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Abstract

An obfuscator O is Virtual Grey Box (VGB) for a class C of circuits if, for any C ∈ C and
any predicate π, deducing π(C) given O(C) is tantamount to deducing π(C) given unbounded
computational resources and polynomially many oracle queries to C. VGB obfuscation is often
significantly more meaningful than indistinguishability obfuscation (IO). In fact, for some circuit
families of interest VGB is equivalent to full-fledged Virtual Black Box obfuscation.

We investigate the feasibility of obtaining VGB obfuscation for general circuits. We first for-
mulate a natural strengthening of IO, called strong IO (SIO). Essentially, O is SIO for class C if
O(C) ≈ O(C ′) whenever the pair (C,C ′) is taken from a distribution over C where, for all x,
C(x) 6= C ′(x) only with negligible probability.

We then show that an obfuscator is VGB for a class C if and only if it is SIO for C. This result
is unconditional and holds for any C. We also show that, for some circuit collections, SIO implies
virtual black-box obfuscation.

Finally, we formulate a slightly stronger variant of the semantic security property of graded
encoding schemes [Pass-Seth-Telang Crypto 14], and show that existing obfuscators, such as the ob-
fuscator of Barak et al. [Eurocrypt 14], are SIO for all circuits in NC1, assuming that the underlying
graded encoding scheme satisfies our variant of semantic security.

Put together, we obtain VGB obfuscation for all NC1 circuits under assumptions that are almost
the same as those used by Pass et al. to obtain IO for NC1 circuits. We also show that semantic
security is in essence necessary for showing VGB obfuscation.
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1 Introduction

Program obfuscation, namely the ability to efficiently compile a given program into a functionally equiv-
alent program that is “unintelligible”, is an intriguing concept. Indeed, much effort has been devoted
to understanding this concept from the definitional aspect, the algorithmic aspect, and the applications
aspect. Here let us concentrate on the first two aspects.

Starting with the works of Hada [Had00] and Barak et al. [BGI+01], a number of measures of
security for program obfuscation have been proposed. Let us briefly review three notions of interest.
The first, virtual black box (VBB) obfuscation [BGI+01], requires that having access to the obfuscated
program is essentially the same as having access to the program only as black box. Concretely, focusing
on programs represented as circuits, an obfuscatorO for a family of circuits is worst-case VBB if for any
poly-time adversaryA, there exists a poly-time simulator S, such that for any circuit C from the family,
and any predicate π(·), A cannot learn π(C) from O(C) with noticeably higher probability than S can,
given only oracle access to C. The obfuscator O is average-case VBB if the above is only required to
hold for circuits C that are sampled at random from the family.

While this VBB obfuscation is natural and strong, Barak et al. [BGI+01] showed that this definition,
and variants thereof, are unobtainable in general by demonstrating a family of unobfuscatable functions:
these are functions f where any circuit computing the function inherently leaks secrets that are infea-
sible to compute given only black box access to f . Moreover it turns out that, under cryptographic
assumptions, if the simulator S is universal (or equivalently, works for any adversarial auxiliary input)
then VBB obfuscation is unobtainable for any circuit family whose functionality has super-polynomial
“pseudo entropy” [GK05, BCC+14].

A weaker variant of VBB, called virtual grey-box (VGB) [BC10], allows the simulator to be semi-
bounded, namely it can be computationally unbounded, while still making only a polynomial number of
queries to the circuit C. While significantly weaker than VBB in general, VGB is still meaningful for
circuits that are unlearnable even by semi-bounded learners. Furthermore, VGB obfuscators for circuits
escape the general impossibility results that apply to VBB obfuscators.

A weaker notion yet, called indistinguishability obfuscation (IO) [BGI+01], allows the (now com-
putationally unbounded) simulator to also make an unbounded number of queries to C. Equivalently, O
is an IO for a circuit collection if for any two circuits C0 and C1 in the collection, having the same size
and functionality, O(C0) and O(C1) are indistinguishable.

While IO has some attractive properties, and some important cryptographic applications [GR07,
SW13, GGH+13b], the security guarantees provided by IO are significantly weaker than those provided
by either VBB or VGB obfuscation.

On the algorithmic level, for many years we had candidate obfuscators only for very simple func-
tions such as point functions and variants. The landscape has changed completely with the recent break-
through work of [GGH+13b], which proposed a candidate general-purpose obfuscation algorithm for
all circuits. [GGH+13b] show that their scheme resists some simple attacks; but beyond that, they do
not provide any analytic evidence for security.

Considerable efforts have been made to analyze the security of the [GGH+13b] obfuscator and vari-
ants. The difficulty appears to be in capturing the security properties required from the graded encodings
schemes [GGH13a, CLT13], which is a central component in the construction. As a first step towards
understanding the security of the [GGH+13b] obfuscator, [BR13, BGK+13] consider an ideal algebraic
model, where the adversary is given “generic graded encodings” that can only be manipulated via ad-
missible algebraic operations. They show that, in this model, variants of the [GGH+13b] scheme are
VBB obfuscators for all poly-size circuits. (We remark that [CV13] construct a VBB general obfuscator
with similar properties; however their abstract model is different and does not seem to correspond to any
existing cryptographic primitive.)

Still, neither of these idealized constructions or their analyses have, in of themselves, any bearing on
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the security of obfuscation algorithms in the plain model.
Pass et al. [PTS13] make the first step towards proving the security of a general obfuscation scheme

based on some natural hardness assumption in the plain model. Specifically, they define a semantic
security property for graded encoding schemes, which is aimed at capturing what it means for a graded
encoding scheme to “behave essentially as an ideal multi-linear graded encoding oracle”. They then
show that a specially-crafted variant of the [BGK+13] obfuscator, with the ideal graded encoding scheme
replaced by a semantically-secure graded encoding scheme, is IO for all circuits.

But what about stronger security notions? In particular:

What are the strongest security guarantees for general obfuscation that can be based on
natural cryptographic assumptions such as semantically-secure graded encoding?

Our contributions. We obtain worst-case VGB obfuscation for NC1, based on almost the same as-
sumptions as those used in [PTS13] to show IO for NC1. As an intermediate step towards this goal, we
put forth a somewhat stronger variant of indistinguishability obfuscation, called strong IO (SIO). Infor-
mally, an obfuscator O is SIO for a class of circuits C if O(C) ≈ O(C ′) not only when C,C ′ ∈ C have
the same functionality, but also when C and C ′ come from distributions over circuits in C that are “close
together”, in the sense that for any given input x, the probability that C(x) 6= C ′(x) is negligible. An
alternative view of the definition (which turns out to be equivalent) is that if no semi-bounded adversary
can distinguish oracle access to C from access to C ′. We then show that:

1. SIO is in fact equivalent to worst-case VGB obfuscation. Furthermore, for certain classes of
functions, such as point functions, hyperplanes, or fuzzy point functions, SIO is equivalent to
full-fledged worst-case VBB obfuscation. These equivalences hold unconditionally.

2. Assuming existence of graded encoding schemes that satisfy a somewhat stronger variant of the
semantic security notion of Pass et al. [PTS13], we show that known obfuscation schemes are
SIO for all circuits in NC1. More generally, we show that any obfuscator for a class of circuits C
that is VBB in the ideal graded encoding model, is SIO in the plain model, when the ideal graded
encoding oracle is replaced by a graded encoding scheme that satisfies a variant of the [PTS13]
assumption.

We also give evidence for the necessity of semantically-secure graded encoding for obtaining VGB.
Specifically we show that, assuming existence of VGB obfuscators for all circuits, there exist mutlilinear
jigsaw puzzles satisfying a form of semantic security. Multilinear jisaw puzzles, defined in [GGH+13b],
are a limited-functionality variant of multilinear maps. They suffice for obtaining the positive result
described in Item 2 above.

Finally, we investigate the plausibility of the semantic security assumption on graded encoding
schemes, propose some relaxed variants, and show that our main results can be obtained under all these
relaxations. Namely, we first give new evidence for the relative strength of the semantically-secure
graded encodings assumption. Specifically, we show that semantically-secure graded encodings are
subject to the following limitations:

1. SAT lower bounds. We show that semantically-secure graded encodings imply exponential cir-
cuit lower bounds for SAT. Such lower bounds are currently not known to follow from IO (even
assuming P 6= NP).

2. A generic attack. We present an attack showing that any graded encoding scheme with certain
efficiency properties cannot satisfy semantic security. While the attack does not apply to currently
known candidate graded encodings [GGH13a, CLT13], it does point out potential limitations of
this notion. We complement this observation by suggesting a natural relaxation of semantic secu-
rity called bounded semantic-security that bypasses this attack. Our main results can be obtained
also under this relaxed assumption.
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In addition to the above relaxation, we consider several other relaxations of semantic-security, and in-
vestigate their relations. We show that our main results can be obtained under all these relaxations.

The rest of the introduction provides a more detailed overview of our results. Section 1.1 presents
the implication from SIO to VGB and VBB obfuscation. Section 1.2 provides background on graded
encoding schemes and the semantic security assumption. Sections 1.3 presents the construction of SIO
from semantically-secure graded encoding schemes, and Section 1.4 describes additional results on the
viability of the semantic security assumption of graded encoding schemes, and relations among various
variants.

1.1 From SIO to VGB and VBB Obfuscation

We first define SIO a bit more precisely. A distribution C̃ over circuits is said to be ν-concentrated
around a boolean function f if for any value x in the domain of f we have that Pr[C̃(x) 6= f(x)] ≤ ν.
We say that C̃ is simply concentrated if it is ν-concentrated for some negligible function ν. An obfus-
catorO is SIO for a class C of circuits if for any two (not necessarily efficiently samplable) distributions
C̃, C̃ ′ over circuits in C that are concentrated around the same function, it holds that O(C̃) and O(C̃ ′)
are computationally indistinguishable. We show the following.

Theorem 1.1. [informal] An obfuscator is SIO for a class C of circuits if and only if it is worst-case
VGB obfuscator for C.

Theorem 1.1 motivates the study of SIO as an independent notion, beyond its role in the construc-
tion of worst-case VGB obfuscation for NC1 from semantically-secure graded encodings. Future re-
sults obtaining SIO for more functions, or based on different assumptions, will directly apply for VGB
obfuscation as well. We note that existing candidate indistinguishability obfuscators for all circuits
[GGH+13b, BR13, BGK+13], may also be considered as candidates for SIO, and thus also for VGB
obfuscation, for all circuits.

Ideas behind the proof of Theorem 1.1. Showing that VGB implies SIO is straightforward. In the
other direction we construct an (inefficient) simulator S for any adversaryA. Recall that, for any circuit
C ∈ C in the given collection C, the simulator S should simulate what A learns from an obfuscation
O(C), given only oracle access to C. The high level idea is as follows: S will use its oracle to C to
gradually reduce the set K of candidates for the circuit C, starting from K0 = C, and continuing with
progressively smaller sets of candidates:

Ki ( Ki−1 ( · · · ( K0 = C .

S will continue this process until it obtains a set K∗ where A cannot distinguish an obfuscation O(C)
of C from an obfuscation O(C ′) of a random circuit C ′ in K∗.

To carry out this plan, SC iteratively performs two main steps: concentration, and majority separa-
tion. In the concentration step S tries to learn C in a straightforward way: it queries C on a point xi that
splits the current set of candidate circuits Ki as evenly as possible. Based on the value of C(xi), S rules
out some of the candidates. This process is repeated until there is no query that necessarily shrinks the
set of candidates by a factor of at least 1− ε, where ε is a parameter of the simulation. ε is chosen such
that 1/ε is a polynomial, depending only on A and on the required simulation accuracy. Note that at the
end of the concentration step, S must reach a set of candidates Kj that is ε-concentrated. This occurs
after at most log |C|/ε queries. The concentration step alone essentially suffices to ensure average-case
VGB simulation; indeed, it follows from SIO security that if a circuit C is chosen at random from a
concentrated set Kj , A cannot compute any predicate π(C), given O(C), better than it can given an
obfuscation O(C ′) of an independent random C′ ← Kj .

However, the concentration step alone does not guarantee worst-case simulation. In particular, A
may have some hardwired information that allows it to distinguish C from a random circuit in Kj . In
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this case, however, S can further reduce the set of candidates Kj by separating any such distinguishable
circuit C from the majority of functions in Kj . Concretely, we define the set DA(Kj) of distinguishable
circuits in Kj , as those circuits C in Kj such that A can ε-distinguish between O(C) and O(C ′) for a
random C ′ ← Kj . We say that a point x separates a circuit C from the majority if C(x) 6= majKj

(x)
where majKj

is the majority of all circuits in Kj .
In the majority-separation step, the simulator will query its oracle C on a small set of roughly

log |C|/ε points LKj that separates all the distinguishable circuits in DA(Kj) from the majority. This
means that, if the oracle C agrees with majKj

on all points x ∈ LKj , then A cannot tell apart O(C)
form O(C ′) for a random C ′ ← Kj , in which case, the simulation can be completed. Otherwise, if C
disagrees with majKj

on some point x ∈ LKj , S obtains a new set of candidates Kj+1 ( Kj which is
necessarily smaller by a 1− ε factor, since Kj is ε-concentrated.

By iteratively applying the two steps we either reach someK∗ for whichA cannot distinguishO(C)
from O(C ′) for a random C ′ ← K∗, or we have completely exhausted the collection C and found
exactly the circuit C. Since we reduce Kj at each step by a 1 − ε factor, the process must end after at
most log |C|/ε steps, and at most poly(log |C|/ε) queries.

But how do we establish the existence of a small set LKj that separates DA(Kj) from the majority
in Kj? Here we rely on the SIO security of O. Specifically, SIO implies that any subset S of the dis-
tinguishable circuits DA(Kj), cannot be ε-concentrated around majKj

, because A distinguishes O(C),
for C ← Kj from O(C ′) for C ′ ← S ⊆ DA(Kj).1 Since no S as above is ε-concentrated around
majKj

, we can separate all of the circuits in DA(Kj) from majKj
with at most poly(log |C|/ε) points,

as required.

On the possibility of VBB obfuscation. The simulation strategy described above requires only a poly-
nomial number of queries, however, the overall running time of the simulator may not be bounded in
general. Indeed, in the concentration step, finding a point xj that significantly splits Kj may require
super-polynomial time. Also, in the majority-separation step, while the set LKj is small, computing it
from Kj may also require super-polynomial time.

Nevertheless, we show that for certain classes of circuits, simulation can be done more efficiently, or
even in polynomial time. Specifically, abstracting away from the above simulation process, we consider
the notion of learning via a majority-separation oracle, where a given circuit C (or more generally
a function) in a prescribed family is learned via oracle access to C and oracle access to the majority
separation oracle S, which takes as input (the description of a) a concentrated sub-familyK that includes
C and outputs a point x that separates C from the majority in K.

While the strategy described above shows that any class of circuits can be learned with polynomially
many queries to C and S, the learner itself may be inefficient, which results in inefficient simulation.
We show that a more efficient learning procedure can sometimes be translated into a more efficient
simulation strategy, depending on pattern of queries made by the learning algorithm. We identify several
function classes, for which such efficient learning is possible, yielding new feasibility results for worst-
case VBB obfuscation. Examples include fuzzy point functions, conjunctions, and constant-dimension
linear subspaces. We also get a unified proof for all existing worst-case VBB obfuscation results (such
as point functions, constant-size set functions, and constant-dimension hyper-planes).

Connection to previous worst-case VBB/VGB obfuscators. The majority separation technique is
rooted in the sack of distinguishable points technique of Canetti [Can97]. There, and in [Wee05], it
was used to get worst-case (simulation-based) VBB obfuscation from indistinguishability-based obfus-
cation, for the simple case of point functions. The technique was then extended to VBB obfuscation of
constant-dimension hyperplanes [CRV10] and VGB obfuscation of set functions [BC10]. The major-
ity separation technique generalizes the above for arbitrary functions. Indeed, in the above works, the
indistinguishability guarantee considered is equivalent to SIO (for the classes in question).

1We assume here (for simplicity and without loss of generality), that the distinguishing gap is always of the same sign.
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Connection to VGB obfuscation of evasive functions. Evasive collections are function collections
concentrated around the all-zero function. Barak et al. [BBC+14] show that average-case VGB ob-
fuscation for all evasive collections implies weak average-case VGB for all collections.2 Here “weak”
means that the simulator is allowed to make a slightly super-polynomial number of queries.

We show that an obfuscator is SIO for a collection C of circuits if and only if it is IO for C and
in addition, it is average-case VGB for any evasive sub-collection of C. In particular, it follows that if
an obfuscator is IO and average-case VGB for all evasive collections in C, then it is a worst-case VGB
obfuscator for C. This is incomparable to the Barak et al. result: on the one hand, they do not need to
assume that the obfuscator is IO; on the other hand they only show that it is average-case weak VGB,
rather than worst-case standard VGB.

To better compare the two techniques, let us state the result we would get using our techniques,
assuming only average-case VGB for all evasive collections, and without assuming IO (in particular,
without assuming SIO). Roughly, we would get a weak kind of obfuscation where any adversary A has
anA-designated obfuscatorOA, which may be inefficient. The security guarantee is thatA has a worst-
case VGB simulator S, so that for any circuit C ∈ C, it holds that A(OA(C)) ≈ε A(SC); namely, A
cannot tell an A-designated obfuscation of C from a circuit sampled by the semi-bounded simulator,
using only black-box access to C. The size of circuits output by OA(C) is a polynomial p(|C|) that
depends only on the class C, but not on A.

Assuming also IO allows us to “switch quantifiers”, and show that there is a single efficient ob-
fuscator O that works for all adversaries. This obfuscator would simply output an IO obfuscation of
C (padded up to size p(|C|)). Security against all adversaries would then follow from the fact that IO
is the “best-possible” obfuscator [BGI+01, GR07], and thus would achieve the same security as any
adversary-designated obfuscator. 3

1.2 Semantically-Secure Graded Encoding Schemes: Background

Before describing how we get SIO from semantically secure graded encoding schemes, we provide some
background on the latter. A graded encoding scheme [GGH13a] consists of the following algorithms:
InstGen that given a universe set [k], outputs public parameters pp and secret parameters sp, where
pp contains a description of a ring R; Encode that given sp, a set S ⊆ [k] and α ∈ R, generates an
encoding [α]S ; Add and Sub that, given encodings [α1]S and [α2]S , generate encodings [α1 + α2]S and
[α1 − α2]S respectively; Mult that, given encodings [α1]S1

and [α2]S2
such that S1 ∩ S2 = ∅, generates

an encoding [α1 · α2]S1∪S2
; and isZero that given an encoding [α][k] outputs 1 if and only if α = 0 (all

the algorithms above also take as input pp).
[GGH13a, CLT13] consider standard versions of DDH-type security that can be conjectured to hold

for their graded encoding schemes. Basing the security of obfuscation mechanisms on these assumptions
seems at this point far out of reach, even if one considers only IO security. So which security properties
of encoding schemes would suffice for this purpose? The high-level approach of Pass et al. [PTS13] is to
devise a property that, not only hides “DDH-type relations” between encodings, but also any other rela-
tion that cannot be revealed using the admissible algebraic operations provided by the graded encoding
interface. In other words, the encoding scheme should amount to an “ideal encoding scheme”, where
encodings are truly accessed only through admissible algebraic operations. This may, in particular, allow
leveraging the existing proofs of VBB security in the ideal graded encoding model [BR13, BGK+13].

More specifically, Pass et al. take the following approach (described first in an oversimplified man-
ner). Consider a message sampler M([k], R) that samples a tuple (S1,m1), . . . , (S`,m`) from one of
two distributions D0 or D1, where each Si ⊆ [k], each mi ∈ R, and ` is polynomial in the security

2In fact, for concentrated, and in particular evasive, collections, average-case VGB and average-case VBB are equivalent.
3We note that, in the body, our actual proof relies directly on SIO, which we show to follow from average-case VGB for

evasive collections and standard IO.
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parameter. We say that the sampler is admissible if no polynomially-bounded “algebraic adversary” that
is given ~S = (S1, . . . , S`), and can access the ring elements ~m = (m1, . . . ,m`) only via an ideal en-
coding oracle, is able to tell whether (~S, ~m) were taken from D0 or D1. The ideal encoding oracle only
allows the same algebraic manipulations allowed by the graded encoding interface, or put abstractly, it
allows the adversary to choose any arithmetic circuit C that respects the set structure given by ~S, and
test whether C(~m) = 0. The requirement is that, for such an admissible sampler, an efficient adversary
that obtains actual encodings

{
[mi]Si

: i ∈ [`]
}

, along with the corresponding public parameters pp, also
cannot tell whether (~S, ~m) was sampled from D0 or D1.

As noticed by Pass et al., the assumption formulated above is actually false—it is susceptible to a
diagonalization attack in the spirit of the [BGI+01] impossibility result for general VBB obfuscation.
To get around this caveat, Pass et al. strengthen the admissibility requirement to require that D0,D1

are indistinguishable even to a semi-bounded algebraic adversary, namely an algebraic adversary that
is computationally unbounded, but makes only a polynomial number of queries to the ideal graded
encoding oracle. Furthermore, even this relaxed assumption suffices for obtaining IO in the plain model.

To get IO in the plain model, the idea is to rely on a construction of VBB obfuscation for NC1 in the
ideal graded encoding model [BR13, BGK+13] and replace the ideal graded encoding with a concrete
graded encoding scheme satisfying semantic security as stated above. To show that obfuscations of two
equivalent circuits C0, C1 are indeed indistinguishable, consider a message sampler M that samples a
pair of distributions D0,D1 such that the distribution Di is an obfuscation of the circuit Ci in the ideal
graded encoding model. The admissibility of this sampler follows from the fact that the [BGK+13] ob-
fuscator is secure even against semi-bounded adversaries. Specifically, an algebraic adversary accessing
Di via an ideal encoding oracle essentially has black-box access to the circuit Ci. Since C0, C1 cannot
be distinguished given only black-box access, their obfuscations are indistinguishable as well. The even-
tual Pass et al. assumption is further relaxed in several ways, while still yielding their main application
to IO.

1.3 SIO from Semantically-Secure Graded Encoding, and Back Again

We sketch our variant of the semantic security assumption, and explain how we obtain SIO for NC1

circuits from this variant. We also give evidence for the necessity of semantic security for obtaining
SIO.

Essentially, the reason that semantic security of graded encoding schemes implies SIO is that se-
mantic security considers any admissible distributions over encodings, not only ones that come out of
obfuscating a given program. In particular, distributions that consist of ideal-graded-encoding-VBB
obfuscations of circuits that are concentrated around the same function are admissible, thus their instan-
tiations via a semantically secure graded encoding scheme are guaranteed to be indistinguishable.

However, some care has to be taken here: note that SIO considers even distributions that are not
necessarily efficiently samplable. (Indeed, this property is crucial in the proof that SIO implies worst-
case VGB.) This means that we will need to somewhat modify the formulation of the semantic security
assumption.

A naive attempt to formalize this variant of semantic security may simply allow the sampler to
be computationally unbounded. However, recall that the message sampler is given the description of
a ring R. (This is required in order to sample obfuscations in the ideal graded encoding model that
consist, for example, of random elements in R.) A computationally unbounded sampler that sees R may
be able to recover information that compromises the security of the encodings (for example, the secret
parameters). The sampler can produce encodings that reveal this secret information. Note that such a
sampler may still be admissible since learning the secret parameters gives no advantage to an algebraic
adversary.

Instead we sample messages in two stages: first, an unbounded sampler S generates a poly-size
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auxiliary input string s; second, an efficient encoder M gets the ring R and the auxiliary input string s,
and generates the final samples. We call this variant strong-sampler semantic security.

Theorem 1.2 (informal). Let O be any obfuscator for a class C of circuits, that is VBB against semi-
bounded adversaries in the ideal graded encoding model. Then instantiating the graded encoding oracle
with a strong-sampler semantically-secure graded encoding scheme results in an obfuscator O′ that is
SIO for C in the plain model.

Then, relying on the Barak et al. obfuscation for NC1 in the ideal graded encoding model [BGK+13]
(which is indeed VBB against semi-bounded adversaries), we obtain the following corollary.

Corollary 1.1 (informal). Assume there exists a strong-sampler semantically-secure encoding scheme.
Then there exists SIO for NC1.

We also give evidence for the necessity of semantically-secure graded encoding schemes for obtain-
ing VGB. To this end, we focus on a version of graded encoding with restricted functionality called
mutlilinear jigsaw puzzles [GGH+13b]. Unlike graded encodings, in mutlilinear jigsaw puzzles, en-
codings can only be generated together with the system parameters. We refer to the public parameters,
together with the set of initialized encodings, as a puzzle. Instead of performing individual permitted
operations over the encodings, all the jigsaw puzzle user can do is to specify an arithmetic circuit C that
respects the set structure of the initialized encodings, and test whether C evaluates to 0 on these encod-
ings or not. Semantic security of mutlilinear jigsaw puzzles is defined similarly to the graded encoding
case. Despite their restricted functionality, semantically-secure mutlilinear jigsaw puzzles can replace
graded encodings in our construction of SIO for NC1.

We observe that the existence of semantically-secure jigsaw puzzles is implied by VGB obfuscation
for all circuits. To see why this is the case, consider the circuit P that has a set of ring elements
~m = (m1, . . . ,m`) hardwired into it, together with the corresponding sets ~S = (S1, . . . , S`). The
circuit P takes as input an arithmetic circuit C that respects the set structure given by ~S, and tests
whether C(~m) = 0. To initialize a puzzle from a set of encodings (~S, ~m) we simply VGB obfuscate the
circuit P .

1.4 More on Semantic Security

Next we discuss our results pertaining to the study of semantic security of graded encoding schemes.
The negative results discussed below hold even for the basic notion of semantic security, where the
message sampler is of polysize.

SAT lower bounds. As additional evidence to the power of semantically-secure graded encodings, we
observe that they imply an exponential lower-bound for Circuit-SAT. Specifically, there do no exist SAT
solvers that run in time 2o(n) · poly(|C|), for a boolean circuit C with n input variables. To show this
lower bound, we rely on a result by Wee [Wee05] that shows a similar lower from any point function
obfuscation.

Efficiency limitations via a generic attack. We present an attack against any graded encoding scheme
satisfying certain efficiency properties. Before specifying these efficiency properties, let us first describe
the high-level idea behind the attack, from which they emerge.

Let Cb,r be a circuit associated with a bit b and ring element r ∈ R. The circuit Cb,r reveals the
bit b only when given as input some public parameters pp and a proper encoding of r with respect to
pp. The corresponding admissible sampler M would then sample from one of two distributions D0,D1,
where sampling from Db is done by sampling a random r and outputting a vector of ring elements ~m,
that represents an ideal obfuscation of Cb,r, and the additional element r. Intuitively, a semi-bounded,
algebraic adversary with ideal access to (~m, r) gains no more than oracle-access to Cb,r and since it
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cannot recover r, it cannot learn the bit b.4 In contrast, the real world distinguisher, which is given the
public parameters pp and an actual encoding of r, can simply run the obfuscation on pp and the encoding
of r, and learn b.

The above attack is applicable for graded encoding schemes that possess certain efficiency proper-
ties. First, since we only have ideal obfuscation against semi-bounded adversaries for NC1, the circuit
Cb,r should be implementable in NC1. Second, it is required that the size of the public parameters pp
and the size of an encoding do not grow with the size of the universe set k. Indeed, in order to obfuscate
Cb,r in the ideal graded encoding model, it is required that k is appropriately large (in particular, larger
than the circuit’s input). Thus, the size of the public parameters and encodings received by Cb,r must be
independent of k. 5

Both of the above efficiency requirements are not satisfied by the candidate constructions of [GGH13a,
CLT13] in their current forms. Indeed, for these schemes it is not known how to implement Cb,r in NC1.
Also, in these schemes the size of the public parameters and encodings does grow with the size of the
universe set k. Still, this attack motivates us to consider more restricted notions of semantically-secure
graded encoding.

Bounded semantic security. To get around diagonalization attacks such as the one described above,
we suggest a relaxation of semantic security where there is a fixed polynomial bound on the length
of the elements vector produced by the admissible sampler. This bound is fixed a a-priori before the
encoding scheme’s parameters, such as the size of the universe set k, are chosen. This relaxed definition
is sufficient for all of our applications. It also appears to be resilient to diagonalization attacks.

Other relaxations of semantic security. We also discuss several other relaxations of the semantic-
security definition that were considered by Pass et al. [PTS13] (and are already embedded into their
main definition of semantic security). We show that under any combination of these relaxations, the
positive implications to obfuscation still hold. For most combinations we do this generically given any
VBB obfuscation construction in the ideal graded encoding model.

SIO from new assumptions? Pass et al. also consider an alternative version of semantic security, where
instead of requiring indistinguishability with respect to any admissible sampler, it is only required for a
single specific sampler (that depends on the obfuscation construction). Gentry et al. [GLSW14] recently
constructed IO based on a new, construction-independent assumption of a different flavor. Getting IO
from these assumptions involves an exponential loss in security, and they are therefore incomparable to
the assumption discussed here. Whether these assumptions suffice for constructing SIO is left for future
research to ascertain.

Organization. Section 2 reviews the definitions of VBB, VGB and IO. Section 3 defines SIO and shows
its equivalence to VBB for concentrated circuit distributions. Section 4 constructs worst case VGB and
VBB obfsucators from SIO. Section 5 shows that SIO is equivalent to IO and average-case VGB for
evasive sub-collections. Section 6 constructs SIO from semantically-secure graded encoding schemes.
Finally, Section 7 studies the semantic security assumption.

2 Obfuscation: VBB, VGB, Indistinguishability

We review three basic definitions of obfuscation that are used throughout the paper. We start by defining
the functionality requirement, which all the notions share, and then define different security notions.

Definition 2.1 (Functionality). A PPT algorithm O is an obfuscator for a collection of circuits C =

4This argument is a bit oversimplified; indeed, to argue that one cannot learn b given oracle access to r, we should also deal
with the case that the adversary queries with improper public parameters and encodings.

5We thank Rafael Pass for pointing this out.
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⋃
n∈N Cn, if for any C ∈ C,

Pr
O

[∀x : O(C)(x) = C(x)] = 1 .

VBB and VGB Obfuscation. Virtual Black Box (VBB) obfuscation [BGI+01] guarantees that an ob-
fuscated circuitO(C) does not reveal any predicate π(C) that cannot be learned by an efficient simulator
that is given only black-box access toC. The basic definition is worst-case in the sense that the simulator
needs to be successful for any circuit in a given circuit collection. We later also address an average-case
notion. In the definition below we use a slightly weaker definition than the standard one, and allow the
simulator to depend on the distinguishing probability p.

Definition 2.2 (Worst-case VBB Obfuscation). An obfuscatorO for a collection of circuits C =
⋃
n∈N Cn

is worst-case VBB if for every poly-size adversaryA, and polynomial p, there exists a poly-size simulator
S, such that for every n ∈ N, every predicate π : Cn → {0, 1}, and every C ∈ Cn:∣∣∣∣Pr

A,O
[A(O(C)) = π(C)]− Pr

S
[SC(1n) = π(C)]

∣∣∣∣ ≤ 1/p(n) .

Virtual Grey Box (VGB) obfuscation [BC10] relaxes VBB by allowing the simulator to have un-
bounded computational power, but still only a bounded number of oracle queries to C.

Definition 2.3 (Worst-case VGB Obfuscation). An obfuscatorO for a collection of circuits C =
⋃
n∈N Cn

is worst-case VGB if for every poly-size adversaryA, and polynomial p, there exists an unbounded sim-
ulator S, and a polynomial q, such that for every n ∈ N, every predicate π : Cn → {0, 1}, and C ∈ Cn:∣∣∣∣Pr

A,O
[A(O(C)) = π(C)]− Pr

S
[SC[q(n)](1n) = π(C)]

∣∣∣∣ ≤ 1/p(n) ,

where C[q(n)] is an oracle that allows at most q(n) queries.

We also consider relaxed versions of VBB and VGB, where the corresponding guarantee only holds
for a random circuit sampled from a distribution, rather than for any circuit.

Definition 2.4 (Average-case obfuscation). Each of Definitions 2.2,2.3 is said to hold in the average
case, for a distribution ensemble C̃ =

⋃
n∈N C̃n on the collection C =

⋃
n∈N Cn, if each of the corre-

sponding probability statements is over a random C ← C̃n, rather than required for every C ∈ C.

Remark 2.1 (Simulation accuracy). In the above definitions (and throughout the paper), the simulator
S, and in VGB, also its number of queries q, are allowed to depend on the required simulation accuracy
1/p(n). This definition is stronger than the VBB definition in common also to all previous works that
have established worst-case VBB or VGB (for specific classes), but is weaker then the original definition
of [BGI+01] where the same simulator S should be 1/p(n)-accurate for all polynomials p (for large
enough security parameter n).

Indistinguishability Obfuscation. We next define the notion of indistinguishability obfuscation, intro-
duced in [BGI+01].

Definition 2.5 (Indistinguishability obfuscation [BGI+01]). An obfuscator for C is said to be an in-
distinguishability obfuscator for C, denoted by iO, if for any poly-size distinguisher D, there exists a
negligible function µ such that for all n ∈ N, and any two circuits C0, C1 ∈ Cn of the same size and
functionality,

Pr[b← {0, 1};D(C0, C1, iO(Cb)) = b] ≤ 1

2
+ µ(n) .

It can be readily seen that if an obfuscator O is VBB for a function collection C then it is also VGB
for C. Furthermore, if O is VGB for C then it is also an indistinguishability obfuscator for C.
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3 Strong Indistinguishability Obfuscation

In this section we define the notion of strong indistinguishability obfuscation (SIO). We start by defining
the notion of concentrated distributions over circuits.

Concentrated Circuit Distributions. At a high-level, a distribution ensemble C̃, over a circuit collection
C, is concentrated, if given polynomially many oracle queries to a random circuitC from the distribution,
it is information theoretically hard to find an input x such that C does not agree with majC̃ on the point
x, where majC̃ is the common output of circuits distributed according to C̃. If C̃ corresponds to the
uniform distribution on some collection C, majC̃ is simply the majority vote. Concentrated distributions
naturally generalize the concept of evasive distributions studied in [BBC+14], in which the majority is
always the all-zero function, i.e. majC̃ ≡ 0.

Definition 3.1 (Concentrated circuit distributions). Let C =
⋃
n∈N Cn be a circuit collection, where

Cn consists of circuits C : {0, 1}n → {0, 1} of size poly(n), and let C̃n be a distribution on Cn. Let
majC̃n(x) := bEC←C̃nC(x)e be the common output at point x of circuits drawn from C̃n.

1. For any ε ∈ [0, 1], C̃n is said to be ε-concentrated if

max
x∈{0,1}n

Pr
C←C̃n

[
C(x) 6= majCn(x)

]
≤ ε .

2. C̃ is said to be concentrated if for some negligible µ(·), and any n ∈ N, C̃n is µ(n)-concentrated.

3. C̃ is said to be evasive if it is concentrated, and for any n ∈ N and any x ∈ {0, 1}n, majC̃n(x) = 0.

4. We say that the collection C itself is concentrated (evasive) if the uniform distribution ensemble
on circuits in C is concentrated (evasive).

Strong Indistinguishability Obfuscation. Strong Indistinguishability Obfuscation requires that indis-
tinguishability holds, even when C0 and C1 do not necessarily compute the exact same function, but
are taken from two distributions C̃0

n and C̃1
n that are concentrated around the same function; namely,

majC̃0n
≡ majC̃1n

:

Definition 3.2 (Strong indistinguishability obfuscation). An obfuscator for C is said to be a strong
indistinguishability obfuscator for C, denoted by iO∗, if for any two concentrated distribution ensembles
C̃0, C̃1 on C, such that ∀n ∈ N : majC̃0n

≡ majC̃1n
, and any poly-size distinguisher D, there exists a

negligible function µ such that for all n ∈ N,

Pr[b← {0, 1}; (C0, C1)← (C̃0
n, C̃1

n);D(iO∗(Cb)) = b] ≤ 1

2
+ µ(n) .

Remark 3.1. Above, we do not require that the distributions C̃0, C̃1 are efficiently samplable. We can
also consider a weaker definition where this restriction is added. Later we show that this weaker version
can be obtained from a weaker notion of semantic security (see Remark 6.4).

We observe that any SIO obfuscator for C is also an IO obfuscator for C. Indeed, for any two circuits
C0, C1 of equivalent functionality, each of these circuits on its own is trivially concentrated around their
common functionality.
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4 SIO is Equivalent to Worst-Case VGB

In this section, we prove that the notion of strong indistinguishability obfuscation (SIO) is equivalent
to VGB. Clearly, any VGB obfuscator for a class C is also a SIO for C. We show that the converse is
true as well. Namely, we show that any strong indistinguishability obfuscator O for a class C of circuits
is a worst-case VGB obfuscator for C. In addition, we show that for classes C with some additional
properties, O is in fact worst-case VBB. We refer the reader to Section 1.1 for an overview.

4.1 Definitions and Statement of Main Theorem

Notation and terminology. For a function f : {0, 1}n → {0, 1}, we say that a point x ∈ {0, 1}n
separates a circuit C from f if C(x) 6= f(x). We say that a set L ⊆ {0, 1}n separates C from f , if
some x ∈ L separates C from f . Given a circuit collection K, we say that L separates K from f , if
L separates any C ∈ K from f . Recall, that we say that a collection K is concentrated if the uniform
distribution on K is concentrated around its majority function majK.

Definition 4.1 (Majority-separating oracle). Let C be a collection of boolean circuits defined over
{0, 1}n, let C ∈ C, and let ε > 0. An oracle S is said to be (C, C, ε)-separating if given any ε-
concentrated sub-collection K ⊆ C, represented by a circuit that samples uniform elements in K, S(K)
outputs a point x ∈ {0, 1}n that separates C from majK, or ⊥ if no such point exists.

Remark 4.1. In the above definition, and throughout this section, we often abuse notation and denote
by K both the sub-collection and the circuit that samples uniform elements from the sub-collection.

Definition 4.2 (Learnability by majority-separating oracles). A collection C =
⋃
n∈N Cn of boolean

circuits is said to be (t,~c, s, ε)-learnable by a majority-separation oracle if there exists a deterministic
oracle-aided machine L such that, given oracle access to C ∈ Cn and a (Cn, C, ε(n))-separating oracle
S, LC,S(1n) outputs Ĉ ∈ Cn of equivalent functionality to C, in time t(n), using at most s(n) queries to
S, and at most ~ci(n) queries to C between the i− 1-st and the i-th calls to S.

Our main technical theorem shows that any strong indistinguishability obfuscator for a circuit collec-
tion C that is learnable via a majority separation oracle is also a worst-case simulation-based obfuscator.
The size and query complexity of the worst-case simulator, in particular whether it is a VBB or VGB
simulator, is determined by the learnability parameters (t,~c, s, ε).

Theorem 4.1. Let C =
⋃
n∈N Cn be a circuit collection that is (t,~c, s, 1

q )-learnable by a majority-
separating oracle, for some polynomial q. Let O be a strong indistinguishability obfuscator for C, let
A be a boolean poly-size adversary, and let p be a polynomial. Then (A, p) has a simulator S of size
O(|A|+ t · s · qs ·

∏s
i=1 2~ci) with O(‖~c‖1 + q · s) oracle queries. The simulator works in the worst-case

for any C ∈ C.

In Section 4.3 we show that any circuit collection C is indeed (t,~c, s, 1
q )-learnable, for some setting

of parameters (where ‖~c‖1, q, s are polynomially bounded).

4.2 Proof of Theorem 4.1

Fix C,O,A, p satisfying the conditions of the theorem. The proof of the theorem will rely on the follow-
ing key lemma that essentially shows that the set of circuits, whose obfuscation A can 1/p-distinguish,
can always be separated from the majority of circuits by a small separating set.
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Lemma 4.1. There exists a polynomial q, such that for any n ∈ N, and any 1
q(n) -concentrated sub-

collection K ⊆ Cn, there exists a set LK ⊆ {0, 1}n of size at most q(n), such that for any C ∈ K that is
not separated from majK by LK:∣∣∣∣Pr[A(O(C)) = 1]− Pr

C′←K
[A(O(C ′)) = 1]

∣∣∣∣ ≤ 1/p(n) ,

where the probability is also over the coins of A and O.

Proof. For any n ∈ N, and sub-collection K ⊆ Cn, let us denote by Db(K) the collection of all circuits
C ∈ K such that

(−1)b
(

Pr[A(O(C)) = 1]− Pr
C′←K

[A(O(C ′)) = 1]

)
≥ 1/p(n) ;

namely, D(K) := D0(K) ∪ D1(K) consist of all the “distinguishable circuits” in K.
Assume towards contradiction that the lemma does not hold with respect to A and p. Then there

exists a super-polynomial function T (n) = nω(1), such that for an infinite sequence N∗ ⊆ N, and any
n ∈ N∗, there exists a 1

T (n) -concentrated sub-collection Kn ⊆ Cn such that any set LKn separating the
distinguishable circuits D0(Kn) ∪ D1(Kn) from majKn

is of size greater than T (n). In particular, for
some bn ∈ {0, 1}, any set separating Dbn(Kn) from majKn

is of size greater than T (n)/2. For ease of
notation, let us assume throughout that bn = 0, and simply denote D(Kn) = D0(Kn). (This is indeed
WLOG, by flipping the output of A if needed.)

Claim 4.1. For any n ∈ N∗, there exists a non-empty concentrated sub-collection D∗(Kn) ⊆ D(Kn).
Specifically,

max
x∈{0,1}n

{
Pr

C←D∗(Kn)

[
C(x) 6= majKn

(x)
]}
≤ α(n) :=

2 log |Cn|
T (n)

.

Proof. We describe an iterative process that results in the required D∗(Kn). Let D0 = D(Kn), and let
L0 = ∅. Given Di, we define Di+1 as follows. If Di satisfies the property given by the claim, output
D∗(Kn) = Di. Otherwise, there exists a point xi ∈ {0, 1}n that separates an α(n)-fraction of the circuits
in Di from majKn

. Then, add xi to current partial separating set Li+1 = Li ∪ {xi}, and let Di+1 ⊆ Di
be the sub-collection that is not separated from majKn

by xi.
Note that this process ends after at most T (n)/2 steps (we do not require that it is efficient). Indeed,

it holds that for i ≤ T (n)/2 and for α = 2 log |Cn|
T (n) ,

|Di| ≤ (1− α(n))i |D| ≤
(

1− 2 log |Cn|
T

)T/2
|Cn| < 2− log |Cn| · |Cn| ≤ 1 .

Moreover, this process must end with a non-empty set. This is the case since otherwise after T (n)/2
steps we separated all of the original D(Kn) from majKn

with a set LT (n)/2 ⊆ {0, 1}n of size less than
T (n)/2. This contradicts the fact that D(Kn) cannot be separated from majKn

by T (n)/2 elements or
less.

We now show how to violate the fact that O is a SIO obfuscator for C. Consider the concentrated
sub-collections D∗ =

⋃
n∈N∗ D∗(Kn), and K =

⋃
n∈NKn. (Formally, we need to also define these for

n ∈ N \ N∗. We can do so in an arbitrary way that will keep them concentrated.) Since both D∗(Kn)
and Kn are concentrated around majKn

, it suffices to show that A distinguishes

{O(C) : C ← Kn}n∈N from {O(C) : C ← D∗(Kn)}n∈N .
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Indeed, for any n ∈ N∗

Pr
C←D∗(Kn)

[A(O(C)) = 1] − Pr
C←Kn

[A(O(C)) = 1] ≥

min
C∈D∗(Kn)

Pr[A(O(C)) = 1] − Pr
C←Kn

[A(O(C)) = 1] ≥ 1

p(n)
.

To complete the proof of Theorem 4.1, let us fix q to be the polynomial given by Lemma 4.1 corre-
sponding to (A, p), and assume that C is (t,~c, s, 1

q )-learnable by a majority-separating oracle. We next
describe the simulator S for (A, p), argue its validity, and analyze its complexity.

Description of S. Given oracle access to C ∈ Cn, S runs the learner LC,S(1n) given by Definition 4.2,
and emulates for L the oracle C and the majority-separating oracle S. Any call to C is answered by S
using its own oracle to C. Oracle calls to S are handled as follows. Given a sub-collection K ⊆ Cn that
contains C (represented by a circuit that samples uniform elements in K), S first retrieves the set LK
separating the distinguishable circuits D(K) ⊆ K from majK. Then, S queries its oracle C on all the
points x ∈ LK, and tests whether C(x) = majK(x), namely whether x separates C from majK.

If S found a separating point x, then it uses it to answer L’s query, and continues its emulation.
Otherwise, if no point in LK separates C from majK, then S stops the emulation of L, samples a
random C ′ ← K, and outputs the result of running A(O(C ′)). In any case, after running L for at most
t(n) steps, L would output Ĉ ∈ Cn of equivalent functionality to C, and S outputs the result of running
A(O(Ĉ)).

Validity. The validity of S follows from Lemma 4.1 and the guarantee on L. Indeed, by Lemma 4.1,
if at any point C agrees with majK on all of LK, then A distinguishes an obfuscation O(C) from an
obfuscation O(C ′) for a random C ′ ← K with probability at most 1

p(n) . Otherwise, we successfully im-

plement a (Cn, C, 1
q(n))-majority-separating oracle S, and learn Ĉ ∈ Cn of equivalent functionality to C.

Since O is a strong indistinguishability obfuscator, and in particular an indistinguishability obfuscator,
A’s advantage is also bounded by 1/p(n) in this case.

Complexity of S . The queries of S to C include the c(n) =
∑s(n)

1 ~ci(n) queries that Lmakes to C, and
q(n) queries for each of the s(n) queries made by L to S; indeed, remember that the size of each LK is
bounded by q(n). Thus the overall query complexity of S is c(n) + s(n) · q(n).

The total size of S can be bounded by the sum of

1. the size of the adversary |A|,

2. the total size t(n) of L,

3. the number of sets LK that the simulator may have to use throughout the simulation, times the size
q(n) of each LK,

4. the time it takes to compute the values majK(x) throughout.

We now count the number of sets LK necessary for S; for ease of notation, we suppress the security
parameter n. Consider the (deterministic) learner L, we view its tree of possible executions. Let us view
each node at level 0 ≤ i ≤ s, as corresponding to the state of L before making ~ci+1 queries to C and
the i + 1-st query to S. Here a node at the i-th level has 2~ci+1 · q sons. Indeed, there are at most 2~ci+1

possible sequences of queries and answers made by L to the oracle C, before the i-th query to S; then,
each such possible sequence determines a set LK of q values that L will query S on. The overall number
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of sets LK is thus

s−1∑
i=0

qi ·
i+1∏
j=1

2~cj ≤ s · qs−1
s∏
i=1

2~ci .

Throughout the simulation, majK(x) is computed at most s(n) · q(n) times. The computation itself
can be done by computingC1(x), . . . , Cn(x), where eachCi ← K is a random circuit fromK and taking
their majority. This computation errs with negligible probability 2−Ω(n) (see Claim 5.1).6 Sampling
Ci ← K and computing Ci(x), can be done in time at most t(n) (i.e., the size of L) since we assume
that the learner L represents each of its queries K to its majority-separating oracle S by a circuit that
samples uniform elements in K.

This completes the proof of Theorem 4.1.

4.3 VGB and VBB by Majority-Separation Learning

In this section, we show that any class of circuits is learnable by a majority-separating oracle, with
parameters that yield VGB simulation. We then discuss additional classes that can be learned with better
parameters, yielding VBB simulation. This includes previously obfuscated classes as well as new ones.

4.3.1 VGB Obfuscation for All Circuits.

We show

Theorem 4.2. Let C be any circuit collection and let O be a strong indistinguishability obfuscator for
C. Then O is also a worst-case VGB obfuscator for C.

To prove Theorem 4.2, we show that any circuit collection is learnable by a majority-separating
oracle, where the learner is of unbounded size, but only performs a polynomial number of queries to its
oracles. Theorem 4.2 then follows from Theorem 4.1.

Lemma 4.2. For any q > 2, any circuit collection C = {Cn}n∈N is (t,~c, s, 1
q )-learnable by a majority-

separating oracle for t(n) =∞, s(n) ≤ ‖~c(n)‖1 ≤ q(n) · log |Cn|.

Proof. We describe the required learner L. LC,S works iteratively; starting from the entire collection
K0 = Cn, it each time reduces the current set of candidates Ki to a strict sub-collection Ki+1 ( Ki,
until it finds a circuit Ĉ computing the same function as C, or C itself. Specifically, as long as Ki
contains some x that separates at least a 1

q -fraction of the circuits in Ki from majKi
, L queries C on x

and defines Ki+1 to be the subset of all circuits in Ki that agree with C on x. If no such x exists then
Ki is 1

q -concentrated, in which case L asks the majority-separating oracle S for a point x that separates
C from majKi

. If S returns ⊥, then C ≡ majKi
is returned. Otherwise, L queries C on x and continues

as before.
It is left to note that, with each query to C of the first type, Ki is reduced by a factor of (1−1/q(n)),

and with each query of the second type it is reduced by a factor of 1/q(n) < 1− 1/q(n), and thus:

|Ki| ≤ (1− 1/q(n))i|K0| ≤ 2−i/q(n)|Cn| ≤ 2
log |Cn|·(1− i

q(n)·log |Cn|
)
.

This implies that L learns some Ĉ ∈ Cn of equivalent functionality to C after at most q(n) · log |Cn|
iterations, and thus s(n) ≤ ‖~c(n)‖1 ≤ q(n) · log |Cn|.

6Formally, we should account for this error in the simulation accuracy. This can be done by fixing q that corresponds to
(A, p/2) rather than to (A, p).
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4.3.2 VBB Obfuscation for Sets of Constant Size.

A k-set circuit CS is associated with a set S of k points, it accepts all points in S, and rejects all other
points. A special well-studied case of set circuits is that of point circuits, where k = 1.

Definition 4.3 (Set circuits). For a set S ⊆ {0, 1}n of size k, the set circuit CS returns 1 for any x ∈ S,
and 0 for all x /∈ S. Sk =

⋃
n∈N Skn, where Skn = {CS : S ⊆ {0, 1}n, |S| = k(n)}, is the collection of

k-set circuits.

Theorem 4.3. Let O be a strong indistinguishability obfuscator for Sk. Then O is also a worst-case
VGB obfuscator for Sk, with a simulator of size nO(k), and polynomially many queries. In particular,
for k = O(1) it is also a VBB obfuscator.

As for Theorem 4.2, Theorem 4.3 is proven by showing how to learn set circuits via a majority-
separating oracle with certain efficiency parameters, and plugging it in Theorem 4.1.

Lemma 4.3. Sk is (t,~c, s, ε)-learnable by a majority-separating oracle for t(n) = poly(n), ‖~c‖1 = 0,
s(n) = k(n), and ε(n) = 2−Ω(n).

Proof. We describe the required learner L. LCS ,S works iteratively, revealing the points in the set S
one by one, as follows. Having already revealed a subset T ( S, L queries S on the sub-collection KT
corresponding to all the set circuits CS′ such that T ⊆ S′ and |S′| = k, where KT is represented via a
poly(n)-size circuit that samples a random element in KT .

Note that each such sub-collection KT is 2−Ω(n)-concentrated, since for a point x ∈ T all circuits in
KT return 1, whereas for x /∈ T , all but 2−Ω(n)-fraction of the circuits in KT return 0. Eventually, after
at most k(n) queries to S, the entire set S is revealed.

4.3.3 VBB Obfuscation for Linear Subspaces over Finite Fields.

A subspace circuit tests whether a given x ∈ Fd is a member of some linear subspace L ⊆ Fd, or
equivalently whether x belongs to the kernel of some given matrix A ∈ Fd×d.

Definition 4.4 (Subspace circuits). Let F = {Fn}n∈N be a sequence of fields, each of size 2Θ(n), with
efficient operations, let d(n) be a polynomially bounded function, and let A ∈ Fd(n)×d(n) be a ma-
trix. The circuit CA returns 1 if and only if x ∈ ker(A). Let Ld,F =

⋃
n∈N L

d,F
n , where Ld,Fn ={

CA : A ∈ Fd(n)×d(n)
}

is the collection of subspace circuits.

A special case of subspace circuit obfuscation, studied by [CRV10], is that of hyper-plane circuits
where rank(A) = 1. They show how to VBB obfuscate hyperplanes for dimension d = O(1), under a
strong variant of Decision Diffie Hellman.

We prove the following theorem.

Theorem 4.4. Let O be a strong indistinguishability obfuscator for Ld,F. Then O is also a worst-case
VGB obfuscator for Ld,F, with a simulator of size nO(d), and polynomially many queries. In particular,
for d = O(1) it is also a VBB obfuscator.

As before, the theorem is proven by showing how to learn subspace circuits using a majority-
separating oracle with ceratin efficiency features, and plugging it in Theorem 4.1.

Lemma 4.4. Ld,F is (t,~c, s, ε)-learnable by a majority-separating oracle for t(n) = poly(n), ‖~c(n)‖1 =
0, s(n) ≤ d(n), and ε(n) = 2−Ω(n).
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Proof. We describe the required learner L. Let d = d(n) and let A ∈ Fd×d. LCA,S gradually constructs
a basis for ker(A). Having found a matrix B ∈ Fd×i of rank(B) = i, for i < d, and such that AB = 0i,
L queries the majority separating oracle S on the sub-collection KB =

{
CA′ : A′B = 0i

}
, where KB

is represented by a poly(n)-size circuit that samples uniform elements from KB . The collection KB is
2−Ω(n)-concentrated; indeed, for any x ∈ span(B), x ∈ ker(A′) and CA′(x) = 1 for all CA′ ∈ KB .
For x /∈ B, as long as i < d, x ∈ ker(A′) with probability at most |F|−1 = 2−Ω(n). Thus, L obtains
a separating vector bi+1 ∈ ker(A) \ span(B), and can extend B to Bi+1 = (Bi|bi+1). If for some
i < d, at the i-th step S returns ⊥, it holds that ker(A) = span(Bi), and L outputs some A′ such that
ker(A′) = span(Bi). Otherwise A = 0d×d.

4.3.4 VBB Obfuscation for Connected Circuits.

Connected circuits consist of circuits C that can be fully learned efficiently given any point x such that
C(x) = 1 and given oracle access to C. We further focus on collections of connected circuits that are
also evasive, so that the pre-image C−1(1) of a typical circuit is sparse, and C is still hard to learn. We
thus think of C−1(1) as a “connected” set, where given any point in the set, we can reach the others, but
without such a point it is typically hard to hit the set.

Known examples of connected collections include point circuits (discussed above), conjunction
circuits CT,F (x) = ∧

i∈T
xi ∧

i∈F
¬xi, for disjoint T, F ⊂ [n], or Hamming ball circuits Cy,d(x) =

1 iff |y − x| ≤ d, for y ∈ {0, 1}n and d ∈ [n] (these are also known as fuzzy point circuits).7

Definition 4.5 (Connected circuits). An evasive circuit collection C =
⋃
n∈N Cn is said to be connected,

if there exists a poly-time learnerR such that for every C ∈ Cn and x ∈ C−1(1),RC(x) = Ĉ, for some
Ĉ ∈ Cn that is functionally equivalent to C.

We prove the following theorem.

Theorem 4.5. Let O be a strong indistinguishability obfuscator for any collection C of connected cir-
cuits. Then O is also a worst-case VBB obfuscator for C.

Again, the theorem is proved by showing how to learn the set connected circuits using a majority-
separating oracle with ceratin efficiency features, and plugging it in Theorem 4.1.

Lemma 4.5. Any collection C =
⋃
n∈N Cn of connected circuits is (t,~c, s, ε)-learnable by a majority-

separating oracle for t(n) = poly(n), s(n) = 1, ~c1(n) = 0, ~c2(n) = poly(n), and ε(n) = n−ω(1).

Proof. We describe the required learner L. LCS ,S queries the majority-separating S only once, on the
entire collection Cn (which we assume to have an efficient circuit that samples uniform elements in
Cn), obtains a point x such that C(x) = 1, and uses the learner R, given by Definition 4.5, to learn
Ĉ ∈ Cn with equivalent functionality to C. Recall that indeed, since C is evasive, majCn ≡ 0 and Cn is
µ(n)-concentrated for some µ(n) = n−ω(1).

4.3.5 Remarks.

Having presented the above results, a few technical remarks are in place.

Remark 4.2. Barak et al. [BBC+14] show that if there exists an average-case VBB obfuscator for every
evasive function collection, then for every collection of poly-size circuits, there exists a weak average-
case VGB obfuscation, where the simulator is allowed some super-polynomial number of oracle queries.

7Indeed, the first two examples are also evasive collections. The Hamming ball collection, for a given d, is evasive up to a
certain threshold d∗ ∈ [n], and beyond that threshold, every function in the collection is exactly learnable.
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Their result can also be scaled down to speak of all collections in NC1. The VGB obfuscators constructed
here are stronger in two aspects: first they are worst-case, rather than average-case, and second, the
obfuscation simulator is only allowed a polynomial number of queries.

Remark 4.3 (Non-boolean functions). Our results are stated for boolean functions. For our result on
VGB obfuscation for all circuits, this is without loss of generality, since for non-boolean circuit C(x),
we can obfuscate the boolean circuit C ′(x, i) = Ci(x) that returns the i-th output bit, given additional
input i. As for our VBB results on restricted classes, such as set circuits, subspace circuits, or connected
circuits, our results can be rather directly generalized to also allow a given multi-bit output. Namely,
the image of any circuit is still boolean, but rather than {0, 1} it consists of {0, s}, for any given string
s. These type of multi-bit output circuits were previously studied in [CD08, CRV10, BC10], and proven
useful for strong forms of encryption.

Remark 4.4 (Auxiliary input). The worst-case VBB and VGB definitions considered here allow a non-
universal simulator [BCC+14]. In particular, the simulator is allowed to have non-uniform advice that
arbitrarily (and inefficiently) depends on the adversary’s non-uniform advice. As noted in [BC10], in the
case of VGB this is without loss of generality. However, for VBB, universal simulation does not follow
from non-universal simulation, and we do not know how to extend our results to this setting.

5 SIO is Equivalent to VBB Obfuscation for Concentrated Distributions

In this section we show that SIO for a given collection C is not only equivalent to VGB for C, but is also
equivalent to requiring average-case VBB for any concentrated distribution on C.

Theorem 5.1. Let C =
⋃
n∈N Cn be a circuit collection, and let O be an obfuscation algorithm for C.

Then the following two conditions are equivalent:

1. O is a strong indistinguishability obfuscator for C.

2. For any concentrated sub-collection B =
⋃
n∈N Bn ⊆ C, O is average-case VBB for B.

Before proving the theorem, we first prove the following useful lemma regarding an alternative
definition for average-case obfuscation for concentrated distributions. The lemma, implicitly proven
in [BBC+14] for the special case of evasive distributions, shows that, for concentrated distributions,
(average-case) VBB obfuscation admits a universal simulator that essentially runs the adversary on an
obfuscation of a random circuit.

Lemma 5.1. Let C̃ =
⋃
n∈N C̃n be a concentrated distribution ensemble on a circuit collection C =⋃

n∈N Cn. ThenO is an average-case VBB obfuscator for C̃ if and only if for any poly-sizeA there exists
a negligible µ(·), such that for any n ∈ N, and any predicate π : Cn → {0, 1},∣∣∣∣∣ Pr

C←C̃n
[A(O(C)) = π(C)]− Pr

C,C′←C̃n

[
A(O(C)) = π(C ′)

]∣∣∣∣∣ ≤ µ(n) . (1)

Proof. For the first direction, assume that O is an average-case VBB obfuscator for C̃. Fix any poly-
size A. Fix any polynomial p(·), and let S be an average-case VBB simulator for (A, p) according to
Definitions 2.2,2.4. Then, for any n ∈ N and predicate π : Cn → {0, 1},
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∣∣∣∣∣ Pr
C←C̃n

[A(O(C)) = π(C)]− Pr
C,C′←C̃n

[
A(O(C ′)) = π(C)

]∣∣∣∣∣ ≤∣∣∣∣ Pr
C←C̃n

[A(O(C)) = π(C)]− Pr
C←C̃n

[
SC(1n) = π(C)

]∣∣∣∣+∣∣∣∣∣ Pr
C,C′←C̃n

[
A(O(C)) = π(C ′)

]
− Pr
C,C′←C̃n

[
SC(1n) = π(C ′)

]∣∣∣∣∣+∣∣∣∣∣ Pr
C←C̃n

[
SC(1n) = π(C)

]
− Pr
C,C′←C̃n

[
SC(1n) = π(C ′)

]∣∣∣∣∣ ≤
1

p(n)
+

1

p(n)
+ 2q(n) max

x∈{0,1}n
Pr

C←C̃n

[
C(x) 6= majC̃n(x)

]
≤

2

p(n)
+ 2q(n) · µ(n) ,

where q(n) is the polynomial bounding the number of queries made by S, and µ(n) is the negligible
concentration of C̃n. Note that the above holds for every polynomial p, which implies that∣∣∣∣∣ Pr

C←C̃n
[A(O(C)) = π(C)]− Pr

C,C′←C̃n

[
A(O(C ′)) = π(C)

]∣∣∣∣∣ = negl(n),

as desired.
For the second direction, let Sn be a simulator that outputs 1 with probability

pn , Pr
A,O,C←C̃n

[A(O(C)) = 1] ,

where pn is non-uniformly hardwired into Sn. By Equation (1), S is a valid simulator for C̃.

Proof of Theorem 5.1. We first prove that (2) implies (1). Specifically, assume that (1) does not hold, we
show that (2) also does not hold. If (1) does not hold then there exist two concentrated ensembles C̃0, C̃1

such that majC̃0n
≡ majC̃1n

, a poly-size adversary A, and a noticeable function δ such that, for infinitely
many n ∈ N∗ ⊆ N,

Pr
C←C̃0n

[A(O(C)) = 1]− Pr
C←C̃1n

[A(O(C)) = 1] ≥ δ(n)

(the absolute value is discarded WLOG, by flipping A’s output if necessary).
For any circuit C ∈ Cn, let p(C) = PrA,O[A(O(C)) = 1], and for a distribution D̃ on Cn, let

p(D̃) = EC←D̃[p(C)]. Then, for any n ∈ N∗,

p(C̃0
n)− p(C̃1

n) ≥ δ(n) .

Next, denote

S0
n =

{
C : p(C) ≥ p(C̃0

n)− δ(n)/4
}

S1
n =

{
C : p(C) ≤ p(C̃1

n) + δ(n)/4
}

.
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Note that

p(C̃0
n) ≤ Pr

C←C̃0n
[C ∈ S0

n] + p(C̃0
n)− δ(n)/4

⇒ Pr
C←C̃0n

[C ∈ S0
n] ≥ δ(n)/4 ,

p(C̃1
n) ≥ Pr

C←C̃1n
[C /∈ S1

n] ·
(
p(C̃1

n) + δ(n)/4
)

⇒ Pr
C←C̃1n

[C ∈ S1
n] ≥ 1− p(C̃1

n)

p(C̃1
n) + δ(n)/4

≥ δ(n)/4

p(C̃0
n)
≥ δ(n)/4 .

We next consider the following two distributions conditioned on the above events

D̃bn := C̃bn|Sbn , for b ∈ {0, 1} .

Then

p(D̃0
n)− p(D̃1

n) ≥
(p(C̃0

n)− δ(n)/4)− (p(C̃1
n) + δ(n)/4) ≥

p(C̃0
n)− p(C̃1

n)− δ(n)/2 ≥ δ(n)/2 .

We now consider the distribution D̃n = D̃0
n+D̃1

n
2 that samples from D̃b

n for a uniform b ∈ {0, 1}. We
first claim that the corresponding ensemble D̃ =

⋃
n∈N∗ D̃n is concentrated. Indeed, since each D̃bn is

distributed like C̃bn, conditioned on Sbn, and since Sbn has noticeable density δ(n)/4, it holds that D̃bn is
concentrated around majC̃bn

. Thus,

majD̃0
n
≡ majC̃0n

≡ majC̃1n
≡ majD̃1

n
,

and since D is the average of D0
n,D1

n, it is also concentrated and

majD̃n
≡ majD̃0

n
≡ majD̃1

n
.

Next, define a predicate πn on the support of Dn such that πn(C) = b if and only if C ∈ Sbn. Then, it
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holds that

Pr
C,C′←D̃n

[
A(O(C ′)) = πn(C)

]
− Pr
C←D̃n

[A(O(C)) = πn(C)] =

Pr
C←D̃n

[πn(C) = 0] Pr
C←D̃n

[A(O(C)) = 0] + Pr
C←D̃n

[πn(C) = 1] Pr
C←D̃n

[A(O(C)) = 1]−

Pr
C←D̃n

[πn(C) = 1] Pr
C←D̃1

n

[A(O(C)) = 1]− Pr
C←D̃n

[πn(C) = 0] Pr
C←D̃0

n

[A(O(C)) = 0] =

Pr
C←D̃n

[πn(C) = 0]

(
Pr

C←D̃0
n

[A(O(C)) = 1]− Pr
C←D̃n

[A(O(C)) = 1]

)
+

Pr
C←D̃n

[πn(C) = 1]

(
Pr

C←D̃n

[A(O(C)) = 1]− Pr
C←D̃1

n

[A(O(C)) = 1]

)
=

Pr
C←D̃n

[C ∈ S0
n]

(
Pr

C←D̃0
n

[A(O(C)) = 1]− Pr
C←D̃n

[A(O(C)) = 1]

)
+

Pr
C←D̃n

[C ∈ S1
n]

(
Pr

C←D̃n

[A(O(C)) = 1]− Pr
C←D̃1

n

[A(O(C)) = 1]

)
=

1

2

(
Pr

C←D̃0
n

[A(O(C)) = 1]− Pr
C←D̃n

[A(O(C)) = 1]

)
+

1

2

(
Pr

C←D̃n

[A(O(C)) = 1]− Pr
C←D̃1

n

[A(O(C)) = 1]

)
=

1

2

(
Pr

C←D̃0
n

[A(O(C)) = 1]− Pr
C←D̃1

n

[A(O(C)) = 1]

)
=

1

2

(
p(D̃0

n)− p(D̃1
n)
)
≥

δ(n)/4 .

By Lemma 5.1, this contradicts the fact that O is average-case VBB for the concentrated ensemble D̃.

We next prove that (1) implies (2). Fix any concentrated ensemble C̃ on the collection C, and assume
that (2) does not hold, we show that (1) also does not hold. By Lemma 5.1, if (1) does not hold, there
exists a poly-size A and noticeable δ(·) such that for infinitely many n ∈ N∗ ⊆ N and predicates
πn : Cn → {0, 1}, it holds that

δ(n) ≤

∣∣∣∣∣ Pr
C←C̃n

[A(O(C)) = πn(C)]− Pr
C,C′←C̃n

[
A(O(C ′)) = πn(C)

]∣∣∣∣∣ ≤
Pr

C←C̃n
[πn(C) = 0]

∣∣∣∣∣ Pr
C←C̃n:πn(C)=0

[A(O(C)) = 1]− Pr
C←C̃n

[A(O(C)) = 1]

∣∣∣∣∣+
Pr

C←C̃n
[πn(C) = 1]

∣∣∣∣∣ Pr
C←C̃n:πn(C)=1

[A(O(C)) = 1]− Pr
C←C̃n

[A(O(C)) = 1]

∣∣∣∣∣ .
Then, for infinitely many n ∈ N∗, one of the two above summands is at least δ(n)/2, let us assume
WLOG that it is the first (the proof is similar in the second case). Now consider the distribution C̃0

n ={
C ∈ C̃n : πn(C) = 0

}
. Since PrC←C̃n [πn(C) = 0] ≥ δ(n)

2 , it holds that C̃0
n, like C̃n is concentrated
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around majC̃n . Moreover,

δ(n)/2 ≤
∣∣∣∣ Pr
C←C0n

[A(O(C)) = 1]− Pr
C←C̃n

[A(O(C)) = 1]

∣∣∣∣ ,
implying that strong indistinguishability, required in (2), does not hold.

5.1 Equivalence of VBB Obfuscation for Concentrated and Evasive Distributions

We complete this section by showing that indistinguishability obfuscation, plus (average-case) VBB
obfuscation for evasive distributions implies (average-case) VBB obfuscation for concentrated distribu-
tions.

We start by noting the following fact.

Claim 5.1. Let S̃ be a 1
3 -concentrated distribution over boolean circuits where each boolean circuit

C ∈ supp(S̃) is defined over {0, 1}n and is of depth at most d and size at most `. Then the majority
function majS̃ can be computed by a (non-uniform) circuit of size O(n · `) and depth O(log n + d).
Also, if S̃ is samplable by a circuit of size s, such a majority circuit can be sampled, with overwhelming
probability 1− 2−Ω(n), by a circuit of size O(n · s).

Proof. Since S̃ is 1
3 -concentrated, by a Chernoff bound and a union bound on 2n inputs, the majority of

O(n) random circuits from S̃ computes majS̃ with probability 1− 2−Ω(n).

We next state the equivalence lemma. For a circuit C of size at most `, we denote by [C]` a canon-
ically zero-padded version of C of size `. For a collection C =

⋃
n∈N Cn, and functions `(·), d(·), we

denote by [C]d` the class of circuits where each C ∈ C computes the same function as some C ∈ Cn and
is of size `(n), and depth d(n). Let Mn be a poly-size circuit computing the majority majC̃n over C̃n.

We denote by C̃ ⊕Mn the distribution ensemble
⋃
n∈N

{
C ⊕Mn : C ← C̃n

}
. Observe that C̃ ⊕Mn is

evasive.

Lemma 5.2. Let C =
⋃
n∈N
Cn be a circuit collection where each C ∈ Cn is of poly-size `(n) and

depth at most d, and let C̃ be a concentrated distribution ensemble on C. For any n ∈ N let Mn be
a circuit of size O(`(n) · n) and depth O(log n + d(n)) that computes majC̃ . Assume that eO is an
average-case VBB obfuscator for the evasive distribution ensemble C̃ ⊕Mn that blows up the size of any
circuit C by some polynomial B(·), i.e. |eO(C)| = B(|C|). Then there exist a polynomial `′(n) and a
function d′(n) = O(d(n)+log n), depending only on (`, B, d′), such that if iO is an indistinguishability
obfuscator for [C]d′`′ , then the obfuscator cO, given by

cO(C)← iO([C]`′(n))

is an average-case VBB obfuscator for C̃.

Proof. Let Mn be the circuit of size O(`(n) · n) that computes majC̃n . For C ∈ Cn, consider the circuit

Cr := Mn ⊕ eO(C ⊕Mn; r)) ,

which computes the same function asC, but in a different way—it has hardwired an obfuscation eO(C⊕
Mn; r), using some randomness r, that computes its difference from the majority; it first runs this
obfuscation on the given input, and then computes again the difference from the majority, resulting back
in C(x). We let `′(n) be the size of Cr and d′(n) be its depth. Note that these, indeed, only depend on
`, b, d and d′(n) = O(depth(C) + depth(Mn)) = O(d(n) + log n).
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Next, applying first the IO guarantee and then the guarantee that eO is an average-case VBB obfus-
cator for the evasive ensemble

⋃
n∈NMn ⊕ C̃n, as given by Lemma 5.1, we have

Pr
A,cO,C←C̃n

[A(cO(C)) = π(C)] =

Pr
A,iO,C←C̃n

[
A(iO([C]`′(n))) = π(C)

]
=

Pr
A,iO,r,C←C̃n

[A(iO(Cr)) = π(C)]± n−ω(1) =

Pr
A,iO,r,C←C̃n

[A(iO(Mn ⊕ eO(C ⊕Mn; r))) = π(C)]± n−ω(1) =

Pr
A,iO,r,C,C′←C̃n

[
A(iO(Mn ⊕ eO(C ⊕Mn; r))) = π(C ′)

]
± n−ω(1) =

Pr
A,iO,r,C,C′←C̃n

[
A(iO(Cr)) = π(C ′)

]
± n−ω(1) =

Pr
A,iO,C,C′←C̃n

[
A(iO([C]`′(n))) = π(C ′)

]
± n−ω(1) =

Pr
A,cO,C,C′←C̃n

[
A(cO(C)) = π(C ′)

]
± n−ω(1) .

Thus, again by Lemma 5.1, we deduce that cO is an average-case VBB obfuscator for the concentrated
ensemble C̃.

6 From Semantically-Secure Graded Encodings to SIO for NC1

In this section we show that a variant of the Pass et al. [PTS13] notion of semantically-secure graded
encoding schemes, together with any ideal graded encoding obfuscation (i.e., any obfuscation that is
virtual-black-box secure in the ideal encoding model) for a class C of circuits, implies strong indistin-
guishability obfuscation for C. Combined with the recent ideal-graded-encoding obfuscators for NC1

[BR13, BGK+13], we obtain SIO for NC1.

6.1 Graded Encodings

The notion of graded (multi-linear) encoding schemes was originally introduced by Garg, Gentry and
Halevi [GGH13a]. Just as in [BR13, BGK+13, PTS13], we rely on “set-based” graded encoding. Fol-
lowing [GGH+13b, BGK+13, PTS13], we enable anyone with the secret parameter to encode any ele-
ments (as opposed to just random elements).

Definition 6.1 (Graded Encoded Scheme). A graded encoding scheme E is associated with a tuple of
PPT algorithms (InstGenE ,EncodeE ,AddE ,NegE ,MultE , isZeroE) which behave as follows:

• Instance Generation: InstGenE takes as input the security parameter 1n and multi-linearity pa-
rameter k, and outputs secret parameters sp and public parameters pp, which include a descrip-
tion of a ring R and the integer k. For simplicity, we consider graded encoding schemes where R
is Zp and p is a prime of size exponential in n. The public parameters pp determine a collection
of sets {EαS : S ⊆ [k], α ∈ R}.

• Encoding: EncodeE takes as input the secret parameters sp, an element α ∈ R and set S ⊆ [k],
and outputs a random encoding in EαS .
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• Addition: AddE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1

and u2 ∈ Eα2
S2

,
and outputs an encoding in Eα1+α2

S if S1 = S2 = S, and outputs ⊥ otherwise. We denote the
output by u1 ⊕ u2.

• Subtraction: SubE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1

and u2 ∈
Eα2
S2

, and outputs an encoding in Eα1−α2
S if S1 = S2 = S, and outputs ⊥ otherwise. We denote

the output by u1 	 u2.

• Multiplication: MultE takes as input the public parameters pp and encodings u1 ∈ Eα1
S1

and
u2 ∈ Eα2

S2
, and outputs an encoding in Eα1·α2

S1∪S2
if S1 ∩ S2 = ∅; and outputs ⊥ otherwise. We

denote the output by u1 ⊗ u2.

• Zero testing: isZeroE takes as input the public parameters pp and an encoding u ∈ EαS and
outputs 1 if and only if α = 0 and S is the universe set [k].

Next, we recall the definition of set-respecting arithmetic circuits from [PTS13]. A set-respecting
arithmetic circuit represents the type of algebraic circuits that can be evaluated on a set of “generic”
encodings.

Definition 6.2 (Set-respecting arithmetic circuits ([PTS13])). Given a level k ∈ N, and a vector of sets
~S ∈ (2[k])`, we say that an arithmetic circuit taking ` inputs is ~S-respecting if there exists a function
Tag from the wires of C to 2[k] such that the following holds:

• For every i ∈ [`], the i-th input wire wiin satisfies Tag(wiin) = ~S[i].

• Every + or − gate in C connecting input wires u and v to an output wire w, satisfies Tag(u) =
Tag(v) = Tag(w).

• Every× gate in C connecting input wires u and v to output wire w, satisfies Tag(u)∩Tag(v) = ∅
and Tag(u) ∪ Tag(v) = Tag(w).

• The output wire wout satisfies Tag(wout) = [k].

6.2 Ideal Graded Encoding Obfuscation

Barak et al. [BGK+13] construct a virtual black-box obfuscator for NC1 in the ideal graded encoding
model. In what follows we define this ideal model and the notion of obfuscation in this model.

In the ideal graded encoding model algorithms have access to an ideal graded encoding oracleM.
We recall the definitions of this oracle as presented in [PTS13].

Definition 6.3 (Ideal graded encoding oracleM ([PTS13])). For a prime p, a level k ∈ N, a vector of
sets ~S ∈ (2[k])` and a vector of elements ~m ∈ Z`p, the oracleM(R, k, ~S, ~m) is defined as follows: for
every query C, if C is not a description of an ~S-respecting arithmetic circuit,M outputs ⊥. Otherwise,
M evaluates C on ~m and outputs 1 if C evaluates to 0, and outputs 0 otherwise.

Next, we define virtual-black-box obfuscation in the ideal graded encoding model. Here an obfus-
cation of a circuit consists of a vector of sets ~S, and a vector of elements ~m used to initialize a graded
encoding oracleM. The honest evaluator and the attacker have oracle access toM.

Definition 6.4 (Ideal graded encoding obfuscation). Let E be a graded encoding scheme. A PPT algo-
rithm O is a virtual black-box (VBB) obfuscator in the ideal graded encoding model, for a family of
poly-size circuits C = {Cn}n∈N, if it satisfies the following requirements:
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• Functionality: There exist polynomials k = k(n) and ` = `(n) and there exists a poly-time oracle
machine EvalO that satisfy the following: for every n ∈ N, for every public parameters pp in the
support of InstGenE(1n, k) including a prime p, and for everyC ∈ Cn, the obfuscatorO(1n, p, C)
outputs a vector of sets ~S ∈ (2[k])` and a vector of elements ~m ∈ Z`p such that for every input x
to C:

Eval
M(p,k,~S,~m)
O (x) = C(x) .

We require that the vector of sets ~S depends only on the security parameter n an not on the circuit
C or the randomness of O.

• Virtual black-box: For every polynomial functions q, s and for every (unbounded) oracle machine
A (called the algebraic adversary) making at most q(n) queries, where every query describes an
arithmetic circuit of size at most s(n), there exist a PPT oracle machine S (called the simulator),
and negligible function µ, such that for every n ∈ N, every public parameters pp in the support of
InstGenE(1

n, k) including a prime p, and for every C ∈ Cn:∣∣∣∣∣ Pr[(~S, ~m)← O(1n, p, C);AM(p,k,~S,~m)(n, p) = 1]−
Pr[SA,C(1n, p) = 1]

∣∣∣∣∣ ≤ µ(n) ,

where the probabilities are over the coins of the obfuscator O, the adversary A and the simu-
lator S . The notation SA means that S gets oracle access to A, when answering A’s oracle
queries.

Remark 6.1. In the above definition we do not allow O to choose the vector of sets ~S depending on its
randomness or on the circuit C. This restriction simplifies the presentation of our results. Specifically,
we rely on the fact that obfuscation of different circuits of the same size use the same vector ~S. However,
all our results hold also with respect to the more general definition of ideal graded encoding obfuscation
where the choice of ~S is not restricted. We note that all existing constructions of ideal obfuscation
[BGK+13, BR13, PTS13] meet the functionality requirement in its restricted form.

Remark 6.2 (Ideal obfuscation in [BGK+13].). The syntax for the obfuscator defined above is different
from the one in [BGK+13], and is adapted to the way that ideal graded oracles are dealt with in this
work. A more essential difference is that Barak et al. state their final result for bounded algebraic
adversaries, whereas we consider unbounded ones (but with a bounded number of oracle queries).
Against such bounded algebraic adversaries, they achieve ideal graded encodings obfuscation for all
poly-size circuits. For unbounded algebraic adversaries, as considered in this work, their result only
holds for NC1.

Theorem 6.1 ([BGK+13]). There exists an ideal graded encoding obfuscation for every function family
in NC1.

6.3 Semantic Security

We formulate a simple and natural variant of semantic security. Although it appears to be somewhat
stronger than the actual notion considered by Pass et al. [PTS13], we find it natural and appealing.
Section 7 considers a number of relaxations of this basic notion and their relative security.

Central to the definition of semantic security is the notion of an admissible message sampler (anal-
ogous to respecting message samplers in [PTS13]). A message sampler is admissible if it samples
two vectors of elements ~m0, ~m1 that cannot be distinguished by an unbounded adversary that can only
access ~m0 or ~m1 by making a polynomial number of queries to an ideal graded encoding oracle M
(Definition 6.3).

26



Definition 6.5 (Efficient message sampler). Let E be a graded encoding scheme and let k = k(n)
and ` = `(n) be polynomials. A PPT algorithm M is an efficient (k, `)-message sampler if for every
n ∈ N, and every public parameters pp in the support of InstGenE(1n, k) including a prime p, M(1n, p)
a vector of sets ~S ∈ (2[k])` and two vectors of elements ~m0, ~m1 ∈ Z`p. We require that the vector of sets
~S depends only on the security parameter n an not on randomness of M.

Remark 6.3. In the above definition we do not allow M to choose the vector of sets ~S depending on its
randomness or on the circuit C. This restriction simplifies the presentation of our results. However, all
our results hold also with respect to the more general definition of message samplers where ~S can be
sampled from some distribution.

Definition 6.6 (Admissible message sampler). Let E be a graded encoding scheme and let k = k(n)
and ` = `(n) be polynomials. A (k, `)-message sampler M (Definition 6.5) is admissible if for every
polynomial functions q and s, and for every (unbounded) oracle machineA (called the algebraic adver-
sary) making at most q(n) oracle queries, where every query describes an arithmetic circuit of size at
most s(n), there exists a negligible function µ such that for every n ∈ N and for every public parameters
pp in the support of InstGenE(1n, k), including a prime p,

Pr

[
b← {0, 1}

(~S, ~m0, ~m1)←M(1n, p)
;AM(p,k,~S,~mb)(n, p) = b

]
≤ 1

2
+ µ(n) ,

where the probability is also over the coins of A.

Loosely speaking, a graded encoding scheme is semantically secure if for a tuple (~S, ~m0, ~m1) gen-
erated by an admissible message sampler, given encodings of ~mb with respect to the sets ~S, it is hard to
predict b with non-negligible advantage in polynomial time.

Remark 6.4 (Inefficient message samplers). For most of our results we need to rely on a stronger notion
of semantic security that allows for computationally unbounded admissible message samplers. Since the
message sampler M in Definition 6.5 takes as input the prime p, or more generally, the description of
a ring R associated with the public parameters of the graded encoding, simply allowing M to be un-
bounded may result in an unachievable definition. Specifically, consider a graded encoding scheme
where it is possible to recover the secret parameters sp of the graded encoding scheme from the de-
scription of the ring R in unbounded time.8 An inefficient M may recover sp and sample encodings that
reveal sp. M may still be admissible since knowing the secret parameters gives no advantage to the
algebraic adversary, however given sp it is possible to distinguish encodings of the sampled elements
(for any non-trivial M).

Instead, in Definition 6.7 we keep the sampler M efficient, but we give it auxiliary input that is
sampled by an inefficient algorithm. Importantly, we do not give the auxiliary input the description of
the ring.

Definition 6.7 (Inefficient message sampler). Let E be a graded encoding scheme and let k = k(n)
and ` = `(n) be polynomials. An unbounded (k, `)-message sampler is defined by a PPT algorithm
M and an unbounded auxiliary input sampler Z. We require that there exist a polynomial q such that
for every n ∈ N, and every public parameters pp in the support of InstGenE(1n, k) including a prime
p, |Z(n)| < q(n), and M(1n,Z(n), p) outputs a vector of sets ~S ∈ (2[k])` and two vectors of elements
~m0, ~m1 ∈ Z`p. We require that the vector of sets ~S depends only on the security parameter n and not on
randomness of M or Z.

The definition of admissability remains as in Definition 6.6. In what follows, we only consider
semantic security with respect to inefficient admissible message samplers (unless we explicitly state

8We note that this is not the case for existing candidate construction of graded encodings [GGH13a, CLT13].
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otherwise). We abuse notation, and when we refer to admissible message samplers we mean inefficient
ones, as in Definition 6.7.

Definition 6.8 (Semantically-secure graded encoding). A graded encoding scheme E is semantically-
secure if for every polynomials k = k(n), ` = `(n), every admissible (k, `)-message sampler (Z,M),
and every poly-size adversary A, there exist a negligible function µ such that for every n ∈ N,

Pr

 b← {0, 1}
(sp, pp)← InstGenE(1

n, 1k(n))

(~S, ~m0, ~m1)←M(1n,Z(n), p)

;A
(
pp, (EncodeE(sp, ~mb[i], ~S[i]))i∈[`(n)]

)
= b

 ≤ 1

2
+ µ(n) ,

where p is described in the public parameters pp and the probability is also over the coins of A.

6.4 Obfuscation from Semantically-Secure Graded Encodings

We show that semantically-secure graded encodings imply SIO, and other forms of obfuscation as a
corollary of our result from Section 4.

Proposition 6.1. Assume there exists a semantically-secure graded encoding scheme (Definition 6.8),
and assume there exists an ideal graded encoding obfuscation (Definition 6.4) for a circuit class C.
Then there exists a strong indistinguishability obfuscator for the circuit class C, in the plain model
(Definition 3.2).

As a corollary of Theorem 6.1, Proposition 6.1, and the transformation from (standard) IO for NC1

to (standard) IO for all poly-size circuit classes [GGH+13b], we obtain the following theorem.

Theorem 6.2. Assume there exists a semantically-secure graded encoding scheme. Then there exist:

1. SIO, for any circuit class in NC1,

2. (standard) IO, for any poly-size circuit class, assuming also fully-homomorphic encryption (with
decryption in NC1).

As a corollary of the above theorem and of our results from Section 4 we obtain the following
theorem.

Theorem 6.3. Assume there exists a semantically-secure graded encoding scheme. Then there exist:

1. worst-case VGB for any collection in NC1,

2. worst-case VGB obfuscation for the class of set circuits Sk for any k = poly(n), and VBB
obfuscation for k = O(1),

3. worst-case VGB obfuscation for the class of linear subspaces Ld,F for any d = poly(n), and VBB
obfuscation for d = O(1),

4. worst-case VBB for any efficiently samplable collection of connected circuits in NC1, in particular,
for Hamming balls and conjunctions.

We now turn to give a proof sketch of Proposition 6.1.

Proof of Proposition 6.1. Let C be a class of poly-size circuits, let O be an ideal graded encoding ob-
fuscator for C.

The obfuscator Õ for C: Let ` = `(n) and k = k(n) be the polynomials given by the ideal graded
encoding obfuscator O (Definition 6.4). Let E be a semantically-secure multi-linear encoding scheme
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(Definition 6.8). GivenC ∈ Cn, Õ samples parameters (sp, pp)← InstGenE(1
n, 1k(n)) for the encoding

scheme, including a prime p. Õ then runs O(1n, p, C) which outputs a vector of sets ~S ∈ (2[k(n)])`(n),

and a vector of elements ~m ∈ Z`(n)
p , such that for every input x, EvalM(p,k(n),~S,~m)

O (x) = C(x). Finally,
Õ outputs an obfuscated circuit that has the public parameters pp, the sets ~S, and the encodings(

EncodeE(sp, ~m[i], ~S[i])
)
i∈[`(n)]

,

hardcoded into it. The obfuscated circuit emulates the evaluation procedure of the ideal graded encod-
ing obfuscation EvalO, where the queries to the ideal oracleM are answered by performing algebraic
operations directly on the set of encodings.

Functionality and indistinguishability: The functionality of Õ follows readily from that of O and E .
We now argue strong indistinguishability based on the semantic security of the encoding scheme. Let
C̃0, C̃1 be two concentrated distribution ensembles on C such that majC̃0n

≡ majC̃1n
, and let D be any

poly-size distinguisher. We show that D cannot distinguish whether it is given an obfuscation Õ(C0) or
Õ(C1), for (C0, C1)← (C̃0

n, C̃1
n), with non-negligible advantage.

Assume towards contradiction that D can predict whether it is given Õ(C0) or Õ(C1) with a no-
ticeable advantage over 1

2 . We construct an admissible (k, `)-message sampler (Z,M), and show
that together with D they violate the semantic security of E . The auxiliary input sampler Z samples
(C0, C1) ← (C̃0

n, C̃1
n) (note that if C̃0

n, C̃1
n are not efficiently samplable, Z is inefficient). The message

sampler M, given a prime p, and the auxiliary input (C0, C1) executes the ideal graded encoding ob-
fuscator O(1n, p, ·) on each of the circuits, and obtains a vector of sets ~S and two vectors of messages
~m0, ~m1, which it then outputs. (Here we use the fact thatO outputs the same the vector of sets ~S in both
executions. See Remark 6.1.)

To argue that the sampler (Z,M) is admissible, we need to show that the following holds for every
(unbounded) oracle machineA (the algebraic adversary) making only polynomially many oracle queries,
where every query describes an arithmetic circuit of polynomial size, for every n ∈ N, and for every
public parameters pp in the support of InstGenE(1n, k) including a prime p:

Pr

[
b← {0, 1}

(~S, ~m0, ~m1)←M(1n,Z(n), p)
;AM(p,k,~S,~mb)(n, p) = b

]
≤ 1

2
+ negl(n) ,

where the probability is also over the coins of A.
This follows from the ideal virtual-black-box security of O. Indeed, for any (algebraic) A as above,

let q(n), s(n) be the polynomial bounds on its number of queries and their size, and let S be its virtual-
black-box simulator (according to Definition 6.4). Therefore,

Pr

[
b← {0, 1}

(~S, ~m0, ~m1)←M(1n,Z(n), p)
;AM(p,k,~S,~mb)(n, p) = b

]
≤

Pr
[
b← {0, 1}; (C0, C1)← (C̃0

n, C̃1
n);SA,Cb(1n) = b

]
+ negl(n) ≤

1

2
+ q(n) · ν(n) + negl(n) =

1

2
+ negl(n) ,

where ν(n) = max(ν0(n), ν1(n)), and νb(n) = negl(n) is the negligible concentration measure of Cbn
around majC̃0n

≡ majC̃1n
.

It is left to note that, by the construction of (Z,M) and the assumption that D predicts b with
noticeable advantage (given Õ(Cb) for a random b), D breaks the semantic security of the encoding
scheme (Definition 6.8).
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7 More on Semantic Security

We discuss several possible relaxations of the semantic-security definition presented in Section 6.3 (the
relaxations are defined in Section 7.1). In particular, we consider relaxations to bounded, entropic, con-
centrated, single-message and large-queries security. All these relaxations, except for bounded security,
were also considered by Pass et al. [PTS13]. The relaxation to bounded and entropic semantic security
are particularly significant, since there are several attacks on the unbounded or non-entropic versions of
semantic security. We elaborate on these attacks in Sections 7.3 and 7.1.2.

In Section 7.2 we show that under any combination of these relaxations, the positive implications
to obfuscation still hold. In certain combinations, this is done by showing an equivalence between the
relaxed definition and the non-relaxed definitions whereas in others, the results are obtained by relying
on properties of specific obfuscation constructions which are based on the constructions in [GGH+13b,
BR13, BGK+13, PTS13].

In Section 7.3 we motivate bounded semantic security by describing a generic attack on the (un-
bounded) security of any graded encoding scheme with certain efficiency properties.

All results in this section hold for both efficient and inefficient message samplers (see Remark 6.4).
For generality, we use the inefficient samplers notation of Definition 6.7.

7.1 Relaxations of Semantic-Security

7.1.1 Bounded Semantic-Security.

In the definition of semantic security we consider vectors of messages ~m0, ~m1 of arbitrary polynomial
dimension. In bounded semantic-security, we relax the definition by placing a fixed polynomial bound
`(n) on the dimension of ~m0, ~m1. The polynomial ` is fixed before the parameters of the encoding
scheme are chosen.

This relaxation is significant since, as we show in Section 7.3, under certain conditions, allowing the
dimension to be unbounded gives rise to certain diagonalization attacks. In bounded semantic-security,
such attacks are mitigated, e.g. by assuring that the description size of encoded elements (determined
by the public parameters) is larger than the bound `.

Definition 7.1 (Bounded semantic-security). Let ` = `(n) be a polynomial. A graded encoding scheme E
is bounded semantically-secure, if it is semantically-secure as in Definition 6.8, but only for (k, `′)-
message samplers (Z,M) as in Definition 6.7, for `′ ≤ ` and for any polynomial k.

7.1.2 Entropic Semantic-Security

In Definition 6.8, we do not put any special restrictions on the min-entropy of the message vectors
~m0, ~m1. Following [PTS13], in entropic semantic-security, we restrict attention to message vectors
~m0, ~m1 where every single coordinate has high min-entropy. Furthermore, we require that for any
arithmetic circuit C that respects the set vector ~S, it holds that on input distributions ~m0 and ~m1 the
value of each intermediate wire in the computation C(~mb) has high min-entropy.

This relaxation is significant, since as noted in [GGH13a], their graded encoding scheme becomes
vulnerable to weak discrete log attacks, when encodings of constants are released in any intermediate
level. In such cases, the non-entropic Definition 6.8 fails to hold. (Similar attacks are not known against
the scheme of [CLT13].) Entropic semantic-security circumvents such attacks.

Definition 7.2 (Entropic message sampler). Let E be a graded encoding scheme, let k = k(n) and
` = `(n) be polynomials and let (Z,M) be a (k, `)-message sampler as in Definition 6.7. We say
that (Z,M) is entropic, if the vector of sets ~S ∈ (2[k])` and the distributions of ~m0, ~m1 ∈ Z`p output
by M(1n,Z(n), p) (where the prime p is included in public parameters pp that are in the support of
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InstGenE(1
n, k)) satisfy the following. For any b ∈ {0, 1}, and any ~S-respecting arithmetic circuit C,

let w be the random variable denoting the value of any intermediate wire in the computation C(~mb),
corresponding to a proper subset Sw ( [k]. Then H∞(w) = Ω(n).

Definition 7.3 (Entropic semantic-security). A graded encoding scheme E satisfies entropic semantic-
security, if it semantically-secure as in Definition 6.8, but only for entropic admissible message samplers,
rather than all admissible message samplers.

7.1.3 Concentrated Semantic-Security

Pass et al. [PTS13] consider another weakening of semantic security, which we will refer to as con-
centrated semantic security.9 Recall that in Definition 6.8, we require that semantic security holds for
all admissible distributions ~m0, ~m1, where admissibility is defined in terms of indistinguishability with
respect to algebraic adversaries. Concentrated semantic security further restricts the class of admissible
distributions. Intuitively, rather than requiring that an algebraic adversary cannot distinguish the oracle
M(p, k, ~S, ~mb) for b = 0 and for b = 1, we now require for every S-respecting arithmetic circuit C
given as a query toM, there exists bit c ∈ {0, 1} such that for every b ∈ {0, 1}, with overwhelming
probability over ~mb, the oracleM(p, k, ~S, ~mb) answers the queryC with c. Or alternatively,C(mb) = 0
if and only if c = 1. The name “concentrated semantic security” expresses the fact that the distribution
M(p, k, ~S, ~mb) (of functions from circuits to {0, 1}) is concentrated (in the sense of Definition 3.1)
around the same function for b = 0 and b = 1.

Definition 7.4 (Concentrated admissible message sampler). Let E be a graded encoding scheme, let
k = k(n) and ` = `(n) be polynomials and let (Z,M) be a (k, `)-message sampler as in Definition 6.7.
We say that (Z,M) is concentrated if for every polynomial s there exists a negligible function µ such
that for every n ∈ N every public parameters pp in the support of InstGenE(1n, 1k) including a prime p,
and every ~S-respecting arithmetic circuit C (~S is the vector of sets that M(1n,Z(n), p) outputs) of size
at most s(n) there exists a bit c ∈ {0, 1} such that for every b ∈ {0, 1}:

Pr

[
(~S, ~m0, ~m1)←M(1n,Z(n), p);

M(p, k, ~S, ~mb)(C) 6= c

]
≤ µ(n) .

Remark 7.1. Note that a concentrated (k, `)-message sampler is in particular a (k, `)-message sampler.
Namely, any (unbounded) algebraic adversary A who is given oracle access toM(p, k, ~S, ~mb) cannot
distinguish between the case where b = 0 and the case where b = 1 since with overwhelming probability
all the queries A makes toM have the same output in both cases.

Definition 7.5 (Concentrated semantic-security). A graded encoding scheme E is concentrated semantically-
secure, if it semantically-secure as in Definition 6.8, but only for concentrated admissible message sam-
plers, rather than all admissible message samplers.

7.1.4 Single-Message Semantic Security

Recall that in the definition of semantic security (Definition 6.8), we consider two arbitrary vectors of
messages ~m0, ~m1. Following [PTS13], one can relax the definition to single-message semantic security,
where we consider an adversary that tries to distinguish between encodings of two single messages m0

and m1, given an additional vector ~z of polynomially many auxiliary encodings. In other words, one
can relax Definition 6.8 by restricting the message samplers to output ~m0, ~m1 that are identical in all
coordinates but the last one.

9The definition of semantic security in [PTS13] already includes the concentrated relaxation. [PTS13] refer to the plain
(non-concentrated) notion of semantic security that we consider here as uber security.
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Definition 7.6 (Admissible single-message sampler). Let (Z,M) be an admissible (k, `)-message sam-
pler as in Definition 6.7. We say that (Z,M) is an admissible single-message sampler, if for any two
vectors ~m0, ~m1 ∈ Z`p in the support of M, ~m0[i] = ~m1[i] for all i ∈ [`− 1].

Definition 7.7 (Single-message semantic-security). A graded encoding scheme E is single-message
semantically-secure, if it is semantically-secure as in Definition 6.8, but only for admissible single-
message samplers, rather than all admissible message samplers.

Remark 7.2 (Constant-message semantic-security). A bit more generally, [PTS13] consider constant-
message semantic security, requiring that it is hard to distinguish between encodings of a constant
number of messages (m0,1, . . . ,m0,c) and (m1,1, . . . ,m1,c), given an additional vector of polynomially
many auxiliary encodings.

7.1.5 Large-Queries Semantic Security

In Definition 6.8, we require that semantic security holds for all admissible distributions ~m0, ~m1, where
admissibility is defined in terms of indistinguishability with respect to an algebraic adversary. The
algebraic adversary is unbounded but can only access the distribution though a polynomial number
of queries to an ideal graded encoding oracle. Every query is an arithmetic circuit of some bounded
polynomial size. We relax this definition to large-queries semantic security where there is no size
restriction on the algebraic adversary’s queries.10

Definition 7.8 (Large-queries admissible message sampler). Let E be a graded encoding scheme, let
k = k(n) and ` = `(n) be polynomials and let (Z,M) be a (k, `)-message sampler as in Definition 6.7.
We say that M is a large-queries admissible sampler if for every polynomial function q and for every
(unbounded) oracle machine A (called the algebraic adversary) making at most q(n) oracle queries
where every query describes an arithmetic circuit of arbitrary size, there exists a negligible function µ
such that for every n ∈ N and every public parameters pp in the support of InstGenE(1n, k) including a
prime p:

Pr

[
b← {0, 1}

(~S, ~m0, ~m1)←M(1n,Z(n), p)
;AM(p,k,~S,~mb)(n, p) = b

]
≤ 1

2
+ µ(n) ,

where the probability is also over the coins of A.

Definition 7.9 (Large-queries semantic-security). A graded encoding scheme E satisfies large-queries
semantic-security, if it is semantically-secure as in Definition 6.8, but only for large-queries admissible
message samplers, rather than all admissible message samplers.

7.2 (Re)Obtaining Obfuscation under the different Relaxations

In this section we show that Theorem 6.2 and the rest of the results in Section 6.4, hold under any com-
bination of the relaxations of semantic security defined in Section 7.1. For certain combinations this is
done by showing an equivalence between the relaxed definition and the non-relaxed one. This allows
to strengthen Proposition 6.1 to hold based on the relaxed notion of semantic security. In other combi-
nations, we cannot recover Proposition 6.1 but we can reprove Theorem 6.2 by relying on properties of
specific ideal graded encoding obfuscation constructions.

10The definition of semantic security in [PTS13] already includes the large-queries relaxation. [PTS13] refer to the plain
(poly-size queries) notion of semantic security that we consider here as strong uber security.
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7.2.1 Bounded, Entropic and Concentrated Semantic-Security

Since any ideal graded encoding obfuscation consists of a bounded number of encodings, Proposition 6.1
holds also with respect to bounded semantic security. For entropic and concentrated security we can no
longer rely in our proof on an arbitrary construction of ideal graded encoding obfuscation, however,
using the known constructions [BR13, BGK+13, PTS13] it is straightforward to reprove Theorem 6.2
directly.

7.2.2 Single-Message Semantic-Security

The proof of Proposition 6.1 crucially relies on many message security. Using the construction of
[PTS13] one can reprove Theorem 6.2 based on constant-message semantic security (following the
same proof strategy as in [PTS13]). However, we suggest a more general solution. We show that
the seemingly stronger definition of semantic security is equivalent to single-message (and thus also
constant-message) semantic security. Furthermore, this equivalence holds even for the entropic and
bounded variants of semantic security.

Lemma 7.1.

1. A graded encoding scheme is semantically-secure (Definition 6.8) if and only if it is single-
message semantically-secure (Definition 7.7).

2. A graded encoding scheme is entropic and/or bounded semantically-secure if and only if it is
single-message entropic and/or bounded semantically-secure.

The proof of Lemma 7.1 is given in Section A.

7.2.3 Single-Message Concentrated Semantic-Security

We do not know if for concentrated semantic-security the single-message variant is equivalent to the
many-message one. However, we show that the variants are equivalent if we restrict ourselves to admis-
sible message samplers that are also composable. Then we show that by using a variant of the existing
ideal graded encoding obfuscation construction we can reprove Theorem 6.2 using only semantic secu-
rity for composable concentrated samplers, and therefore single-message concentrated semantic security
is sufficient.

More generally we show that the conclusion of Proposition 6.1 holds with respect to single-message
concentrated semantic security. Intuitively we show that semantic security restricted to composable
message samplers is “as useful” as standard semantic security. Specifically, we give a transformation
from any admissible message sampler (Z,M) to a composable message sampler (Z,M′) such that any
information that can be learned by an algebraic adversary from the encodings sampled by (Z,M) can
also be learned from the encodings sampled by (Z,M′). Now we can transform any ideal graded encod-
ing obfuscation construction into a new construction such that the message sampler defined in the proof
of Proposition 6.1 is composable.

We start by defining composable message samplers. Then we prove the equivalence between single-
message and and many-message concentrated semantic security for composable message samplers (Lemma 7.2).
Finally we describe the transformation from admissible message samplers to composable message sam-
plers (Lemma 7.3).

Composable message samplers. Recall that a message sampler (Z,M) is admissible if no algebraic
adversary can distinguish encodings of element vectors ~m0, ~m1 sampled by (Z,M). A message sam-
pler (Z,M) is composable if the algebraic adversary cannot distinguish encodings of multiple element
vectors sampled independently from (Z,M).
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Definition 7.10 (Composable message sampler). Let E be a graded encoding scheme and let k = k(n)
and ` = `(n) be polynomials. A composable (k, `)-message sampler is defined by a PPT algorithm M
and an unbounded auxiliary input sampler Z. We require that there exist a polynomial q such that for
every n ∈ N, and every public parameters pp in the support of InstGenE(1n, k) including a prime p,
|Z(n)| < q(n), and M(1n,Z(n), p) outputs a vector of sets ~S ∈ (2[k])` and two vectors of elements
~m0, ~m1 ∈ Z`p.

We say that (Z,M) is composable if for every polynomials s = s(n) and q = q(n) there ex-
ists a negligible function µ such that for every n ∈ N, every public parameters pp in the support of
InstGenE(1

n, 1k) including a prime p, and every arithmetic circuit C of size at most s, there exists a bit
c ∈ {0, 1} such that for every bit vector ~b ∈ {0, 1}q the following holds: Let z ← Z(n) and for every
i ∈ [q] let

(~S, ~mi,0, ~mi,1)←M(z, p) ,

be a random and independent sample from M(z, p), then

Pr
[
M(p, k, ~Sq, ~m(~b))(C) 6∈ {c,⊥}

]
≤ µ(n) ,

where the probability is over the coins of Z,M andA, the vector ~Sq is the concatenation of ~S with itself
q times, and the vector ~m(~b) is defined by:

~m(~b) = (~m1,b1 , . . . , ~mq,bq) .

Remark 7.3. Note that unlike the in Definition 6.7, we do allow a composable message sampler to
choose the vector set ~S based on its randomness and auxiliary input. Here we follow that more general
definition since the composable message sampler constructed in Lemma 7.3 will not satisfy the restricted
definition. See also Remark 6.3.

If the vector ~S depends on the randomness of the sampler, the fact that a circuit C is ~S-respecting
also depends on the randomness of the sampler. Therefore, in the definition above we explicitly allow
M to output ⊥ on the circuit C instead of requiring that C is ~S-respecting, as in Definition 7.4.

Definition 7.11 (Semantic-security for composable message samplers). A graded encoding scheme E is
semantically-secure for composable message samplers, if it is semantically-secure as in Definition 6.8,
but only for composable message samplers rather than all admissible message samplers.

Lemma 7.2. A graded encoding scheme is concentrated (and entropic) semantically-secure for com-
posable message samplers if and only if it is single-message concentrated (and entropic) semantically-
secure for composable message samplers.

The proof of Lemma 7.2 is given in Section A.
Next we describe a general transformation from any admissible message sampler to a composable

one.

Lemma 7.3. Let E be a graded encoding scheme. There exists an efficient randomized transformation
T satisfying the following properties:

1. For every security parameter n ∈ N, and for every public parameters pp in the support of
InstGenE(1

n, k) including a prime p, the transformation T takes as input n, p, and a pair of
vectors (~S, ~m) of length ` such that ~S is a vector of sets over some universe set [k], and ~m is a
vector of elements in Zp. T also takes randomness r. T(1n, p, (~S, ~m); r) outputs a pair of vectors
(~S∗, ~m∗) of length `+ 1 where ~S∗ is a vector of sets over the universe set [k · n]. We require that
the vector of sets ~S∗ depends only on the input ~S and the randomness r and not on ~m.
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2. For every single-message concentrated admissible (k, `)-message sampler (Z,M), let M′ be the
sampler that on input (z = 1n,Z(n), p):

(a) Samples (~S, ~m0, ~m1)←M(z, p).

(b) Samples randomness r for T.

(c) Obtains:

(~S∗, ~m∗0)← T(1n, p, (~S, ~m0); r) , (~S∗, ~m∗1)← T(1n, p, (~S, ~m1); r) .

(d) Outputs (~S∗, ~m∗0, ~m
∗
1).

Then (Z,M′) is a single-message composable (k · n, `+ 1)-message sampler.

3. There exists an oracle machine S such that for every oracle machine A, every n ∈ N, every
public parameters pp in the support of InstGenE(1n, k) including a prime p and every pair of
vectors (~S, ~m) we have:

AM(p,k,~S,~m)(1n, p, ~S) = SM(p,k·n,~S∗, ~m∗)(1n,A, p, ~S∗) .

where (~S∗, ~m∗) ← T(1n, p, (~S, ~m)). Additionally, the running time of S is polynomially related
to the running time of A. S and A make the same number of queries, and the sizes of the queries
S makes is polynomially related to the sizes of the queries A makes.

Note that in Lemma 7.3 the sampler M′ outputs a set ~S∗ depending on its randomness. See remark
Remark 7.3. The proof of Lemma 7.3 is given in Section A.

7.2.4 Bounded Constant-Message Concentrated Semantic-Security

We note that unlike the reductions given in the proof of Lemma 7.1, the reduction in the proof of
Lemma 7.2 from concentrated semantic security to single-message concentrated semantic security in-
creases the number of encodings sampled by a polynomial factor which may depend on the adversary.
In particular, we do not know if the equivalence between many-message and single-message holds also
for bounded concentrated semantic security.

However Theorem 6.2 can be reproved using the construction of [PTS13] based on bounded constant-
message concentrated semantic security (following the same proof strategy as [PTS13]).

7.2.5 Large-Queries Semantic-Security

We do not know how to prove Proposition 6.1 based on the weaker notion of large-queries semantic-
security. However we can show that the construction of ideal graded encoding obfuscation from [BGK+13]
instantiated with a large-queries semantically-secure graded encoding is average-case VBB (Defini-
tion 2.4) for every evasive circuit collection (Definition 3.1) in NC1. Theorem 7.1 below, together with
Theorem 5.1 and Lemma 5.2, give the conclusion that Theorem 6.2 holds even assuming large-queries
semantically-secure graded encoding.

Theorem 7.1. Assume there exists a large-queries semantically-secure graded encoding scheme. Then
there exists:

1. Average-case VBB for every evasive circuit collection in NC1.

2. IO for NC1. Assuming also fully-homomorphic encryption with decryption in NC1, there exists
IO for all poly-size circuits.
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Corollary 7.1. Assume there exists a semantically-secure graded encoding scheme. Then there exists
SIO for any circuit class in NC1.

Proof intuition for Theorem 7.1
Intuitively, the reason we can no longer prove Proposition 6.1 is that if the encodings are only

semantically-secure with large queries, an adversary may obtain some global information about the
obfuscated function. For example, consider the following two families of functions: one contains the
constant 1 function, and the other contains all functions that output 1 on all inputs except for one. These
function families are both concentrated around the constant 1 function, however, if we instantiate the
construction of [BGK+13] with an encoding that is only semantically-secure for large queries, we can
no longer argue that the adversary cannot distinguish an obfuscation of a random function in the first
family and in the second.

Recall that in the ideal graded encoding obfuscation of [BGK+13] given an obfuscation of a function
f the adversary can learn f(x) by querying the ideal graded encoding oracle on some set-respecting
circuit Cx. When f(x) = 1, Cx evaluates to zero, and when f(x) = 0, Cx evaluates to an arbitrary non-
zero element. Now the algebraic adversary can query the ideal graded encoding oracle with the large
query

∑
x∈{0,1}n Cx. Note that this query is indeed set respecting, it evaluates to zero on the constant

1 function, and it evaluates to non-zero if f maps one input to 0. Therefore, an algebraic adversary can
use this query to distinguish in the ideal world, and hence we do not get any security guarantees in the
real world.

Given the above difficulties, we only show that the obfuscation is average-case VBB secure for
a random function taken from an evasive family. From the proof of security in [BGK+13] we get
that every arithmetic circuit C queried by the algebraic adversary can be represented as the sum of
(potentially exponential number of) arithmetic expressions {Cx}x∈S . We also have that for every x such
that f(x) = 0, the value of Cx is a uniformly distributed value in a large field that is independent of the
value of Cx′ for every x′ 6= x. If the function family is evasive then for every x ∈ S, f(x) = 0 with
overwhelming probability, and in particular we have that with overwhelming probability there exists
x ∈ S such that f(x) = 0. (Note that f may not zero on the entire set S that might be of exponential
size.) Therefore, with overwhelming probability, every query made by the algebraic adversary will have
a non-zero output. This, together with large-queries semantic security allows us to simulate the view of
any adversary getting an obfuscation of a random evasive function. The second part of the Theorem 7.1,
follows directly from the construction and proof in [BGK+13].

7.3 Attacking Semantic Security of Efficient Graded Encodings

We describe a generic attack on the semantic security of any graded encoding scheme that has the
following two efficiency properties (stated informally):

1. The length of the public parameters and any encoding is independent of the maximal level param-
eter k.

2. Given a element r ∈ Zp and an encoding u of an element r′ ∈ Zp, it is possible to test in NC1

whether u is an encoding of r or not.

For simplicity of exposition, we formulate the attack against the basic semantic security formulation
given in Definition 6.8. We note that the attack can be generalized to all the other relaxed notions
discussed in Section 7, except for the notion of bounded semantic security (Definition 7.1), on which no
generic attacks are known. Indeed, the described attack is the main motivation for the bounded semantic
security relaxation. The attack is on the weaker notion of semantic security with efficient samplers
(Definition 6.5)
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We start by formally describing the efficiency properties we consider. Let E be a graded encoding
scheme. We say that the encoding length of E is level-independent if there exists a fixed polynomial
m(·) such that, for every security parameter n, and for every level parameter k, the size of the pa-
rameters sp, pp generated by InstGenE(1

n, k) is bounded by m(n). Additionally, for every element
α ∈ Zp (where p is described by pp), and for every set S ⊆ [k], the size of any encoding generated
by EncodeE(sp, α, S) is bounded by m(n). Next, consider a function TestE that takes as input public
parameters pp (including a prime p), an element r ∈ Zp and an encoding u in the highest level [k]. The
function tests if u is an encoding of r under pp or not.

We show that if the encoding length of E is level-independent and there exists an implementation of
the function TestE in NC1 then E cannot be semantically-secure.

Note that the known graded encoding candidates of [GGH13a, CLT13] do not satisfy the efficiency
properties above. Specifically, the encoding length is level-dependent, and we do not know of an efficient
implementation of TestE (let alone, in NC1). More specifically, given an encoding of r it is possible to
test if another encoding u also encodes r using a zero-test, however, in the basic schemes of [GGH13a,
CLT13] there is no efficient way to encode r given only the public parameters.

We show that the attack works even if we relax the requirement on function TestE as follows. Recall
that given encodings of powers of 2 in Zp, it is possible to encode any element in Zp without knowing
the secret parameters. We will therefore allow the function TestE to receive such auxiliary encodings
that will help it encode r. We will generalize this and allow TestE to take as input some arbitrary
auxiliary encodings. (We do not require that the encoding scheme has any type of security given these
auxiliary encodings.) Now the function TestE has an efficient implementation with respect to the known
candidates, however, an implementation in NC1 is still not known.

Let B be an efficient algorithm that is given a prime p, samples a vector of auxiliary elements
~z ∈ Zpoly(n)

p . Consider the modified function Test′E that is defined like TestE , except that it also gets
as input encodings of the elements of ~z in the highest level [k]. That is, Test′E takes as input public
parameters pp (including a prime p), an element r ∈ Zp, an encoding u, and a vector of encodings under
pp of all the elements in ~z = B(R).

We further relax requirement on the Test′E function and allow it to err. Specifically, we only require
that for a pair of random elements r, r′ ∈ Zp, and for an encodings u of r, Test′E recognizes u as an
encoding of r but not as an encoding of r′ with probability bounded away from 1

2 .

Definition 7.12 (Testable graded encoding scheme). We say that a graded encoding scheme E with a
level-independent encoding length is testable, if there exists a PPT algorithm B and a family of circuits
TestE = {TestE,n}n∈N in NC1 such that for every polynomial k = k(n) and for every public parameters
pp in the support of InstGenE(1n, 1k(n)), including a prime p, the following holds:

Pr


r, r′ ← Zp
u = EncodeE(sp, r, [k(n)])
~z ← B(1n, p)
~w = (EncodeE(sp, ~zi, [k(n)]) : i ≤ |~z|);
(TestE,n(pp, r, u, ~w) = 1) ∧ (TestE,n(pp, r′, u, ~w) = 0)

 ≥ 9

10

where the probability is also over the coins of EncodeE .

Note that in the above definition we require that the encoding length of E is level-independent.
Otherwise, we must allow the circuit family TestE to depend also on the polynomial k.

Theorem 7.2. There is no testable graded encoding scheme with a level-independent encoding length
that satisfies semantic-security.

In the proof we will also use the ideal graded encoding obfuscation of [BGK+13]. We rely on an
additional property of this construction, namely that it is secure even in the presence certain auxiliary
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input. Specifically, we consider auxiliary input that consists of additional field elements that may depend
on the obfuscated circuit, and are encoded with respect to the entire set [k]. The adversary can access
these field elements via the ideal graded encoding oracleM. In the following definition, the auxiliary
input is generated by a sampler B that is given as input 1n, a prime p and outputs a vector of elements
~z ∈ Zpoly(n)

p . We stress that B may depend on the obfuscated circuit.

Definition 7.13 (Ideal graded encoding obfuscation with auxiliary input). A virtual black-box obfuscator
O for a family of poly-size circuits C = {Cn}n∈N is virtual black-box with auxiliary input if for every
polynomial functions q, s and for every (unbounded) oracle machineA (called the algebraic adversary)
making at most q(n) queries where every query describes an arithmetic circuit of size at most s(n), there
exist a PPT oracle machine S (called the simulator) and a negligible function µ, such that for every PPT
sampler B, every every public parameters pp in the support of InstGenE(1n, k) including a prime p, and
for every C ∈ Cn:∣∣∣∣∣∣ Pr

[
(~S, ~m)← O(1n, p, C)
~z ← B(1n, p)

; AM(p,k,~S|[k]|~z|, ~m|~z)(n, p) = 1

]
−

Pr[~z ← B(1n, p) ; SA,C,M(p,k,[k]|~z|,~z)(1n, p) = 1]

∣∣∣∣∣∣ ≤ µ(n) ,

where the probabilities are over the coins of the obfuscator O, the adversary A and the simulator S.
The polynomial k = k(n) is defined in the functionality requirement of O.

Claim 7.1 (follows from [BGK+13]). There exists an ideal graded encoding obfuscation with auxiliary
input for NC1.

Proof of Theorem 7.2. Let E be a testable graded encoding scheme with level-independent encoding
length. For a prime p, consider the family of functions F = {Fn}n∈N where Fn = {f~r,~r′,b} and where
~r, ~r′ ∈ Znp and b ∈ {0, 1}. The function takes as input public parameters pp (that are supposed to
be in the support of InstGenE(1n, 1k(n)) for some polynomial k) including the prime p, a vector of n
encodings ~u and a vector of auxiliary encodings ~w. The function f~r,~r′,b(pp, ~u, ~w) outputs b only if for at
least 3

4 of the indices i ∈ [n], it holds that:

(TestE,n(pp, ~r[i], ~u, ~w) = 1) ∧ (TestE,n(pp, ~r′[i], ~u, ~w) = 0) .

Otherwise, f~r,~r′,b outputs ⊥. Since E is testable the function family F is in NC1.
Let O be virtual black-box obfuscator O in the ideal graded encoding model for the family F ,

and let k = k(n), ` = `(n) be the polynomials specified in the definition of the functionality of O
(Definition 6.4). Let B be the auxiliary element sampler required for TestE,n, as given by Definition 7.12.
Let `′(n) be a polynomial bound on the number of elements in the output of B.

To demonstrate that E is not semantically-secure, we construct an efficient admissible message sam-
pler M (Definition 6.6) and a corresponding PPT distinguisher A. We start by describing M which will
be a (k, ` + `′ + n)-sampler. Given 1n and a prime p, the sampler M(1n, p) samples the following
elements.

• M samples two random vectors ~r, ~r′ ∈ Znp .

• For every b ∈ {0, 1}, M executes the ideal graded encoding obfuscator O(1n, p, f~r,~r′,b) and ob-
tains a vector of sets ~S and a vector of elements ~mb of length `. (Note that O outputs the same
vector of sets ~S in both executions. See Remark 6.1.)

• M executes B(1n, p) and obtains a vector of elements ~z ∈ Z`
′(n)
p .

M outputs (~S′, ~m′0, ~m
′
1) where:

~S′ = ~S|[k]|~z|+|~r| , ~m′0 = ~m0|~z|~r , ~m′1 = ~m1|~z|~r .
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Claim 7.2. M is admissible.

Proof. Let q be a polynomial and letA be an unbounded algebraic adversary making at most q(n) oracle
queries. We need to show that there exists a negligible function µ such that for all n ∈ N:

Pr


b← {0, 1}
(sp, pp)← InstGenE(1

n, 1k(n))

(~S′, ~m′0, ~m
′
1)←M(1n, p);

AM(p,k,~S′, ~m′b)(n, p) = b

 ≤ 1

2
+ µ(n) ,

where p is described in the public parameters pp and the probability is also over the coins of M and
InstGenE .

Fix b ∈ {0, 1}. From the construction of M we have that:

Pr

 (sp, pp)← InstGenE(1
n, 1k(n))

(~S′, ~m′0, ~m
′
1)←M(1n, p);

AM(p,k,~S′, ~m′b)(n, p) = b

 = (2)

Pr


(~r, ~r′)← Znp
(sp, pp)← InstGenE(1

n, 1k(n))

(~S, ~mb)← O(1n, p, f~r,~r′,b)
~z ← B(1n, p);

AM(p,k , ~S|[k]|~z|+|~r| , ~mb|~z|~r)(n, p) = b

 .

By the auxiliary input virtual black-box security ofO, there exists a PPT simulator S and negligible
function µ1 such that for all vectors ~r, ~r′ ∈ Znp :∣∣∣∣∣∣∣∣∣

Pr

 (~S, ~mb)← O(1n, p, f~r,~r′,b)
~z ← B(1n, p);

AM(p,k , ~S|[k]|~z|+|~r| , ~mb|~z|~r)(n, p) = 1


−Pr[SA,f~r,~r′,b,M(p,k , [k]|~z|+|~r| , ~z|~r)(1n) = 1]

∣∣∣∣∣∣∣∣∣ ≤ µ1(n) ,

And therefore: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr


(~r, ~r′)← Znp
(sp, pp)← InstGenE(1

n, 1k(n))

(~Sb, ~mb)← O(1n, p, f~r,~r′,b)

(~T , ~z)← B(1n, p, k(n));

AM(p,k , ~S|[k]|~z|+|~r| , ~mb|~z|~r)(n, p) = b


−Pr

 (~r, ~r′)← Znp
~z ← B(1n, p);

S(f~r,~r′,b,M(p,k , [k]|~z|+|~r| , ~z|~r))(1n, p) = b



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ1(n) . (3)

Claim 7.3. There exists a negligible function µ2 such that:

Pr

[
(~r, ~r′)← Znp
~z ← B(1n, p)

;S(f~r,~r′,b,M(p,k , [k]|~z|+|~r| , ~z|~r))(1n) = b

]
≤ 1

2
+ µ2(n) .

Proof. We say that a query S makes to its oracle is useful if it is a query to f~r,~r′,b that is answered by
anything other than ⊥ or it is a query C to M(p, k, [k]|~z|+|~r|, ~z|~r) that is answered by 1 and C is an
arithmetic circuit that is not identically zero in the input ~r when fixing its other inputs to ~z. Let q′(n)
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be the number of queries S makes. (q′ is a polynomial that depends on q the bound on the number of
queries the adversary A makes). For i ∈ [q′(n)] let Bi be the event that the i-th query made by S is
the first useful query. Note that conditioned on Bi, the view of S before the i-th query is independent
of ~r, ~r′ and of b. Fix i ∈ [q′(n)]. For Bi to hold it must be that the view of S before the i-th query is
independent of ~r, ~r′. By the definition of f~r,~r′,b, and using Chernoff bound, we have that the i-th query
is a useful query to f~r,~r′,b only with negligible probability.

Let C be a an arithmetic circuit that is given as a query toM such that C is not identically zero in
the input ~r when fixing its other inputs to ~z. Since C is set-respecting, and the elements of ~r are given
in the set [k]. C must be of the form C(~r, ~z) = Cz(~z) + L(~r) where Cz is a set-respecting arithmetic
circuit computing only on the elements of ~z, and L is a non-zero linear function of the elements of ~r.
For Bi to hold it must be that the view of S before the i-th query, and specifically the function L, is
independent of ~r. Therefore, with overwhelming probability over ~r we have that L(~r) 6= −Cz(~z) and
the query C is not useful. Overall we have that the probability of Bi is negligible for any i ∈ [q′(n)] and
therefore the probability that S makes any useful queries is negligible. We have that with overwhelming
probability the view of S is independent of b and the claim follows.

Combining Equations 2,3 and Claim 7.3 we get as required:

Pr


b← {0, 1}
(sp, pp)← InstGenE(1

n, 1k(n))

(~S′, ~m′0, ~m
′
1)←M(1n, p);

AM(p,k,~S′, ~m′b)(n) = b

 ≤ 1

2
+ µ1(n) + µ2(n) .

We continue to show that there exist a PPT adversary A contradicting the semantic security of E . A
gets as input the public parameters pp and the following vectors of encodings:

(EncodeE(sp, ~mb[i], ~Sb[i]) : i ∈ [`(n)])
~w = (EncodeE(sp, ~z[i], [k(n)]) : i ∈ [`(n)])
~u = (EncodeE(sp, ~r[i], [k(n)]) : i ∈ [n])

Using the correctness of the graded encoding scheme E we have that A can perfectly emulate the or-
acleM(p, k, ~S, ~mb) by applying the functions AddE ,SubE ,MultE , isZeroE to the encoding it is given.
Therefore A can emulate:

Eval
M(p,k,~S,~mb)
O (pp, ~u, ~w) ,

which, by the correctness of O outputs f~r,~r′,b(pp, ~u, ~w). By the definition of the function TestE we have
that for every i ∈ [n]:

Pr
[
(TestE(pp, ~r[i], ~u[i], ~w) = 1) ∧ (TestE(pp, ~r

′[i], ~u[i], ~w) = 0)
]
≥ 9

10

And therefore, by the definition of f~r,~r′,b, f~r,~r′,b(pp, ~u, ~w) outputs b with overwhelming probability,
contradicting the unbounded semantic security of E .
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A Missing Proofs from Section 7.2

A.1 Proof of Lemma 7.1

We prove Part 1 of the lemma. Then we give the proof intuition for Part 2, extending the proof for
bounded and entropic semantic security.

Let E be a graded encoding scheme. Clearly, if it is semantically-secure then it is also semantically-
secure for a single message. We thus focus on proving the other direction.

Suppose E is not semantically-secure. Namely, there exist polynomials k(·) and `(·), an admissible
(k, `)-message sampler (Z,M), and a poly-size adversary A, such that A wins in the semantic security
game with (Z,M) with non-negligible probability. Namely, there exists a non-negligible function δ such
that

Pr


b← U1

(sp, pp)← InstGenE(1
n, 1k(n))

(~S, ~m0, ~m1)←M(1n,Z(n), p);

A
(
pp, (EncodeE(sp, ~mb[i], ~S[i]))i∈[`(n)]

)
= b

 ≥ 1

2
+ δ(n),

where p is described in pp.
We next construct an admissible single-message sampler (Z′,M′) and a poly-size adversary A′ that

together break single-message semantic-security. The unbounded (auxiliary input) algorithm Z′ is iden-
tical to Z. The admissible single-message sampler M′ takes as input the pair (Z(1n), p), and does the
following:

1. Run (~S, ~m0, ~m1)←M(Z(1n), p).

2. Let r0 = 0 ∈ Zp be the zero element, and let r1 ← Zp \ {0} be a uniformly random non-zero
element.

3. Choose a random bit b ∈ {0, 1}.

4. Let v0 = rb and let v1 = r1−b.

5. Output (~S′, ~m′0, ~m
′
1) where ~S′ = (~S, [k]), ~m′0 = (~mb, v0), ~m′1 = (~mb, v1).

The poly-size algorithm A′, on input

(pp, e1, . . . , e`, e`+1) =
(
pp, (EncodeE(sp, ~mb[i], ~S[i]) : i ∈ [`(n)]),EncodeE(sk, vb∗ , [k]

)
,

does the following:
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1. Compute b′ ← A(pp, e1, . . . , e`).

2. If isZeroE(pp, e`+1) = b′ then output b∗ = 1. Otherwise, output b∗ = 0.

Claim A.1.
Pr[A′(pp, e1, . . . , e`+1) = b∗] ≥ 1

2
+ δ.

Proof.

Pr[A′(pp, e1, . . . , e`+1) = b∗] =

1

2
(Pr[A′(pp, e1, . . . , e`+1) = 0| b∗ = 0] + Pr[A′(pp, e1, . . . , e`+1) = 1| b∗ = 1]) =

1

2
(Pr[A′(pp, e1, . . . , e`,EncodeE(sp, rb, [k])) = 0] + Pr[A′(pp, e1, . . . , e`,EncodeE(sp, r1−b, [k])) = 1]) =

1

2
(Pr[A(pp, e1, . . . , e`) 6= isZero(EncodeE(sp, rb, [k]))] + Pr[A(pp, e1, . . . , e`) = isZero(EncodeE(sp, r1−b, [k]))]) =

1

2
(Pr[A(pp, e1, . . . , e`) 6= 1− b] + Pr[A(pp, e1, . . . , e`) = b]) ≥

1

2
+ δ .

Claim A.2. (Z,M′) is an admissible single-message message sampler.

Proof sketch. Let A be any unbounded oracle machine making at most q(n) oracle queries, that has
an ε advantage in distinguishing ideal oracles induced by M′, in the single message setting (see Defini-
tion 7.6). In other words, by the definition of M′:

Pr


b∗ ← {0, 1}, b← {0, 1}

(sp, pp)← InstGenE(1
n, 1k(n))

(~S, ~m0, ~m1)←M(1n,Z(n), p)
r0 = 0, r1 ← Zp \ {0}

;AM(p,k,(~S,[k]),(~mb,rb⊕b∗ ))(n, p) = b∗

 ≥ 1

2
+ ε.

We construct B that contradicts the admissibility of (Z,M). That is, B makes at most q queries,
and has an ε − O( q(n)

p ) advantage in distinguishing between the two ideal oracles induced by M in the
multiple-message setting (Definition 6.6). That is:

Pr

 b← {0, 1}
(sp, pp)← InstGenE(1

n, 1k(n))

(~S, ~m0, ~m1)←M(1n,Z(n), p)

;BM(p,k,~S,~mb)(n, p) = b

 ≥ 1

2
+ ε−O(

q(n)

p
) .

Towards constructingB, recall thatA produces set-respecting arithmetic circuits CA to be evaluated
on the field elements (~m, r), where r ∈ {r0, r1} and the set corresponding to r is the entire universe [k].
This means that we can think of any such CA, as C ′A(~m) + c · r, where c ∈ Z. Namely, we can think
of CA as an arithmetic circuit that is first evaluated on ~m and then r is either added (or subtracted) c
times.

Now, B emulates A as follows. B first chooses a random bit b′ ← {0, 1} (as a guess for b∗ ⊕ b). It
then runs A by translating any circuit CA produced by the emulated A into a circuit CB to be evaluated
on the input ~mb corresponding to its own oracle. For this purpose it first decomposes CA into C ′A + c · r
as above. If c = 0 then B translates CA to CB(~m) = C ′A(~m). If c 6= 0 but b′ = 0, then it also it
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translates CA to CB(~m) = C ′A(~m). In case c 6= 0 and b′ = 1, then B does not make any query at all,
and just answers “non-zero”. Eventually, when A outputs a bit b∗A, B outputs bB = b′ ⊕ b∗A.

To deduce B’s distinguishing advantage, first consider an alternative experiment, where B sets r0 =
0, and samples r1 ← Zp \ {0}. In addition, B has the liberty of actually “hardwiring” rb′ in CA to
produce CB(~m) = CA(~m, rb′). We claim that in this experiment B guesses b, i.e. bB = b, with
probability 1/2 + ε. Indeed, in this experiment the view of A, conditioned on any (b, b∗) where b∗ =
b′ ⊕ b, is identical to its view in the single message game conditioned on the same (b, b∗). Moreover,
choosing b, b′ independently at random and setting b∗ = b⊕ b′, induces the same (uniform) distribution
on (b, b∗) as in the single message game.

To conclude the proof, we observe that the statistical distance between the view of the emulated A
in the above alternative experiment, and its view in the actual emulation, is at most q(n)

p−1 . Indeed, the
only difference occurs when C ′A(~m) = −c · rb′ , which occurs, in any one of the q(n) queries with the
probability at most 1

p−1 .

Proof intuition for Part 2. The proof of Part 2 is identical to the proof of Part 1. Recall that in the
proof, if the messages generated by the entropic (and bounded) message sampler are ~m0, ~m1 with sets
~S then the messages generated by the single-message sampler are ~m, ~m1 with set ~S, and messages r0, r1

with the set [k]. The fact that the distribution ((~m0, r0), (~m1, r1)) is entropic follows from the fact that
the distribution ~m0, ~m1 is entropic, and from the fact that r0, r1 cannot affect the entropic requirement
since they are encoded with the universal set [k]. Moreover, the fact that the boundness property is
maintained follows from the fact that the single-message sampler increases the number of messages
generated exactly by one.

A.2 Proof of Lemma 7.2

Let E be a graded encoding scheme. Clearly, if it is concentrated semantically-secure for compos-
able message samplers then it is also single-message concentrated semantically-secure for composable
message samplers. We thus focus on proving the other direction.

Let E be a graded encoding scheme that is single-message concentrated semantically-secure for
composable message samplers. Suppose for the sake of contradiction that E is not many-message con-
centrated semantically-secure for composable message samplers. Namely, there exists polynomials k(·)
and `(·), a concentrated composable (k, `)-message sampler (Z,M), and a poly-size adversary A, such
that A wins in the concentrated composable semantic security game (with (Z,M)) with non-negligible
probability. Namely, there exists a non-negligible function δ such that

Pr

 (sp, pp)← InstGenE(1
n, 1k(n))

(~Si, ~mi,0, ~mi,1)←M(1n,Z(n), p);

A
(
pp, (EncodeE(sp, ~mi,b, ~Si)i∈[`(n)]

)
= b

 ≥ 1

2
+ δ(n), (4)

where p is described in pp.
We next construct a single-message concentrated composable message sampler (Z′,M′) and a poly-

size adversary A′ that together break single-message concentrated composable semantic-security.

High-level idea. We would like to use the same proof as the proof of Lemma 7.1. However, in that
proof the single-message sampler is not concentrated even if the underlying many-message sampler is
concentrated. The reason is that the messages v0, v1 do not have high min-entropy (recall that vb = 0).
Instead, we need to choose v0, v1 so that each has high min-entropy.

The basic idea is to run (Z,M) many times, say n times (and not only once as in the proof of
Lemma 7.1). Then choose n random bits (b1, . . . , bn) ← {0, 1}n, let v0 = (b1, . . . , bn),11 let v1 ← Zp

11Think of (b1, . . . , bn) as the binary representation of a field element.
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be a random field element, and let the auxiliary messages be ~z = (~m1,b1 , . . . , ~mn,bn), where each ~mi,bi is
the bi vector outputted by the i’th run of (Z,M). Intuitively, (Z′,M′) is a concentrated message sampler
since (Z,M) is concentrated and composable, and since in the ideal world each bi looks random. It
is also composable since (Z,M) is composable. On the other hand, we would like to argue that there
exists a poly-size adversaryA′ that usesA to guess each bi, and thus can distinguish between v0 and v1.
However, recall that A can guess each bi only with probability 1

2 + δ, and so A′ will be able to guess
(b1, . . . , bn) only with negligible probability.

To fix this, we amplify the success probability by using repetitions. Namely, for each i ∈ [n] we run
(Z,M) many times, say ` = poly(k) times, and for each run we take the bi vector output by (Z,M).
Now A′ will guess bi in each of the ` runs and will take majority. We can then use the Chernoff bound,
together with the union bound, to claim that A′ will guess all the bi’s correctly with high probability,
and thus A′ can be used to break the single-message concentrated semantic security of E .

There is one additional technicality. Even if the adversary A′ guesses ~b = (b1, . . . , bn) correctly, in
order to distinguish between EncodeE(sp,~b) and encoding of a random field element, the adversary will
need to generate an encoding of~b on his own, subtract it from the given encoding, and run the zero-test.
However, for the adversary to generate an encoding of ~b we need to assume public encoding. To avoid
this assumption, in the actual protocol we take v0 = 〈~r,~b〉, where ~r ← Znp is a vector of n random field
elements, and where 〈·, ·〉 is the inner product operator. We add ~r to the vector of auxiliary messages.
We then claim that since in the ideal world each bi looks random, and since the inner product is a two-
source extractor, then a handle to v0 is indistinguishable from a handle to a random element, even given
handles to ~r. However, in the real world,A′ will useA to predict each bi with very high probability, and
thus will be able to use the encodings of ~r to compute an encoding of 〈~r,~b〉, and will compare it to vb∗
(using the zero-test) in order to predict b∗.

We now proceed with the formal proof. The single-message concentrated message sampler (Z′,M′)
is defined as follows: Z′ is identical to Z and M′ takes as input a pair (1n, z, p), and does the following:

1. Choose randomly~b = (b1, . . . , bn)← {0, 1}n,

2. Let ` = `(n) = n
δ2

.

3. For every i ∈ [n] and for every j ∈ [`], run (~S, ~m0, ~m1) ← M(Z(1n), z, p), and denote
(~Si,j , ~mi,j) = (~S, ~mbi). Namely, for every i ∈ [n] run M(1n, z, p) sequentially ` times, and
in each run take the message vector corresponding to bit bi.

4. Let ~m = (~m1, . . . , ~mn) where each ~mi = (~mi,1, . . . , ~mi,`), and let ~S = (~S1, . . . , ~Sn) where each
~Si = (~Si,1, . . . , ~Si,`).

5. Sample r1, . . . , rn ← Zp independent random field elements, and denote ~r = (r1, . . . , rn).

6. Let v0 ← Zp be a random field element, and let v1 = 〈~r,~b〉 ∈ Zp, where 〈~r,~b〉 denotes the inner
product.

7. Output (~S∗, ~m∗0, ~m
∗
1), where ~S∗ = (~S, [k]n+1), ~m∗0 = (~m,~r, v0) and ~m∗1 = (~m,~r, v1).

The poly-size algorithm A′, on input

(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n], e
′′),

where ~ei,j = EncodeE(sp, ~zi,j , ~Si,j), e′i = EncodeE(sp, ri, [k]), and e′′ = Encode(sp, vb, [k]), does the
following:

1. For each i ∈ [n] and each j ∈ [`], compute b′i,j ← A(pp,~ei,j).
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2. For each i ∈ [n] let b′i = majority{b′i,1, . . . , b′i,`}. Let e′ =
∑

i:b′i=1 e
′
i.

(e′ is supposedly an encoding of 〈~r,~b〉.)

3. If isZeroE(pp, e′ − e′′) = 0 then output b∗ = 1. Otherwise, output b∗ = 0.

Claim A.3.
Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n], e

′′) = b∗] = 1− negl(n).

Proof. Let GOOD denote the event that (b′1, . . . , b
′
n) = (b1, . . . , bn). The Chernoff bound and the union

bound, together with Equation (4), imply that

Pr[GOOD] ≥ 1− n · 2−Ω(δ2·`) = 1− negl(n).

Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n], e
′′) = b∗] ≥

Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n], e
′′) = b∗| GOOD] · Pr[GOOD] ≥

Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n], e
′′) = b∗| GOOD]− negl(n) ≥

1

2
Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n], e

′′) = 0| GOOD ∧ (b∗ = 0)]+

1

2
Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n], e

′′) = 1| GOOD ∧ (b∗ = 1)]− negl(n) =

1

2
Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n],EncodeE(sp, v0, [k])) = 0| GOOD]+

1

2
Pr[A′(pp, {~ei,j}i∈[n],j∈[`], {e′i}i∈[n],EncodeE(sp, 〈~r,~b〉, [k])) = 1| GOOD]− negl(n) =

1

2
Pr[isZero(EncodeE(sp, v0, [k])− e′) 6= 0| GOOD]+

1

2
Pr[isZero(EncodeE(sp, 〈~r,~b〉, [k])− e′) = 0| GOOD]− negl(n) =

1

2
− negl(n) +

1

2
− negl(n) =

1− negl(n) .

Claim A.4. M′ is a single-message concentrated composable message sampler.

The claim follows immediately from the fact that M is a concentrated composable message sampler,
and from the fact that 〈·, ·〉 is a strong 2-source extractor.

A.3 Proof of Lemma 7.3

We start by describing the high level idea behind the proof. To prove that an admissible message
sampler (Z,M) is also composable, we need to show that an algebraic adversary with access to many
element vectors sampled independently from either ~m0, ~m1 cannot distinguish the two cases, where
~m0, ~m1 are the distributions defined by (Z,M). To do so, we hope to apply a hybrid argument: change
the distribution from ~m0 to ~m1, by changing the element vectors one by one and reduce to the case
where the algebraic adversary gets access to only a single element vector. Then invoke the admissibility
property of the sampler.

The above strategy is problematic since it only works when the algebraic adversary accesses every
element vectors independently. However, the adversary may ask to evaluate a query C that compute
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on all the element vectors together. The idea is to transform the sampler (Z,M) into a new sampler
(Z,M′) that samples essentially the same elements as (Z,M), however the sets that correspond to the
elements are different. The modified sets are sampled based on the original sets and the randomness of
the sampler M′ and they are chosen such that any query C on the element vector respects the modified
set structure if and only if it respects the original set structure. However, the sets that are sampled by
two independent invocations of M′ will be “incompatible” with each other. We will show that any query
C that operates on many element vectors and respects the set structure can be decomposed into small
queries on a single element vector. This will allow us to reduce the composability of the transformed
sampler (Z,M′) to the admissibility of the original sample (Z,M) via a hybrid argument.

In more details, the new sampler M′ will execute the original sampler M and obtain a vector of
messages ~m ∈ Z`p and a vector of corresponding sets ~S ∈ (2[k])`. Next, M′ samples a random set M ⊆
[n] and computes the modified sets vector ~S′ such that for every i ∈ [`], ~S′[i] = ~S[i] ×M ⊆ [k] × [n]
(we think of elements in [k] × [n] as representing elements in our new universe set [k · n]). Finally M′
samples and additional random element α ∈ Zp together with the set [k] × ([n] \M). We have that as
long as M 6= ∅, for any query C that respects the set vector ~S, the query C ′ that computes α · C(~m)
respects the set vector ~S′, and as long as α 6= 0 we have that C(~m) = 0 iff C ′(~m,α) = 0. Additionally,
we show that with overwhelming probability over the coins of sampler M′, any set-respecting query C
over two independent samples (~m,α) and (~m′, α′) can be decomposed into two set-respecting queries
D,D′ such that:

C(~m,α, ~m′, α′) = α ·D(~m) + α′ ·D′(~m′) .

Since α, α′ are random, we have that with overwhelming probability C evaluates to 0 iff both D and D′

evaluate to 0.
Next, we give a formal description of the transformation T:

1. Let E be a graded encoding scheme. For every security parameter n ∈ N, and for every public
parameters pp in the support of InstGenE(1n, k) including a prime p, the transformation T takes
as input n, p, and a pair of vectors (~S, ~m) of length ` such that ~S is a vector of sets over some
universe set [k], and m is a vector of elements in Zp.

2. T samples a random subset M ⊆ [n] (every element in [n] is in M with probability 1
2 ) and a

random non-zero element α ∈ Zp.

3. T outputs the pair of vectors (~S∗, ~m∗) of length `+ 1 where:

~S∗ = ([k]× ([n] \M) , ~S[1]×M, . . . , ~S[`]×M) , ~m∗ = (α , ~m[1], . . . , ~m[`]) ,

where we think of elements of [k]× [n] as representing elements of the universe set [k · n]. Note
that the set vector ~S∗ depends only on ~S and the random set M and not on ~m, as required.

The proof of the lemma is split into the following two claims.

Claim A.5. For every single-message concentrated admissible (k, `)-message sampler (Z,M), let M′
be the sampler that on input (1n, z = Z(n), p):

1. Samples (~S, ~m0, ~m1)←M(z, p).

2. Samples randomness r for T.

3. Obtains:

(~S∗, ~m∗0)← T(1n, p, (~S, ~m0); r) , (~S∗, ~m∗1)← T(1n, p, (~S, ~m1); r) .

4. Outputs (~S∗, ~m∗0, ~m
∗
1).
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Then (Z,M′) is a single-message composable (k · n, `+ 1)-message sampler.

Claim A.6. There exists an oracle machine S such that for every oracle machineA, every n ∈ N, every
public parameters pp in the support of InstGenE(1n, k) including a prime p, and every pair of vectors
(~S, ~m) we have:

AM(p,k,~S,~m)(1n, p, ~S∗) = SM(p,k·n,~S∗, ~m∗)(1n, A, p, ~S∗) .

where (~S∗, ~m∗) ← T(1n, p, (~S, ~m)). Additionally, the running time of S is polynomially related to the
running time of A. S and A make the same number of queries, and the sizes of the queries S makes is
polynomially related to the sizes of the queries A makes.

A.3.1 Proof of Claim A.5

Let (Z,M) be a single-message concentrated admissible (k, `)-message sampler and let M′ be a
sampler defined as in the claim statement. First note that since (Z,M) is a single-message sampler, and
since M′ uses the same randomness r and the same auxiliary input z in in both executions of T, it follows
from the construction of T that (Z,M′) is also a single-message sampler.

For a prime p, s polynomial q = q(n), security parameter n, and for every i ∈ [q] and b ∈ {0, 1}, let
~S∗i , ~m

∗
i,b be vectors sampled by the following process:

ri ← Upoly(n) ,

(~S, ~mi,0, ~mi,1)←M(z, p) ,

(~S∗i , ~m
∗
i,b)← T(1n, p, (~S, ~mi,b); ri) .

For a bit vector~b ∈ {0, 1}q, let ~S∗, ~m∗(~b) denote the vectors:

~S∗ = (~S∗1 , . . . , ~S
∗
q ) , ~m∗(~b) = (~m∗1,b1 , . . . , ~m

∗
q,bq) .

To show that (Z,M′) is a composable message sampler we need to show that for every polynomials
s = s(n) and q = q(n) there exists a negligible function µ such that for every n ∈ N, every public
parameters pp in the support of InstGenE(1n, 1k) including a prime p, and every arithmetic circuit C of
size at most s, there exists a bit c ∈ {0, 1} such that for every bit vector~b ∈ {0, 1}q,

Pr
[
M(p, k, ~S∗, ~m∗(~b))(C) /∈ {c,⊥}

]
≤ µ(n) . (5)

For i ∈ [q], let Mi and αi be the variables sampled by the execution of T with randomness ri. Let G
be the event that for every distinct i, j ∈ [q]:

Mi \Mj 6= ∅ ∧ Mi ∩Mj 6= ∅ ∧ Mi ∪Mj 6= [n] .

Note that ¬G occurs only with negligible probability.
Let C be an arithmetic circuit of size s and let R be the event that C is ~S∗-respecting. The key step

in the proof of Claim A.5 is the following decomposition claim.
Claim A.7. There exist circuits {Ci}i∈[q] such that for every i ∈ [q], |Ci| < |C|2 and conditioned on G
and R:

1. For every i ∈ [q], Ci is ~S-respecting.

2. There exists constants {βi}i∈[q] such that for every bit vector~b ∈ {0, 1}q:

Pr

C(~m∗(~b)) =
∑
i∈[q]

βi · αi · Ci(~mi,~bi
)

 = 1 .
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The proof of the claim is given in Section A. Next we finish the proof of Claim A.5. Note that that
when R occurs we have :

Pr
[
M(p, k, ~S∗, ~m∗(~b))(C) 6= ⊥

]
≤ µ(n) ,

and (5) holds. Additionally, since the event G occurs with overwhelming probability it suffices to prove
(5) conditioned on R ∧G. In the rest of the proof we condition on these events.

Let {Ci}i∈[q] be the circuits given in Claim A.7. Conditioned on G and R, we have that Ci is ~S-
respecting for every i ∈ [q]. By the concentrated admissibility of (Z,M) for every i ∈ [q] there exist a a
negligible function µi and a constant ci ∈ {0, 1} such that for every b ∈ {0, 1}:

Pr
[
M(p, k, ~S, ~mi,b)(C) 6= ci

]
≤ µi(n) .

Fix a bit vector ~b ∈ {0, 1}q. In the rest of the proof we sperate between the case where ci = 1 for
every i ∈ [q] and the case where there exists i ∈ [q] such that ci = 0.

The case were ci = 1 for every i ∈ [q]. We have that:

Pr
[
∀i∈[q]M(p, k, ~S, ~m

i,~bi
)(C) = 1

]
= Pr

[
∀i∈[q]Ci(~mi,~bi

) = 0
]
≥ 1− µ(n) ,

where µ =
∑

i∈[q] µi is a negligible function. By Claim A.7 we have that:

Pr
[
M(p, k, ~S∗, ~m∗(~b))(C) 6= 1

]
= Pr

[
C(~m∗(~b)) 6= 0

]
= Pr

∑
i∈[q]

βi · αi · Ci(~mi,~bi
) 6= 0

 ≤ µ(n) ,

and (5) holds for c = 1.

The case were ci = 0 for some i ∈ [q]. we have that:

Pr
[
M(p, k, ~S

i,~bi
, ~m

i,~bi
)(C) = 0

]
= Pr

[
Ci(~mi,~bi

) 6= 0
]
≥ 1− µi(n) .

Therefore, with probability at least 1− µi(n) we have that the expression:∑
i∈[q]

βi · αi · Ci(~mi,~bi
) ,

is a non-zero linear function in the formal variable αi. Since αi is a random element in Zp (independent
of m

j,~bj
for j ∈ [q] and of αj for j ∈ [q], j 6= i) we have that:

Pr

∑
i∈[q]

βi · αi · Ci(~mi,~bi
) = 0

 ≤ µi(n) +
1

p
.

Therefore, by Claim A.7 we have that:

Pr
[
M(p, k, ~S∗, ~m∗(~b))(C) 6= 0

]
= Pr

[
C(~m∗(~b)) = 0

]
= Pr

∑
i∈[q]

βi · αi · Ci(~mi,~bi
) 6= 0

 ≤ µi(n) +
1

p
,

and (5) holds for c = 0.
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A.3.2 Proof of Claim A.7

The claim follows from the next two claims.
Claim A.8. For every circuit C There exist circuits {Cj}j∈[`] such that ` ≤ |C|, for every j ∈ [`],

|Cj | < |C| and conditioned on G and on C being ~S∗-respecting:

1. For every j ∈ [`] there exists ij ∈ [q] such that Cj is ~S∗ij -respecting.

2. There exists a circuit L taking ` inputs and contains only addition and subtraction gates such that
for every bit vector~b ∈ {0, 1}q:

Pr

[
C(~m∗(~b)) = L(C1(~m∗

i1,~bi1
), . . . , C`(~m

∗
i`,~bi`

))

]
= 1 .

Claim A.9. For every i ∈ [q] and for every circuit C there exists a circuit C ′ such that |C ′| < |C|2 and
conditioned on G and on C being ~S∗i -respecting we have that C ′ is ~S-respecting (over the universe set
[k]) and for every bit b ∈ {0, 1}:

C(~m∗i,b) = αi · C ′(~mi,b) .

Proof of Claim A.8. We say that D is a sub-circuit of C if D is the circuit computing one of the wires of
C. We say that D is good if it only takes inputs from ~m∗i,b for some i ∈ [q]. We say that D is maximal
good if there is no other good sub-circuit D′ such that D is a sub-circuit of D′. Let {Cj}j∈[`] be all
maximal good sub-circuits of C. Clearly, ` ≤ |C|. Let L be the circuit C where the sub-circuit Cj is
replaced with an input wire for all j ∈ [`]. Clearly, for every bit vector~b ∈ {0, 1}q:

Pr

[
C(~m∗(~b)) = L(C1(~m∗

i1,~bi1
), . . . , C`(~m

∗
i`,~bi`

))

]
= 1 .

It is left to show that conditioned on G and on C being ~S∗-respecting, Cj is ~S∗ij -respecting for every
j ∈ [`] and the circuit L contains only addition and subtraction gates. For the rest of the proof we
assume that G holds and that C is ~S∗-respecting. Since C is ~S∗-respecting, there exist a function Tag
as in Definition 6.2.

Claim A.10. If D is a maximal good sub-circuits of C taking inputs from ~m∗(~b)i, then the output wire
wD of D satisfies Tag(wD) = [k]× [n].

Proof. In what follows we use the following simple claim (that we state without a proof):

Claim A.11. Let C be a set-respecting circuit and let Tag be the function defined in Definition 6.2. Let
D be a sub-circuit of C with inputs wires w1

in, . . . , w
`
in and output wire wout. We have that:

1.
Tag(wout) =

⋃
j∈[`]

Tag(wjin) .

2. For every intermediate wire w of D there exist indexes j1, . . . , j`′ ∈ [`] such that:

Tag(wout) \ Tag(w) =
⋃
k∈[`′]

Tag(wjkin) ,

and Tag(w),Tag(wj1in), . . . ,Tag(w
j`′
in ) are pairwise disjoint.
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Next we prove that Tag(wD) = [k] × [n] by case analysis. If wD is also the output wire of C than
Tag(wD) = [k] × [n] since C is ~S∗-respecting. Else, there exist some sub-circuit D′ of C with output
wire wD′ such that wD and wD′ are connected to the same gate in C.

Since C is set-respecting, we have that either Tag(wD) = Tag(wD′) (when wD and wD′ are con-
nected by an addition or subtraction gate) or Tag(wD)∩Tag(wD′) 6= ∅ (whenwD andwD′ are connected
by a multiplication gate). Additionally, the circuitD can either take the inputm∗(~b)i[1] = αi or not take
it. The rest of the analysis explore these four cases.

D does not take the input αi and Tag(wD) = Tag(wD′). If the circuit D does not take the input
m∗(~b)i[1] = αi, then by Claim A.11 and the construction of T, there exist a set B ⊆ [k] such that
B ×Mi = Tag(wD). Since D is maximal, D′ must take an input from ~m∗(~b)j for j 6= i. Therefore, by
Claim A.11 and the construction of T, either Tag(wD′) = [k × ([n] \Mj)] or there exist a set A ⊆ [k],
such that A ×Mj ⊆ Tag(wD′). If Tag(wD′) = [k] × ([n] \Mj), since G holds Mi ∩Mj 6= ∅ and
Mi 6= [n] \Mj contradicting the fact that Tag(wD) = Tag(wD′). If A ×Mj ⊆ Tag(wD′), since G
holds Mj \Mi 6= ∅ and Mj 6⊆Mi contradicting the fact that Tag(wD) = Tag(wD′).

D does not take the input αi and Tag(wD) ∩ Tag(wD′) 6= ∅. If the circuit D does not take the input
m∗(~b)i[1] = αi, then by Claim A.11 and the construction of T, there exist a set B ⊆ [k] such that
B ×Mi = Tag(wD). Since D is maximal, D′ must take an input from ~m∗(~b)j for j 6= i. Therefore, by
Claim A.11 and the construction of T, either Tag(wD′) = [k× ([n] \Mj)]) or there exist a set A ⊆ [k],
such thatA×Mj ⊆ Tag(wD′). If Tag(wD′) = [k]×([n]\Mj), sinceG holdsMi∩Mj 6= ∅ contradicting
the fact that Tag(wD) ∩ Tag(wD′) 6= ∅. If A ×Mj ⊆ Tag(wD′), since G holds Mj ∩Mi 6= ∅ and
therefore, since Tag(wD)∩Tag(wD′) 6= ∅, it must be thatA∩B = ∅. Let x ∈ B×(Mj \Mi). Since x ∈
[k]× [n] \ (Tag(wD)∪Tag(wD′)) by Claim A.11 there exist an input wire win such that x ∈ Tag(win)
and Tag(win)∩Tag(wD) = Tag(win)∩Tag(wD′) = ∅. By the construction of T, Tag(win) = E×M`

or Tag(win) = [k] × ([n] \M`) for some E ⊆ [k] and k ∈ [n]. Assume Tag(win) = E ×M`. Since
x ∈ Tag(win) = E ×M` we have that E ∩B 6= ∅. Since G holds, Mi ∩M` 6= ∅, contradicting the fact
that Tag(win) ∩ Tag(wD) = ∅. Therefore it must be that Tag(win) = [k]× ([n] \M`). If ` 6= i, again
sinceG holdsM`\Mi 6= ∅ andMi∩([n]\M`) 6= ∅ contradicting the fact that Tag(win)∩Tag(wD) = ∅.
Therefore it must be that ` = i and Tag(win) = [k]× ([n] \Mi). However, since G holds Mj \Mi 6= ∅
and Mj ∩ ([n] \Mi) 6= ∅ contradicting the fact that Tag(win) ∩ Tag(wD′) = ∅.

D takes the input αi and Tag(wD) = Tag(wD′). Since D only takes inputs from ~m∗(~b)i and it take
as input m∗(~b)i[1] = αi, by the construction of T there exist a set B ⊆ [k] such that Tag(wD) =
B×Mi∪ [k]× ([n]\Mi). IfB = [k] then Tag(wD) = [k]× [n] as required. For the rest of the proof we
assume that [n] \B 6= ∅. Since D is maximal, D′ must take an input from ~m∗(~b)j for j 6= i. Therefore,
by Claim A.11 and the construction of T, either Tag(wD′) = [k × ([n] \Mj)]) or there exist an input
wire wA ofD′ such that Tag(wA) = A×Mj for someA ⊆ [k]. If Tag(wD′) = [k]×([n]\Mj), sinceG
holds Mi \Mj 6= ∅. We have that [k] \B×Mi \Mj ⊆ Tag(wD′) while [k] \B×Mi \Mj 6⊆ Tag(wD)
contradicting the fact that Tag(wD) = Tag(wD′). Therefore, there exist an input wire wA of D′ such
that Tag(wA) = A ×Mj . In particular, by Claim A.11, A ×Mj ⊆ Tag(wD′). If A \ B 6= ∅, since G
holds Mj ∩Mi 6= ∅. We have that A \B×Mj ∩Mi ⊆ Tag(wD′) while A \B×Mj ∩Mi 6⊆ Tag(wD)
contradicting the fact that Tag(wD) = Tag(wD′). Therefore, A ⊆ B. Let x ∈ A ∩ B × (Mi \Mj).
Since x ∈ B ×Mi ⊂ Tag(wD) = Tag(wD′), by Claim A.11 there exists an input wire win of D′ such
that x ∈ Tag(win) and Tag(win) ∩ Tag(wA) = ∅. By the construction of T, Tag(win) = E ×M` or
Tag(win) = [k] × ([n] \M`) for some E ⊆ [k] and k ∈ [n]. Assume Tag(win) = E ×M`. Since
x ∈ Tag(win) = E ×M` we have that E ∩ A 6= ∅. Since G holds, Mj ∩M` 6= ∅, contradicting
the fact that Tag(win) ∩ Tag(wA) = ∅. Therefore it must be that Tag(win) = [k] × ([n] \M`). Since
x ∈ Tag(win) = [k]×([n]\M`) we have thatMi\M` 6= ∅. We have that [k]\B×Mi\Mj ⊆ Tag(wA) ⊆
Tag(wD′) while [k] \B ×Mi \Mj 6⊆ Tag(wD) contradicting the fact that Tag(wD) = Tag(wD′).

D takes the input αi and Tag(wD) ∩ Tag(wD′) 6= ∅. Since D only takes inputs from ~m∗(~b)i and it
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take as input m∗(~b)i[1] = αi, by the construction of T there exist a set B ⊆ [k] such that Tag(wD) =
B ×Mi ∪ [k] × ([n] \Mi). If B = [k] then Tag(wD) = [k] × [n] as required. For the rest of the
proof we assume that [n] \ B 6= ∅. Since D is maximal, D′ must take an input from ~m∗(~b)j for j 6= i.
Therefore, by Claim A.11 and the construction of T, either Tag(wD′) = [k × ([n] \ Mj)]) or there
exist a set A ⊆ [k], such that A ×Mj ⊆ Tag(wD′). If Tag(wD′) = [k] × ([n] \Mj), since G holds
Mi ∪Mj 6= [n], and ([n] \Mi) ∩ ([n] \Mj) 6= ∅ contradicting the fact that Tag(wD) ∩ Tag(wD′) 6= ∅.
If A×Mj ⊆ Tag(wD′), since G holds Mi \Mj 6= ∅ and ([n] \Mi) \Mj 6= ∅ contradicting the fact that
Tag(wD) ∩ Tag(wD′) 6= ∅.

Overall, in all cases either Tag(wD) = [k]× [n] as required or we get a contradiction.

We can now proceed with the proof of Claim A.8. By Claim A.10 we have that for every j ∈ [`], Cj
is a sub-circuit of C taking inputs from ~m∗(~b)i for some i ∈ [n] and the output wire wCj of Cj satisfies:

Tag(wCj ) = [k]× [n] =
⋃
S∈~S∗i

S .

Since C is ~S∗-respecting, Cj must be ~S∗i -respecting.
Since every input wire w of L is actually the output wire of the sub-circuit Cj for some j ∈ [`], it

follows that Tag(w) = [k] × [n]. Since C is ~S∗-respecting L must set respecting where all its input
wires are tagged with the universe set [k]× [n]. Therefore, the circuit L must contain only addition and
subtraction gates. This concludes the proof of Claim A.8.

Proof of Claim A.9. Let b ∈ {0, 1} be a bit and let C be a circuit that takes inputs from ~m∗i,b for some
i ∈ [q]. Since i, b are fixed for the rest of the proof we write ~S∗ instead of ~S∗i , ~m instead of ~mi,b, and
~m∗ instead of ~m∗i,b. Let ~S∗−1,~m∗−1 denote the vectors:

~S∗−1 = (~S∗[2], . . . , ~S∗[`+ 1]) , ~m∗−1 = (~m∗[2], . . . , ~m∗[`+ 1]) .

By the definition of the transformation T we have that ~m∗−1 = ~m and ~S∗−1[j] = ~S[j]×Mi for all j ∈ [`].
We show how to transform C into a circuit C ′ that only takes inputs from ~m (it does not take the

input ~m∗[1] = αi) and satisfy the requirements of the claim.
We say that D is a sub-circuit of C if D is the circuit computing one of the wires of C. We say that

a sub-circuit D of C is good if it satisfies the following properties:

1. The top gate of D has two input wires computed by sub-circuits U, V .

2. U only takes inputs from ~m∗−1.

3. V only takes the input αi.

Let D1, . . . , D`′ be all the good sub-circuits of C. Note that by definition there are no distinct good
sub-circuits D,D′ such that D is a sub-circuit of D′. Let L be the circuit C where the sub-circuit Dj is
replaced with an input wire for all j ∈ [`′] (Note that L may also takes all the original input wires of C
except for αi namely, L may also take inputs from ~m∗−1). By the definition of L we have that:

C(~m∗) = L(~m∗−1, (D1(~m∗), . . . , D′`(~m
∗))) .

For every j ∈ [`′] let Uj , Vj be the sub-circuits computing the input wires of the top gate in Dj

such that Uj only takes inputs from ~m∗−1 = ~m and Vj only takes the input αi. Let D′j be a new circuit
computing Vj(Uj(~m)). Let the output circuit C ′ be the circuit:

C ′(~m) = L(~m, (D′1(~m), . . . , D′`′(~m))) .
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Note that since `′ < |C| we have that |C ′| ≤ |C|2.
The intuition behind this transformation is that if C is ~S∗i -respecting, then in every good sub-circuit

Dj , Uj and Vj must be connected by a multiplication gate, and Vj must consist only of addition and
subtraction gates. It follows that the circuit Vj computes the function αi · β for some constant β and the
circuit Dj computes the function αi · β · Uj(~m). Therefore, we have that:

αi ·D′j(~m) = αi · Vj(Uj(~m)) = αi · β · Uj(~m) = Dj(~m
∗) .

We show that the circuit L must compute a linear function of D′j and therefore we get that C(~m∗) =
αi · C ′(~m) as required.

We continue with the formal proof showing that conditioned on G and on C being ~S∗i -respecting we
have that C ′ is ~S-respecting (over the universe set [k]) and C(~m∗) = αi · C ′(~m). Assume that G holds
and that C is ~S∗i -respecting.

We say that a circuit D is partially ~T -respecting for a vector of sets ~T of length ` if there exists a set
of indexes j1, . . . j`′ ∈ [`] and function TagD that satisfy that conditions in Definition 6.2, except that
the input wires of D are required to be tagged with the sets ~T [ji], . . . , ~T [j`′ ] and we do not require that
the output wire wout of D is tagged with the universe set. For a partially ~T -respecting circuit we have
that TagD(wout) =

⋃
k∈[`′]

~T [jk] and we denote the set TagD(wout) by Tag~T (D).
We will use the following simple claim about partially set-respecting circuits (that we bring here

without a proof).

Claim A.12. Let ~S be a vector of sets of length ` and let T be a set. Let C be an arithmetic circuit. We
have that:

1. Let ~S′ be the vector such that ~S′[i] = ~S[i] \ T for all i ∈ [`]. If C is partially ~S-respecting then it
is also partially ~S′-respecting and Tag~S′(C) = Tag~S(C) \ T .

2. Let ~S′ be the vector such that ~S′[i] = ~S[i]× T for all i ∈ [`]. If C is partially ~S′-respecting then
it is also partially ~S-respecting and Tag~S′(C) = Tag~S(C)× T .

Since C is set-respecting, we have that for all j ∈ [`′], Dj is partially ~S∗-respecting, Uj is partially
~S∗−1-respecting, and Vj is partially ~S∗[1]-respecting. It follows that Vj must consist of only addition
and subtraction gates and therefore, the circuit D′j = Vj(Uj(~m)) is also partially ~S∗−1-respecting. Since
~S∗−1[j] = ~S[j]×Mi for all j ∈ [`] it follows from Claim A.12 that D′j is also partially ~S-respecting. By
the definition of the transformation T we have that for all j ∈ [`′]:

Tag~S∗(Dj) \ ~S∗[1] = Tag~S(D′j)×Mi . (6)

SinceC is ~S∗-respecting, we have that the circuitL taking the inputs (~m∗−1, (D1(~m∗), . . . , D′`(~m
∗)))

must respect the sets vector SL:

~SL = (~S∗−1, (Tag~S∗(D1), . . .Tag~S∗(D`′))) .

In particular, it partially respects ~SL and Tag~SL
(L) = [k]× [n].

Let ~S′L be a vector such that for every j[`+ `′] we have:

~SL[j] \ ~S∗[1] = ~S′L[j] . (7)

Recall that for every j ∈ [`]:

~S∗−1[j] \ ~S∗[1] = ~S∗−1[j] = ~S[j]×Mi .
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And together with (6) we get that:

~S′L = (~S, (Tag~S(D′1), . . .Tag~S(D′`′))) .

By (7) together with Claim A.12 we get that L is also partially ~S′L-respecting and:

Tag~S′L
(L)×Mi = Tag~SL

(L) \ ~S∗[1] = [k]× [n] \ ([k]× [n] \Mi) = [k]×Mi ,

implying that Tag~S(L) = [k]. Combining the above with (6), we get that the circuit:

C ′(~m) = L(~m,D′1(~m), . . . , D′`′(~m)) ,

is partially ~S-respecting and that Tag~S(C ′) = [k]. Therefore, the circuit C ′ is ~S-respecting (over the
universe set [k]).

It is left to show thatC(~m∗) = αi·C ′(~m). We start by showing that for every j ∈ [`′],Dj(~m
∗) = αi·

D′j(~m). Since the circuit Vj is partially ~S∗[1]-respecting it must consist of only addition and subtraction
gates and therefore, there exists a constant β ∈ Zp such that Vj(α) = β · α for every α ∈ Zp. Therefore
we have that D′j(~m) = Vj(Uj(~m)) = β · Uj(~m). Since the circuit Dj is partially ~S∗-respecting, Uj is
partially ~S∗−1-respecting, and Vj is partially ~S∗[1]-respecting it must be that:

Dj(~m
∗) = Uj(~m

∗
−1) · Vj(~m∗[1]) = Uj(~m) · Vj(αi) = Uj(~m) · β · αi = D′j(~m) · αi .

Recall that the circuit L is ~SL-respecting where:

~SL = (~S∗−1, (Tag~S∗(D1), . . .Tag~S∗(D`′))) .

Therefore, there exists a function Tag as in Definition 6.2.

Claim A.13. for every sub-circuit D of L computing the wire wD, if ~S∗[1] ∈ TagwD then:

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = αi ·D(~m, (D′1(~m), . . . , D′`′(~m))) ,

and if if ~S∗[1] 6∈ TagwD then:

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = D(~m, (D′1(~m), . . . , D′`′(~m))) .

Before proving the claim we show that Claim A.13 completes the proof of Claim A.9. Since the
output wire wL of L satisfies ~S∗[1] ∈ TagwL = [k]× [n] we have that:

C(~m∗) =

L(~m, (D1(~m∗), . . . , D′`(~m
∗))) =

L(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = αi · L(~m, (D′1(~m), . . . , D′`′(~m)))

= αi · C ′(~m)

Proof of Claim A.13. If D is in input wire of L, then either D = ~m[j] for some j ∈ [`] or that D =
Dj(~m

∗) for some j ∈ [`′]. If D = ~m[j] for some j ∈ [`] we have that ~S∗[1] 6∈ TagwD = ~S∗−1[j], and
that:

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = D(~m[j]) = D(~m, (D′1(~m), . . . , D′`′(~m))) .

If D = Dj(~m
∗) for some j ∈ [`′] we have that ~S∗[1] ∈ TagwD = Tag~S∗(D1), and that:

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = Dj(~m
∗) = αi ·D′j(~m) = αi ·D(~m, (D′1(~m), . . . , D′`′(~m))) .
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In any case the claim holds where D is an input wire.
Let D be a sub-circuit of L such that the top gate in D is adding two wires wU , wV computed

by the sub-circuits U, V respectively where U, V satisfy the claim. (The case of subtraction gate is
analogues.) Since D is partially ~SL-respecting we have that Tag(wD) = Tag(wU ) = Tag(wV ). If
~S∗[1] ∈ Tag(wD) = Tag(wU ) = Tag(wV ) we have that:

U(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = αi · U(~m, (D′1(~m), . . . , D′`′(~m))) ,

V (~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = αi · V (~m, (D′1(~m), . . . , D′`′(~m))) ,

and since D = U + V :

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = αi ·D(~m, (D′1(~m), . . . , D′`′(~m))) .

Similarly, if ~S∗[1] 6∈ Tag(wD) = Tag(wU ) = Tag(wV ) we have that:

U(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = U(~m, (D′1(~m), . . . , D′`′(~m))) ,

V (~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = V (~m, (D′1(~m), . . . , D′`′(~m))) ,

and since D = U + V :

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = D(~m, (D′1(~m), . . . , D′`′(~m))) .

Let D be a sub-circuit of L such that the top gate in D is multiplying two wires wU , wV computed
by the sub-circuits U, V respectively where U, V satisfy the claim. Since D is partially ~SL-respecting
we have that Tag(wU )∩Tag(wV ) = ∅ and that Tag(wD) = Tag(wU )∪Tag(wV ). If ~S∗[1] ∈ Tag(wD)
since the set ~S∗[1] is disjoint from all sets in ~S∗−1 and since Tag(wU ) ∩ Tag(wV ) = ∅, the set ~S∗−1 must
be contained in exactly one of the sets Tag(wU ),Tag(wV ). Assume w.l.o.g that ~S∗[1] 6∈ Tag(wU ) and
~S∗[1] ∈ Tag(wV ). Therefore:

U(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = αi · U(~m, (D′1(~m), . . . , D′`′(~m))) ,

V (~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = V (~m, (D′1(~m), . . . , D′`′(~m))) ,

and since D = U · V :

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = αi ·D(~m, (D′1(~m), . . . , D′`′(~m))) .

Similarly, if ~S∗[1] 6∈ Tag(wD), then since Tag(wD) = Tag(wU ) ∪ Tag(wV ) we have that ~S∗[1] 6∈
Tag(wU ) and ~S∗[1] 6∈ Tag(wV ). Therefore:

U(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = U(~m, (D′1(~m), . . . , D′`′(~m))) ,

V (~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = V (~m, (D′1(~m), . . . , D′`′(~m))) ,

and since D = U · V :

D(~m, (αi ·D′1(~m), . . . , αi ·D′`′(~m))) = D(~m, (D′1(~m), . . . , D′`′(~m))) .

We have that the claim holds in all cases where D is computing an intermediate wire of L.
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A.3.3 Proof of Claim A.6

The simulator S first recovers the original vector of sets ~S from ~S∗. S then emulates the execution of
A(1n, p, ~S). Let M and α be the variables sampled by T and let ` be the length of ~S and ~m. Whenever
A make an oracle call C toM(p, k, ~S, ~m), S translates it to a query C ′ to its oracleM(p, k, ~S∗, ~m∗)
with the same answer. The circuit C ′ evaluates the circuit C on the elements ~m∗[2], . . . , ~m∗[` + 1] and
multiplies the result by m∗[1] = α. S forwards all answers to A and outputs the same as A. It is left to
show S perfectly simulates the oracleM(p, k, ~S, ~m). That is, we show that C ′ is ~S∗-respecting iff C ′

is ~S-respecting and that C ′ outputs 0 iff C outputs 0.
If C is ~S-respecting there exist a function Tag as in Definition 6.2. Let Tag′ be a function from

the wires of C ′ to 2[k]×[n] defined as follows. For every wire w in C ′ that corresponds to a wire in
C, Tag′(w) = Tag(w) × M . The wire w`+1

in for the input α satisfies Tag′(w`+1
in ) = [n] \ M and

for the new output wire, Tag′(wout) = [k] × [n]. It is straight forward to verify that Tag′ satisfies
Definition 6.2 iff Tag does. Specifically note that if Tag(wout) = [k] for the output wire of C, then
Tag′(wout) = [k]×M ∪ [k]× ([n] \M) = [k]× [n]. Since C ′ evaluates the circuit C on the elements
~m∗[1], . . . , ~m∗[`] = ~m[1], . . . , ~m[`] and α 6= 0 we have that C outputs β 6= 0 iff C ′ outputs α · β 6= 0.
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