement is still required to be universal, as captured by
our Definition 4.1.

We note that, as long as one uses FHE in order to obtain input privacy, designated-verifier SNARGs, as
opposed to publicly verifiable SNARGs, suffice, since public verification is lost anyhow upon using FHE.
In fact, there is also no need to insist that the verifier-generated reference string is re-usable (beyond the
logarithmically-many theorems that it can always support anyways), as a fresh string can be very quickly
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generated and “sent out” along with the function and input being delegated. Thus, starting with designated-
verifier non-interactive succinct arguments, is usually “enough” for delegation of computation.

Furthermore, the use of succinct arguments, in a sense, provides the “best” properties that one could
hope for in a delegation scheme:

• There is no need for preprocessing and no need to assume that the verifier’s answers remain secret. All
existing work providing two-message generic delegation schemes are in the preprocessing setting and
assume that the verifier’s answers remain secret [KR06, Mie08, GKR08, KR09, GGP10, CKV10].
(Notable exceptions are the works of Benabbas et al. [BGV11] and Papamanthou et al. [PTT11],
which however only deal with delegation of specific functionalities, such as polynomial functions or
set operations.)

• The delegation scheme can also support inputs of the worker: one can delegate functions F (x, x′)
where x is supplied in the first message by the delegator, and x′ is supplied by the worker. (Indeed, x′

acts as a “witness”.) This extension is delegation with worker input.

We stress once more that adaptive soundness in the setting of delegation is really needed, unless the delegator
is willing to first let the worker claim an output z for the computation F (x) (after communicating to him
F and x), and only after that to send out the verifier-generated reference string to the worker. But in such
a case the delegation scheme would have more messages, so that we might have well have used the four-
message universal arguments of Barak and Goldreich (where the first message is independent of the input
being proven, and one is indeed able to show adaptive soundness), and rely on standard assumptions (i.e.,
the existence of CRHs).

10.1.2 Our Instantiation

Our main technical result, Theorem 1, provides an instantiation, based on a simple and generic knowledge
assumption (instantiated by several quite different candidates), of the designated-verifier non-interactive suc-
cinct argument for NP with adaptive soundness required for constructing a two-message delegation scheme.

Corollary 10.1. Assume that there exists extractable collision-resistant hash functions. Then there exists a
two-message delegation scheme.

We note that previous two-message arguments for NP [DCL08, Mie08] did not provide strong enough
notions of succinctness or soundness to suffice for constructing delegation schemes.

Our specific instantiation also has additional “bonuses”:

• Not only is the delegation sound, but also has a proof of knowledge. Therefore, F (x, x′) could involve
cryptographic computations, which would still be meaningful because the delegator would know that
a “good” input x′ can be found in efficient time.

For example, the delegated function F (x, x′) could first verify whether the hash of a long x′ is x and,
if so, proceed to conduct an expensive computation; if the delegation were merely sound, the delegator
would not be able to delegate such a computation, for such an x′ may always exist!

We discuss more consequences of this point in the paragraph below.

• Even if the construction from our Theorem 1 formally requires the argument to depend on a constant
c ∈ N bounding the time to verify the theorem, the only real dependence is a simple verification by the
verifier (i.e., checking that t ≤ |x|c), and thus in the setting of delegation of computation we obtain

45



a single protocol because the delegator gets to choose c. Of course, despite the dependence on c, our
construction still delivers the “universal succinctness” (as already remarked in Section 5.2, satisfying
our Definition 4.1) required at the beginning of this section.

(Indeed, note that if the polynomial bounding the verifier time complexity is allowed to depend on the
function being delegated, then a trivial solution is to just let the verifier compute the function himself,
as the function is assumed to be poly-time computable!)

• When our construction is instantiated with the quasilinear-time PCPs of Ben-Sasson et al. [BSCGT13]
we get essentially-optimal efficiency (up to polylogarithmic factors):

– the delegator’s first message requires time complexity poly(k, log T )Õ(|F |+ |x|);

– the worker’s computation requires time complexity poly(k)Õ(|F |+ |x|+ |F (x)|+ T ); and

– the delegator’s verification time requires time complexity poly(k, log T )Õ(|F |+ |x|+ |F (x)|).

Delegating memory, streams, and authenticated data. We would like to point out that the SNARK’s
adaptive proof of knowledge enables the delegator to handle “large inputs”.

Indeed, if we are interested in evaluating many functions on a large input x, we could first in an offline
stage compute a Merkle hash cx for x and then communicate x to the worker; later, in order to be convinced
of z = F (x), we simply ask the worker to prove us the there is some x̃ such that the Merkle hash of x̃ is
cx and, moreover, z = F (x̃). By the collision resistance of the Merkle hash, the delegator is convinced that
indeed z = F (x) — the proof of knowledge is crucial to invoke collision resistance!

Note that x, which now “lies in the worker’s untrusted memory”, can be updated by letting the worker
compute the updated x and prove that the new Merkle hash is a “good” one; moreover, if new pieces of
x become available, cx can updated in a streaming fashion. In this way, we are able to give simple two-
message constructions for both the tasks of memory delegation and streaming delegation, introduced by
[CTY10, CKLR11] — again getting the “best” that can hope for here. The resulting schemes, based on
SNARKs, are simpler than previously proposed (but of course, to instantiate the SNARKs, one may have to
invoke stronger assumptions).

Of course, special cases of delegating “large datasets” such as [BGV11] and [PTT11] are also implied
by our instantiation. (Though, in the case of [PTT11], we only get a designated-verifier variant.) While
our construction is definitely not as practically efficient, it provides the only other construction with two
messages (i.e., is “non-interactive”).

As yet another example of an application, consider the following scenario. A third party publishes on a
public database a large amount of authenticated data (e.g., statistics of public interest) along with his own
public key, denoted by x′ and pk respectively. A worker comes along and wants to compute a function F
over this data, but, because the data is so large, is only interested in learning the result z of the computation
but not seeing the data itself. Relying on the proof of knowledge property (and making the inconsequential
simplifying assumption that the third party only ever published a single authenticated database), the worker
could ask the database to prove that there is some (x′′, σ) such that z = F (x′′) and each entry of x′′ is
accompanied by a corresponding signature in σ relative to pk. In other settings, one may prefer to think
as the authenticated database as private, and thus a zero-knowledge property would be needed; this can be
guaranteed by either Theorem 9.1 or Theorem 9.2 in the CRS model.

In all of the above examples, the delegator is only “paying” polylogarithmically in the size of the data
upon verification time.
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10.1.3 Are Knowledge Assumptions Needed?

If one insists on two-message delegation of computation for all of NP, then a knowledge assumption is in
part justified: the impossibility result of Gentry and Wichs [GW11] implies that there is no proof of security
via any black-box reduction to a falsifiable assumption. (Note that, adaptivity in the soundness is indeed
needed, because the prover does get to choose the output and thus the theorem that is being proved!)

However, such delegation may still be possible without knowledge assumptions for “natural” NP lan-
guages. (Recall that the result of [GW11] involves constructing an “unnatural” NP language.) Moreover,
for delegation schemes where no input from the delegator is supported it suffices to capture languages in
P, because in such a case no witness is needed. In both of these cases, we are not aware of any evidence
suggesting that a knowledge assumption may be needed.

Unfortunately, at present, a two-message delegation scheme is only known to be achieved via designated-
verifier non-interactive succinct arguments for NP, which fall under the negative result of Gentry and Wichs
[GW11]. It is an interesting open question to avoid this negative result.

10.2 Succinct Non-Interactive Secure Computation

Non-interactive secure computation (NISC) [IKO+11] allows a receiver R to publish a string containing an
encryption of his secret input x, so that a sender S, holding a possibly very long input y, can reveal f(x, y)
to R by sending him a single message. This should be done while simultaneously protecting the secrecy of
y against a maliciousR and preventing S from any malicious influence on the output ofR. In succinct NISC
(SNISC), we also require that the amount of work performed byR (and thus the communication complexity)
is polynomial in the security parameter k and the input/output length of f (and is in particular independent
of the complexity of f ).

When the parties are semi-honest there are known solutions (e.g., based on fully homomorphic en-
cryption with function privacy [Gen09]). Naor and Nissim [NN01] observe that using the succinct zero-
knowledge arguments of Kilian [Kil92] one can enhance the GMW semi-honest-to-malicious compiler to
be communication preserving. However, the resulting protocol is not round preserving and hence cannot be
used to achieve SNISC.

Using the zkSNARKs, however, we can obtain SNISC against malicious parties in the CRS model.
(Though the string published by the receiver R can only be used logarithmically many times; if the re-
ceiver wishes to receive more messages, he should publish a new string.) We achieve UC security or non-
concurrent security, depending on whether the sender’s input is long or short.

Corollary 10.2. In the CRS model, if zkSNARKs exist, so does SNISC with malicious parties, with non-
concurrent security in the case of long sender input, and UC security in the case of short sender input.

Proof sketch. We begin by discussing the long sender input case, and describe a protocol that naturally
extends the semi-honest FHE-based SNISC protocol to the malicious setting.

The protocol. To jointly compute a function f :

1. The receiver R sends the verifier-generated reference string vgrs, an encryption c of its input x, and
πRZK, a NIZK proof of knowledge of input x (and randomness for the encryption) attesting that c is a
valid encryption of x.

2. The sender S verifies that πRZK is valid and aborts if not. The sender S then homomorphically evalu-
ates f(·, y) on the cipher c (the evaluation is randomized to keep y private), and sends the resulting
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evaluated cipher ĉ, together with πSZK, a zkSNARK proving knowledge of y (and randomness for the
evaluation algorithm) attesting that ĉ is a valid (homomorphic) evaluation of f(·, y) on c.

3. The receiver R verifies that πSZK is a valid zkSNARK and, if so, outputs the decryption of ĉ or else ⊥.

We stress that the amount of work done by R (including his NIZK πRZK) is independent of f ’s complexity.
We next briefly describe how each party is simulated.

Simulating a malicious R∗. To simulate R∗, we proceed as follows. First, generate the CRS together with
a trapdoor for the NIZK of knowledge and then provide R∗ with the CRS to obtain (vgrs, c, πRZK). In case
the NIZK πRZK doesn’t verify, abort; otherwise, use the trapdoor to extract the input x, hand it to the trusted
party, and receive f(x, y). To simulate the message sent by S, simulate the evaluation result ĉ using the
underlying plaintext f(x, y); this can be done by the function privacy guarantee. Next, invoke the simulator
for the zkSNARK with respect to the statement given by the simulated evaluation ĉ.

The validity of the simulation follows from the function privacy guarantee of the FHE and the validity
zkSNARK simulator, as well as from the fact that the NIZK in use is a proof of knowledge.

Simulating a malicious S∗. To simulate S∗, we proceed as follows. Generate the CRS together with a
trapdoor for the NIZK of knowledge. Simulate R’s message by encrypting an arbitrary string (of the proper
length) to create a simulated encryption c and running the NIZK simulator with respect to the statement
given by c. Also, simulate the vgrs by employing the generator of the zkSNARK. Feed S∗ with the generated
message to obtain a proof πRZK. Check the validity of πRZK using the CRS and the private verification state
generated with vgrs. If the proof is invalid abort; otherwise, use the zkSNARK extractor to obtain the input
y and hand it to the trusted party. (Note that here is where simulation makes non-black-box use of the
adversary S∗, because the extractor for S∗ guaranteed by the knowledge property of the zkSNARK might
need to use the code of S∗.)

The validity of the simulation follows from the semantic security of the encryption and the validity of
the NIZK simulator, as well as from the fact that the zkSNARK is a proof of knowledge.

We note that the FHE-based protocol above can be naturally generalized to yield a simple compiler that
transforms any SNISC protocol in a slightly strengthened semi-honest model to a (still non-interactive)
protocol that is secure against malicious parties in the CRS model. The strengthening of the semi-honest
model is to require security with respect to parties that may choose arbitrary randomness. (In the interactive
setting, the GMW compiler itself deals with this issue using “coin tossing into the well”, which can not be
done in the non-interactive setting.)

In the case where the input of the sender S is short, S acts instead as follows: he gives a NIZK of
knowledge π′ attesting that he knows his own input y and then uses a zkSNARG to prove that “there exists
y (as well as randomness for the evaluation algorithm and randomness for the NIZK) for which ĉ is a valid
evaluation of f(·, y) on c, and y is the witness for the NIZK π′”. Now the simulation of a malicious S∗

can be performed in a black-box manner, by simply invoking the black-box extractor of the NIZK proof of
knowledge; a non-black-box use of S∗ is only made within the proof when the (computational) soundness of
the zkSNARG is invoked. (In particular, the proof of knowledge property of the zkSNARG is not essential
for the short sender input case.)

11 Extractable One-Way Functions and Their Applications

In this section, we consider a notion that is closely related to ECRHs: extractable one-way functions
(EOWFs). Specifically, we formalize two strong variants of EOWFs and show that, assuming the exis-

48



tence of EOWFs and enhanced trapdoor permutations, there exist a non-interactive (two-message) selective-
opening-attack-secure (SOA-secure) commitment scheme and a 3-round concurrent zero-knowledge (ZK)
protocol. Previous works showed that it is impossible to construct the former primitive from standard as-
sumptions using black-box security reductions [Pas11] (provided one-to-one one-way functions exist), and
that it is impossible to have sublogarithmic-round concurrent zero-knowledge protocols with black-box
simulation [CKPR01]. Our constructions circumvent previous impossibility results by relying on the (non-
black-box) extractability property of EOWFs.

The rest of this section is organized as follows. In Section 11.1 we formalize two variants of EOWFs:
strong extractable OWFs (sEOWFs) and strong concurrently-extractable OWFs (scEOWFs). Next, in Sec-
tion 11.4, we use sEOWFs to construct a non-interactive SOA-secure commitment scheme; the technical
core of our construction is obtaining a new 3-round zero-knowledge argument-of-knowledge (ZKAOK)
protocol having the special property that only the last message of the protocol depends on the statement
to be proved; we believe this construction is of independent interest, and we present it first separately in
Section 11.2. Next, in Section 11.3, we show that when the sEOWF used in our 3-round ZKAOK protocol
is replaced with a scEOWF, the protocol is also concurrent ZK, yielding a 3-round concurrent ZK protocol.
Finally, in Section 11.5 we give candidate constructions of sEOWFs and scEOWFs, based on the (original)
Knowledge-of-Exponent Assumption (KEA) of [Dam92].

11.1 Definitions of sEOWFs and scEOWFs

A strong extractable OWF (sEOWF) is an ensemble of extractable functions that are one-to-one and every-
where one-way (namely, for every sufficiently large security parameter, every function in the family is hard
to invert); furthermore, given a function, it is possible to efficiently verify whether the function belongs to
the ensemble or not.

Definition 11.1. A sEOWF is a function ensemble F = {Fk}k mapping {0, 1}k to {0, 1}`(k) that is ex-
tractable (see Definition 1) and additionally satisfies the following properties:

1. One-to-one: every function in F is one to one (so that `(k) ≥ k).

2. Verifiability: there is a polynomial-time algorithm that, given k ∈ N and f , decides whether f is in Fk.

3. Everywhere one-wayness: For every polynomial-size adversary A, every sufficiently large security pa-
rameter k ∈ N, every function f ∈ Fk, and every auxiliary input z ∈ {0, 1}poly(k), the following holds:

Pr
x←{0,1}k

[
f(x′) = f(x)

∣∣∣∣ y ← f(x)
x′ ← A(1k, z, y)

]
≤ negl(k) .

Remark 11.2 (sEOWF vs. EPOW). Our notion of sEOWF is similar to the notion of extractable perfectly
one-way (EPOW) function defined by Canetti and Dakdouk [CD09]. While both notions seek to formalize
the notion of extractability for a one-way function, the two notions differ in their concrete hardness require-
ments: a EPOW requires every function in the ensemble to be a perfectly one-way function [Can97] (which
is a probabilistic function whose images hides all partial information of the preimage) whereas a sEOWF
ensemble only requires every function in the ensemble to be hard to invert.

We now prove a useful lemma that says that if a function ensembleF is extractable then it is also parallel
extractable, in the sense that if the adversary outputs, in parallel, many values for different functions, then,
for every value that is in the image of the corresponding function, the extractor succeeds in extracting a
corresponding preimage.
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Lemma 11.3. If a family ensemble F = {Fk}k is extractable then it is also parallel extractable in the
following sense: for any polynomial-size adversary A, there exists a polynomial-size extractor E such that
for all large enough k ∈ N, any polynomial m, and any auxiliary input z ∈ {0, 1}poly(k):

Pr
f←Fk

[
∃ i ∈ [m(k)] s.t.

yi ∈ Image(fi) and yi 6= f(x′i)

∣∣∣∣ y← A(f , z)
x′ ← E(f , z)

]
≤ negl(k) .

Proof. Consider the adversary Ã that, on input fi, z′i = (z, i, f1, · · · , fi−1, fi+1, · · · , fm(k)), runs A(f , z),
except that it only outputs the i-th value xi that A outputs. Let Ẽ be the extractor corresponding to Ã. Then
the parallel extractor E for A simply internally runs Ẽ in parallel with inputs fi, z′i for every i and outputs
the values extracted by the parallel executions of Ẽ . By definition of Ẽ , except with negligible probability
the ith invocation of Ẽ returns a valid preimage for the i-th value the adversary A outputs. Thus, overall, E
is a valid parallel extractor.

Next, a strong concurrently-extractable OWF (scEOWF) is a sEOWF where the extractability property
is strengthened to concurrent extractability:

Definition 11.4. A scEOWF is a sEOWF that is concurrently extractable (see below).

We now describe the notion of concurrent extractability. The adversary and extractor participate in an
interactive game, in which the adversary adaptively outputs multiple values while receiving the preimages
the extractor obtains for each output value. Concurrent extractability requires that for every adversary there
is an extractor such that, in the interactive game, the extractor succeeds (with overwhelming probability) in
extracting the correct preimage for every value the adversary outputs.

Definition 11.5 (Concurrent Extractability). A function ensemble F = {Fk}k mapping {0, 1}k to {0, 1}`(k)

is concurrently extractable if for any polynomial-size adversary A there exists a polynomial-size extractor
E such that for every large enough security parameter k ∈ N, any polynomial m, and any auxiliary input
z ∈ {0, 1}poly(k), the advantage ofA against E in the experiment EXPFA,E(1

k) (described below) is negl(k).
The definition of EXPFA,E(1

k) is as follows:

EXPFA,E(1
k) ≡

1. f1 · · · fm(k) ← Fk;

2. st0 ← (f1, · · · , fm(k), z);

3. run AO(st0) until it halts, replying to the i-th oracle query (fji , yi) as follows:

(a) (xi, sti)← E(fji , yi, sti−1);
(b) if fji ∈ {f1, · · · , fm(k)}, yi ∈ Image(fji), and yi 6= fji(xi), abort and output fail;
(c) return xi to A;

4. output 1.

The advantage ofA against E in the above game, denoted as ADVFA,E(1
k), is the probability that the game’s

output is fail; that is,
ADVFA,E(1

k) := Pr
[
EXPFA,E(1

k) = fail
]
.
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Remark 11.6. Concurrent extractability is very similar to the notion of extractability required of extractable
hash functions (Definition 2.8) in [DFH11], except that, in their security game, the adversary attacks only a
single randomly chosen hash function, whereas in the above definition, the adversary is allowed to choose
to attack any of an arbitrary polynomial number of functions adaptively.

Remark 11.7 (Auxiliary input). As noted after Definition 6.1, EOWF (and surely sEOWF or scEOWF)
cannot be achieved with respect to arbitrary auxiliary-input distributions of apriori unobunded polynomial
size, assuming indistinguishability obfuscation. In the applications that follow, we use EOWFs within a
larger protocol, and cannot necessarily restrict the distribution on the auxiliary-input. (For example, in a
zero-knowledge protocol, the instance itself should can been seen as auxiliary-input that is adversarially
chosen in a worst-case manner. Yet, using similar techniques to those used in [BCPR14], we can make sure
that any auxiliary-input is apriori-bounded by a fixed polynomial, a setting in which no impossibility results
for EOWFs are known. Thus, all of our results can be scaled down to consider only verifiers with bounded
auxiliary information.

In Section 11.5, we discuss candidate constructions of sEOWFs and scEOWFs.

11.2 A Special 3-round ZKAOK protocol

In this section, we construct a 3-round ZKAOK protocol for NP that has the special property that only
the last message of the protocol depends on the statement to be proved, whereas the first two messages
only depend on the size of the statement. Therefore, the statement only needs to be specified before the
generation of the last message. Our construction relies on three building blocks:

1. A sEOWF family ensemble F .

2. A ZAP protocol (PZ , VZ) for NP, that is, a two-round public-coin witness-indistinguishable (WI)
argument. Such protocols exists assuming the existence of trapdoor permutations [DN00].

3. A 3-round WIAOK protocol (PW , VW ) for NP that has two special properties. First, it satisfies that
only the last message in the protocol depends on the statement to be proved (and the first two messages
depends only on the size of the statement). Second, it has a strong argument of knowledge property.
Namely, given two accepting transcripts (m1,m

1
2,m

1
3) and (m1,m

2
2,m

2
3) for two different statements

x1 and x2 that have the same first message but different second messages m1
2 6= m2

2, a witness of
either x1 or x2 can be deterministically computed—we refer to this property as the special soundness
property. It has been shown in [LS90] that such a protocol can be constructed from one-to-one one-
way functions.

Given these building blocks, the 3-round ZKAOK protocol (P, V ) proceeds as follows: To prove a NP
statement x, the prover P and the verifier V on common input 1k and private input a witness w of x to P
exchanges the following three messages.

First message: The prover sends the following:

• A randomly sampled function f ← Fk,

• the first message α of a (PZ , VZ) proof where the prover acts as the receiver, and

• the first message m1 of a (PW , VW ) proof where the prover acts as the prover.

Second message: The verifier sends the following:
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• The images y1, y2 of two randomly sampled k-bit strings r1, r2 through the function f ,

• the second message β of (PZ , VZ) in response to α, proving that either y1 or y2 is in the range
of f (the honest verifier uses the preimage of yb chosen at random as the witness), and

• the second message m2 of (PW , VW ) in response to m1.

Third Message: The committer sends the following:

• The third message m3 of (PW , VW ) in response to m1,m2, proving that either x is true, or the
value committed to in (c1, c2) is a preimage of either y1 or y2 through f . (The honest prover
uses the witness w of x as the witness.)

By construction, it is easy to see that the first two messages of the protocol do not depend on the statement to
be proved. Next we first show in Lemma 11.8 that indeed this protocol is a ZKAOK for NP. Then we observe
in Lemma 11.9 that by slightly extending the proof of Lemma 11.8, we can in fact show that (P, V ) satisfies
two stronger properties, namely, parallel ZK and adaptive soundness, where the latter guarantees that no
efficient prover can prove a false statement with non-negligible probability, even if it can adaptively choose
the false statement to prove about adaptively depending on the verifier’s message (before the generation of
the last message).

Lemma 11.8. The protocol (P, V ) is a ZKAOK for NP.

Proof. We first show that (P, V ) is ZK. Fix a malicious verifier V ∗, a security parameter k and an auxiliary
input z to V ∗. We construct the simulator S for V ∗. S internally runs V ∗ with input (1k, z) and a uniformly
sampled random string r, and emulates the prover’s messages as follows:

• S emulates the first message (f, α,m1) to V ∗ honestly;

• Upon receiving the second message (y1, y2, β,m2) from V ∗, it tries to extract a preimage of y1 or y2

by relying on the extractability property of sEOWF. More precisely, consider a wrapper machine A
that on input f and auxiliary input z′ = (1k, z, r, α,m1) runs V ∗ internally with input (1k, z), random
tape r and first message (f, α,m1), and outputs the two images y1, y2 output by V ∗. It follows from
the (parallel) extractability of the sEOWF F that there is an extractor E that on the same input f, z′

outputs x1, x2 such that xi is a valid preimage of yi as long as yi is in the range of y with overwhelming
probability. The simulator internally incorporates E and runs it with input f, z′ to obtain x1 and x2. If
neither x1 nor x2 is a valid preimage, it aborts and outputs fail. Otherwise, it records a valid preimage
xi.

• S simulates the third message m3 by proving that one of y1, y2 is in the range of f using xi as the
witness.

We show that S emulates the view of V ∗ correctly. First, it follows from the soundness of the ZAP protocol
(PZ , VZ) that at least one of the images y1 and y2 output by V ∗ is in the range of f . Then by the extractability
ofF , E succeeds in extracting at least one valid preimage with overwhelming probability, and thus S outputs
fail with only negligible probability. Whenever E succeeds in extracting a valid preimage, S uses it as a
“trapdoor” to cheat in the last message. It then follows from the witness indistinguishability property of the
protocol (PW , VW ) that the simulated view is indistinguishable from the real view.

Next we show that (P, V ) is an AOK for NP. Consider an efficient prover P ∗ (w.l.o.g. deterministic)
that for infinitely many k ∈ N and auxiliary input z, proves a statement x with probability 1/p(k). We
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show that there is an efficient extractor E , that on input (1k, x, z) and with black-box access to P ∗ extracts
a valid witness w of x with probability at least 1/q(k) = 1/p(k)2 − negl(k). The extractor E simply
emulates two executions of P ∗ with an honest verifier V , obtaining two transcripts T1, T2, which share
the same first message (f, α,m1), and have different second and third messages (y1

1, y
1
2, β

1,m1
2),m1

3 and
(y2

1, y
2
2, β

2,m2
2),m2

3; if both T1 and T2 are accepting, then it extracts a witness w from the two transcripts
(m1,m

1
2,m

1
3) and (m1,m

2
2,m

2
3) of (PW , VW ); it outputs w if it is indeed a valid witness of x; otherwise, it

outputs fail.
We argue that E extracts a valid witness with probability at least 1/q(k) = 1/p(k)2 − negl(k). To

see this, first note that since E emulates two executions between P ∗ and the honest verifier V honestly, it
happens with probability 1/p(k)2 that the two transcripts T1 and T2 collected are both accepting proofs for
statement x. We show below that conditioned on this happening, except with negligible probability, the
value w extracted from the two proofs of (PW , VW ) must be a valid witness of x. If so, the probability that
E extracts a valid witness successfully is at least 1/p(k)2 − negl(k).

Assume for contradiction that conditioned on that T1 and T2 are both accepting proofs of x, the value w
extracted from (m1,m

1
2,m

1
3) and (m1,m

2
2,m

2
3) in T1 and T2 is not a valid witness of x with non-negligible

probability 1/p′(k). Then we can construct a machine B that violates the everywhere one-wayness of F .
The machine B on input (1k, x, z) internally proceeds as E does, except that, when emulating the two
executions between P ∗ and V , it first forwards the function f from P ∗ externally; then upon receiving an
image y of a random value externally, it assigns y to one of y1

1, y
1
2, y

2
1, y

2
2 at random—let it be ydb—and

generate the other three values honestly; furthermore, in the dth execution, it emulates the second message
of ZAP by proving that yd1−b is in the range of f . Finally, after extracting the value w, it checks if w is a
preimage of y; if so, it outputs w; otherwise, it outputs fail. Since B emulates the view of P ∗ perfectly and
extracts w as E does, by out hypothesis, it occurs with probability 1/p′(k) that T1, T2 are accepting but the
extracted value w is not a valid witness of x. Then it follows from the special soundness of 〈PW , VW 〉 that
except with negligible probability w must be a valid witness of either the statement of (m1,m

1
2,m

1
3) or that

of (m1,m
2
2,m

2
3), in other words, w must be a preimage of one of y1

1, y
1
2, y

2
1, y

2
2 . Furthermore, it follows

from the fact that the distribution of the verifier’s message are statistically close in the two executions and
the WI property of ZAP that which of the four values y is assigned to is computationally hidden. Therefore,
with probability 1/4− negl(k), w is a preimage of y. Therefore B violates the everywhere one-wayness of
F with probability at least 1/5p′(n), which gives a contradiction.

Lemma 11.9. The protocol (P, V ) is parallel ZK and has adaptive soundness.

Proof Sketch. The proof of the parallel ZK property can be easily extended from that of the ZK property.
Given a malicious verifier V ∗, to simulate many parallel proofs of (P, V ) to it, simply consider a simulator
that simulates the prover’s message in each parallel proof as how the simulator in the proof of Lemma 11.8
simulates a single proof, except that it extracts the “trapdoors” in all parallel proofs by relying on the parallel
extractability property of the sEOWF as shown in Lemma 11.3.

Next we show that (P, V ) has adaptive soundness. Assume for contradiction that there is a malicious
prover P ∗, w.l.o.g. deterministic, such that for infinitely many k ∈ N and auxiliary input z, it can prove a
false statement of its choice with a non-negligible probability 1/p(k). Then we show that we can construct
a machine B′ that can violate the everywhere one-wayness of F . The machine B′ proceeds identically
to the machine B constructed in the proof of the AOK property of Lemma 11.8. As argued in the proof of
Lemma 11.8, by our hypothesis, with probability 1/p(k)2,B′ obtains two accepting transcripts T1 and T2 for
two (potentially different) false statements x1 and x2. Then by the special-soundness of (PW , VW ), B′ must
extract a preimage w of one of the four values y1

1, y
1
2, y

2
1, y

2
2 with probability 1/q(k) = 1/p(k)2 − negl(k).
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Then by the same argument as in the proof of Lemma 11.8, w must be a preimage of the value y that B′

receives externally with probability at least 1/5q(k). Therefore B′ violates the everywhere one-wayness of
F and this gives a contradiction.

Remark 11.10. Bitansky, Canetti, Paneth, and Rosen [BCPR14] show that when considering a restricted
class of adversaries with bounded polynomial advice and unbounded polynomial running time, a weaker
variant of extractable one-way functions can be constructed from standard assumptions (e.g., subexponential
security of Decision Diffie-Hellman or Quadratic Residousity). They then show how to use this weaker
variant of extractable one-way functions to construct 2-message zero-knowledge arguments and 3-message
zero-knowledge arguments of knowledge against adversaries of the same class. Their protocols follow the
same structure as our construction above, with modifications tailored to their weaker extractable one-way
functions.

11.3 A 3-round Concurrent ZK Protocol

In this section, we first recall the definition of concurrent ZK and then show that assuming that the under-
lying strong extractable OWF’s are concurrently extractable, that is, a scEOWF, then the 3-round ZKAOK
protocol (P, V ) described in Section 11.2 is a concurrent ZK protocol for NP.

Definition of concurrent zero-knowledge protocols. Let (P, V ) be an interactive argument for a language
L. Consider a concurrent adversarial verifier V ∗ that on common input 1k, x and auxiliary input z, interacts
with any polynomial number of independent copies of P concurrently, without any restrictions over the
scheduling of the messages in the different interactions with P . Let ViewP

V ∗(1
k, x, z) denote the random

variable describing the view of the adversary V ∗ in an interaction with P .

Definition 11.11. Let (P, V ) be an interactive argument system for a language L. We say that (P, V ) is
concurrent ZK if for every PPT concurrent adversary V ∗, there exists a PPT simulator S, such that, it holds
that the ensembles {ViewP

V ∗(1
k, x)}k∈N,x∈{0,1}k∩L and {S(1k, x)}k∈N,x∈{0,1}k∩L are computationally in-

distinguishable over k ∈ N.

It was shown in [CKPR01] that it is impossible to construct a slightly sub-logarithmic round concurrent
ZK protocol with black-box simulation, that is the simulator S only uses black-box access to the malicious
verifier V ∗. Next, by relying on the existence of a scEOWF and enhanced trapdoor permutations, we show
that there is a 3-round concurrent ZK protocol, which circumvents the impossibility result by using non-
black-box simulation. We note that in a recent work [GS12], Gupta and Sahai formulated a new knowledge
assumption and showed that it implies constant-round concurrent ZK arguments. Although their knowl-
edge assumption is formulated in a “stand-alone” fashion, it essentially implies concurrent extractability;
moreover, their protocol has five rounds.

The 3-round protocol (P, V ) is concurrent ZK. We show that assuming that the underlying family en-
semble F used in the protocol (P, V ) in section 11.2 is a scEOWF, then the protocol (P, V ) is concurrent
ZK.

Theorem 11.12. Let F be a scEOWF. Then (P, V ) is concurrent ZK.

Proof. Fix a PPT concurrent adversary V ∗, a security parameter k ∈ N a statement x, and an auxiliary
input z. We first construct a simulator S ′ that, with access to an oracle O that inverts the one-way functions
in F , simulates the view of V ∗. More precisely, let O be an oracle satisfying that, if it is fed with a pair
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(f, y) with f ∈ F and y in the range of f , it returns a valid preimage through f ; (otherwise, it can return
any value).

The machine S ′ on auxiliary input z′ = (1k, x, z) and a vector of randomly chosen functions f ← F ,
internally simulates a concurrent execution with V ∗(1k, x, z) as follows: it emulates the first messages for
V ∗ honestly by forwarding fi as the randomly chosen function the ith interaction; it simulates the third
messages by committing to a “fake” witness—a preimage of one of the two values y1 or y2 from V ∗ sent
in the second message—and cheating in the ZAP proof that it has committed to such a “fake” witness. For
every interaction of (P, V ), S ′ obtains a “fake” witness by querying the oracle on the two values y1 and y2

from V ∗, obtaining x1 and x2; if neither x1 nor x2 is a valid preimage of y1 or y2, S ′ aborts and outputs
fail; otherwise, S ′ records a valid preimage and later simulates the ZAP proof of this interaction using it as
a “fake” witness. Finally, S ′ outputs the simulated view of V ∗. By the soundness of ZAP proof from the
malicious verifier, except with negligible probability, for every interaction of (P, V ), one of the two values
y1 and y2 has a valid preimage; then, the oracle must return one valid preimage, and thus the probability
that S ′ outputs fail is negligible. In this case, it follows directly from the witness indistinguishability of the
ZAP proof and the hiding property of the commitment scheme (C,R) that the simulated view of V ∗ by S ′
is indistinguishable from the real view of V ∗ when interacting with an honest prover.

Next, we construct the actual simulator S that emulates the oracleO for S ′ by relying on the concurrent
extractability of F . More precisely, by the concurrent extractability of F , there is an extractor E such that
when replacing the oracle answers to S ′ with the preimages extracted by E(f , z′), the probability that E
fails to extract a valid preimage for a value output by S ′ that has a preimage is negligible. Furthermore, it
follows from the one-to-one property of F that except with negligible probability, E emulates the oracle O
perfectly. Therefore, the output view of S is indistinguishable from the real view of V ∗, and we conclude
the theorem.

Beyond Concurrent ZK. By applying the transformation of [BGGL01] to our protocol, we obtain a three-
round resettably-sound concurrent ZK protocol. By additionally applying the transformation of [DGS09]
to the resulting resettably-sound concurrent ZK protocol, we obtain a three-round simultaneously-resettable
ZK protocol.

Theorem 11.13. Assuming the existence of a scEOWF and enhanced trapdoor permutations, there is a
3-round simultaneously-resettable ZK protocol.

11.4 Two-message Selective Opening Attack Secure Commitments

In this section, we first provide a formal definition of a SOA-secure commitment scheme and then provide
a non-interactive construction of it using the 3-round adaptively-sound parallel ZK protocol constructed in
Section 11.2.

Definition of SOA-secure commitments. A commitment scheme secure against selective opening attack
has a strong hiding property that holds even if the adversary gets to selectively ask for the decommitment
of some of the commitments it receives. We consider a strong notion of SOA-security, which is essen-
tially the same as the simulation based definition of a SOA-secure commitment scheme in [DNRS03], but
strengthens it to require indistinguishability of the simulation rather than a relation-based security guaran-
tee. Formally, let (C,R) be a commitment scheme. We compare between a real and an ideal execution.
In the real experiment, the adversary gets to interact with the honest committer C in the commit stages of
m = m(k) commitments to values v1, . . . , vm sampled from some distribution D, and may adaptively ask
for decommitments of any commitment ci, where i is a part of a “legal” subset I ⊆ {1, · · ·m(k)}. In the
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ideal experiment, the adversary simply gets to ask for the values vi in the legal subset i ∈ I . Let real((C,
R), D, I,A, 1k) denote the view of an adversary A in the following experiment:

• Sample (x, z) from D, and for each i ∈ |x|, engage with the adversary A(z) in the commit stage of
(C,R) committing to value xi, where x is a vector of length m(k) and xi is the ith component of x.

• A chooses a subset J ⊆ I . For every j ∈ J , decommit the jth commitment to value xj by sending the
corresponding decommitment string dj .

Let ideal(D, I,S, 1k) denote the output of the machine S in the following experiment:

• Sample (x, z) from D. Feed (1k, z) to S.

• S chooses a subset J ⊆ I . For every j ∈ J , feed xj to S.

Definition 11.14 (Hiding under Selective Decommitment). Let (C,R) be a commitment scheme. We say
that (C,R) is secure under selective decommitment w.r.t. the legal set I = {Ik}k∈N , where Ik ∈ [m(k)]

and the ensemble of distributions D = {Dk}k∈N , where Dk is a distribution over ({0, 1}poly(k))m(k)+1;
if for every non-uniform PPT adversary A, there exists a non-uniform PPT S such that the following two
ensembles are indistinguishable.

•
{
real((C,R), Dk, Ik,A, 1k)

}
k∈N

•
{
ideal(Dk, Ik,S, 1k)

}
k∈N

It is implied by the impossibility result in [Pas11] that assuming the existence of one-to-one one-way
functions, then there exist legal set I and distribution D, such that, it is impossible to construct a non-
interactive SOA-secure commitment scheme w.r.t. I and D based on any bounded-round assumptions17 via
a black-box security reduction.

In contrast to the impossibility result, next we show that assuming the existence of a sEOWF and en-
hanced trapdoor permutations, we can construct a non-interactive SOA-secure commitment scheme. Our
construction circumvents the impossibility result of [Pas11] at two aspects: First the assumption of the ex-
istence of sEOWF is not a bounded-round assumption, and second, our security reduction is non-black-box.

A non-interactive SOA-secure commitment scheme (C̃, R̃). The construction makes use of the above
3-round adaptively-sound parallel ZK protocol (P, V ) and a basic one-message statistically-binding com-
mitment scheme Com, which exists assuming one-to-one one-way functions. To commit to a value v, the
committer C̃ and the receiver R̃ on common input a security parameter 1k proceeds as follow:

First message: The committer sends a commitment c to v using Com, together with the first message m1

of (P, V ).

Second message: The receiver replies with the second message m2 of (P, V ).

Decommitment message: The committer sends v and the third message m3 of (P, V ) proving that v is
indeed the value committed to in c. The receiver accepts if the proof (m1,m2,m3) is accepting.

17A bounded-round assumption is an intractability assumption formalized using a bounded-round interactive game between an
adversary and a challenger. It is similar to the notion of falsifiable assumption proposed by [Nao03] but does not require the
challenger to be efficient [Pas11].

56



Theorem 11.15. (C̃, R̃) is computationally binding and computationally hiding under selective decommit-
ment w.r.t. any distribution ensemble D and legal set ensemble I.

Proof Sketch. It follows from the adaptive soundness of (P, V ) and the statistically binding property of
Com that the commitment scheme (C̃, R̃) is computationally binding. To show that it is also hiding under
selective decommitment, consider a distribution ensemble D = {Dk}k, a legal set ensemble I = {Ik}k and
an adversary A, and fix a security parameter k ∈ N. We construct a simulator S that in an ideal experiment
ideal(Dk, Ik,S, 1k) proceeds as follows:

• Upon receiving 1k, z, S internally runs A(1k, z), and sends the first messages of m = m(k) commit-
ments of 0n to A.

• Upon receiving the request from A for the decommitment of commitments in subset J ⊆ Ik, S
forwards J externally and obtains values xj for every j ∈ J .

• S sends A xj’s and simulates the decommitment messages to xj’s, which are simply the third mes-
sages of (P, V ), by relying on the parallel ZK property of (P, V ).

It follows from the parallel ZK property of (P, V ) and the hiding property of Com that the simulation is
indistinguishable.

11.5 Candidate Constructions of sEOWF and scEOWF

A candidate construction of sEOWF. We show that the construction of ECRH in Section 8.1 when instan-
tiated with the 1-KEA assumption (Assumption 8.1 in Section 8.1) is essentially already a sEOWF (up to a
slight modification). For completeness, we provide the construction below.

Let G = {Gk} be an efficiently-samplable ensemble for which the 1-KEA assumption holds. That is,
each Gk consists of a group G of prime order p ∈ (2k−1, 2k) and a generator g ∈ G, and it holds that for
any polynomial-size adversary A there exists a polynomial-size extractor E , such that, whenever A, given
(gr, gαr, z) for r and α chosen randomly from Zp, outputs a valid tuple (c, c′) such that c′ = cα, the extractor
E(gr, gαr, z) finds a discrete logarithm x such that gxr = c. Now a sEOWF can be constructed from the
KEA assumption as follows:

• To sample from Fk: set (G, g) ← Gk and sample (r, α)
U← Z∗p × Z∗p where p = |G|, and output

f := (G, gr, gαr). (Note that, different from the construction of ECRH in Section 8.1, α and r are
sampled from Z∗p instead of Zp.)

• To compute f(x): output the pair (gxr, gxαr).

Assuming the 1-KEA assumption and that the hardness of computing discrete logarithms in G, the above
construction is a sEOWF. First, it follows directly from the 1-KEA assumption and the almost the same
argument for the construction of ECRH from t-KEA in Section 8.1 that the above construction is extractable.
Furthermore, by construction, gxr for every r ∈ Z∗p uniquely determines x and thus every function in the
ensemble is one-to-one. Finally, it follows from the hardness of discrete logs that for sufficiently large
security parameter k, every function in the family Fk is hard to invert.

A candidate construction of scEOWF. To obtain a scEOWF, we use the same construction as above,
but assuming a stronger concurrent 1-KEA assumption, which simply extends the 1-KEA assumption to
allow concurrent extraction in a similar way as in the definition of concurrent extractability property (Defi-
nition 11.5).
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Assumption 11.16 (Concurrent 1-KEA). There exists a family G = {Gk} where each Gk consists of a group
G of prime order p ∈ (2k−1, 2k) and a generator g ∈ G, such that the following holds. For any polynomial-
size adversary A there exists a polynomial-size extractor E such that for all large enough k ∈ N, any
polynomial m, and any auxiliary input z ∈ {0, 1}poly(k), the advantage of the adversary in the following
experiment is bounded by negl(k).

EXPGA,E(1
k):

• Let (G, g) ← Gk. Sample α1 · · ·αm(k)
U← Zp and r1 · · · rm(k)

U← Zp, where p = |G|. Set
St0 = (gr1 , · · · , grm(k) , gα1r1 , · · · , gαm(k)rm(k) , z).

• Run AO(St0) until it halts, replying to the i-th oracle query (ji, ci, c
′
i) as follows:

– (xi, Sti) = E(ji, ci, c
′
i, Sti−1)

– If ji ∈ [m(k)], c′i = c
αji
i , and ci 6= grjixi , abort and output fail.

– Return xi to A.

• Output 1.

The advantage of the adversary in the above game, denoted as ADVGA,E(1
k), is the probability that the game

outputs fail, that is,
ADVGA,E(1

k) = Pr[EXPGA,E(1
k) = fail]

It is easy to see that assuming the concurrent 1-KEA assumption and that the discrete logs problem is
hard in G, the above mentioned construction for sEOWF is in fact a scEOWF.
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