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Abstract. In this paper, we propose a novel technique, called multi-output filtering model, to study
the non-randomness property of a cryptographic algorithm such as message authentication codes and
block ciphers. A multi-output filtering model consists of a linear feedback shift register (LFSR) and a
multi-output filtering function. Our contribution in this paper is twofold. First, we propose an attack
technique under IND-CPA using the multi-output filtering model. By introducing a distinguishing
function, we theoretically determine the success rate of this attack. In particular, we construct a
distinguishing function based on the distribution of the linear complexity of component sequences,
and apply it on studying TUAK’s f1 algorithm, AES, KASUMI and PRESENT. We demonstrate
that the success rate of the attack on KASUMI and PRESENT is non-negligible, but f1 and AES
are resistant to this attack. Second, we study the distribution of the cryptographic properties of
component functions of a random primitive in the multi-output filtering model. Our experiments
show some non-randomness in the distribution of algebraic degree and nonlinearity for KASUMI.

1 Introduction

Let C be a cryptographic scheme (keyed or non-keyed) with n-bit input and m-bit output.
Clearly it can be simply regarded as a vectorial Boolean function from Fn2 to Fm2 . When C
involves a key K, we should write CK for strictness, but we prefer to use C for simplicity
if the context is clear. In most circumstances, the cryptographic properties of C, such as
algebraic degree and nonlinearity, are difficult to be exploited due to the large values of
n and m. A natural idea to overcome this difficulty is to restrict the inputs of C on a
subspace S of Fn2 . For instance, the subspace S can be generated by an `-stage linear
feedback shift register (LFSR). Then we obtain a function C ′ from S to its image set
C(S). By adapting the size of S, we can study the cryptographic properties of C ′. If C
has good randomness properties, it should be difficult to find a subspace S such that C ′
has bad randomness properties. We must mention that the above method for analyzing
the cryptographic scheme C lies in a more general notion called subset cryptanalysis [27],
which tries to track the statistical evolution of a certain subset of values through various
operations in the cryptographic schemes. One is referred to [17] for a successful application
of the subset cryptanalysis to find a 5-round collision on Keccak [5].

We achieve the above idea by proposing a new technique, called a multi-output filter-
ing model. This model aims to exploit the non-randomness property of a cryptographic
algorithm C such as message authentication codes and block ciphers. General speaking, a
multi-output filtering model consists of a linear feedback shift register and a multi-output
filtering function. The LFSR is used to generate an input subspace of C and C is used as a
multi-output filtering function. This multi-output model is a generalization of the classic
filtering model in stream ciphers [37] as it outputs multiple bits, instead of only one bit, for
the set of inputs to C generated by an LFSR. Under this model, we can obtain a number
of component sequences and component functions in the multi-output model. This paper
is devoted to studying the randomness properties of C through investigating its component
sequences and component functions. The detail of the multi-output filtering model can be
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found in Section 3. We should mention that in this paper we restrict C to MACs and block
ciphers, but this model can also be generalized to study other cryptographic primitives.

Thanks to the fruitful research outcome on the theory of sequences and Boolean func-
tions, we can study the distribution of certain properties of the component sequences and
functions. Such properties include linear complexity of the component sequences, algebraic
degree and nonlinearity of the component functions, etc. Before describing our contribution
in further, let us first briefly introduce the cryptographic primitives on which we apply the
multi-output filtering model, especially on the recently proposed f1 algorithm of the TUAK
algorithm set [41] for the 3rd Generation Partnership Project.

TUAK is proposed to the 3rd Generation Partnership Project (3GPP) for providing
authenticity and key derivation functionalities in mobile communications. The design of
TUAK is based on the Keccak permutation with 1600-bit internal state due to its good
attack resistance property and its simple and efficient constructions of message authenti-
cation code and key derivation function. The TUAK algorithm set contains seven different
algorithms, namely f1 to f5 and f ∗1 and f ∗5 . The f1 ( or f ∗1 as re-synchronisation message
authentication) algorithm ensures the authenticity of messages, f2 is used for generating
responses and f3 to f5 and f ∗5 are used as key derivation functions. Since TUAK’s design is
closely based on Keccak’s design, one may expect that the security property of TUAK may
inherit from that of Keccak. The security evaluation for TUAK is essential for guaranteeing
the authenticity in mobile communications. The details of TUAK can be found in Appendix
A. The analysis of the resistance of TUAK to many known attacks has been presented in
[22]. In this paper, we restrict ourselves to the analysis of the MAC generation algorithm
f1 in the multi-output filtering model. Our analysis also considers the block ciphers AES
[11], KASUMI [40], and PRESENT [8].

In Section 5, we introduce a generic distinguishing attack framework on C under the
indistinguishability under chosen-plaintext attack model (IND-CPA for short), which is a
variant of indistinguishability of encryptions proposed by Goldwasser and Micali [19] in
public-key cryptography settings. This attack makes use of a special object, called a distin-
guishing function. We theoretically determine the success rate of the attack. In particular,
we construct a new type of distinguishing function by relying on the distribution of the
linear complexity of the component sequences. Applying this new distinguishing function
on f1, AES, KASUMI and PRESENT, we can distinguish the output of both KASUMI and
PRESENT with the output of a random primitive with non-negligible success rate. On the
other hand, our study shows that f1 and AES is immune to this attack.

Furthermore, in Section 6, we study the distribution of the algebraic degree and nonlin-
earity of the component functions. We first determine the distribution of these two proper-
ties for the component functions of a random multi-output filtering function. By performing
experiments on f1,AES,KASUMI and PRESENT, it can be seen that, for KASUMI, the den-
sity of its component functions with algebraic degree less than ` − 2 is greater than the
random case, where ` is the length of the LFSR. While the degree distributions of the
other primitives are similar to that of the random case. This can be a potential risk of the
security of KASUMI when an adversary uses the decoding method of Reed-Muller code.

The rest part of the paper is organized as follows. Section 2 introduces the preliminaries
of this paper. In Section 3, we first describe the multi-output filtering model in which a
linear feedback shift register (LFSR) is used to generate the inputs of a multi-output
function. In Section 4, we describe the attack model of our distinguishing attack. Section 5
presents the construction of a distinguishing function based on the linear complexity of
component sequences. In Section 6, we present some non-randomness in the distribution of
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the algebraic degree and the nonlinearity of component functions of f1 and other primitives.
Section 7 concludes our work.

2 Preliminaries

In this section, we provide some definitions and results that will be used in this paper. We
first give a list of notations that we use throughout the paper.

Notations

- F2: the Galois field with two elements {0, 1};
- F2n : a finite field with 2n elements that is defined by a primitive element α;
- Fn2 : a vector space with 2n elements and each element is a binary n-tuple;
- d(f): the algebraic degree of a Boolean function f ;
- NL(f): the nonlinearity of a Boolean function;
- LC(s): the linear complexity of a binary sequence s with period N ;
- Π: Keccak-f [1600] permutation.
- Bn: the set of all Boolean functions with n variables.

2.1 Basic definitions on sequences

We present some definitions on sequences. For a well-rounded treatment of sequences and
Boolean functions, the reader is referred to [10,21].

Let s = {si} be a sequence generated by a linear feedback shift register (LFSR) whose
recurrence relation is defined as

s`+i =
`−1∑
j=0

cjsi+j, si, ci ∈ F2, i = 0, 1, ... (1)

where p(x) =
∑̀
i=1

cix
i ∈ F2[x] is the characteristic polynomial of degree ` of the LFSR. A

binary sequence s in Eq. (1) with period 2` − 1 generated by an LFSR is called an m-
sequence. Let s = {si} be an m-sequence of period 2` − 1 and f(x0, ..., x`−1) be a Boolean
function in ` variables. We define a sequence a = {ai} as

ai = f(sr1+i, sr2+i, ..., srt+i), si, ai ∈ F2, i ≥ 0

where r1 < r2 < . . . < rt < ` are tap positions. Then the sequence a is called a filtering
sequence and the period of a equals 2` − 1.

The linear complexity or linear span of a sequence is defined as the length of the shortest
LFSR that generates the sequence. For an m-sequence, the linear complexity of an m-
sequence is equal to the length of its LFSR [21]. On the other hand, the linear complexity
of a nonlinear filtering sequence lies in the range of ` and 2`− 1 [24]. If a filtering sequence
has linear complexity 2` − 1, then we call it has optimal linear complexity.

2.2 Basic definitions on Boolean functions

There is a one-to-one correspondence between a sequence and a Boolean function. The
correspondence between a Boolean function and a sequence can be obtained by computing
the trace representation of a given sequence using the Fourier transformations. For the
details, see Chapter 6 of [21].
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Definition 1. Let f be a Boolean function from Fn2 to F2. Then f can be uniquely repre-
sented by its algebraic normal form (ANF) as

f(x) =
∑

I∈P({0,...,n−1})

aIx
I ,

where aI ∈ F2, x
I =

∏
i∈I xi and P({0, . . . , n− 1}) is the power set of {0, . . . , n− 1}. The

algebraic degree of f , denoted by d(f), is the maximal size of I in the ANF of f such that
aI 6= 0.

One of the most important properties of Boolean functions is its nonlinearity, which
was proposed to measure the distance of it to all affine functions. A cryptographic strong
Boolean function is supposed to have high nonlinearity to resist linear attacks [29].

Definition 2. The Walsh spectrum of a Boolean function f to a point a ∈ Fn2 , denoted by
Wf (a), is defined by

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x

where a · x is the inner product of a and x.

The nonlinearity of f can be defined in terms of the Walsh spectrum as

NL(f) = 2n−1 −max
a∈Fn

2

|Wf (a)|
2

.

When n is an even positive integer, it is known that the maximum value if the nonlinearity
of a Boolean function f is NL(f) ≥ 2n−1 − 2n/2−1 [10]. A Boolean functions achieving this
bound is called a bent function.

Let m and n be two positive integers. A function F , from Fn2 to Fm2 , defined by
F (x) = (f1(x), f2(x), ..., fm(x)) is called a (n,m)-function, multi-output Boolean functions,
or vectorial Boolean functions, where fi’s are called coordinate functions [10].

3 Multi-Output Filtering Model

In this section, we provide a detailed description of the multi-output filtering model of a
cryptographic primitive.

3.1 Description of the multi-output filtering model

Let a = {ai}i≥0 be a binary sequence generated by an `-stage linear feedback shift register
(LFSR) whose recurrence relation is

a`+i =
`−1∑
j=0

cjai+j, cj ∈ F2, i ≥ 0, (2)

where p(x) = x` +
∑`−1

i=0 cix
i is a primitive polynomial of degree ` over F2 and STATEj =

(aj, aj+1, ..., a`−1+j) is called the j-th state of the LFSR. Using this LFSR, from the above
sequence a, we generate a set of messages of n bits as follows R = {Rj : 0 ≤ j ≤ 2` − 2}
where

Rj = (aj, aj+1, · · · , aj+n−1), j = 0, 1, ..., 2` − 2, (3)
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where modulo 2`−1 is taken over the indices of ai’s. Note that the elements in R are in the
sequential order. We now define the multi-output filtering model on F : {0, 1}k×{0, 1}n →
{0, 1}m. For a fixed key K and for each Rj with 0 ≤ j ≤ 2` − 2, we obtain

Cj = F (K,Rj)
= (g0 (K,Rj) , . . . , gm−1 (K,Rj))

, (yj,0, yj,1, . . . , yj,m−1).
(4)

Using a matrix, we can represent the above Cj as
C0

C1
...

C2`−2

 =


y0,0 y0,1 · · · y0,m−1
y1,0 y1,1 · · · y1,m−1

...
...

...
y2`−2,0 y2`−2,1 · · · y2`−2,m−1

 . (5)

The matrix (5) provides us two methods to study cryptographic properties of F as
described below.

I. Sequence point of view: Each column in the above can be considered as a sequence
of period 2`−1 for a nonzero initial state of the LFSR. Each sequence of period 2`−1
is called a component sequence. We denote the i-th component sequence by si and
si = {y0,i, y1,i, ..., y2`−2,i}. si can also be considered as a filtering sequence with filter
function gi, 0 ≤ i ≤ m− 1.

II. Boolean function point of view: From (4) and (5), we see the following process

gi :
{

STATEj ∈ F`2 of the LFSR
}
→ {Rj ∈ Fn2} → i-th component sequence.

Therefore, each component sequence can also be regarded as a Boolean function on
F`2. Note that, for a nonzero initial state, the LFSR cannot generate all-zero state, we
need to query F to get the output value F (K, 0n) for all-zero input for all component
Boolean functions. With a fixed K in F , using an `-stage LFSR, we obtain m Boolean
functions on F`2. Mathematically, m Boolean functions gi : F2` → F2 (0 ≤ i ≤ m− 1)
are defined as

gi(K, STATEj) = yj,i, (0 ≤ j ≤ 2` − 2). (6)

We call each Boolean function gi a component or coordinate function of F .

3.2 Application to TUAK’s f1,AES, KASUMI and PRESENT

For the sake of clarity on the input assignment, we briefly explain how we apply the multi-
output filtering model on TUAK’s f1, and block ciphers AES, PRESENT and KASUMI.

TUAK’s f1: Recall that f1 takes K, RAND, and SQN as inputs. Now we fix a key K and
a sequence number SQN. We use an `-stage LFSR to generate random numbers RANDj

in f1. Denoting by the i-th state of the `-stage LFSR by STATEi ∈ F`2. We obtain 2` − 1
different n-bit RAND numbers R = {Rj : 0 ≤ j ≤ 2` − 2} by Eq. (3) and the component
sequences and component functions are obtained using Eq. (4) with Cj = f1 (K,Rj, SQN).

Remark 1. For TUAK’s f1 function, in Eq. (5), recovering the last bit y2`−2,i for each
component sequence si from the previous 2`− 2 bits is equivalent to recovering C2`−2 from
{C0, ..., C2`−3}. This leads to a MAC forgery attack on f1.
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AES, PRESENT and KASUMI: Recall that AES 128 accepts a 128-bit key and a 128-bit
input and produces an output of 128 bits, and AES 256 accepts a 256-bit key and a 128-bit
input and produces an output of 128 bits [11]. KASUMI has a 64-bit input, a 128-bit key, and
a 64-bit output. For AES 128 and AES 256, the inputs messages of 128 bits are generated
using an LFSR of length ` and by Eq. (3), and the component sequences and functions are
obtained using Eq. (4) with Cj = AES 128 (K,Rj) and Cj = AES 256 (K,Rj). PRESENT
[8] is a 64-bit block cipher with a 80-bit key. The component sequences and functions of
PRESENT are obtained using Eq. (4) with Cj = PRESENT (K,Rj). KASUMI [40] is a 64-
bit block cipher with a 128-bit key. The 64-bit inputs messages are generated by Eq. (3)
with n = 64 and the component sequences and functions are obtained using Eq. (4) with
Cj = KASUMI (K,Rj).

4 Distinguishing Attack Model

In this section, we describe the attack model of our distinguishing attack on a message
authentication code and a block cipher. In this paper we restrict ourselves to message
authentication codes and block ciphers. The attack model is based on indistinguishability
(IND) of encryptions under chosen-plaintext attack (CPA) (IND-CPA), which was first de-
veloped due to Goldwasser and Micali [19] in public-key settings. In [3], Bellare et al. stud-
ied the indistinguishability of encryptions under chosen-plaintext attack in the symmetric
key setting. Here, we use the same attack model to distinguish MACs (or ciphertexts) in
the symmetric-key setting. However, we develop a new distinguishing technique based on
linear complexity of component sequences in the multi-output filtering model for deciding
the MAC (or ciphertext). For the message authentication code, the aim of an adversary
is to distinguish two MACs for two messages P0 and P1 with a high probability where
messages P0 and P1 were chosen by the adversary. On the other hand, for an encryption,
the adversary aims at distinguishing two ciphertexts for two chosen messages P0 and P1

with a high probability.
Let F : {0, 1}k × {0, 1}n → {0, 1}m be a cryptographic algorithm which accepts two

inputs, a key of length k and a message of length n and produces an output of length m.
Assume that P0 and P1 are two messages of length n chosen by the adversary, the length
of the key K is k and ci = F (K,Pi), i = 0, 1. The aim of the distinguishing attack is to
distinguish c0 and c1 for the messages P0 and P1 with high probability. We denote the
random oracle by O and the adversary by A. The indistinguishability game [2,19] between
the random oracle and the adversary is played as follows.

(1) Fixing a key K and generating the set of messages R = {R0, R1, ..., RN−1} using an
LFSR with a primitive polynomial of degree `, N = 2` − 1;

(2) The adversary A randomly picks up P0 ∈ R and P1 6∈ R and sends both {P0, P1} to
O.

(3) The random oracle picks up Pb
$←− {P0, P1}, b = 0 or 1 and computes c = F (K,Pb). O

sends c to the adversary A.
(4) Once A receives c as a challenge, the adversary performs a technique and decides b′

and returns b′ to O where b′ = 0 or 1;
(5) If b = b′, then adversary A succeeds; otherwise she fails.

We also summarize the game in Figure 1.
It is easy to see that, for a random cipher B, the success rate of winning the game for

an adversary is 1/2. In the following section, we present a new method to distinguish the
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Adversary A Random oracle O
R = {R0, R1, . . . RN−1}
P0 ∈ R, P1

$←− {0, 1}n
and P1 /∈ R

{P0, P1}−−−−−−−−−−−−→
b

$←− {0, 1}
c = F (K,Pb)

c←−−−−−−−
A applies distinguishing function h

to decide b′

b′−−−−−−−→ Check b′ =? b

Success if b′ = b←−−−−−−−−−−−
Fail if b′ 6= b
←−−−−−−−−

Fig. 1: Indistinguishability game

MACs produced by f1 for P0 and P1 with probability greater than 1/2. Therefore, the new
method provides a construction of a distinguisher on f1.

5 Distinguishing Attack Based on Linear Complexity

In this section, we first present a general technique to build a distinguisher of a crypto-
graphic primitive, followed by the theoretical determination of the success probability of
the distinguishing attack. In particular, we make use of the distribution of the linear com-
plexity of component sequences of a primitive to develop a new distinguisher. Finally we
apply this technique on f1, AES, KASUMI, and PRESENT.

5.1 A generic framework to build a distinguisher

We start this section by the following definition.

Definition 3. Let R and S be two subsets of U , where S = U \ R. Let Ω be a subset
of R × S. Let C be a cryptographic scheme from U to some set V . For any P0 ∈ R and
P1 ∈ S, define a distinguishing function h : {C(P0), C(P1)} → {0, 1}. We say that C is
distinguishable with respect to R,S, h, Ω if the average probability∑

i∈{0,1}

Pr
(
h(c) = i ∧ c = C(Pi)

)
is non-negligible compared with 1/2, when (P0, P1) is randomly chosen from Ω.

Now we state the main theorem below and provide the proof of it in Appendix B due
to the page limit.

Theorem 1. Let the notations be the same as above. Now we define a subset CS of U ,
which is called the condition set. Let S ′ ⊂ S and Ω = R × S ′. For any P0 ∈ R, P1 ∈ S ′,
let us define the distinguishing function h : {C(P0), C(P1)} → {0, 1} as

h(y) =

{
0 if y = C(x) and x ∈ CS,
1 otherwise.

(7)
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Define the following two probabilities

q0 = Pr (x0 ∈ R ∧ x0 ∈ CS) ,
q1 = Pr (x1 ∈ S ′ ∧ x1 ∈ CS) .

(8)

where (x0, x1)
$←− Ω. Then the average probability is

∑
i∈{0,1}

Pr (h(c) = i ∧ c = C(Pi) ) =
1 + (q0 − q1)

2
. (9)

Several remarks on Theorem 1 are as follows:

(i) An attacker will expect the probability value in (9) to be as large as possible so that
she can distinguish the cryptographic scheme C with a high probability.

(ii) The difficulty of finding the distinguishing attack described in Theorem 1 is to find a
proper condition set CS such that q0 − q1 is large.

(iii) The value of q0 − q1 could be negative. If the attacker uses CS to replace CS, q0 − q1
will be positive, and the probability will be greater than 0.5. Thus, the problem of
finding a condition set such that q0 − q1 is large becomes the problem of finding the
condition set such that |q0 − q1| is large.

(iv) In the rest of this section, we will show how to construct such set CS, which leads to
distinguishing attack on KASUMI and PRESENT with non-negligible success rate.

5.2 Distribution of the linear complexity of component sequences

We use f1,AES,KASUMI and PRESENT as multi-output filtering functions and study the
distribution of the linear complexities of their component sequences. Meidl and Niederreiter
studied the expectation of the linear complexity of random binary periodic sequences in [30].
Unfortunately, the average values of the linear complexities of the component sequences
of AES, f1, KASUMI, PRESENT are very close to the theoretical value determined in [30]
according to our experiments. This motivates us to look at the whole distribution of the
linear complexity of the component sequences instead of considering only the average value.
We perform the following test for the linear complexity and have an interesting observation
on the component sequences of KASUMI and PRESENT.

Test of the distribution of linear complexity. Usually, for a primitive C, it is difficult
to determine the distribution of linear complexity of its component sequences. Of course,
one can choose a subset of inputs to the primitive to estimate the linear complexity dis-
tribution. However, since the input space is very large, it is hard to measure the accuracy
of the estimated distribution. To avoid such problem, we propose a new method to test
the distribution. This goal is achieved by choosing two (large) subsets of inputs and by
comparing the distributions of the linear complexity of their component sequences. In par-
ticular, we choose one subset LI of the inputs to be generated by an `-stage LFSR and

the other subset RI = (LI \ {P0}) ∪ {P1}, where P0
$←− LI and P1

$←− LI. Note that the
elements in LI are ordered according to Eq. (3). It is clear that if the C has very good
random property, it should not be easy to distinguish two distributions for LI and RI.
Our method consists of the following three steps.

Now fixing a primitive C and an `-stage LFSR:
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Step 1 (Generating component sequences). We randomly choose Nkey keys.

1. For all keys, using LI as the set of inputs and C as a multi-output filter, we obtain
m ·Nkey component sequences. This set of component sequences is denoted by Q1.

2. Similarly, using RI as the inputs, we generate another set of m · Nkey component
sequences, which is denoted by Q2.

Step 2 (Computing linear complexity). We compute the linear complexities of the
sequences in Q1 and Q2 and count the number of component sequences in Qi with the
linear complexity 2` − 2 and 2` − 1, denoted by N i

2`−1 and N i
2`−2, where i = 1 or 2.

Step 3 (Comparing the distributions). Now we compare two distributions by com-
puting the slopes sli of the line between two points (2` − 2, N i

2`−2) and (2` − 1, N i
2`−1),

where

sli =
N i

2`−1 −N
i
2`−2

(2` − 1)− (2` − 2)
= N i

2`−1 −N
i
2`−2.

If the difference between sl1 and sl2 is non-negligible, we can make use of it to build a
distinguisher of C, which is described in the next section. The worst case computational
complexity for exhausting all `-stage LFSRs of the above three steps is

φ(2` − 1)

`
×Nkey × 2`× (2` − 1)×m, (10)

where φ is the Euler phi function. We perform the experiment using these parameters on
f1, AES, KASUMI and PRESENT in the next section.

Distribution of f1, AES, KASUMI and PRESENT. In our experiment, we choose ` = 8
and Nkey = 108. By Eq. (10), the worst case complexity for the primitive f1 is 250.27 (some
computation can be performed in a parallel way). We present the result in the following
figures. In the figures, the red (resp. blue) line represents the distribution of sequences in
Q1 (resp. Q2).
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Fig. 2: KASUMI
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Fig. 3: PRESENT
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Fig. 4: AES
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Fig. 5: f1

From Figs. 2 and 3, one can observe that, for KASUMI and PRESENT, the difference
of the distribution of the linear complexity for sequences in Q1 and Q2 is non-negligible.
While Figs. 4 and 5 show this is not the case for AES and f1.

5.3 The new distinguishing attack

We now present the details of our distinguishing attack, which is achieved through con-
structing a distinguishing function h. The construction of the distinguishing function is
based on the linear complexity distribution of the component sequences of a primitive in
the multi-output filtering model.

Constructing the distinguishing function. Recall that the distinguishing function is
defined in Definition 3. We use the notations in Theorem 1 and the attack model is depicted
in Fig. 1.

1. Choosing an `-stage LFSR with a primitive polynomial to generate the inputs of length
n in R (see Eq. (3)). For f1 and AES, n = 128; for KASUMI and PRESENT, n = 64.

2. Constructing S = Fn2 \ R;
3. Randomly choose a message P0 ∈ R and P1 ∈ S;
4. Let NLC be the number of component sequences with linear complexity LC where
` ≤ LC ≤ 2` − 1;

5. Defining the condition set

CS =

y ∈ Fn2

∣∣∣∣∣
using (R \ {P0}) ∪ {y} as the inputs of a primitive in the
multi-output filtering model, the slope of the line between
the points (2` − 2, N2`−2) and (2` − 1, N2`−1) is less than t.

 ;

6. The distinguishing function h is defined in Eq. (7) using the condition set CS;
7. q0, q1 are the probability values defined in Definition 3.

5.4 An example of the attack

In this section, we apply the attack with our distinguishing function defined in Section 5.3
on f1, AES, KASUMI, and PRESENT. Theorem 1 and the observations in Figs. 2 and 3
enable us to gain a non-negligible success rate of the attack on KASUMI and PRESENT.
For simplicity, we use an 8-stage LFSR to conduct our attack. However, one can use an
arbitrary stage LFSR based on computation capability.

We first choose an 8-stage LFSR to construct the set R. We then randomly choose 210

keys. For each key, a message P0 ∈ R and message P1 ∈ S are chosen randomly. In Fig. 1,
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we use the distinguishing function h to execute the attack. It is worth to mention that, to
test the average success rate is stable, we repeated the experiment 20 times by choosing
different groups of 210 keys and found similar results for all experiments. Due to the page
limit, we present the average success rate for an experiment in Table 1, where we use the
upper bound of the slope t and the 8-stage LFSR the same as those in Table 5 in Appendix
C.

Table 1: Average success rate of our attack on f1, AES, KASUMI and PRESENT
Primitive t q0 q1 Avg. Succ. Rate

f1 2 0.20398 0.194458 50.476%

AES 2 0.193848 0.20044 50.329%

KASUMI 4 0.421875 0.454103 51.612%

PRESENT 5 0.5686 0.540285 51.416%

One can observe from the average success rate in Table 1 that the outputs of both
KASUMI and PRESENT can be distinguished from a random primitive with a non-negligible
probability. On the other hand, the performance of f1 and AES is very similar to the random
one.

6 Distribution of the Algebraic Degree and Nonlinearity of the
Component Functions

In this section, we investigate the distribution of the algebraic degree and the nonlinearity of
the component functions of f1, AES, KASUMI, and PRESENT in the multi-output filtering
model. To measure the randomness property, we first determine the distribution of the
algebraic degree and the nonlinearity of component functions using a random primitive as
the multi-output filter. Comparing this ideal distribution with those of f1, AES, KASUMI
and PRESENT obtained by performing experiments, some non-randomness property of
KASUMI is discovered. On the other hand, our experimental results show that f1, AES and
PRESENT perform very similar to the ideal case in the sense of the distributions of the
algebraic degree and nonlinearity.

6.1 Algebraic degree distribution

Recall that the algebraic degree of a Boolean function is defined in Section 2. The following
result states the number of Boolean functions with a given algebraic degree. The first part
of the result can also be found in [10]. We provide a simple proof below for the completeness.

Theorem 2. Let f be a Boolean function on F2n. Then the number of Boolean functions

with algebraic degree at most d is 2
∑d

i=0(
n
i ), and the number of Boolean functions with

algebraic degree exactly d is
(

2(n
d ) − 1

)
2
∑d−1

i=0 (n
i )

Proof. Denoting the set Ω = {0, 1, . . . , n− 1}. Let the ANF of f be f(x) =
∑

I∈P(Ω) aIx
I .

If the degree of f is at most d, then all aI = 0 for |I| > d. Clearly there are
∑d

i=0

(
n
i

)
terms

in the ANF of f with |I| ≤ d, and their coefficients can be either 0 or 1. Therefore there

are 2
∑d

i=0(
n
i ) Boolean functions with degree at most d. For simplicity, let us denote by Ad

the number of Boolean functions with degree at most d. Then by noting the number of
Boolean functions with degree exactly d is Ad − Ad−1 we obtain the result. �
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Corollary 1. Let C be a random cryptographic primitive and L be an n-stage LFSR whose
characteristic polynomial is a primitive polynomial of degree n. We use C as a multi-output
filtering function and L to generate the inputs of C. Then the probability of the component

functions having degree at most d is 2
∑d

i=0(
n
i )

22n
. In particular, Pr(d ≤ n− 3) = 1

2n+1 .

Several remarks on the application of Theorem 2 are in the sequel:

(1) Assume the primitive C is used to generate MACs (for instance the function f1 in
TUAK). If the percentage of component functions with degree less than n− 2 is large,
then we may use the decoding method of the Reed-Muller code R(n, n − 3) to forge
the MACs. See [28] for the Reed-Muller decoding. Note that the code R(n, n − 3) is
the set of Boolean functions on F2n with algebraic degree at most n− 3. Therefore, we
need the probability Pr(d ≤ n− 3) to be as small as possible.

(2) On the other way, as shown in Corollary 1, for a random primitive, the probability
Pr(d ≤ n− 3) = 1

2n+1 . So, for the primitive C, if this probability is very different with
1

2n+1 , some non-randomness properties may be exploited.
(3) The probability Pr(d ≤ n − 3) is actually affected by the diffusion property of the

primitive C. Assumed C is a keyed primitive from F2n to F2m . In the modern design
of ciphers, by increasing the number of iteration rounds, normally C could attain the
maximal possible degree for any key K. For a keyed primitive CK , in the multi-output
model, we restrict the inputs of CK to a subspace S generated by an LFSR. For a fixed
key K, CK can be regarded as a vectorial function and the ANF of CK has the form
CK(x) =

∑
I∈P(Ω) aI(K)xI , where Ω = {0, . . . , n − 1} and P(Ω) is the power set and

aI(K) ∈ F2m are the coefficients of xI (aI is a function with K as the variable) [10].
Then the restrictions of CK |S =

∑
I∈P(Ω),I⊂S aI(K)xI . The degree d of the component

functions is then determined by aI with |I| = d. If the diffusion property of C and
the key generating algorithm are good, it should be very rare that all aI = 0 for
|I| ≥ dim(S)− 2.

To better understand Theorem 2 and the above comments, for f1,AES,KASUMI and
PRESENT, we perform the following test on the distribution of the algebraic degree of their
component functions.

Statistical Test 1 By Corollary 1, using an LFSR with a primitive polynomial of degree
8, the probability that the degree of the component functions is smaller than 7 is 1

29
=

19.53125 × 10−4. For f1,AES,KASUMI and PRESENT, we apply the multi-output filtering
model as in Section 3.1. We choose 50, 000 keys for these primitives and compute the degree
of the component functions. The probability of the degree is smaller than 7 is listed in the
following table.

Table 2: Distribution of the degree smaller than 7
Cryptographic primitive Pr(d ≤ 6)

Random function 19.53125× 10−4

f1 19.87× 10−4

AES 19.77× 10−4

KASUMI 20.16× 10−4

PRESENT 19.58× 10−4

From Table 2, we can see that for KASUMI, the probability Pr(d ≤ 6) is much higher
than the one for other ciphers. To confirm this, we test another 50000 keys and found the
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probability is very close to it. This points out a distinguisher of KASUMI and other ciphers
in Table 2.

6.2 Nonlinearity distribution

The nonlinearity of a Boolean function is one of the most important cryptographic prop-
erties. A highly nonlinear function is used to avoid the linear attack and its variants. Let
f be a Boolean function on Fn2 . The nonlinearity of f is defined in Section 2. One can see
easily from its definition that, in other words,

NL(f) = max
g∈RM(1,n)

d(f, g),

where RM(1, n) denotes all Boolean functions with degree at most 1, and d(f, g) is the
weight of the sequence (f(x) + g(x) : x ∈ Fn2 ). It is well known that when n is even the
best nonlinearity a Boolean function may achieve is 2n−1 − 2n/2−1 and such functions are
called bent functions (see [10] for more details). However, such functions are very rare.
For a random Boolean function, we have the following result on the distribution of its
nonlinearity.

Theorem 3 ([36,10]). Let c be any strictly positive real number. The density of the set{
f ∈ Bn, NL(f) ≥ 2n−1 − c

√
n2

n−1
2

}
is greater than 1− 2n+1−c2n log2 e. If c2 log2 e > 1, then this density tends to 1 when n tends
to infinity.

Applying the above theorem on Boolean functions with 8 variables, we have the follow-
ing table. Note that the best nonlinearity we expect for Boolean functions with 8 variables
is 27 − 23 = 120.

Table 3: Lower bound of the density of Boolean functions in B8 with nonlinearity greater
than W

Lower Bound W of NL
Lower bound of the density of
Boolean functions with NL(f) ≥W

98 0.547478790614789878029979196008

97 0.719023101510754029847811117031

96 0.828242210249647874600628825765

95 0.896634306072499532736808245299

94 0.938757831567911386351203605713

93 0.964277746514500200807343273821

92 0.979486428025371618477752447455

91 0.988402673490240554092683405343

90 0.993545113167509528277258485524

From the above table, one can see that if the component functions of f1 are random,
the probability that the component Boolean functions have nonlinearity smaller than 90
is very small, which is 1− 0.993545113167509528277258485524 ≈ 0.00645. In view of this,
we perform the following statistical test for f1, AES, KASUMI and PRESENT.
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Statistical Test 2 Let the LFSR and the other settings be the same as in Statistical
Test 1. We list the distribution of the nonlinearity of the component functions of f1 and
AES in the following table. Since only the component functions with smallest nonlinearity
are important to us (as an attacker), we only list the probability that a Boolean function
has nonlinearity smaller than 90 or 91. The notation Pr<W denotes the probability that the
nonlinearity is smaller than W .

Table 4: The distribution of the nonlinearity of component sequences of f1, AES, KASUMI
and PRESENT

Cryptographic primitive Pr<90 Pr<91

Random Function 0.006455 0.011597

f1 0.000299 0.000690

AES 0.000306 0.000592

KASUMI 0.000299 0.000565

PRESENT 0.000308 0.000589

Unlike the distribution of the algebraic degree, from the above table we can not see
obvious difference among these four ciphers. However, one can still see that the probability
values Pr<90 and Pr<91 is still very different with the random case (although they are only
the upper bounds of the probability).

Although now we cannot derive attacks from Statistical Test 1 and Statistical Test 2,
it is interesting to observe some non-randomness in the aspect of the distribution of cryp-
tographic properties.

7 Concluding Remarks and Future Work

In this paper, we introduced the multi-output filtering model for analyzing the security of a
cryptographic primitive. In this model, a cryptographic primitive is used as a multi-output
filtering function and a number of component sequences and component functions of the
primitive are obtained. We aimed at exploiting the security properties of the primitive
through studying its component sequences and functions.

Thanks to the fruitful research outcome in the theory of sequences and Boolean func-
tions, we propose a general distinguish attack technique under IND-CPA. We developed
a new object, called a distinguishing function, to characterize the success rate of our new
attack method. Interestingly enough, for a primitive C, by comparing the distribution of
the linear complexity of the component sequences generated by two sets of inputs, we can
construct a new distinguishing function. The importance of this new distinguishing func-
tion is demonstrated by launching an attack on KASUMI and PRESENT with non-negligible
success rates.

Furthermore, we studied the cryptographic properties of the component functions. By
comparing the distribution of the algebraic degree and nonlinearity properties with that of
a random one, we discovered that, for KASUMI, its distribution of the algebraic degree is
very different, while the distribution of f1, AES and PRESENT is not. We cannot propose
any immediate attack based on this observation, but it is interesting to point it out for
future research.

Regarding to the future work, we believe it is important to study which inner structure
of a primitive affects the distribution of the linear complexity, algebraic degree, nonlinearity,
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and other properties of component sequences and functions. This study may lead to a new
attacking method, and present new criteria on designing a cryptographic primitive.
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Appendix

Here we present a description of TUAK’s f1 algorithm, the proofs of Theorem 1, and the
slope of the linear complexity distribution of f1 and AES, KASUMI and PRESENT.

A: Overview of TUAK algorithm set

The TUAK algorithm set is designed to generate message authentication codes (MAC) and
various keys such as cipher keys and integrity keys in mobile communications. The TUAK
algorithm set consists of seven algorithms, namely f1, f

∗
1 , f2, f3, f4, f5, f

∗
5 , which are

built upon the Keccak permutation Keccak-f [1600] [41]. Each algorithm in TUAK is used
to perform some specific task, for instance f1 and f ∗1 are used to generate MACs, f2 to
f5 are used to output signed response (RES), confidentiality key (CK), integrity key (IK),
anonymity key (AK), respectively. The MAC and various keys are expected to guarantee
the security in mobile communications.

Description of f1

Generally speaking, all the algorithms in TUAK are built by assigning some specific inputs
at some predefined input positions of the Keccak permutation, and then by extracting M
bits from predefined output positions of the Keccak permutation. For a detailed description
of all TUAK algorithms, the reader is referred to [41]. In particular, we introduce the
algorithm f1 as it plays the role of generating MACs. We provide an overview of the f1
algorithm in Fig. 6.
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Π
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RANDj

AMF SQN K PADDING 0512

yM−1 yM−2

· · ·

y0
Fig. 6: The f1 function

Mathematically, we can write f1 in the form:

f1 , Π (INPUT) = (y0, y1 · · · , yM−1), (11)

where M is the length of the MAC and INPUT is defined as

INPUT = TOPc||INSTANCE||ALGORITHM||K||RAND||AMF||SQN||PADDING||0512. (12)

Note that, in the INPUT, except K, RAND, SQN, the other parameters are all prescribed
constants. For details, see [41]. For the convenience, in the rest of the paper, we write f1
as

f1(K,RAND, SQN) = (y0, y1 · · · , yM−1).
The algorithm f1 is flexible with the length of the parameters. The key length is 128 or
256 bits, the length of RAND is 128 bits, the length of SQN is 48 bits, and the possible
output lengths are 64, 128, and 256.

B: Proof of Theorem 1

We present the proof of Theorem 1 below.

Proof. It is not difficult to see that there are four independent cases of the event h(c) =
i ∧ c = C(Pi) when i ∈ {0, 1}, theorefore we may compute its probability one by one and
sum them together:

(1). h(c) = 0 ∧ c = C(P0) ∧ P0 ∈ CS. The probability of this case equals

Pr (h(c) = 0 | c = C(P0) ∧ P0 ∈ CS ) Pr (c = C(P0) | P0 ∈ P ) Pr (P0 ∈ CS ) =
1

2
q0;

(2). h(c) = 0 ∧ c = C(P0) ∧ P0 6∈ CS. The probability of this case is clear 0.
(3). h(c) = 1 ∧ c = C(P1) ∧ P0 ∈ CS. The probability of this case equals

Pr (h(c) = 1 | c = C(P1) ∧ P0 ∈ CS ) Pr (c = C(P1) | P0 ∈ P ) Pr (P0 ∈ CS ) =
1

2
q0(1−q1).

(4). h(c) = 1 ∧ c = C(P1) ∧ P0 6∈ CS. The probability of this case equals

Pr (h(c) = 1 | c = C(P1) ∧ P0 6∈ CS ) Pr (c = C(P1) | P0 6∈ P ) Pr (P0 6∈ CS ) =
1

2
(1−q0)(1−q1).

Summing the above probability we have the desired result∑
i∈{0,1}

Pr (h(c) = i ∧ c = C(Pi) ) =
1 + (q0 − q1)

2
.

The proof is completed. �
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C: Slope of the linear complexity distribution

Here we present the results of the test in Section 5.2 in Table 5. The slope in Table 5 is
the average slope over 108 samples. The column “Slope (L)” contains the slopes computed
from the LFSR input, and the column “Slope (R)” contains the slopes computed from
the random input. The last column shows the absolute value of the difference between
“Slope(L)” and “Slope(R)”. We can see the “Difference” of KASUMI and PRESENT are
much greater than f1 and AES.

Table 5: The slope of f1, AES, KASUMI and PRESENT on average
Primitive Polynomial of the LFSR Slope (L) Slope (R) | Difference |

f1 x8 + x6 + x4 + x3 + x2 + x1 + 1 −0.125 −0.124 2.210× 10−4

AES x8 + x7 + x6 + x3 + x2 + x1 + 1 −0.088 −0.087 5.190× 10−4

KASUMI x8 + x7 + x6 + x5 + x4 + x2 + 1 0.130 0.015 0.115

PRESENT x8 + x6 + x5 + x3 + 1 −0.057 0.036 0.093


