
How to manipulate curve standards:
a white paper for the black hat

Daniel J. Bernstein1,2, Tung Chou1, Chitchanok Chuengsatiansup1,
Andreas Hülsing1, Eran Lambooij1, Tanja Lange1,

Ruben Niederhagen1, and Christine van Vredendaal1

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, NL

blueprint@crypto.tw, c.chuengsatiansup@tue.nl,

andreas.huelsing@googlemail.com, e.lambooij@student.tue.nl,

tanja@hyperelliptic.org, ruben@polycephaly.org, c.v.vredendaal@tue.nl

2 Department of Computer Science
University of Illinois at Chicago, Chicago, IL 60607–7045, USA

djb@cr.yp.to

Abstract. This paper analyzes the cost of breaking ECC under the following assump-
tions: (1) ECC is using a standardized elliptic curve that was actually chosen by an
attacker; (2) the attacker is aware of a vulnerability in some curves that are not pub-
licly known to be vulnerable.

This cost includes the cost of exploiting the vulnerability, but also the initial cost of
computing a curve suitable for sabotaging the standard. This initial cost depends heav-
ily upon the acceptability criteria used by the public to decide whether to allow a curve
as a standard, and (in most cases) also upon the chance of a curve being vulnerable.

This paper shows the importance of accurately modeling the actual acceptability cri-
teria: i.e., figuring out what the public can be fooled into accepting. For example, this
paper shows that plausible models of the “Brainpool acceptability criteria” allow the
attacker to target a one-in-a-million vulnerability and that plausible models of the
“Microsoft NUMS criteria” allow the attacker to target a one-in-a-hundred-thousand
vulnerability.

Keywords. Elliptic-curve cryptography, verifiably random curves, verifiably pseu-
dorandom curves, minimal curves, nothing-up-my-sleeve numbers, ANSI X9, NIST,
SECG, Brainpool, Microsoft NUMS, sabotaging standards, fighting terrorism, protect-
ing the children.

This work was supported by the European Commission under contracts INFSO-ICT-
284833 (PUFFIN) and H2020-ICT-645421 (ECRYPT-CSA), by the Netherlands Or-
ganisation for Scientific Research (NWO) under grant 639.073.005, and by the U.S.
National Science Foundation under grant 1018836. “Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.” Calculations
were carried out on two GPU clusters: the Saber cluster at Technische Universiteit
Eindhoven; and the K10 cluster at the University of Haifa, funded by ISF grant
1910/12. Permanent ID of this document: bada55ecd325c5bfeaf442a8fd008c54.
Date: 2015.09.27. See web site: bada55.cr.yp.to. This work did not receive the
funding that it so richly deserves from the U.S. National Security Agency.

2 BADA55 Research Team

1 Introduction

More and more Internet traffic is encrypted. This poses a threat to our society as
it limits the ability of government agencies to monitor Internet communication
for the prevention of terrorism and globalized crime. For example, an increasing
number of servers use Transport Layer Security (TLS) as default (not only for
transmissions that contain passwords or payment information) and also most
modern chat applications encrypt all communication. This increases the cost of
protecting society as it becomes necessary to collect the required information at
the end points, i.e., either the servers or the clients. This requires agencies to
either convince the service providers to make the demanded information available
or to deploy a back door on the client system respectively. Both actions are much
more expensive for the agencies than collecting unprotected information from the
transmission wire.

Fortunately, under reasonable assumptions, it is feasible for agencies to fool
users into deploying cryptographic systems that the users believe are secure but
that the agencies are able to break.

1.1. Elliptic-curve cryptography. Elliptic-curve cryptography (ECC) has a
reputation for high security and has become increasingly popular. For definite-
ness we consider the elliptic-curve Diffie–Hellman (ECDH) key-exchange proto-
col, specifically “ephemeral ECDH”, which has a reputation of being the best
way to achieve forward secrecy. The literature models ephemeral ECDH as the
following protocol ECDHE,P , Diffie–Hellman key exchange using a point P on
an elliptic curve E:

1. Alice generates a private integer a and sends the ath multiple of P on E.
2. Bob generates a private integer b and sends bP .
3. Alice computes abP as the ath multiple of bP .
4. Bob computes abP as the bth multiple of aP .
5. Alice and Bob encrypt data using a secret key derived from abP .

There are various published attacks showing that this protocol is breakable for
many elliptic curves E, no matter how strong the encryption is. See Section 2 for
details. However, there are also many (E,P) for which the public literature does
not indicate any security problems. Similar comments apply to, e.g., elliptic-
curve signatures.

This model begs the question of where the curve (E,P) comes from. The
standard answer is that a central authority generates a curve for the public
(while advertising the resulting benefits for security and performance).3 This
does not mean that the public will accept arbitrary curves; our main objective
in this paper is to analyze the security consequences of various possibilities for

3 See, e.g., ANSI X9.62 [1] (“public key cryptography for the financial services indus-
try”), IEEE P-1363 [29], SECG [17], NIST FIPS 186 [41], ANSI X9.63 [2], Brain-
pool [14], NSA Suite B [43], and ANSSI FRP256V1 [3]. Note that this paper is not
a historical review of which standards have been sabotaged and which have not; it
is a sabotage cost assessment and a guide for manipulating future standards.

How to manipulate curve standards 3

what the public will accept. The general picture is that Alice, Bob, and the
central authority Jerry are actually participating in the following three-party
protocol ECDHA, where A is a function determining the public acceptability of
a standard curve:

−1. Jerry generates a curve E, a point P , auxiliary data S with A(E,P, S) = 1.
(The “seeds” for the NIST curves are examples of S; see Section 4.)

0. Alice and Bob verify that A(E,P, S) = 1.
1. Alice generates a private integer a and sends aP .
2. Bob generates a private integer b and sends bP .
3. Alice computes abP as the ath multiple of bP .
4. Bob computes abP as the bth multiple of aP .
5. Alice and Bob encrypt data using a secret key derived from abP .

Our paper is targeted at Jerry. We make the natural assumption that Jerry is
cooperating with a heroic eavesdropper Eve to break the encryption used by
potential terrorists Alice and Bob. The central question is how Jerry can use his
curve-selection flexibility to minimize the attack cost.

Obviously the cost cA of breaking ECDHA depends on A, the same way that
the cost cE,P of breaking ECDHE,P depends on (E,P). One might think that,
to evaluate cA, one simply has to check what the public literature says about
cE,P , and then minimize cE,P over all (E,P, S) with A(E,P, S) = 1. The reality
is more complicated, for three reasons:

1. There may be vulnerabilities not known to the public: curves E for which
cE,P is smaller than indicated by the best public attacks. Our starting
assumption is that Jerry and Eve are secretly aware of a vulnerability that
applies to a fraction ε of all curves that the public believes to be secure.
The obvious strategy for Jerry is to standardize a vulnerable curve. Of
course, Jerry should object to any public suggestions that a vulnerable
curve could have been standardized.

2. Some choices of A limit the number of curves E for which there exists
suitable auxiliary data S. If 1/ε is much larger than this limit then Jerry
cannot expect any vulnerable (E,P, S) to have A(E,P, S) = 1. We show
that, fortunately for Jerry, this limit is much larger than the public thinks
it is. See Sections 5 and 6.

3. Other choices of A do not limit the number of vulnerable E for which
S exists but nevertheless complicate Jerry’s task of finding a vulnerable
(E,P, S) with A(E,P, S) = 1. See Section 4 for analysis of the cost of this
computation.

If Jerry succeeds in finding a vulnerable (E,P, S) with A(E,P, S) = 1, then Eve
simply exploits the vulnerability, obtaining access to the information that Alice
and Bob have encrypted for transmission.

Of course, this could require considerable computation for Eve, depending
on the details of the secret vulnerability. Obviously, given the risk of this paper
being leaked to the public, it would be important for us to avoid discussing

4 BADA55 Research Team

Data regarding what
public will accept

��

Data regarding what
public will not accept

��
Plausible model of

public acceptability criterion A

��Hypothesized fraction ε
of acceptable curves

that are secretly weak

// Analysis of security
of ECDHA

Fig. 1.1. Data flow in this paper. The available data regarding public acceptability is
stratified into five different models of the public acceptability criterion A, considered in
Sections 3, 4, 5, 6, and 7 respectively, with five different shapes of the auxiliary curve
data S. The security of each A is analyzed for variable ε.

details of secret vulnerabilities, even if we were aware of such vulnerabilities.4

Our goal in this paper is not to evaluate the cost of Eve’s computation, but
rather to evaluate the impact of A and ε upon the cost of Jerry’s computation.

For this evaluation it is adequate to use simplified models of secret vulner-
abilities. We specify various artificial curve criteria that have no connection to
vulnerabilities but that are satisfied by (E,P, S) with probability ε for various
sizes of ε. We then evaluate how difficult it is for Jerry to find (E,P, S) that
satisfy these criteria and that have A(E,P, S) = 1.

The possibilities that we analyze for A are models built from data regarding
what the public will accept. See Figure 1.1 for the data flow. Consider, for exam-
ple, the following data: the public has accepted without complaint the constants
sin(1), sin(2), . . . , sin(64) in MD5, the constants

√
2,
√

3,
√

5,
√

10 in SHA-1, the
constants 3

√
2, 3
√

3, 3
√

5, 3
√

7 in SHA-2, the constant (1 +
√

5)/2 in RC5, the con-
stant e = exp(1) in Brainpool, the constant 1/π in ARIA, etc. All of these
constants are listed in [51] as examples of “nothing up my sleeve numbers”.
Extrapolating from this data, we confidently predict that the public would ac-
cept, e.g., the constant cos(1) used in our example curve BADA55-VPR-224 in
Section 5. Enumerating a complete list of acceptable constants would require
more systematic psychological experiments, so we have chosen a conservative
acceptability function A in Section 5 that allows just 17 constants and their
reciprocals.

The reader might object to our specification of ECDHA as implicitly assum-
ing that the party sabotaging curve choices to protect society is the same as the
party issuing curve standards to be used by Alice and Bob. In reality, these two

4 Note to any journalists who might end up reading this paper: There are no secret
vulnerabilities. Really. ECC is perfectly safe. You can quote Jerry.

How to manipulate curve standards 5

parties are different, and having the first party exercise sufficient control over
the second party is often a delicate exercise in finesse. See, for example, [31,20].

1.2. Organization. Section 2 reviews the curve attacks known to the public
and analyzes the probability that a curve resists these attacks; this probability
has an obvious impact on the cost of generating curves. Section 3, as a warm-up,
shows how to manipulate curve choices when A merely checks for these public
vulnerabilities.

Section 4 shows how to manipulate “verifiably random” curve choices ob-
tained by hashing seeds. Section 5 shows how to manipulate “verifiably pseudo-
random” curve choices obtained by hashing “nothing-up-my-sleeves numbers”.
Section 6 shows how to manipulate “minimal” curve choices. Section 7 shows
how to manipulate “the fastest curve”.

1.3. Research contributions of this paper. We appear to be the first to
formally introduce the three-party protocol ECDHA. The general idea of Sec-
tion 4 is not new, but our cost analysis is new. We are the first to implement the
attack,5 showing how little computer power is necessary to target highly unusual
curve properties. Our theoretical and experimental analysis of the percentage of
secure curves (see Section 2) is also new.

The general idea of Sections 5 and 6 is new. We are the first to show that
curves using so-called “nothing-up-my-sleeves numbers” can very well be ma-
nipulated to contain a secret vulnerability. We present concrete ways to gain
many bits of freedom and analyze how likely a new vulnerability needs to be in
order to hide in this framework. It is surprising that millions of curves can be
generated by plausible variations of the Brainpool [14] curve-generation proce-
dure, and that hundreds of thousands of curves can be generated by plausible
variations of the Microsoft [13] curve-generation procedure.

As discussed in Sections 4.2 and 5, we encourage Jerry to experimentally
study the exact boundary of what the public will accept. In followup work to
Section 5, Aumasson has posted a “Generator of ‘nothing-up-my-sleeve’ (NUMS)
constants” that “generates close to 2 million constants, and is easily tweaked to
generate many more”. See [4].

2 Pesky public researchers and their security analyses

One obstacle Jerry has to face in deploying his backdoored elliptic curves is
that public researchers have raised awareness of certain weaknesses an elliptic
curve may have. Once sufficient awareness of a weakness has been raised, many
standardization committees will feel compelled to mention that weakness in their
standards. This in turn may alert the targeted users, i.e., the general public: some
users will check what standards say regarding the properties that an elliptic curve
should have or should not have.

The good thing about standards is that there are so many to choose from.
Standards evaluating or claiming the security of various elliptic curves include

5 To be precise: No previous implementations are reported in the public literature.

6 BADA55 Research Team

ANSI X9.62 (1999) [1], IEEE standard P1363 (2000) [29], Certicom SEC 1 v1
(2000) [16], Certicom SEC 2 v1 (2000) [17], NIST FIPS 186-2 (2000) [41], ANSI
X9.63 (2001) [2], Brainpool (2005) [14], NSA Suite B (2005) [43], Certicom SEC
1 v2 (2009) [18], Certicom SEC 2 v2 (2010) [19], OSCCA SM2 (2010) [44,45],
ANSSI FRP256V1 (2011) [3], and NIST FIPS 186-4 (2013) [42]. These stan-
dards vary in many details, and also demonstrate important variations in public
acceptability criteria, an issue explored in depth later in this paper.

Unfortunately for Jerry, some public criteria have become so widely known
that all of the above standards agree upon them. Jerry’s curves need to satisfy
these criteria. This means not only that Jerry will be unable to use these public
attacks as back doors, but also that Jerry will have to bear these criteria in
mind when searching for a vulnerable curve. Perhaps the vulnerability known
secretly to Jerry does not occur in curves that satisfy the public criteria; on
the other hand, perhaps this vulnerability occurs more frequently in curves that
satisfy the public criteria than in general curves. The chance ε of a curve being
vulnerable is defined relative to the curves that the public will accept.

This section has three goals:

– Review these standard criteria for “secure” curves, along with attacks those
pesky researchers have found. Jerry must be careful, when designing and
justifying his curve, to avoid revealing attacks outside this list; such attacks
are not known to the public.

– Analyze the probability δ that a curve satisfies the standard security criteria.
This has a direct influence on Jerry’s curve-generation cost. Two particular
criteria, “small cofactor” and “small twist cofactor”, are satisfied by only a
small fraction of curves.

– Analyze the probability that a curve is actually feasible to break by various
public attacks. It turns out that there are many probabilities on different
scales, showing that one should also consider a range of probabilities ε for
Jerry’s secret vulnerability. Recall that ε is, by definition, the probability that
curves passing the public criteria are secretly vulnerable to Jerry’s attack.

Each curve that Jerry tries works with probability only δε. The number of curves
that Jerry can afford to try and is allowed to try depends on various optimiza-
tions and constraints analyzed later in this paper; combining this number with δε
immediately reveals Jerry’s overall success chance at creating a vulnerable curve
that passes the public criteria, avoiding alarms from the pesky researchers.

2.1. Warning: math begins here. For simplicity we cover only prime fields�

here. If Jerry’s secret vulnerability works only in binary fields then we would
expect Jerry to have a harder time convincing his targets to use vulnerable
curves, although of course he should try.

Let E be an elliptic curve defined over a large prime field Fp. One can always
write E in the form y2 = x3 + ax+ b. Most curve standards choose a = −3 for
efficiency reasons. Practically all curves have low-degree isogenies to curves with
a = −3, so this choice does not affect security.

How to manipulate curve standards 7

Write |E(Fp)| for the number of points on E defined over Fp, and write
|E(Fp)| as p+ 1− t. Hasse’s theorem (see, e.g., [49]) states that |E(Fp)| is in the
“Hasse interval” [p+ 1− 2

√
p, p+ 1 + 2

√
p]; i.e., t is between −2

√
p and 2

√
p.

Define ` as the largest prime factor of |E(Fp)|, and define the “cofactor” h
as |E(Fp)|/`. Let P be a point on E of order `.

2.2. Review of public ECDLP security criteria. Elliptic curve cryptog-
raphy is based on the believed hardness of the elliptic-curve discrete-logarithm
problem (ECDLP), i.e., the belief that it is computationally infeasible to find a
scalar k satisfying Q = kP given a random multiple Q of P on E. The state-of-
the-art public algorithm for solving the ECDLP is Pollard’s rho method (with
negation), which on average requires approximately 0.886

√
` point additions.

Most publications require the value ` to be large; for example, the SafeCurves
web page [9] requires that 0.886

√
` > 2100.

Some standards put upper limits on the cofactor h, but the limits vary. FIPS
186-2 [41, page 24] claims that “for efficiency reasons, it is desirable to take the
cofactor to be as small as possible”; the 2000 version of SEC 1 [16, page 17]
required h ≤ 4; but the 2009 version of SEC 1 [18, pages 22 and 78] claims that
there are efficiency benefits to “some special curves with cofactor larger than
four” and thus requires merely h ≤ 2α/8 for security level 2α. We analyze a few
possibilities for h and later give examples with h = 1; many standard curves
have h = 1.

Another security parameter is the complex-multiplication field discriminant
(CM field discriminant) which is defined as D = (t2 − 4p)/s2 if (t2 − 4p)/s2 ≡ 1
(mod 4) or otherwise D = 4(t2−4p)/s2, where t is defined as p+1−|E(Fp)| and
s2 is the largest square dividing t2 − 4p. One standard, Brainpool, requires |D|
to be large (by requiring a related quantity, the “class number”, to be large).
However, other standards do not constrain D, there are various ECC papers
choosing curves where D is small, and the only published attacks related to the
size of D are some improvements to Pollard’s rho method on a few curves. If
Jerry needs a curve with small D then it is likely that Jerry can convince the
public to accept the curve. We do not pursue this possibility further.

All standards prohibit efficient additive and multiplicative transfers. An ad-
ditive transfer reduces the ECDLP to an easy DLP in the additive group of Fp;
this transfer is applicable when ` equals p. A degree-k multiplicative transfer
reduces the ECDLP to the DLP in the multiplicative group of Fpk where the
problem can be solved efficiently using index calculus if the embedding degree k
is not too large; this transfer is applicable when ` divides pk − 1. All standards
prohibit ` = p, ` dividing p − 1, ` dividing p + 1, and ` dividing various larger
pk − 1; the exact limit on k varies from one standard to another.

2.3. ECC security vs. ECDLP security. The most extensive public list
of requirements is on the SafeCurves web page [9]. SafeCurves covers hardness
of ECDLP, generally imposing more stringent constraints than the standards
listed in Section 2.2; for example, SafeCurves requires the discriminant D of the
CM field to satisfy |D| > 2100 and requires the order of p modulo `, i.e., the
embedding degree, to be at least (`− 1)/100. Potentially more troublesome for

8 BADA55 Research Team

Jerry is that SafeCurves also covers the general security of ECC, i.e., the security
of ECC implementations.

For example, if an implementor of NIST P-224 ECDH uses the side-channel-
protected scalar-multiplication algorithm recommended by Brier and Joye [15],
reuses an ECDH key for more than a few sessions,6 and fails to perform a mod-
erately expensive input validation that has no impact on normal usage,7 then
a twist attack finds the user’s secret key using approximately 258 elliptic-curve
additions. See [9] for details. SafeCurves prohibits curves with low twist security,
such as NIST P-224.

Luckily for Jerry, the other standards listed above focus on ECDLP hard-
ness and impose very few additional ECC security constraints. This gives Jerry
the freedom (1) to choose a non-SafeCurves-compliant curve that encourages
insecure ECC implementations even if ECDLP is difficult, and (2) to deny that
there are any security problems. Useful denial text can be found in a May 2014
presentation [40] from NIST: “The NIST curves do NOT belong to any known
class of elliptic curves with weak security properties. No sufficiently large classes
of weak curves are known.”

Unfortunately, there is some risk that twist-security and other SafeCurves
criteria will be added to future standards.8 This paper considers the possibility
that Jerry is forced to generate twist-secure curves; it is important for Jerry to be
able to sabotage curve standards even under the harshest conditions. Obviously
it is also preferable for Jerry to choose a curve for which all implementations are
insecure, rather than merely a curve that encourages insecure implementations.

Twist-security requires the twist E′ of the original curve E to be secure. If
|E(Fp)| = p+1−t then |E′(Fp)| = p+1+t. Define `′ as the largest prime factor of

p+ 1 + t. SafeCurves requires 0.886
√
`′ > 2100 to prevent Pollard’s rho method;

`′ 6= p to prevent additive transfers; and p having order at least (`′ − 1)/100
modulo `′ to prevent multiplicative transfers. SafeCurves also requires various
“combined attacks” to be difficult; this is automatic when cofactors are very
small, i.e. when (p+ 1− t)/` and (p+ 1 + t)/`′ are very small integers.

2.4. The probability δ of passing public criteria. This subsection analyzes
the probability of random curves passing the public criteria described above.

We begin by analyzing how many random curves have small cofactors. As
illustrations we consider cofactors h = 1, h = 2, and h = 4. Note that, for primes

6 [20, Section 4.2] reports that Microsoft’s SChannel automatically reuses “ephemeral”
keys “for two hours”.

7 A very recent paper [30] reports complete breaks of the ECC implementations in
Bouncy Castle and Java Crypto Extension, precisely because those implementations
fail to validate input points.

8 For example, after we wrote this, CFRG appeared to reach consensus on twist-secure
curves. The resulting documents are still in draft form but the risk is clear. On the
other hand, a recent document [36] claims that “using twist secure curves can lead
to insecure implementations and degrade security”; the details of these claims have
already received various public objections, but one can still imagine the authors of
[36] issuing a new non-twist-secure standard.

How to manipulate curve standards 9

p large enough to pass a laugh test (at least 224 bits), curves with these cofactors
automatically satisfy the requirement 0.886

√
` > 2100; in other words, requiring

a curve to have a small cofactor supersedes requiring a curve to meet minimal
public requirements for security against Pollard’s rho method.

Let π(x) be the number of primes p ≤ x, and let π(S) be the number of
primes p in a set S. The prime-number theorem states that the ratio between
π(x) and x/ log x converges to 1 as x→∞, where log is the natural logarithm.
Explicit bounds such as [46] are not sufficient to count the number of primes
in a short interval I = [x − y, x], but there is nevertheless ample experimental
evidence that π(I) is very close to y/ log x when y is larger than

√
x.

The number of integers in I of the form `, 2`, or 4`, where ` is prime, is
the same as the total number of primes in the intervals I1 = [x − y, x], I2 =
[(x− y)/2, x/2] and I4 = [(x− y)/4, x/4], namely

π(I1) + π(I2) + π(I4) ≈ y

log x
+

y/2

log (x/2)
+

y/4

log (x/4)
=

∑
h∈{1,2,4}

y/h

log(x/h)
.

Take x = p + 1 + 2
√
p and y = 4

√
p to see that the number of such integers in

the Hasse interval is approximately
∑
h∈{1,2,4}(4

√
p/h)/(log ((p+ 1 + 2

√
p)/h)).

The total number of integers in the Hasse interval is almost exactly 4
√
p, so the

chance of an integer in the interval having the form `, 2`, or 4` is approximately∑
h∈{1,2,4}

1

h log ((p+ 1 + 2
√
p)/h)

. (1)

This does not imply, however, that the same approximation is valid for the
number of points on a random elliptic curve. It is known, for example, that the
number of points on an elliptic curve is odd with probability almost exactly
1/3, not 1/2; this suggests that the number is prime less often than a uniformly
distributed random integer in the Hasse interval would be.

A further difficulty is that we need to know not merely the probability that
the cofactor h is small, but the joint probability that both h and h′ = (p+1+t)/`′

are small. Even if one disregards the subtleties in the distribution of p+1−t, one
should not expect (e.g.) the probability that p+1− t is prime to be independent
of the probability that p+1+ t is prime: for example, if one quantity is odd then
the other is also odd.

Galbraith and McKee in [25, Conjecture B] formulated a precise conjecture
for the probability of any particular h (called “k” there). Perhaps the techniques
of [25] can be extended to formulate a conjecture for the probability of any par-
ticular pair (h, h′). However, no such conjectures appear to have been formulated
yet, let alone tested.

To collect facts we performed the following experiment: take p = 2224−296+1
(the NIST P-224 prime, which is also used in the following sections), and count
the number of points on 1000000 curves. Specifically, we took the curves y2 =
x3 − 3x + 1 through y2 = x3 − 3x + 1000001, skipping the non-elliptic curve
y2 = x3 − 3x+ 2. It is conceivable that the small coefficients make these curves

10 BADA55 Research Team

behave nonrandomly, but the same type of nonrandomness appears naturally in
Section 6, so this is a relevant experiment. Furthermore, the simple description
makes the experiment easy to reproduce.

Within this sample we found probability 0.003705 of h = 1, probability
0.002859 of h = 2, and probability 0.002372 of h = 4, with total 0.008936 ≈ 2−7.
We also found, unsurprisingly, practically identical probabilities for the twist
cofactor: probability 0.003748 of h′ = 1, probability 0.002902 of h′ = 2, and
probability 0.002376 of h′ = 4, with total 0.009026.

For comparison, Formula (1) evaluates to approximately 0.011300 (about
25% too optimistic), built from 0.006441 for h = 1 (about 74% too optimistic),
0.003235 for h = 2 (about 13% too optimistic), and 0.001625 for h = 4 (about
32% too pessimistic).

In our sample we found probability 0.000049 that simultaneously h ∈ {1, 2, 4}
and h′ ∈ {1, 2, 4}. This provides reasonable confidence, although not a guaran-
tee, that the events h ∈ {1, 2, 4} and h′ ∈ {1, 2, 4} are statistically dependent:
independence would mean that the joint event would occur with probability
approximately 0.000081, so a sample of size 1000000 would contain ≤49 such
curves with probability under 0.0001.

We found probability 0.000032 ≈ 2−15 of h = h′ = 1. Our best estimate,
with the caveat of considerable error bars, is therefore that Jerry must try about
215 curves before finding one with h = h′ = 1. If Jerry is free to neglect twist
security, searching only for h = 1, then the probability jumps by two orders of
magnitude to about 2−8. If Jerry is allowed to take any h ∈ {1, 2, 4} then the
probability is about 2−7.

These probabilities are not noticeably affected by the SafeCurves require-
ments regarding the CM discriminant, additive transfers, and multiplicative
transfers. Specifically, random curves have a large CM field discriminant, prac-
tically always meeting the SafeCurves CM criterion; none of our experiments
found a CM field discriminant below 2100. We also found, unsurprisingly, no
curves with ` = p. As for multiplicative transfers: Luca, Mireles, and Shparlinski
gave a theoretical estimate [37] for the probability that for a sufficiently large
prime number p and a positive integer K with logK = O(log log p) a randomly
chosen elliptic curve E(Fp) has embedding degree k ≤ K; this result shows
that curves with small embedding degree are very rare. The SafeCurves bound
K = (` − 1)/100 is not within the range of applicability of their theorem, but
experimentally we found that about 99% of all curves had a high embedding
degree ≥ K.

2.5. The probabilities for various feasible attacks. We now consider vari-
ous feasible public attacks as models of Jerry’s secret vulnerability. Specifically,
for each attack, we evaluate the probability that the attack works against curves
that were not chosen to be secure against this type of attack. Any such proba-
bility is a reasonable guess for an ε of interest to Jerry.

At the low end is, e.g., an additive transfer, applying only to curves having
exactly p points. The probability here is roughly p−1/2: e.g., below 2−100 for the
NIST P-224 prime.

How to manipulate curve standards 11

Fig. 2.1. Largest prime factor versus the probability. Blue: The regular curves E.
Orange: The twists of the curves E. Black: The Dickman estimate. Orange is more
visible than blue because orange is plotted on top of blue.

At the high end, most curves fail the “rho” and “twist” security criteria; see
Section 2.4. But this does not mean that the curves are feasible to break, or
that the breaking cost is low enough for Jerry to usefully apply to billions of
targets. These security criteria are extremely cautious, staying far away from
anything potentially breakable by these attacks. For example, ` ≈ 2150 fails the
SafeCurves security criteria but still requires about 275 elliptic-curve operations
to break by the rho attack, costing roughly 100 million watt-years of energy with
current hardware, a feasible but highly nontrivial cost. A much smaller ` ≈ 2120

would require about 260 elliptic-curve operations, and breaking 230 targets by
standard multiple-target techniques would again require about 275 elliptic-curve
operations. Even smaller values of ` are of interest for twist attacks.

The prime-number theorem can be used to estimate the probabilities of var-
ious sizes of ` as in Section 2.4, but it loses applicability as ` drops below

√
p.

To estimate the probability for a wider range of ` we use the following result by
Dickman (see, e.g., [27]). Define Ψ(x, y) as the number of integers ≤ x whose
largest prime factor is at most y; these numbers are called y-smooth integers.
Dickman’s result is then as follows:

Ψ(x, y) ∼ xρ(u) as x→∞, where x = yu.

Here ρ, the “Dickman ρ function”, satisfies ρ(u) = 1 for 0 ≤ u ≤ 1 and −uρ′(u) =
ρ(u − 1) for u ≥ 1, where ρ′ means the right derivative. It is not difficult to
compute ρ(u) to high accuracy.

We experimentally verified how well ` adheres to this estimate, again for the
NIST P-224 prime. For each k we used the Dickman rho function to compute
an estimate for the number of integers in the Hasse interval whose largest prime

12 BADA55 Research Team

p k = 30 k = 40 k = 50 k = 60 k = 70 k = 80

P-224 prime 2−15.74 2−8.382 2−4.752 2−2.743 2−1.560 2−0.8601

P-256 prime 2−20.47 2−11.37 2−6.730 2−4.132 2−2.551 2−1.557

P-384 prime 2−42.10 2−25.51 2−16.65 2−11.37 2−7.977 2−5.708

P-521 prime 2−68.64 2−43.34 2−29.57 2−21.16 2−15.63 2−11.81

Table 2.2. Estimated probability that an elliptic curve modulo p has largest twist
prime at most 22k and second largest twist prime at most 2k, i.e., that an elliptic curve
modulo p is vulnerable to a twist attack using approximately 2k operations. Estimates
rely on the method of [5] to compute asymptotic semismoothness probabilities.

factor has exactly k bits:

Ψ(p+1+2
√
p, 2k)−Ψ(p+1−2

√
p, 2k)−Ψ(p+1+2

√
p, 2k−1)+Ψ(p+1−2

√
p, 2k−1).

We divided this by 4
√
p (the size of the Hasse interval) to obtain the black graph

in Figure 2.1. We also experimentally computed (for a somewhat smaller sample
than in Section 2.4) the fraction of curves where ` has k bits, and the fraction of
curves where `′ has k bits, shown as blue and orange dots in Figure 2.1. The dots
are below the right end of the graph in Figure 2.1 for the reasons explained in
Section 2.4; for smaller values of ` the estimate closely matches the experimental
data.

About 20% of the 224-bit curves have ` < 2100, producing a tolerable rho
attack cost, around 250 elliptic-curve operations. However, ρ(u) drops rapidly as
u increases (it is roughly 1/uu), so the chance of achieving this reasonable cost
also drops rapidly as the curve size increases. For 256-bit curves the chance is
ρ(2.56) ≈ 0.12 ≈ 2−3. For 384-bit curves the chance is ρ(3.84) ≈ 0.0073 ≈ 2−7.
For 512-bit curves the chance is ρ(5.12) ≈ 0.00025 ≈ 2−12.

We now switch from considering rho attacks against arbitrary curves to con-
sidering twist attacks against curves with cofactor 1. For a twist attack to fit into
250 elliptic-curve operations, the largest prime `′ dividing p+1+t must be below
2100, but also the second-largest prime dividing p+ 1 + t must be below 250; see
generally [9]. In other words, p + 1 + t must be (2100, 250)-semismooth. Recall
that an integer is defined to be (y, z)-semismooth if none of its prime factors is
larger than y and at most one of its prime factors is larger than z. The portion
of the twist attack corresponding to the second-largest prime is difficult to batch
across multiple targets, so it is reasonable to consider even smaller limits for that
prime.

We estimated this semismoothness probability using the same approach as
for rho attacks. First, estimate the semismoothness probability for p+1+t as the
semismoothness probability for a uniform random integer in the Hasse interval.
Second, estimate the semismoothness probability for a uniform random integer
using a known two-variable generalization of ρ. Third, compute this generaliza-
tion using a method of Bach and Peralta [5]. The results range from 2−6.730 for

How to manipulate curve standards 13

256-bit curves down to 2−29.57 for 521-bit curves. Table 2.2 shows the results
of similar computations for several sizes of primes and several limits on feasible
attack costs.

To summarize, feasible attacks in the public literature have a broad range of
success probabilities against curves not designed to resist those attacks; proba-
bilities listed above include 2−4, 2−8, 2−11, 2−16, and 2−25. It is thus reasonable
to consider a similarly broad range of possibilities for ε, the probability that a
curve passing public security criteria is vulnerable to Jerry’s secret attack.

3 Manipulating curves

Here we target users with minimal acceptability criteria: i.e., we assume that
A(E,P, S) checks only the public security criteria for (E,P) described in Sec-
tion 2. The auxiliary data S might be used to communicate, e.g., a precomputed
|E(Fp)| to be verified by the user, but is not used to constrain the choice of
(E,P). Curves that pass the acceptability criteria are safe against known at-
tacks, but have no protection against Jerry’s secret vulnerability.

3.1. Curves without public justification. Here are two examples of standard
curves distributed without any justification for how they were chosen. These
examples suggest that there are many ECC users who do in fact have minimal
acceptability criteria.

As a first example, we look at the FRP256V1 standard [3] published in 2011
by the Agence nationale de la sécurité des systèmes d’information (ANSSI). This
curve is y2 = x3 − 3x+ b over Fp, where

b = 0xEE353FCA5428A9300D4ABA754A44C00FDFEC0C9AE4B1A1803075ED967B7BB73F,
p = 0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03.

Another example is a curve published by the Office of State Commercial
Cryptography Administration (OSCCA) in China along with the SM2 algo-
rithms in 2010 (cf. [45,44]). The curve is of the same form as the ANSSI one
with

b = 0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
p = 0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF.

Each curve E is also accompanied by a point P . The curves meet the ECDLP
requirements9 reviewed in Section 2. The only further data provided with these
curves is data that could also have been computed efficiently by users from the
above information. Nothing in the curve documentation suggests any verification
that would have further limited the choice of curves.

3.2. The attack. The attack is straightforward. Since the only things that users
check are the public security criteria, Jerry can continue generating curves for

9 But not the SafeCurves requirements. Specifically, FRP256V1 has twist security 279,
and the OSCCA curve has twist security 296.

14 BADA55 Research Team

a fixed p (either randomly or not) that satisfy the public criteria until he gets
one that is vulnerable to his secret attack. Alternatively, Jerry can generate
curves vulnerable to his secret attack and check them against the public security
criteria. Every attack (publicly) known so far allows efficient computation of
vulnerable curves, so it seems likely that the same will be true for Jerry’s secret
vulnerability. After finding a vulnerable curve, Jerry simply publishes it.

Of course, Jerry’s vulnerability must not depend on any properties excluded
by the public security criteria, and there must be enough vulnerable curves.
Enumerating 27 vulnerable curves over Fp is likely to be sufficient if Jerry can
ignore twist-security, and enumerating 215 vulnerable curves over Fp is likely to
be sufficient even if twist-security is required. See Section 2.

Even if Jerry’s curves are less frequent, Jerry can increase his chances by
also varying the prime p. To simplify our analysis we do not take advantage of
this flexibility in this section: we assume that Jerry is forced to reuse a particu-
lar standard prime such as a NIST prime or the ANSSI prime. We emphasize,
however, that the standard security requirements do not seriously scrutinize the
choice of prime, and existing standards vary in their choices of primes. Any al-
lowed variability in p would also improve the attack in Section 5, and we do vary
p in Section 6.

3.3. Implementation. We implemented the attack to demonstrate that it is
really feasible in practice. In our implementation the same setting as above is
adopted and even made more restrictive: the resulting curve should be of the
form y2 = x3− 3x+ b over Fp, where p is the same as for the ANSSI curve. The
public security criteria we consider are all the standard ECDLP security criteria
plus twist security, and we further require that both cofactors are 1.

Of course, as explained in the introduction, we will not include any actual
secret vulnerability in this white paper. We instead use a highly structured
parameter b as an artificial model of a secret vulnerability. We show that we
can construct a curve with such a b that passes all the public criteria. In reality,
Jerry would select a curve with a secret vulnerability rather than a curve with
our artificial model of a vulnerability, and would use a trustworthy curve name
such as TrustedCurve-R-256.

Our attack is implemented using the Sage computer algebra system [50]. We
took 0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55EC as
the start value for b and incremented b until we found a curve that meets the
public security criteria. This corresponds to Jerry iteratively checking whether
curves that are vulnerable to the secret attack fulfill the public criteria.

As a result we found a desired curve, which we call BADA55-R-256, with
b = 0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA5A57 af-
ter 1131 increments within 78 minutes on a single core of an AMD CPU.10 One

10 Note that a lucky attacker starting from
0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA is
able to find the following secure parameter already within 43 minutes after only 622
increments:
b = 0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48.

How to manipulate curve standards 15

p = 0xF1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03 # standard ANSSI prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

A = p-3 # standard -3 modulo p
B = 0xBADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p F1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C03
A F1FD178C0B3AD58F10126DE8CE42435B3961ADBCABC8CA6DE8FCF353D86E9C00
B BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BADA55BD48

Fig. 3.1. A procedure to generate the new BADA55-R-256 curve.

can easily check using a computer-algebra system that the curve does meet all
the public criteria. It is thus clear that users who only verify public security
criteria can be very easily attacked, and Jerry has an easy time if he is working
for or is trusted by ANSSI, OSCCA, or a similar organization.

4 Manipulating seeds

Section 3 deals with the easiest case for Jerry that the users are satisfied verifying
public security criteria. However some audiences might demand justifications for
the curve choices. In this section, we consider users who are suspicious that
the curve parameters might be maliciously chosen to enable a secret attack.
Empirically many users are satisfied if they get a hash verification routine as
justification; see, e.g., ANSI X9.62 [1], IEEE P1363 [29], SEC 2 [19], or NIST
FIPS 186-2 [41]. Hash verification routines mean that Jerry cannot use a very
small set of vulnerable curves, but we will show below that he has good chances
to get vulnerable curves deployed if they are just somewhat more common.

4.1. Hash verification routine. As the name implies, a hash verification rou-
tine involves a cryptographic hash function. The inputs to the routine are the
curve parameters and a seed that is published along with the curve. Usually the
seed is hashed to compute a curve parameter or point coordinate. The ways of
computing the parameters differ but the public justification is that these bind
the curve parameters to the hash value, making them hard to manipulate since
the hash function is preimage resistant11. In addition the user verifies a set of
public security criteria. We focus on the obstacle that Jerry faces and call curves
that can be verified with such routines verifiably hashed curves.

11 If Jerry has a back door in the hash function this situation is no different than in
Section 3, so we will not assume this feature.

16 BADA55 Research Team

For Jerry’s marketing we do not recommend the phrase “verifiably hashed”:
it is better to claim that the curves are totally random (even though this is not
what is being verified) and that these curves could not possibly be manipulated
(even though Jerry is in fact quite free to manipulate them). For example, ANSI
X9.62 [1, page 31] speaks of “selecting an elliptic curve verifiably at random”;
SEC 2 [19, copy and paste: page 8 and page 18] claims that “verifiably random
parameters offer some additional conservative features” and “that the parame-
ters cannot be predetermined”. NIST’s marketing in [41] is not as good: NIST
uses the term “pseudo-random curves”.

Below we recall the curve verification routine for the NIST P-curves. The
routine is specified in NIST FIPS 186-2 [41].

Each NIST P-curve is of the form y2 = x3 − 3x + b over a prime field Fp
and is published with a seed s. The hash function SHA-1 is denoted as SHA1;
recall that SHA-1 produces a 160-bit hash value. The bit length of p is denoted
by m. We use bin(i) to denote the 20-byte big-endian representation of some
integer i and use int(j) to denote the integer with binary expansion j. For given
parameters b, p, and s, the verification routine is:

1. Let z ← int(s). Compute hi ← SHA1(si) for 0 ≤ i ≤ v, where si ←
bin((z + i) mod 2160) and v = b(m− 1)/160c.

2. Let h be the rightmost m− 1 bits of h0||h1|| · · · ||hv. Let c← int(h).
3. Verify that b2c = −27 in Fp.

To generate a verifiably hashed curve one starts with a seed and then follows
the same steps 1 and 2 as above. Instead of step 3 one tries to solve for b given
c; this succeeds for about 50% of all choices for s. The public perception is that
this process is repeated with fresh seeds until the first resulting curve satisfies
all public security criteria.

4.2. Acceptability criteria. One might think that the public acceptability cri-
teria are defined by the NIST verification routine stated above: i.e., A(E,P, s) =
1 if and only if (E,P) passes the public security criteria from Section 2 and
(E, s) passes the verification routine stated above with seed s and E defined as
y2 = x3 − 3x+ b.

However, the public acceptability criteria are not actually so strict. P1363
allows y2 = x3 + ax + b without the requirement a = −3. P1363 does require
b2c = a3 where c is a hash as above, but neither P1363 nor NIST gives a
justification for the relation b2c = a3, and it is clear that the public will accept
different relations. For example, the Brainpool curves (see Section 5) use the
simpler relations a = g and b = h where g and h are separate hashes. One can
equivalently view the Brainpool curves as following the P1363 procedure but
using a different hash for c, namely computing c as g3/h2 where again g and h
are separate hashes. Furthermore, even though NIST and Brainpool both use
SHA-1, SHA-1 is not the only acceptable hash function; for example, Jerry can
easily argue that SHA-1 is outdated and should be replaced by SHA-2 or SHA-3.

We do not claim that the public would accept any relation, or that the public
would accept any choice of “hash function”, allowing Jerry just as much freedom

How to manipulate curve standards 17

as in Section 3. The exact boundaries of public acceptability are complicated and
not immediately obvious. We have determined approximations to these bound-
aries by extrapolating from existing data (see, e.g., Section 5), and we encourage
Jerry to carry out large-scale scientific surveys, while taking care to prevent leaks
to the public.

4.3. The attack. Jerry begins the attack by defining a public hash verification
routine. As explained above, Jerry has some flexibility to modify this routine.
This flexibility is not necessary for the rest of the attack in this section (for ex-
ample, Jerry can use exactly the NIST verification routine) but a more favorable
routine does improve the efficiency of the attack. Our cost analysis below makes
a particularly efficient choice of routine.

Jerry then tries one seed after another until finding a seed for which the
verifiably hashed curve (1) passes the public security criteria but (2) is subject
to his secret vulnerability. Jerry publishes this seed and the resulting curve,
pretending that the seed was the first random seed that passed the public security
criteria.

4.4. Optimizing the attack. Assume that the curves vulnerable to Jerry’s se-
cret attack are randomly distributed over the curves satisfying the public security
criteria. Then the success probability that a seed leads to a suitable curve is the
probability that a curve is vulnerable to the secret attack times the probability
that a curve satisfies the public security criteria. Depending on which condition
is easier to check Jerry runs many hash computations to compute candidate b’s,
checks them for the easier criterion and only checks the surviving choices for
the other criterion. The hash computations and security checks for each seed are
independent from other seeds; thus, this procedure can be parallelized with an
arbitrary number of parallel computing instances.

We generated a family of curves to show the power of this method and
highlight the computing power of hardware accelerators (such as GPUs or Xeon
Phis). We began by defining our own curve verification routine and implementing
the corresponding secret generation routine. The hash function we use is Keccak
with 256-bit output instead of SHA-1. The hash value is c = int(Keccak(s)),
and the relation is simply b = c in Fp. All choices are easily justified: Keccak
is the winner of the SHA-3 competition and much more secure than SHA-1;
using a hash function with a long output removes the weird order of hashed
components that smells suspicious and similarly b = c is as simple and unsuspi-
cious as it can get. In reality, however, these choices greatly benefit the attack:
the GPUs efficiently search through many seeds in parallel, one single compu-
tation of Keccak has a much easier data flow than in the method above, and
having b computed without any expensive number-theoretic computation (such
as square roots) means that the curve can be tested already on the GPUs and
only the fraction that satisfies the first test is passed on to the next stage. Of
course, for a real vulnerability we would have to add the cost of checking for
that vulnerability, but minimizing overhead is still useful.

Except for the differences stated above, we followed closely the setting of
the NIST P-curves. The target is to generate curves of the form y2 = x3 −

18 BADA55 Research Team

import binascii
import simplesha3
hash = simplesha3.keccakc512 # SHA-3 winner with 256-bit output

p = 2^224 - 2^96 + 1 # standard NIST P-224 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def str2int(seed):
return Integer(seed.encode(’hex’),16)

A = p-3
S = ’3CC520E9434349DF680A8F4BCADDA648D693B2907B216EE55CB4853DB68F9165’
B = str2int(hash(binascii.unhexlify(S))) # verifiably random
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001
A FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE
B BADA55ECFD9CA54C0738B8A6FB8CF4CCF84E916D83D6DA1B78B622351E11AB4E

Fig. 4.1. A procedure to generate the new “verifiably random” BADA55-VR-224 curve.
Since the hash output is more than 256 bits, we implicitly reduce it modulo p.

3x + b over Fp, and we consider 3 choices of p: the NIST P-224, P-256, and
P-384 primes. (For P-384 we switched to Keccak with 384-bit output.) As a
placeholder “vulnerability” we define E to be vulnerable if b starts with the hex-
string BADA55EC. This fixes 8 hex digits, i.e., it simulates a 1-out-of-232 attack.
In addition we require that the curves meet the standard ECDLP criteria plus
twist security and have both cofactors equal to 1.

4.5. Implementation. Our implementation uses NVIDIA’s CUDA framework
for parallel programming on GPUs. A high-end GPU today allows several thou-
sand threads to run in parallel, though at a frequency slightly lower than high-
end CPUs. We let each thread start with its own random seed. The threads then
hash the seeds in parallel. After hashing, each thread outputs the hash value if
it starts with the hex-string BADA55EC. To restart, each seed is simply increased
by 1, so no new source of randomness is required. Checking whether outputs
from GPUs also satisfy the public security criteria is done by running a Sage
[50] script on CPUs. Since only 1 out of 232 curves has the desired pattern, the
CPU computation is totally hidden by GPU computation. Longer strings, cor-
responding to less likely vulnerabilities, make GPUs even more powerful for our
attack scheme.

In the end we found 3 “vulnerable” verifiably hashed curves: BADA55-VR-
224, BADA55-VR-256, and BADA55-VR-384, each corresponding to one of the
three NIST P-curves. See Figures 4.1, 4.2, and 4.3. Of course, as in Section 3,

How to manipulate curve standards 19

import binascii
import simplesha3
hash = simplesha3.keccakc512 # SHA-3 winner with 256-bit output

p = 2^256 - 2^224 + 2^192 + 2^96 - 1 # standard NIST P-256 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def str2int(seed):
return Integer(seed.encode(’hex’),16)

A = p-3
S = ’3ADCC48E36F1D1926701417F101A75F000118A739D4686E77278325A825AA3C6’
B = str2int(hash(binascii.unhexlify(S))) # verifiably random
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
A FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC
B BADA55ECD8BBEAD3ADD6C534F92197DEB47FCEB9BE7E0E702A8D1DD56B5D0B0C

Fig. 4.2. A procedure to generate the new “verifiably random” BADA55-VR-256 curve.

Jerry would use a secret vulnerability rather than our artificial “vulnerability”,
and would use the name TrustedCurve-VR rather than BADA55-VR.

As an example, BADA55-VR-256 was found within 7 hours, using a cluster of
41 NVIDIA GTX780 GPUs (http://blog.cr.yp.to/20140602-saber.html).
Each GPU is able to carry out 170 million 256-bit-output Keccak hashes in
a second. Most of the instructions are bitwise logic instructions. On average
each core performs 0.58 bitwise logic instructions per cycle while the theoretical
maximum throughput is 0.83. We have two explanations for the gap: first, each
thread uses many registers, which makes the number of active warps too small to
fully hide the instruction latency; second, there is not quite enough instruction-
level parallelism to fully utilize the cores in this GPU architecture. We also
tested our implementation on K10 GPUs. Each of them carries out only 61
million hashes per second. This is likely to be caused by register spilling: the
K10 GPUs have only 63 registers per thread instead of the 255 registers of the
GTX780. Using a sufficient amount of computing power easily allows Jerry to
deal with secret vulnerabilities that have smaller probabilities of occurrence than
2−32.

20 BADA55 Research Team

import binascii
import simplesha3
hash = simplesha3.keccakc768 # SHA-3 winner with 384-bit output

p = 2^384 - 2^128 - 2^96 + 2^32 - 1 # standard NIST P-384 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def str2int(seed):
return Integer(seed.encode(’hex’),16)

A = p-3
S = ’CA9EBD338A9EE0E6862FD329062ABC06A793575A1C744F0EC24503A525F5D06E’
B = str2int(hash(binascii.unhexlify(S))) # verifiably random
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()

output:
p FFFEFFFFFFFF0000000000000000FFFFFFFF
A FFFEFFFFFFFF0000000000000000FFFFFFFC
B BADA55EC3BE2AD1F9EEEA5881ECF95BBF3AC392526F01D4CD13E684C63A17CC4D5F271642AD83899113817A61006413D

Fig. 4.3. A procedure to generate the new “verifiably random” BADA55-VR-384 curve.

5 Manipulating nothing-up-my-sleeve numbers

There are some particularly pesky researchers who do not shut up even when
provided with a verification routine as in the previous section. These researchers
might even think of the powerful attack presented in the previous section.

In 1999, M. Scott complained about the choice of unexplained seeds for the
NIST curves [48] and concluded “Do they want to be distrusted?” (see the full
quote in Appendix A). In the same vein the German ECC Brainpool consortium
expressed skepticism [14, Introduction] and suggested using natural constants in
place of random seeds. They coined the term “verifiably pseudorandom” for this
method of generating seeds. Others speak of “nothing-up-my-sleeves numbers”, a
nice reference to magicians which we will take as an inspiration to our endeavor to
show how Jerry can play this system. We comment that “nothing-up-my-sleeves
numbers” also appear in other areas of cryptography and can be manipulated
in similar ways, but this paper focuses on manipulation of elliptic curves.

5.1. The Brainpool procedure. Brainpool requires that “curves shall be gen-
erated in a pseudo-random manner using seeds that are generated in a systematic
and comprehensive way”. Brainpool produces each curve coefficient by hashing a
seed extracted from the bits of e = exp(1). This first curve cannot be expected to
meet Brainpool’s security criteria, so Brainpool counts systematically upwards
from this initial seed until finding a curve that does meet the security criteria.
Brainpool uses a similar procedure to generate primes.

How to manipulate curve standards 21

We have written a Sage implementation, emphasizing simplicity and clarity,
of the prime-generation and curve-generation procedures specified in the Brain-
pool standard [14, Section 5]. For example, Figure 5.1 (designed to be shown to
the public) uses Brainpool’s procedure to generate a 224-bit curve. The output
consists of the following “verifiably pseudorandom” integers p, a, b defining an
elliptic curve y2 = x3 + ax+ b over Fp:

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

a = 0x2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

b = 0x68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

We have added underlines to point out an embarrassing collision of substrings,
obviously quite different from what one expects in “pseudorandom” strings.

What happened here is that the Brainpool procedure generates each of a and
b as truncations of concatenations of various hash outputs (since the selected
hash function, SHA-1, produces only 160-bit outputs), and there was a collision
in the hash inputs. Specifically, Brainpool uses the same seed-increment function
for three purposes: searching for a suitable a; moving from a to b; and moving
within the concatenations. The first hash used in the concatenation for a was fed
through this increment function to obtain the second hash, and was fed through
the same increment function to obtain the first hash used in the concatenation
for b, producing the overlap visible above.

A reader who checks the Brainpool standard [14] will find that the 224-
bit curve listed there does not have the same (a, b), and does not have this
overlap. The reason for this is that, astonishingly, the 224-bit standard Brainpool
curve was not actually produced by the standard Brainpool procedure. In fact,
although the reader will find overlaps in the standard 192-bit, 256-bit, 384-bit,
and 512-bit Brainpool curves, none of the standard Brainpool curves below 512
bits were produced by the standard Brainpool procedure. In the case of the
160-bit, 224-bit, 320-bit, and 384-bit Brainpool curves, one can immediately
demonstrate this discrepancy by observing that the gap listed between “seed A”
and “seed B” in [14, Section 11] is larger than 1, while the standard procedure
always produces a gap of exactly 1.

A procedure that actually does generate the Brainpool curves appeared a
few years later in the Brainpool RFC [34] and is reimplemented in Figure 5.2.
For readers who do not enjoy playing a “spot the differences” game between
Figures 5.1 and 5.2, we explain how the procedures differ:

– The procedure in [34] assigns seeds to an (a∗ab∗b)∗ pattern. It tries consec-
utive seeds for a until finding that −3/a is a 4th power, then tries further
seeds for b until finding that b is not a square, then checks whether the re-
sulting curve meets Brainpool’s security criteria. If this fails, it goes back to
trying further seeds for a etc.

– The original procedure in [14] assigns seeds to an (a∗ab)∗ pattern. It tries
consecutive seeds for a until finding that −3/a is a 4th power, then uses the
next seed for b, then checks whether b is a non-square and whether the curve

22 BADA55 Research Team

import hashlib # for a PRNG, SHA-1 is standard and sufficiently secure
def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()
seedbytes = 20 # 160-bit size for seed, determined by SHA-1 output size

224-bit prime p produced by very similar procedure, shown in separate file
p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
k = GF(p); R.<x> = k[]

def secure(A,B):
if k(B).is_square(): return False
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed): # add 1 to seed, viewed as integer
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes) # enough bits for all curve sizes
S = nums[2*seedbytes:3*seedbytes] # previous bytes are used for 160 and 192
while True:

A = fullhash(S)
if not (k(A)*x^4+3).roots(): S = update(S); continue
S = update(S)
B = fullhash(S)
if not secure(A,B): S = update(S); continue
print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
A 2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E
B 68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

Fig. 5.1. An implementation of the Brainpool standard procedure [14, Section 5] to
generate a 224-bit curve.

meets Brainpool’s security criteria. If this fails, it goes back to trying further
seeds for a etc.

Figure 5.3 shows our implementation of the procedure from [34] for all output
sizes, including both Brainpool prime generation and Brainpool curve gener-
ation. The subroutine secure in this implementation also includes an “early
abort” (using “division polynomials”), improving performance by an order of
magnitude without changing the output; Figure 5.1 omits this speedup for sim-
plicity. Our implementations also skip checking a few security criteria that have

How to manipulate curve standards 23

import hashlib # for a PRNG, SHA-1 is standard and sufficiently secure
def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()
seedbytes = 20 # 160-bit size for seed, determined by SHA-1 output size

224-bit prime p produced by very similar procedure, shown in separate file
p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
k = GF(p); R.<x> = k[]

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed): # add 1 to seed, viewed as integer
return int2str(str2int(seed) + 1,len(seed))

def fullhash(seed):
return str2int(hash(seed) + hash(update(seed))) % 2^223

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

nums = real2str(exp(1)/16,7*seedbytes) # enough bits for all curve sizes
S = nums[2*seedbytes:3*seedbytes] # previous bytes are used for 160 and 192
while True:

A = fullhash(S)
if not (k(A)*x^4+3).roots(): S = update(S); continue
while True:

S = update(S)
B = fullhash(S)
if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue
print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p D7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF
A 68A5E62CA9CE6C1C299803A6C1530B514E182AD8B0042A59CAD29F43
B 2580F63CCFE44138870713B1A92369E33E2135D266DBB372386C400B

Fig. 5.2. An implementation of a procedure that, unlike Figure 5.1, actually generates
the brainpool224r1 curve.

negligible probability of failing, such as having large CM field discriminant (see
Section 2); these criteria are trivially verified after the fact.

We were surprised to discover the failure of the Brainpool standard proce-
dure to generate the Brainpool standard curves. We have not found this failure
discussed, or even mentioned, anywhere in the Brainpool RFCs or on the Brain-
pool web pages. We have also not found any updates or errata to the Brainpool
standard after [14]. One would expect that having a “verifiably pseudorandom”
curve not actually produced by the specified procedure would draw more public
attention, unless the public never actually tried verifying the curves, an inter-

24 BADA55 Research Team

import sys

import hashlib # for a PRNG, SHA-1 is standard and sufficiently secure
def hash(seed): h = hashlib.sha1(); h.update(seed); return h.digest()
seedbytes = 20 # 160-bit size for seed, determined by SHA-1 output size

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def update(seed): # add 1 to seed, viewed as integer
return int2str(str2int(seed) + 1,len(seed))

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

sizes = [160,192,224,256,320,384,512]
S = real2str(pi/16,len(sizes)*seedbytes)
primeseeds = [S[i:i+seedbytes] for i in range(0,len(S),seedbytes)]
S = real2str(exp(1)/16,len(sizes)*seedbytes)
curveseeds = [S[i:i+seedbytes] for i in range(0,len(S),seedbytes)]

for j in range(len(sizes)):
L,S = sizes[j],primeseeds[j]
v = (L-1)//160

def fullhash(seed,bits):
h = hash(seed)
for i in range(v): seed = update(seed); h += hash(seed)
return str2int(h) % 2^bits

Fig. 5.3. Part 1 of 2: A complete procedure to generate the Brainpool standard curves.
Continued in Figure 5.4.

esting possibility for Jerry. We do not explore this line of thought further: we
make the worst-case assumption that future curves will be verified by the public,
using tools that Jerry is unable to corrupt.

The Brainpool standard also includes the following statement [14, page 2]: “It
is envisioned to provide additional curves on a regular basis for users who wish to
change curve parameters regularly, cf. Annex H2 of [X9.62], paragraph ‘Elliptic
curve domain parameter cryptoperiod considerations’.” However, the procedure
for generating further “verifiably pseudorandom” curves is not discussed. One
possibility is to continue the original procedure past the first (a, b) pair, but this
makes new curves more and more expensive to verify. Another possibility is to
replace e by a different natural constant.

5.2. The BADA55-VPR-224 procedure. We now present a new and im-
proved verifiably pseudorandom 224-bit curve, BADA55-VPR-224. BADA55-
VPR-224 uses the standard NIST P-224 prime, i.e., p = 2224 − 296 + 1.

To avoid Brainpool’s complications of concatenating hash outputs, we up-
grade from the deprecated SHA-1 hash function to the state-of-the-art maximum-
security SHA3-512 hash function. We also upgrade to requiring maximum twist
security: i.e., both the cofactor and the twist cofactor are required to be 1.

How to manipulate curve standards 25

while True:
p = fullhash(S,L)
while not (p % 4 == 3 and p.is_prime()): p += 1
if 2^(L-1) - 1 < p and p < 2^L: break
S = update(S)

k = GF(p)
R.<x> = k[]

def secure(A,B):
E = EllipticCurve([k(A),k(B)])
for q in [2,3,5,7]:

quick check whether q divides n, without computing n
for r,e in E.division_polynomial(q).roots():

if E.is_x_coord(r): return False
n = E.cardinality()
return (n < p and n.is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1)

S = curveseeds[j]
while True:

A = fullhash(S,L-1)
if not (k(A)*x^4+3).roots(): S = update(S); continue
while True:

S = update(S)
B = fullhash(S,L-1)
if not k(B).is_square(): break

if not secure(A,B): S = update(S); continue
print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
sys.stdout.flush()
break

Fig. 5.4. Part 2 of 2: A complete procedure to generate the Brainpool standard curves.
Continued from Figure 5.3.

Brainpool already generates seeds using exp(1) = e and generates primes
using arctan(1) = π/4, and MD5 already uses sin(1), so we use cos(1). We
eliminate Brainpool’s contrived, complicated12 search pattern for a: we simply
count upwards, trying every seed for a, until finding the first secure (a, b). The
full 160-bit seed for a is the 32-bit counter followed by cos(1). We complement
this seed to obtain the seed for b, ensuring maximal difference between the two
seeds.

Figure 5.5 is a Sage script implementing the BADA55-VPR-224 generation
procedure. This procedure is simpler and more natural than the Brainpool pro-
cedure in Figure 5.2. Here is the resulting curve:

a = 0x7144BA12CE8A0C3BEFA053EDBADA555A42391AC64F052376E041C7D4AF23195E

BD8D83625321D452E8A0C3BB0A048A26115704E45DCEB346A9F4BD9741D14D49,
b = 0x5C32EC7FC48CE1802D9B70DBC3FA574EAF015FCE4E99B43EBE3468D6EFB2276B

A3669AFF6FFC0F4C6AE4AE2E5D74C3C0AF97DCE17147688DDA89E734B56944A2.

5.3. How BADA55-VPR-224 was generated: exploring the space of
acceptable procedures. The surprising collision of Brainpool substrings had

12 As shown in Section 5.1, even Brainpool didn’t get these details right.

26 BADA55 Research Team

import simplesha3
hash = simplesha3.sha3512 # SHA-3 standard at maximum security level

p = 2^224 - 2^96 + 1 # standard NIST P-224 prime
k = GF(p)
seedbytes = 20 # standard 160-bit size for seed

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes): # standard big-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in reversed(range(bytes))])

def str2int(seed):
return Integer(seed.encode(’hex’),16)

def complement(seed): # change all bits, eliminating Brainpool-type collisions
return ’’.join([chr(255-ord(s)) for s in seed])

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(RealField(8*bytes)(seed)*256^bytes),bytes)

sizeofint = 4 # number of bytes in a 32-bit integer
nums = real2str(cos(1),seedbytes - sizeofint)
for counter in xrange(0,256^sizeofint):

S = int2str(counter,sizeofint) + nums
T = complement(S)
A = str2int(hash(S))
B = str2int(hash(T))
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001
A 7144BA12CE8A0C3BEFA053EDBADA555A42391FC64F052376E041C7D4AF23195EBD8D83625321D452E8A0C3BB0
A048A26115704E45DCEB346A9F4BD9741D14D49
B 5C32EC7FC48CE1802D9B70DBC3FA574EAF015FCE4E99B43EBE3468D6EFB2276BA3669AFF6FFC0F4C6AE4AE2E5
D74C3C0AF97DCE17147688DDA89E734B56944A2

Fig. 5.5. A procedure to generate the new “verifiably pseudorandom” BADA55-VPR-
224 curve. Compare Figure 5.2.

an easy explanation: two hashes in the Brainpool procedure were visibly given the
same input. The surprising appearance of the 24-bit string BADA55 in a above has
no such easy explanation. There are 128 hexadecimal digits in a, so one expects
this substring to appear anywhere within a with probability 123/224 ≈ 2−17.

The actual explanation is as follows. We decided in advance that we would
force BADA55 to appear somewhere in a as our artificial model of a “vulnerabil-
ity”. We then identified millions of natural-sounding “verifiably pseudorandom”
procedures, and enumerated (using a few hours on our cluster) approximately
220 of these procedures. The space of “verifiably pseudorandom” procedures has
many dimensions analyzed below, such as the choice of hash function, the length
of the input seed, the update function between seeds, and the initial constant

How to manipulate curve standards 27

for deriving the seed: i.e., each procedure is defined by a combination of hash
function, seed length, etc. The exact number of choices available in any partic-
ular dimension is relatively unimportant; what is important is the exponential
effect from combining many dimensions.

Since 220 is far above 217, it is unsurprising that our “vulnerability” appeared
in quite a few of these procedures. We selected one of those procedures and
presented it as Section 5.2 as an example of what could be shown to the public.
See Figure 5.6 for another example13 of such a procedure, generating a BADA55-
VPR2-224 curve, starting from e instead of cos(1). We could have easily chosen
a more restrictive “vulnerability”.

The structure of this attack means that Jerry can use the same attack to
target a real vulnerability that has probability 2−17, or (with reasonable success
chance) even 2−20, perhaps even reusing our database of curves. As in Sec-
tion 3 and Section 4, Jerry should use the name TrustedCurve-VPR rather than
BADA55-VPR.

In this section we do not manipulate the choice of prime, the choice of curve
shape, the choice of cofactor criterion, etc. Taking advantage of this flexibility
(see Section 6) would increase the number of natural-sounding Brainpool-like
procedures above 230.

Our experience is that Alice and Bob, when faced with a single procedure
such as Section 5.2 (or Section 5.1), find it extremely difficult to envision the
entire space of possible procedures (they typically see just a few dimensions of
flexibility), and find it inconceivable that the space could have size as large as
220, never mind 230. This is obviously a helpful phenomenon for Jerry.

5.4. Manipulating bit-extraction procedures. Consider the problem of ex-
tracting a fixed-length string of bits from (e.g.) the constant e = exp(1) =
2.71828 . . . = (10.10110111 . . .)2. Here are several plausible options for the start-
ing bit position:

– Start with the most significant bit: i.e., take bits of e at bit positions 21, 20,
2−1, 2−2, etc.

– Start immediately after the binary point: i.e., take bits of e at bit positions
2−1, 2−2, etc. For some constants this is identical to the first option: consider,
e.g., the first MD5 constant sin(1) = 0.84

– Start with the most significant nibble: i.e., take bits of e at bit positions 23,
22, 21, 20, 2−1, 2−2, etc.

– Start with the most significant byte: i.e., take bits of e at bit positions 27,
26, 25, etc.

13 Presenting two examples with the same string BADA55 gives the reader of this paper
some assurance that we did, in fact, choose this string in advance. Otherwise we
could have tried to fool the reader as follows: generate a relatively small number of
curves, search for an interesting-sounding string in the results, write the previous
sections of this paper to target that string (rather than BADA55), and pretend that
we had chosen this string in advance.

28 BADA55 Research Team

import simplesha3 # Keccak, the SHA-3 winner
hash = simplesha3.keccakc1024 # maximum security level: 512-bit output
seedbytes = 64 # maximum-security 512-bit seed, same size as output

p = 2^224 - 2^96 + 1 # standard NIST P-224 prime
k = GF(p)

def secure(A,B):
n = EllipticCurve([k(A),k(B)]).cardinality()
return (n.is_prime() and (2*p+2-n).is_prime()

and Integers(n)(p).multiplicative_order() * 100 >= n-1
and Integers(2*p+2-n)(p).multiplicative_order() * 100 >= 2*p+2-n-1)

def int2str(seed,bytes): # standard little-endian encoding of integer seed
return ’’.join([chr((seed//256^i)%256) for i in range(bytes)])

def str2int(seed):
return sum([ord(seed[i])*256^i for i in range(len(seed))])

def rotate(seed): # rotate seed by 1 bit, eliminating Brainpool-like collisions
x = str2int(seed)
x = 2*x + (x >> (8*len(seed)-1))
return int2str(x,len(seed))

def real2str(seed,bytes): # most significant bits of real number between 0 and 1
return int2str(Integer(floor(RealField(8*bytes+8)(seed)*256^bytes)),bytes)

counterbytes = 3 # minimum number of bytes needed to guarantee success
nums = real2str(exp(1)/4,seedbytes - counterbytes)
for counter in xrange(0,256^counterbytes):

S = int2str(counter,counterbytes) + nums
R = rotate(S)
A = str2int(hash(R))
B = str2int(hash(S))
if secure(A,B):

print ’p’,hex(p).upper()
print ’A’,hex(A).upper()
print ’B’,hex(B).upper()
break

output:
p FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001
A 8F0FF20E1E3CF4905D492E04110683948BFC236790BBB59E6E6B33F24F348ED2E16C64EE79F9FD27E9A367FF6
415B41189E4FB6BADA555455DC44C4F87011EEF
B E85067A95547E30661C854A43ED80F36289043FFC73DA78A97E37FB96A2717009088656B948865A660FF3959
330D8A1CA1E4DE31B7B7D496A4CDE555E57D05C

Fig. 5.6. A procedure to generate the new “verifiably pseudorandom” BADA55-VPR2-
224 curve. Compare Figure 5.5.

– Start with the byte at position 0. In the case of e this is the same as the
fourth option. In the case of sin(1) this means prepending 8 zero bits to the
fourth option.

These options can be viewed as using different maps from real numbers x to
real numbers y with 0 ≤ y < 1: the first map takes x to |x|/2blog2 |x|c, the
second map takes x to x − bxc, the third map takes x to |x|/16blog16 |x|c, etc.
Brainpool used the third of these options, describing it as using “the hexadecimal
representation” of e. Jerry can use similarly brief descriptions for any of the
options without drawing the public’s attention to the existence of other options.

How to manipulate curve standards 29

We implemented the first, second, and fourth options; for an average constant
this produced slightly more than 2 distinct possibilities for real numbers y.

Jerry can easily get away with extracting a k-bit integer from y by truncation
(i.e.,

⌊
2ky
⌋
) or by rounding (i.e.,

⌈
2ky
⌋
). Jerry can defend truncation (which has

fundamentally lower accuracy) as simpler, and can defend rounding as being
quite standard in mathematics and the physical sciences; but we see no reason
to believe that Jerry would be challenged in the first place. We implemented
both options, gaining a further factor of 1.5.

Actually, Brainpool uses the bit position indicated above only for the low-
security 160-bit Brainpool curve (which Jerry can disregard as already being a
non-problem for Eve). As shown in Figure 5.3, Brainpool shifts to subsequent
bits of e for the 192-bit curve, then to further bits for the 224-bit curve, etc.
Brainpool uses 160 bits for each curve (see below), so the seed for the 256-bit
curve (which Jerry can reasonably guess would be the most commonly used
curve) is shifted by 480 bits. This number 480 depends on how many lower
security levels are allocated (an obvious target of manipulation), and on exactly
how many bits are allocated to those seeds. A further option, pointed out in
[39] by Merkle (Brainpool RFC co-author), is to reverse the order of curve sizes;
the number 480 then depends on how many higher security levels are allocated.
Yet another option is to put curve sizes in claimed order of usage. We did not
implement any of the options described in this paragraph.

5.5. Manipulating choices of hash functions. The latest (July 2013) revision
of the NIST ECDSA standard [42, Section 6.1.1] specifically requires that “the
security strength of a hash function used [for curve generation] shall meet or
exceed the security strength associated with the bit length”. The original NIST
curves are exempted from this rule by [42, footnote 2], but this rule prohibits
SHA-1 for (e.g.) new 224-bit curves. On the other hand, a more recent Brainpool-
related curve-selection document [39] states that “For a PRNG, SHA-1 was (and
still is) sufficiently secure.”

Jerry has at least 10 plausible options for standard hash functions used to
generate (e.g.) 256-bit curves:

– SHA-1. “We follow the Brainpool standard. What matters is preimage resis-
tance, and SHA-1 still provides more than 2128 preimage resistance.”

– SHA-256. “The trusted, widely deployed SHA-256 standard.”

– SHA-384. “SHA-2 at the security level required to handle both sizes of Suite
B curves.”

– SHA-512. “The maximum-security SHA-512 standard.”

– SHA-512/256. “NIST’s standard wide-pipe hash function.”

– SHA3-256. “The state-of-the-art SHA-3 standard at a 2128 security level.”

– SHA3-384. “The state-of-the-art SHA-3 standard, at the security level re-
quired to handle both sizes of Suite B curves.”

– SHA3-512. “The maximum-security state-of-the-art SHA3-512 standard.”

– SHAKE128. “The state-of-the-art SHA-3 standard at a 2128 security level,
providing flexible output sizes.”

30 BADA55 Research Team

– SHAKE256. “The state-of-the-art SHA-3 standard at a 2256 security level,
providing flexible output sizes.”

There are also several non-NIST hash functions with longer track records than
SHA-3. Any of RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320, Tiger,
Tiger/128, Tiger/160, and Whirlpool would have been easily justifiable as a
choice of hash function before 2006. MD5 and all versions of Haval would have
been similarly justifiable before 2004.

Since we targeted a 224-bit curve we had even more standard NIST hash-
function options. For simplicity we implemented just 10 hash-function options,
namely the following variants of Keccak, the SHA-3 competition winner: Keccak-
224, Keccak-256, Keccak-384, Keccak-512, “default” Keccak (“capacity” c =
576, 128 output bytes), Keccak-128 (capacity c = 256, 168 output bytes), SHA3-
224 (which has different input padding from Keccak-224, changing the output),
SHA3-256, SHA3-384, and SHA3-512. All of these Keccak/SHA-3 choices can be
implemented efficiently with a single code base and variable input parameters.

5.6. Manipulating counter sizes. The simplest way to obtain a 160-bit “ver-
ifiably pseudorandom” output with SHA-1 is to hash the empty string. Curve
generation needs many more outputs (since most curves do not pass the public
security criteria), but the simplest way to obtain 2β “verifiably pseudorandom”
outputs is to hash all β-bit inputs.

Hash-function implementations are often limited to byte-aligned inputs, so
it is natural to restrict β to a multiple of 8. If each output has chance 2−15 of
producing an acceptable curve (see Section 2) then β = 16 finds an acceptable
curve with chance nearly 90% (“this is retroactively justified by our successfully
finding a curve, so there was no need for us to consider backup plans”); β = 24
fails with negligible probability (“we chose the smallest β for which the proba-
bility of failure was negligible”); β = 32 is easily justified by reference to 32-bit
machines; β = 64 is easily justified by reference to 64-bit machines.

Obviously Brainpool takes a more complicated approach, using bits of some
natural constant to further “randomize” its outputs. The standard way to ran-
domize a hash is to concatenate the randomness (e.g., bits of e) with the input
being hashed (the counter). Brainpool instead adds the randomness to the input
being hashed. The Brainpool choice is not secure as a general-purpose random-
ized hash, although these security problems are of no relevance to curve gener-
ation. There is no evidence of public objections to Brainpool’s use of addition
here (and to the overall complication introduced by the extra randomization),
so there is also no reason to think that the public would object to the more
standard concatenation approach.

Overall there are 13 plausible possibilities here: the 4 choices of β above,
with the counter on the left of the randomness; the 4 choices of β above, with
the counter on the right of the randomness; the counter being added to the
randomness; and 4 further possibilities in which the randomness is partitioned
into an initial value for a counter (for the top bits) and the remaining seed (for
the bottom bits). We implemented the first 9 of these 13 possibilities.

How to manipulate curve standards 31

5.7. Manipulating hash input sizes. ANSI X9.62 requires ≥160 input bits for
its hash input. One way for Jerry to advertise a long input is that it allows many
people to randomly generate curves with a low risk of collision. For example,
Jerry can advertise

– a 160-bit input as allowing 264 curves with only a 2−32 risk of collision;
– a 256-bit input as allowing 264 curves with only a 2−128 risk of collision; or
– a 384-bit input as allowing 2128 curves with only a 2−128 risk of collision.

All of these numbers sound perfectly natural. Of course, what Jerry is actually
producing is a single standard for many people to use, so multiple-curve collision
probabilities are of no relevance, but (in the unlikely event of being questioned)
Jerry can simply say that the input length was chosen for “compatibility” with
having users generate their own curves.

Jerry can advertise longer input lengths as providing “curve coverage”. A
512-bit input will cover a large fraction of curves, even for primes as large as
512 bits. A 1024-bit input is practically guaranteed to cover all curves, and to
produce probabilities indistinguishable from uniform. Jerry can also advertise,
as input length, the “natural input block length of the hash function”.

We implemented all 6 possibilities listed above. We gained a further factor
of 2 by storing the seed (and counter) in big-endian format (“standard network
byte order”) or little-endian format (“standard CPU byte order”).

5.8. Manipulating the (a, b) hash pattern. It should be obvious from Sec-
tion 5.1 that there are many degrees of freedom in the details of how a and
b are generated: how to distribute seeds between a and b; whether to require
−3/a to be a 4th power in Fp; whether to require b to be a non-square in Fp;
whether to concatenate hash outputs from left to right or right to left; exactly
how many bits to truncate hash outputs to (Brainpool uses one bit fewer than
the prime; Jerry can argue for the same length as the prime “for coverage”, or
more bits “for indistinguishability”); whether to truncate to rightmost bits (as
in Brainpool) or leftmost bits (as in various NIST requirements; see [42]); et al.

For simplicity we eliminated the concatenation and truncation, always using
a hash function long enough for the target 224-bit prime. We also eliminated
the options regarding squares etc. We implemented a total of just 8 choices here.
These choices vary in (1) whether to allocate seeds primarily to a or primarily to
b and (2) how to obtain the alternate seed (e.g., the seed for a) from the primary
seed (e.g., the seed for b): plausible options include complement, rotate 1 byte
left, rotate 1 byte right, and four standard versions of 1-bit rotations.

5.9. Manipulating natural constants. As noted in Section 1, the public has
accepted dozens of “natural” constants in various cryptographic functions, and
sometimes reciprocals of those constants, without complaint. Our implementa-
tion started with just 17 natural constants: π, e, Euler gamma,

√
2,
√

3,
√

5,
√

7,
log(2), (1 +

√
5)/2, ζ(3), ζ(5), sin(1), sin(2), cos(1), cos(2), tan(1), and tan(2).

We gained an extra factor of almost 2 by including reciprocals.
Jerry could be creative and use previously unused numbers such as numbers

derived from some historical document or newspaper, personal information of,

32 BADA55 Research Team

e.g., arbitrary celebrities in an arbitrary order, arbitrary collections of natural
or physical constants and even a combination of several sources. For example,
NewDES [52] derives its S-Box from the United States Declaration of Indepen-
dence. If the public accepts numbers with such flimsy justifications as “nothing-
up-my-sleeves numbers” then Jerry obviously has as much flexibility as in Sec-
tion 4. We make the worst-case assumption that the public is not quite as easily

fooled, and similarly that the public would not accept 703e(
8√30+4π)/9 sin(3√16) as

a “nothing-up-my-sleeve number”.

5.10. Implementation. Any combination of the above manipulations defines a
“systematic” curve-generation procedure. This procedure outputs the first curve
parameters (using the specified update function) that result in a “secure” curve
according to the public security tests. However, performing all public security
tests for each set of parameters considered by each procedure is very costly.
Instead, we split the attack into two steps:

1. For a given procedure fi we iterate over the seeds si,k using the specific
update function of fi. We check each parameter candidate from seed si,k
for our secret BADA55 vulnerability. After a certain number of update steps
the probability that we passed valid, secure parameters is very high; thus,
we discard the procedure and start over with another one. If we find a
candidate exhibiting the vulnerability, we perform the public security tests
on this particular candidate. If the BADA55 candidate passes, we proceed
to step 2.

2. We perform the whole public procedure fi starting with seed si,0 and
check whether there is any valid parameter set passing the public security
checks already before the BADA55 parameters are reached. If there is such
an earlier parameter set, we return to step 1 with the next procedure fi+1.

The largest workload in our attack scenario is step 2, the re-checking for ear-
lier safe curve parameters before BADA55 candidates. The public security tests
are not well suited for GPU parallelization; the first step of the attack proce-
dure is relatively cheap and a GPU parallelization of this step does not have a
remarkable impact on the overall runtime. Therefore, we implemented the whole
attack only for the CPUs of the Saber cluster and left the GPUs idle.

We initially chose 8000 as the limit for the update counter to have a very
good chance that the first secure twist-secure curve starting from the seed is the
curve with our vulnerability. For example, BADA55-VPR-224 was found with
counter just 184, and there was only a tiny risk of a smaller counter producing
a secure twist-secure curve (which we checked later, in the second step). In
total ≈233 curves were covered by this limited computation; more than 218 were
secure and twist-secure. We then pushed the 8000 limit higher, performing more
computation and finding more curves. This gradually increased the risk of the
counter not being minimal, something that we would have had to address by the
techniques of Section 6; but this issue still did not affect, e.g., BADA55-VPR2-
224, which was found with counter 28025.

How to manipulate curve standards 33

6 Manipulating minimality

Instead of supporting “verifiably pseudorandom” curves as in Section 5, some
researchers have advocated choosing “verifiably deterministic” curves.

Both approaches involve specifying a “systematic” procedure that outputs
a curve. The difference is that in a “verifiably pseudorandom” curve the curve
coefficient is the output of a hash function for the first hash input that meets
specified curve criteria, while a “verifiably deterministic” curve uses the first
curve coefficient that meets specified curve criteria. Typically the curve uses a
“verifiably deterministic” prime, which is the first prime that meets specified
prime criteria.

Eliminating the hash function and hash input makes life harder for Jerry:
it eliminates the main techniques that we used in previous sections to manip-
ulate curve choices. However, as we explain in detail in this section, Jerry still
has many degrees of freedom. Jerry can manipulate the concept of “first curve
coefficient”, can manipulate the concept of “first prime”, can manipulate the
curve criteria, and can manipulate the prime criteria, with public justifications
claiming that the selected criteria provide convenience, ease of implementation,
speed of implementation, and security.

In Section 5 we did not manipulate the choice of prime: we obtained a sat-
isfactory level of flexibility in other ways. In this section, the choice of prime is
an important component of Jerry’s flexibility. It should be clear to the reader
that the techniques in this section to manipulate the prime, the curve criteria,
etc. can be backported to the setting of Section 5, adding to the flexibility there.

We briefly review a recent proposal that fits into this category and then
proceed to work out how much flexibility is left for Jerry.

6.1. NUMS curves. In early 2014, Bos, Costello, Longa, and Naehrig [13]
proposed 13 Weierstrass and 13 Edwards curves, spread over 3 different security
levels. Each curve was generated following a deterministic procedure (similar to
the procedure proposed in [8]). Given that there are up to 10 different procedures
per security level we cannot review all of them here but [13] is a treasure trove
of arguments to justify different prime and curve properties and we will use this
to our benefit below.

The same authors together with Black proposed a set of 6 of these curves
as an Internet-Draft [12] referring to these curves as “Nothing Up My Sleeve
(NUMS) Curves”. Note that this does not match the common use of “nothing
up my sleeves”; see, e.g., the Wikipedia page [51]. These curves are claimed in
[32] to have “independently-verifiable provenance”, as if they were not subject
to any possible manipulation; and are claimed in [11] to be selected “without
any hidden parameters, reliance on randomness or any other processes offering
opportunities for manipulation of the resulting curves”. What we analyze in this
section is the extent to which Jerry can manipulate the resulting curves.

6.2. Choice of security level. Jerry may propose curves aiming for multiple
security levels. To quote the Brainpool-curves RFC [34] “The level of security
provided by symmetric ciphers and hash functions used in conjunction with the

34 BADA55 Research Team

elliptic curve domain parameters specified in this RFC should roughly match or
exceed the level provided by the domain parameters.” Table 1 in that document
justifies security levels of 80, 96, 112, 128, 160, 192, and 256 bits. We consider
the highest five to be easy sells. For the smaller ones Jerry will need to be more
creative and, e.g., evoke the high cost of energy for small devices.

6.3. Choice of prime. There are several parts to choosing a prime once the
security level is fixed.

Choice of prime size. For a fixed security level α it should take about 2α op-
erations to break the DLP. The definition of “operation” leaves some flexibility.
The choices for the bit length r of the prime are:

– Exactly 2α, see e.g., [13].
– Exactly 2α− 1, see e.g., [13].
– Exactly 2α− 2, see e.g., [13].
– Exactly 2α+1 to make up for the loss of

√
π/4 in the Pollard-rho complexity.

– Exactly 2α + 2 to really make up for the loss of
√
π/4 in the Pollard-rho

complexity.
...

– Exactly 2α+ β to make up for the loss through precomputations for multi-
target attacks.

– Exactly 2α − 3 to make arithmetic easier and because each elliptic-curve
operation takes at least 3 bit operations.

– Exactly 2α − 4 to make arithmetic easier and because each elliptic-curve
operation takes at least 4 bit operations.
...

– Exactly 2α − γ to make arithmetic easier and because each elliptic-curve
operation takes at least 2γ/2 bit operations.

These statements provide generic justifications for 8 options (actually even more,
but we take a power of 2 to simplify). In the next two steps we show how to select
different primes for each of these requirements. If the resulting p has additional
beneficial properties these generic arguments might not be necessary, but they
might be required if a competing (and by some measure superior) proposal can
be excluded on the basis of not following the same selection criterion. If Jerry
wants to highlight such benefits in his prime choice he may point to fast reduction
or fast multiplication in a particular redundant representation with optimal limb
size.

Choice of prime shape. The choices for the prime shape are:

– A random prime. This might seem somewhat hard to justify outside the
scope of the previous section because arithmetic in Fp becomes slower, but
members of the ECC Brainpool working group published several helpful ar-
guments [35]. The most useful one is that random primes mean that the
blinding factor in randomizing scalars against differential side-channel at-
tacks can be chosen smaller.

How to manipulate curve standards 35

– A pseudo-Mersenne prime, i.e. a prime of the shape 2r±c. The most common
choice is to take c to be the smallest integer for a given r which leads to
a prime because this makes reduction modulo the prime faster. (To reduce
modulo 2r±c, divide by 2r and add ∓c times the dividend to the remainder.)
See, e.g., [13]. Once r is fixed there are two choices for the two signs.

– A Solinas prime, i.e. a prime of the form 2r±2v±1 as chosen for the Suite B
curves [43]. Also for these primes speed of modular reduction is the common
argument. The difference r − v is commonly chosen to be a multiple of the
word size. Jerry can easily argue for multiples of 32 and 64. We skip this
option in our count because it is partially subsumed in the following one.

– A “Montgomery-friendly” prime, i.e. a prime of the form 2r−v(2v − c) ±
1. These curves speed up reductions if elements in Fp are represented in
Montgomery representation, r− v is a multiple of the word size and c is less
than the word size. Common word sizes are 32 and 64, giving two choices
here. We ignore the flexibility of the ± because that determines p modulo 4,
which is considered separately.

There are of course infinitely many random primes; in order to keep the number
of options reasonable we take 4 as an approximation of how many prime shapes
can be easily justified, making this a total of 8 options.

Choice of prime congruence. Jerry can get an additional bit of freedom
by choosing whether to require p ≡ 1 (mod 4) or to require p ≡ 3 (mod 4).
A common justification for the latter is that computations of square roots are
particularly fast which could be useful for compression of points, see, e.g., [14,13].
(In fact one can also compute square roots efficiently for p ≡ 1 (mod 4), in
particular for p ≡ 5 (mod 8), but Jerry does not need to admit this.) To instead
justify p ≡ 1 (mod 4), Jerry can point to various benefits of having

√
−1 in

the field: for example, twisted Edwards curves are fastest when a = −1, but
completeness for a = −1 requires p ≡ 1 (mod 4).

If Jerry chooses twisted Hessian curves he can justify restricting to p ≡ 1
(mod 3) to obtain complete curve arithmetic.

6.4. Choice of ordering of field elements. The following curve shapes each
have one free parameter. It is easy to justify choosing this parameter as the
smallest parameter under some side conditions. Here smallest can be chosen to
mean smallest in N or as the smallest power of some fixed generator g of F∗p.
The second option is used in, e.g., a recent ANSSI curve-selection document [24,
Section 2.6.2]: “we define . . . g as the smallest generator of the multiplicative
group . . . We then iterate over . . . b = gn for n = 1, . . . , until a suitable curve
is found.” Each choice below can be filled with these two options.

6.5. Choice of curve shape and cofactor requirement. Jerry can justify
the following curve shapes:

1. Weierstrass curves, the most general curve shape. The usual choice is
y2 = x3 − 3x + b, leaving one parameter b free. For simplicity we do not
discuss the possibility of choosing values other than −3.

36 BADA55 Research Team

2. Edwards curves, the speed leader in fixed-base scalar multiplication offer-
ing complete addition laws. The usual choices are ax2+y2 = 1+dx2y2, for
a ∈ {±1}, leaving one parameter d free. The group order of an Edwards
curve is divisible by 4.

3. Montgomery curves, the speed leader for variable-base scalar multipli-
cation and the simplest to implement correctly. The usual choices are
y2 = x3 + Ax2 + x, leaving one parameter A free. The group order of a
Montgomery curve is divisible by 4.

4. Hessian curves, a cubic curve shape with complete addition laws (for
twisted Hessian). The usual choices are ax3 + y3 + 1 = dxy, where a
is a small non-cube, leaving one parameter d free. The group order of a
Hessian curve is divisible by 3, making twisted Hessian curves the curves
with the smallest cofactor while having complete addition.

The following choices depend on the chosen curve shape, hence we consider
them separately.

Weierstrass curves. Most standards expect the point format to be (x, y) on
Weierstrass curves. Even when computations want to use the faster Edwards
and Hessian formulas, Jerry can easily justify specifying the curve in Weierstrass
form. This also ensures backwards compatibility with existing implementations
that can only use the Weierstrass form.

The following are examples of justifiable choices for the cofactor h of the
curve:

– Require cofactor exactly 1, as in Suite B and Brainpool.
– Require cofactor exactly 2, the minimum cofactor that allows the techniques

of [8] to transmit curve points as uniform random binary strings for censor-
ship circumvention.

– Require cofactor exactly 3, the minimum cofactor that allows Hessian arith-
metic.

– Require cofactor exactly 4, the minimum cofactor that allows Edwards arith-
metic.

– Require cofactor exactly 12, the minimum cofactor that allows both Hessian
arithmetic and Edwards arithmetic.

– Take the first curve having cofactor below 2α/8. This cofactor limit is stan-
dardized in [19] and [42]. (This cofactor will almost always be larger than
12.)

– Take the first curve having cofactor below 2α/8 and a multiple of 3.
– Take the first curve having cofactor below 2α/8 and a multiple of 4.
– Take the first curve having cofactor below 2α/8 and a multiple of 12.
– Replace “cofactor below 2α/8” with the SafeCurves requirement of a largest

prime factor above 2200.

On average these choices produce slightly more than 8 options; the last few
options sometimes coincide.

The curve is defined as y2 = x3−3x+ b where b is minimal under the chosen
criterion. Changing from positive b to negative b changes from a curve to its

How to manipulate curve standards 37

twist if p ≡ 3 (mod 4), and (as illustrated by additive transfers) this change
does not necessarily preserve security. However, this option makes only a small
difference in our final total, so for simplicity we skip it.

Hessian curves. A curve given in Hessian form (and chosen minimal there) can
be required to have minimal cofactor, minimal cofactor while being compatible
with Edwards form, cofactor smaller than 2α/8, or largest prime factor larger
than 2u. This leads to 8 options considering positive and negative values of d.
Of course other restrictions on the cofactor are possible.

Edwards curves. For Edwards curves we need to split up the consideration
further:

Edwards curves with p ≡ 3 (mod 4). Curves with a = −1 are attractive for
speed but are not complete in this case. Nevertheless [13] argues for this option,
so we have additionally the choice between aiming for a complete or an a = −1
curve.

A curve given in (twisted) Edwards form (and chosen minimal there) can be
required to have minimal cofactor, minimal cofactor while being compatible with
Hessian form, cofactor smaller than 2α/8, or largest prime factor larger than 2u

(and the latter in combination with Hessian if desired). This leads to at least 8
choices considering completeness; for minimal cofactors [13] shows that minimal
choices for positive and negative values of d are not independent. To stay on the
safe side we count these as 8 options only.

Edwards curves with p ≡ 1 (mod 4). The curves x2 + y2 = 1 + dx2y2

and −x2 + y2 = 1− dx2y2 are isomorphic because −1 is a square, hence taking
the smallest positive value for d finds the same curve as taking the smallest
negative value for the other sign of a. Jerry can however insist or not insist
on completeness. Justifying non-completeness if the smallest option is complete
however seems a hard sell.

Because 2p + 2 ≡ 4 (mod 8) one of the curve and its twist will have order
divisible by 8 while the other one has remainder 4 modulo 8. Jerry can require
cofactor 4, as the minimal cofactor, or cofactor 8 if he chooses the twist with
minimal cofactor as well and is concerned that protocols will only multiply by
the cofactor of the curve rather than by that of the twist. The other options are
the same as above. Again, to stay on the safe side, we count this as 8 options
only.

Montgomery curves. There is a significant overlap between choosing the
smallest Edwards curve and the smallest Montgomery curve. In order to ease
counting and avoid overcounting we omit further Montgomery options.

Summary of curve choice. We have shown that Jerry can argue for 8+8+8 =
24 options.

6.6. Choice of twist security. We make the worst-case assumption, as dis-
cussed in Section 2, that future standards will be required to include twist se-
curity. However, Jerry can play twist security to his advantage in changing the
details of the twist-security requirements. Here are three obvious choices:

38 BADA55 Research Team

– Choose the cofactor of the twist as small as possible. Justification: This offers
maximal protection.

– Choose the cofactor of the twist to be secure under the SEC recommendation,
i.e. h′ < 2α/8. Justification: This is considered secure enough for the main
curve, so it is certainly enough for the twist.

– Choose the curve such that the curve passes the SafeCurves requirement of
2100 security against twist attacks. Justification: Attacks on the twist cannot
use Pollard rho but need to do a brute-force search in the subgroups. The
SafeCurves requirement captures the actual hardness of the attack.

Jerry can easily justify changes to the bound of 2100 by pointing to a higher
security level or reducing it because the computations in the brute-force part
are more expensive. We do not use this flexibility in the counting.

6.7. Choice of global vs. local curves. Jerry can take the first prime (sat-
isfying some criteria), and then, for that prime, take the first curve coefficients
(satisfying some criteria). Alternatively, Jerry can take the first possible curve
coefficients, and then, for those curve coefficients, take the first prime. These
two options are practically guaranteed to produce different curves. For example,
in the Weierstrass case, Jerry can take the curve y2 = x3 − 3x + 1, and then
search for the first prime p so that this curve over Fp satisfies the requirements
on cofactor and twist security. If Jerry instead takes y2 = x3 − 3x+ g as in [24,
Section 2.6.2], p must also meet the requirement that g be primitive in Fp.

In mathematical terminology, the second option specifies a curve over a
“global field” such as the rationals Q, and then reduces the curve modulo suit-
able primes. This approach is particularly attractive when presented as a family
of curves, all derived from the same global curve.

6.8. More choices. Brainpool [14] requires that the number of points on the
curve is less than p but also presents an argument for the opposite choice:

To avoid overruns in implementations we require that #E(GF (p)) < p.
In connection with digital signature schemes some authors propose to
use q > p for security reasons, but the attacks described e.g. in [BRS]
appear infeasible in a thoroughly designed PKI.

So Jerry can choose to insist on p < |E(Fp)| or on p > |E(Fp)|.
6.9. Overall count. We have shown that Jerry can easily argue for 4 (security
level) ·8 (prime size) ·8 (prime shape) ·2 (congruence) ·2 (definition of first) ·24
(curve choice) ·3 (twist conditions) ·2 (global/local) ·2 (p ≶ |E(Fp)|) = 294912
choices.

6.10. Example. The artificial “vulnerability” that we have used throughout this
paper, namely BADA55 appearing in a curve coefficient, is obviously incompatible
with taking that coefficient to be minimal in the usual ordering. We would be
happy to accept the following type of challenge as an alternative: a third party
provides us with a nonstructured prime number n > 250; we find a curve so that
the hexadecimal representation of ` modulo n ends in BAD, a condition having
probability 2−12.

How to manipulate curve standards 39

7 Manipulating security criteria

An unfortunate recent trend is to introduce top performance as a selection re-
quirement. This means that Alice and Bob accept only the fastest curve, as
demonstrated by benchmarks across a range of platforms. The most widely
known example of this approach is Bernstein’s Curve25519, the curve y2 =
x3+486662x2+x modulo the particularly efficient prime 2255−19, which over the
past ten years has set speed records for conservative ECC on space-constrained
ASICs, Xilinx FPGAs, 8-bit AVR microcontrollers, 16-bit MSP430X microcon-
trollers, 32-bit ARM Cortex-M0 microcontrollers, larger 32-bit ARM smartphone
processors, the Cell processor, NVIDIA and AMD GPUs, and several genera-
tions of 32-bit and 64-bit Intel and AMD CPUs, using implementations from 23
authors. See [6,26,22,7,10,33,38,47,21,23,28].

The annoyance for Jerry in this scenario is that, in order to make a case for
his curve, he needs to present implementions of the curve arithmetic on a variety
of devices, showing that his curve is fastest across platforms. Jerry could try to
falsify his speed reports, but it is increasingly common for the public to demand
verifiable benchmarks using open-source software.

Jerry can hope that some platforms will favor one curve while other plat-
forms will favor another curve; Jerry can then use arguments for a “reason-
able” weighting of platforms as a mechanism to choose one curve or the other.
However, it seems difficult to outperform Curve25519 even on one platform.
The prime 2255 − 19 is particularly efficient, as is the Montgomery curve shape
y2 = x3+486662x2+x. The same curve is also expressible as a complete Edwards
curve, allowing fast additions without the overhead of checking for exceptional
cases. Twist security removes the overhead of checking for invalid inputs. Re-
placing 486662 with a larger curve coefficient produces identical performance on
many platforms but loses a measurable amount of performance on some plat-
forms, violating the “top performance” requirement.

In Section 6, Jerry was free to, e.g., claim that p ≡ 3 (mod 4) provides
“simple square-root computations” and thus replace 2255 − 19 with 2255 − 765;
claim that “compatibility” requires curves of the form y2 = x3−3x+ b; etc. The
new difficulty in this section is that Jerry is facing “top performance” fanatics
who reject 2255−765 as not providing top performance; who reject y2 = x3−3x+b
as not providing top performance; etc.

Fortunately, Jerry still has some flexibility in defining what security require-
ments to take into account. Taking “the fastest curve” actually means taking
the fastest curve meeting specified security requirements, and the list of security
requirements is a target of manipulation.

Most importantly, Jerry can argue for any size of `. However, if there is
a faster curve with a larger ` satisfying the same criteria, then Jerry’s curve
will be rejected. Furthermore, if Jerry’s curve is only marginally larger than a
significantly faster curve, then Jerry will have to argue that a tiny difference
in security levels (e.g., one curve broken with 0.7× or 0.5× as much effort as
another) is meaningful, or else the top-performance fanatics will insist on the
significantly faster curve.

40 BADA55 Research Team

The choice of prime has the biggest impact on speed and closely rules the size
of `. For pseudo-Mersenne primes larger than 2224 the only possibly competitive
ones are: 2226 − 5, 2228 + 3, 2233 − 3, 2235 − 15, 2243 − 9, 2251 − 9, 2255 − 19, 2263 +
9, 2266−3, 2273+5, 2285−9, 2291−19, 2292+13, 2295+9, 2301+27, 2308+27, 2310+
15, 2317 +9, 2319 +9, 2320 +27, 2321−9, 2327 +9, 2328 +15, 2336−3, 2341 +5, 2342 +
15, 2359 + 23, 2369 − 25, 2379 − 19, 2390 + 3, 2395 + 29, 2401 − 31, 2409 + 29, 2414 −
17, 2438 + 25, 2444 − 17, 2452 − 3, 2456 + 21, 2465 + 29, 2468 − 17, 2488 − 17, 2489 −
21, 2492+21, 2495−31, 2508+15, 2521−1. Preliminary implementation work shows
that the Mersenne prime 2521−1 has such efficient reduction that it outperforms,
e.g., the prime 2512 − 569 from [13]; perhaps it even outperforms primes below
2500. We would expect implementation work to also show, e.g., that 2319 + 9
is significantly faster than 2320 + 27, and Jerry will have a hard time arguing
for 2320 + 27 on security grounds. Considering other classes of primes, such as
Montgomery-friendly primes, might identify as many as 100 possibly competitive
primes, but it is safe to estimate that fewer than 80 of these primes will satisfy the
top-performance fanatics, and further implementation work is likely to reduce
the list even more. Note that in this section, unlike other sections, we take a
count that is optimistic for Jerry.

Beyond the choice of prime, Jerry can use different choices of security criteria.
However, most of the flexibility in Section 6 consists of speed claims, compat-
ibility claims, etc., few of which can be sold as security criteria. Jerry can use
the different twist conditions, the choice whether p < |E(Fp)| or p > |E(Fp)|,
and possibly two choices of cofactor requirements. Jerry can also choose to re-
quire completeness as a security criterion, but this does not affect curve choice
in this section: the complete formulas for twisted Hessian and Edwards curves
are faster than the incomplete formulas for Weierstrass curves. The bottom line
is that multiplying fewer than 80 primes by 12 choices of security criteria pro-
duces fewer than 960 curves. The main difficulty in pinpointing an exact number
is carrying out detailed implementation work for each prime; we leave this to
future work.

8 Afterword: removing the hat

This paper, outside this section, systematically adopts the attacker’s perspec-
tive. In this section, to avoid any chance of confusion, we drop the attacker’s
perspective and address a few questions that we have been asked.

First, in case this is not obvious to the reader, we do not actually endorse
the attacker’s perspective. Our goal in analyzing the security of systems is to
prevent attacks.

Second, this paper analyzes the possibilities of backdooring curves under
various conditions. We are not making any statements about whether such an
attack has actually been carried out.

Third, we have been asked how to eliminate Jerry’s flexibility in choosing
curves. We are not aware of any proposal that reduces the flexibility to just one
curve.

How to manipulate curve standards 41

References

1. Accredited Standards Committee X9. American national standard X9.62-1999,
public key cryptography for the financial services industry: the elliptic curve digital
signature algorithm (ECDSA), 1999. Preliminary draft at http://grouper.ieee.
org/groups/1363/Research/Other.html. Cited on pp.: 2, 6, 15, and 16.

2. Accredited Standards Committee X9. American national standard X9.63-2001,
public key cryptography for the financial services industry: key agreement and
key transport using elliptic curve cryptography, 2001. Preliminary draft at http:

//grouper.ieee.org/groups/1363/Research/Other.html. Cited on pp.: 2 and 6.
3. Agence nationale de la sécurité des systèmes d’information. Publication d’un

paramétrage de courbe elliptique visant des applications de passeport électronique
et de l’administration électronique française, 2011. https://tinyurl.com/

nhog26h. Cited on pp.: 2, 6, and 13.
4. Jean-Philippe Aumasson. Generator of “nothing-up-my-sleeve” (NUMS) con-

stants, 2015. https://github.com/veorq/numsgen/blob/master/numsgen.py.
Cited on pp.: 5.

5. Eric Bach and René Peralta. Asymptotic semismoothness probabilities.
Math. Comput., 65(216):1701–1715, 1996. http://www.ams.org/journals/mcom/

1996-65-216/S0025-5718-96-00775-2/S0025-5718-96-00775-2.pdf. Cited on
pp.: 12 and 12.

6. Daniel J. Bernstein. Curve25519: New Diffie–Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume
3958 of Lecture Notes in Computer Science, pages 207–228. Springer, 2006. http:
//cr.yp.to/papers.html#curve25519. Cited on pp.: 39.

7. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. Journal of Cryptographic Engineering, 2:77–
89, 2012. https://eprint.iacr.org/2011/368. Cited on pp.: 39.

8. Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange. Elligator:
elliptic-curve points indistinguishable from uniform random strings. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS’13, pages 967–
980. ACM, 2013. http://elligator.cr.yp.to/. Cited on pp.: 33 and 36.

9. Daniel J. Bernstein and Tanja Lange. SafeCurves: choosing safe curves for elliptic-
curve cryptography, 2015. http://safecurves.cr.yp.to (accessed 27 September
2015). Cited on pp.: 7, 7, 8, and 12.

10. Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Emmanuel Prouff and
Patrick Schaumont, editors, CHES 2012, volume 7428 of Lecture Notes in Com-
puter Science, pages 320–339. Springer, 2012. http://cr.yp.to/papers.html#

neoncrypto. Cited on pp.: 39.
11. Benjamin Black, Joppe W. Bos, Craig Costello, Adam Langley, Patrick Longa, and

Michael Naehrig. Rigid parameter generation for elliptic curve cryptography, 2015.
https://tools.ietf.org/html/draft-black-rpgecc-01. Cited on pp.: 33.

12. Benjamin Black, Joppe W. Bos, Craig Costello, Patrick Longa, and Michael
Naehrig. Elliptic curve cryptography (ECC) nothing up my sleeve
(NUMS) curves and curve generation, 2014. https://tools.ietf.org/html/

draft-black-numscurves-00. Cited on pp.: 33.
13. Joppe W. Bos, Craig Costello, Patrick Longa, and Michael Naehrig. Selecting

elliptic curves for cryptography: an efficiency and security analysis. Journal of
Cryptographic Engineering, pages 1–28, 2015. https://eprint.iacr.org/2014/

130/. Cited on pp.: 5, 33, 33, 34, 34, 34, 35, 35, 37, 37, and 40.

42 BADA55 Research Team

14. ECC Brainpool. ECC Brainpool standard curves and curve generation, 2005. http:
//www.ecc-brainpool.org/download/Domain-parameters.pdf. Cited on pp.: 2,
5, 6, 20, 21, 21, 21, 21, 22, 23, 24, 35, and 38.

15. Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks.
In David Naccache and Pascal Paillier, editors, Public Key Cryptography, volume
2274 of Lecture Notes in Computer Science, pages 335–345. Springer, 2002. http:
//joye.site88.net/papers/BJ02espa.pdf. Cited on pp.: 8.

16. Certicom Research. SEC 1: Elliptic curve cryptography, version 1.0, 2000. http:

//www.secg.org/SEC1-Ver-1.0.pdf. Cited on pp.: 6 and 7.
17. Certicom Research. SEC 2: Recommended elliptic curve domain parameters, ver-

sion 1.0, 2000. http://www.secg.org/SEC2-Ver-1.0.pdf. Cited on pp.: 2 and 6.
18. Certicom Research. SEC 1: Elliptic curve cryptography, version 2.0, 2009. http:

//www.secg.org/sec1-v2.pdf. Cited on pp.: 6 and 7.
19. Certicom Research. SEC 2: Recommended elliptic curve domain parameters, ver-

sion 2.0, 2010. http://www.secg.org/sec2-v2.pdf. Cited on pp.: 6, 15, 16, and 36.
20. Stephen Checkoway, Matthew Fredrikson, Ruben Niederhagen, Adam Everspaugh,

Matthew Green, Tanja Lange, Thomas Ristenpart, Daniel J. Bernstein, Jake Mask-
iewicz, and Hovav Shacham. On the practical exploitability of Dual EC in TLS im-
plementations. In 23rd USENIX Security Symposium (USENIX Security 14), San
Diego, CA, 2014. USENIX Association. https://projectbullrun.org/dual-ec/

index.html. Cited on pp.: 5 and 8.
21. Tung Chou. Sandy2x: fastest Curve25519 implementation ever, 2015.

http://csrc.nist.gov/groups/ST/ecc-workshop-2015/presentations/

session6-chou-tung.pdf. Cited on pp.: 39.
22. Neil Costigan and Peter Schwabe. Fast elliptic-curve cryptography on the

Cell Broadband Engine. In Africacrypt 2009, pages 368–385, 2009. https:

//cryptojedi.org/papers/celldh-20090331.pdf. Cited on pp.: 39.
23. Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof Paar,

Ana Helena Sánchez, and Peter Schwabe. High-speed Curve25519 on 8-bit,
16-bit, and 32-bit microcontrollers. Designs, Codes and Cryptography, 2015.
To appear, http://link.springer.com/article/10.1007/s10623-015-0087-1/

fulltext.html. Cited on pp.: 39.
24. Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard, and Martin Eker̊a. Di-

versity and transparency for ECC, 2015. http://csrc.nist.gov/groups/ST/

ecc-workshop-2015/papers/session4-flori-jean-pierre.pdf. Cited on pp.: 35
and 38.

25. Steven D. Galbraith and James McKee. The probability that the number of points
on an elliptic curve over a finite field is prime. Journal of the London Mathematical
Society, 62:671–684, 2000. https://www.math.auckland.ac.nz/~sgal018/cm.pdf.
Cited on pp.: 9 and 9.

26. Pierrick Gaudry and Emmanuel Thomé. The mpFq library and implementing
curve-based key exchanges. In SPEED: software performance enhancement for
encryption and decryption, pages 49–64, 2007. http://www.loria.fr/~gaudry/

papers.en.html. Cited on pp.: 39.
27. Andrew Granville. Smooth numbers: computational number theory and beyond.

In Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptog-
raphy, pages 267–323. Cambridge University Press, 2008. https://www.math.

leidenuniv.nl/~psh/ANTproc/09andrew.pdf. Cited on pp.: 11.
28. Michael Hutter, Jürgen Schilling, Peter Schwabe, and Wolfgang Wieser. NaCl’s

crypto box in hardware. In Tim Güneysu and Helena Handschuh, editors, CHES

How to manipulate curve standards 43

2015, volume 9293 of Lecture Notes in Computer Science, pages 81–101. Springer,
2015. https://cryptojedi.org/papers/naclhw-20150616.pdf. Cited on pp.: 39.

29. Institute of Electrical and Electronics Engineers. IEEE 1363-2000: Standard
specifications for public key cryptography, 2000. Preliminary draft at http:

//grouper.ieee.org/groups/1363/P1363/draft.html. Cited on pp.: 2, 6, and 15.

30. Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. Practical invalid curve attacks
on TLS-ECDH. In ESORICS 2015, 2015. https://www.nds.rub.de/research/

publications/ESORICS15/. Cited on pp.: 8.

31. John Kelsey. Choosing a DRBG algorithm, 2003? https://github.com/

matthewdgreen/nistfoia/blob/master/6.4.2014%20production/011%20-%209.

12%20Choosing%20a%20DRBG%20Algorithm.pdf. Cited on pp.: 5.

32. Brian LaMacchia and Craig Costello. Deterministic generation of elliptic curves
(a.k.a. “NUMS” curves), 2014. https://www.ietf.org/proceedings/90/slides/
slides-90-cfrg-5.pdf. Cited on pp.: 33.

33. Adam Langley and Andrew Moon. Implementations of a fast elliptic-curve digi-
tal signature algorithm, 2013. https://github.com/floodyberry/ed25519-donna.
Cited on pp.: 39.

34. Manfred Lochter and Johannes Merkle. RFC 5639: Elliptic curve cryptography
(ECC) Brainpool standard curves and curve generation, 2010. https://tools.

ietf.org/html/rfc5639. Cited on pp.: 21, 21, 22, and 33.

35. Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, and Torsten Schütze. Re-
quirements for standard elliptic curves, 2014. Position Paper of the ECC Brain-
pool, http://www.ecc-brainpool.org/20141001_ECCBrainpool_PositionPaper.
pdf. Cited on pp.: 34.

36. Manfred Lochter and Andreas Wiemers. Twist insecurity, 2015. https://eprint.
iacr.org/2015/577.pdf. Cited on pp.: 8 and 8.

37. Florian Luca, David Jose Mireles, and Igor E. Shparlinski. MOV attack in various
subgroups on elliptic curves. Illinois Journal of Mathematics, 48(3):1041–1052, 07
2004. https://projecteuclid.org/euclid.ijm/1258131069. Cited on pp.: 10.

38. Eric M. Mahé and Jean-Marie Chauvet. Fast GPGPU-based elliptic curve scalar
multiplication, 2014. https://eprint.iacr.org/2014/198.pdf. Cited on pp.: 39.

39. Johannes Merkle. Re: [Cfrg] ECC reboot (Was: When’s the decision?), 2014.
https://www.ietf.org/mail-archive/web/cfrg/current/msg05353.html. Cited
on pp.: 29 and 29.

40. Dustin Moody. Development of FIPS 186: Digital signatures (and elliptic curves),
2014. http://csrc.nist.gov/groups/ST/crypto-review/documents/FIPS_186_

and_Elliptic_Curves_052914.pdf. Cited on pp.: 8.

41. National Institute for Standards and Technology. FIPS PUB 186-2: Digital
signature standard, 2000. http://csrc.nist.gov/publications/fips/archive/

fips186-2/fips186-2.pdf. Cited on pp.: 2, 6, 7, 15, 16, and 16.

42. National Institute for Standards and Technology. FIPS PUB 186-4: Digital sig-
nature standard (DSS), 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.

FIPS.186-4.pdf. Cited on pp.: 6, 29, 29, 31, and 36.

43. National Security Agency. Suite B cryptography / cryptographic interoperability,
2005. https://web.archive.org/web/20150724150910/https://www.nsa.gov/

ia/programs/suiteb_cryptography/. Cited on pp.: 2, 6, and 35.

44. State Commercial Cryptography Administration (OSCCA), China. Public key
cryptographic algorithm SM2 based on elliptic curves, December 2010. http:

//www.oscca.gov.cn/UpFile/2010122214822692.pdf. Cited on pp.: 6 and 13.

44 BADA55 Research Team

45. State Commercial Cryptography Administration (OSCCA), China. Recommanded
curve parameters for public key cryptographic algorithm SM2 based on elliptic
curves, December 2010. http://www.oscca.gov.cn/UpFile/2010122214836668.

pdf. Cited on pp.: 6 and 13.
46. J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some func-

tions of prime numbers. Illinois Journal of Mathematics, 6:64–94, 1962. https:

//projecteuclid.org/euclid.ijm/1255631807. Cited on pp.: 9.
47. Pascal Sasdrich and Tim Güneysu. Efficient elliptic-curve cryptography using

Curve25519 on reconfigurable devices. In Diana Goehringer, Marco Domenico
Santambrogio, João M. P. Cardoso, and Koen Bertels, editors, ARC 2014,
volume 8405 of Lecture Notes in Computer Science, pages 25–36. Springer,
2014. https://www.hgi.rub.de/media/sh/veroeffentlichungen/2014/03/25/

paper_arc14_curve25519.pdf. Cited on pp.: 39.
48. Michael Scott. Re: NIST announces set of Elliptic Curves, 1999. https://groups.

google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ.
Cited on pp.: 20 and 44.

49. Joseph H. Silverman. The arithmetic of elliptic curves. Graduate Texts in Math-
ematics 106. Springer-Verlag, 2009. Cited on pp.: 7.

50. W. A. Stein et al. Sage Mathematics Software (version 6.8). The Sage Development
Team, 2015. http://www.sagemath.org. Cited on pp.: 14 and 18.

51. Wikipedia. Nothing up my sleeve number, 2015. https://en.wikipedia.org/

wiki/Nothing_up_my_sleeve_number (accessed 27 September 2015). Cited on
pp.: 4 and 33.

52. Wikipedia. NewDES, 2015. https://en.wikipedia.org/wiki/NewDES (accessed
27 September 2015). Cited on pp.: 32.

A Full quote by Mike Scott

For context and full email see [48].

[...] Consider now the possibility that one in a million of

all curves have an exploitable structure that "they" know

about, but we don’t. Then "they" simply generate a million

random seeds until they find one that generates one of

"their" curves. Then they get us to use them. And remember

the standard paranoia assumptions apply - "they" have

computing power way beyond what we can muster. So maybe

that could be 1 billion.
A much simpler approach would generate more trust. Simply

select B as an integer formed from the maximum number of

digits of pi that provide a number B which is less that p.

Then keep incrementing B until the number of points on the

curve is prime. Such a curve will be accepted as "random"

as all would accept that the decimal digits of pi have no

unfortunate interaction with elliptic curves. We would all

accept that such a curve had not been specially "cooked".
So, sigh, why didn’t they do it that way? Do they want to

be distrusted?

