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Abstract

Nonlinear feedback shift registers (NFSRs) are an important building block for

stream ciphers. Given a cascade connection of two NFSRs, say NFSR(f, g), it has

been known for decades how to solve the characteristic function of the NFSR which is

equivalent to NFSR(f, g). However, the converse problem of decomposing an NFSR

into a cascade connection of two smaller NFSRs is not completely solved, and only a

special case has been studied recently. In this paper, a complete and feasible solution

to the problem is given.
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1 Introduction

Linear feedback shift registers (LFSRs) are the most popular building block used to design

stream ciphers, for they have very good statistical properties, efficient implementations and

well studied algebraic structures. Yet over the years, stream ciphers based on LFSRs have

been found to be susceptible to algebraic attacks and correlation attacks. Therefore, many

recently proposed stream ciphers adopt nonlinear sequence generators. In particular nonlin-

ear feedback shift registers (NFSRs) is an important type of nonlinear sequence generators

with more than 50 years of research. Grain and Trivium, two eSTREAM hardware-oriented

finalists, use NFSRs as a main building block, see [1, 2]. Now Trivium has been specified

as an International Standard under ISO/IEC 29192-3:2012. Besides, NFSRs are also used

for block cipher design, say KATAN [3]. In this paper we are concerned with cascade

connection decomposition of NFSRs.

Cascade connections of two NFSRs were firstly studied in [4], which was proposed as a

generalization of the case of LFSRs. Let f1(x) and f2(x) be two polynomials over F2, the

finite field of two elements. It is known that a sequential circuit made up from a cascade

connection of the LFSR with the characteristic polynomial f1(x) into the LFSR with the

characteristic polynomial f2(x) outputs the same family of sequences as the LFSR with the

characteristic polynomial f1(x)f2(x) [4]. Thus a product LFSR (an LFSR with a composite

characteristic polynomial) can be interpreted as a cascade connection of its factors. In [4]

the author demonstrated similar equivalence for the nonlinear case by introducing an order

increasing multiplication to Boolean functions which is denoted by “∗” in the following

paper to distinguish from traditional multiplication “·” (see Section 2). It was shown in [4]

that a cascade connection of the NFSR F1 with the characteristic function f1(x0, x1, . . . , xn)

into the NFSR F2 with the characteristic function f2(x0, x1, . . . , xm) outputs the same

family of sequences as the NFSR F3 with the characteristic function f1 ∗ f2. However,

the converse problem of decomposing an NFSR into a cascade connection of two smaller

NFSRs was not covered in [4].
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Such decomposition problem was firstly studied in [5] which only considered a special

case that is decomposing an NFSR into the cascade connection of an NFSR into an LFSR.

Later, the authors in [6] improved the results of [5] in many aspects. In this paper, we

provide a complete and feasible solution to the problem. First, we review previous results

given in [5] and [6] as well as give a new insight on the special decomposition case. Second,

we solve another special case of decomposing an NFSR into the cascade connection of

an LFSR into an NFSR. Third, we discuss the problem of decomposing an NFSR into

the cascade connection of an NFSR into an NFSR where no NFSR is degenerated to an

LFSR, which is the most general case. We prove an important algebraic property of a

cascade connection of two NFSRs, and propose a decomposition algorithm based on it.

The complexity of the proposed algorithm for the general case is closely related to the

Algebraic Normal Form (ANF) of the characteristic function. Generally speaking, the

characteristic functions with less terms and lower degree and smaller order (see Section

2 for the definition of order) are easier to decompose. We think this is reasonable for

an algorithm solving problems concerning NFSRs. An extensive experiments show that

the proposed algorithm is feasible in practice, e.g., decompose an 80-stage NFSR with

characteristic function including 100 terms and of degree 4 in about 10 minutes.

The paper is organized as follows. Section 2 presents an introduction to Boolean func-

tions and NFSRs. Section 3 discusses the uniqueness of left ∗-factor and also some basic

properties of ∗-product. Section 4 completely solves the decomposition of an NFSR into a

cascade connection of an LFSR into an NFSR. Section 5 is largely devoted to the survey

of previous results on the decomposition of an NFSR into a cascade connection of an NF-

SR into an LFSR, and also includes a small new result on such decomposition. Section 6

discusses general decomposition case. Finally, conclusions are drawn in Section 7.

Throughout the paper, the set {0, 1, 2, . . .} of nonnegative integers is denoted by N,

the set {1, 2, . . .} of positive integers is denoted by N∗, and the symbol ⊕ denotes addition

modulo 2. We use the abbreviation w.r.t. for the phrase “with respect to”.
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2 Preliminaries

In this section, we briefly review Boolean functions and nonlinear feedback shift registers

respectively. We remark that a nonlinear feedback shift register can be described by a

Boolean function called characteristic function.

2.1 Boolean functions

Let n ∈ N∗. An n-variable Boolean function f(x0, x1, . . . , xn−1) is a function from Fn
2 into

F2 and the set of all n-variable Boolean functions is denoted by Bn. It is known that an n-

variable Boolean function f(x0, x1, . . . , xn−1) can be uniquely represented as a multivariate

polynomial of the form:

f(x0, x1, . . . , xn−1) =
⊕

α=(α0,α1,...,αn−1)∈{0,1}n
uα ·

(
n−1∏
j=0

x
αj

j

)
,

where uα ∈ F2, which is called the algebraic normal form (ANF) of f . The algebraic

degree of f , denoted by deg(f), is the global degree of the ANF of f . If deg(f) = 1 and

f(0, 0, . . . , 0) = 0, then we say f is linear. If deg(f) ≥ 1, then the highest subscript i for

which xi occurs in the ANF of f is called the order of f and denoted by ord(f).

A product of the form xα0
0 xα1

1 · · · x
αn−1

n−1 ∈ Bn with (α0, α1, . . . , αn−1) ∈ {0, 1}n is called

a term; in particular, 1 = x0
0x

0
1 · · · x0

n−1 is a term. Let us denote the set of all terms in Bn
by T (x0, x1, . . . , xn−1). The term order, inverse lexicographical order ≼, is used throughout

the paper, which is defined by

xα0
0 xα1

1 · · · x
αn−1

n−1 ≼ xβ0

0 xβ1

1 · · · x
βn−1

n−1

if and only if

α0 + α1 · 2 + · · ·+ αn−1 · 2n−1 ≤ β0 + β1 · 2 + · · ·+ βn−1 · 2n−1

holds. Moreover, for t, s ∈ T (x0, x1, . . . , xn−1), we write t ≺ s if t ≼ s and t ̸= s. In
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particular, we have that

1 ≺ x0 ≺ x1 ≺ · · · ≺ xn−1.

For f ∈ Bn we denote the head term of f with respect to the term order by HT(f)

and denote the set of all terms occurring in the ANF of f by T (f). If all terms of f have

the same degree, then we say f is homogenous. Otherwise, f can be uniquely written as a

finite sum of homogenous Boolean functions: f =
⊕deg(f)

d=0 f[d], where f[d] is the summation

of all terms of f that have degree d. Moreover, we denote the summation of all nonlinear

terms of f by NL(f), i.e., NL(f) =
⊕deg(f)

d=2 f[d].

Let m ∈ N∗. For f ∈ Bn and g ∈ Bm, let us denote

f ∗ g = f(g(x0, . . . , xm−1), g(x1, . . . , xm), . . . , g(xn−1, . . . , xn+m−2)), (1)

which is an (n + m − 1)-variable Boolean function. Note that the operation ∗ is not

commutative, that is, f ∗ g and g ∗ f are not the same in general. If h = f ∗ g, then we say

f is a left ∗-factor of h and g is a right ∗-factor of h. Clearly for all h ∈ Bn, we have that

h = h ∗ x0 = x0 ∗ h, and so h and x0 are called trivial ∗-factors of h.

The following properties of the operation ∗ are directly deduced from its definition (1),

which will be frequently used in the following paper.

Proposition 1 Let f, g, q ∈ Bn. Then

(i) (f · q) ∗ g = (f ∗ g) · (q ∗ g);

(ii) f ∗ g =
⊕

t∈T (f) (t ∗ g) ;

(iv) f ∗ g =
⊕

t∈T (f)

⊕
s∈T (g) t ∗ s if f is linear.

In the next subsection, we will give the cryptographic background for this ∗-product of

Boolean functions.
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x0 x1 · · ·
xn−2 xn−1

f0(x0, x1, · · · , xn−1)

Figure 1: An n-stage NFSR

Finally, for a linear Boolean function f = c0x0 ⊕ c1x1 ⊕ · · · ⊕ cn−1xn−1, define

ϕ(f) = c0 ⊕ c1x⊕ · · · ⊕ cn−1x
n−1 ∈ F2[x]. (2)

The function ϕ maps a linear Boolean function to a univariate polynomial over F2, which is

a one-to-one correspondence. It can be seen that ϕ(f ∗ g) = ϕ(f)ϕ(g) holds for two linear

Boolean functions f and g. Thus, for simplicity, we may directly treat a linear Boolean

function as a univariate polynomial over F2 or conversely treat a univariate polynomial

over F2 as a linear Boolean function omitting the symbol ϕ and ϕ−1.

2.2 Nonlinear feedback shift registers

Let n ∈ N∗. A diagram of an n-stage NFSR with characteristic function

f(x0, x1, . . . , xn) = f0(x0, x1, . . . , xn−1)⊕ xn ∈ Bn+1

is given in Figure 1, denoted by NFSR(f), where f0(x0, x1, . . . , xn−1) is usually called the

feedback function of the NFSR in the literature.

An output sequence s = (st)t≥0 of the NFSR(f) is a binary sequence satisfying the

following recurrence relation

st+n = f0(st, st+1, . . . , st+n−1), for t ≥ 0.

In particular, if f(x0, x1, . . . , xn) is linear, then the NFSR(f) is also known as an LFSR

with characteristic polynomial ϕ(f). The set of all 2n sequences generated by the NFSR(f)
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x0 x1 · · · xm−2 xm−1

g0(x0, x1, · · · , xm−1)

+ y0 y1 · · · yn−2 yn−1

f0(y0, y1, · · · , yn−1)

Figure 2: The cascade connection of the NFSR(f) into the NFSR(g)

is denoted by G(f). It is well known that all sequences in G(f) are (strictly) periodic if and

only if f(x0, x1, . . . , xn) is nonsingular, namely f(x0, x1, . . . , xn) = x0⊕f1(x1, x2, . . . , xn−1)⊕

xn, see [7, Chapter VI]. For convenience, let us denote

C = {f | f(x0, x1, . . . , xr) = x0 ⊕ f1(x1, x2, . . . , xr−1)⊕ xr ∈ Br+1, r ∈ N∗},

the set of all nonsingular characteristic functions. We further denote

C∗ = {f(x0, x1, . . . , xr) ∈ C | f(0, 0, . . . , 0) = 0 },

the set of nonsingular characteristic functions which outputs the all-zero sequence.

Let m ∈ N∗ and g(x0, x1 . . . , xm) = g0(x0, x1, . . . , xm−1)⊕ xm ∈ Bm+1. The Galois NF-

SR shown in Figure 2 is called the cascade connection of the NFSR(f) into the NFSR(g),

denoted by NFSR(f, g), where to distinguish the registers of two NFSRs, the registers be-

longing to the NFSR(f) are labeled y0, y1, . . . , yn−1. An output sequence of the register

labeled x0 is called an output sequence of the NFSR(f, g) and the set of all output se-

quences of the NFSR(f, g) is denoted by G(f, g). It was early known that the NFSR(f, g)

is equivalent to the NFSR(h) where h = f ∗ g, namely G(f, g) = G(h), see [4] and [8].

In the following, we specifically discuss how to decompose an NFSR in C∗ into

a cascade connection of two NFSRs in C∗. First if an NFSR in C∗ can be decomposed

into two NFSRs in C, then it also can be decomposed into two NFSRs in C∗ (Please see

Appendix A for the proof). Second, if h ⊕ 1 = f ∗ g where h ∈ C∗, then h = (f ⊕ 1) ∗ g.

Thus, it suffices to discuss decomposition within C∗.

Finally, since a cascade connection of NFSRs is algebraically represented by the ∗-

product operation of Boolean functions, in the following we in essence discuss finding the

left and right ∗-product factors of characteristic functions.
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3 The Uniqueness of Left ∗-Factor

In this section, we shall show some basic properties of the ∗-product operation which will

be frequently used later.

Lemma 2 Let m,n ∈ N∗, g(x0, . . . , xm) = g0(x0, . . . , xm−1) ⊕ xm ∈ Bm+1, and t =

xi1xi2 · · · xik ∈ T (x0, . . . , xn), where k ≥ 1 and i1 < i2 < · · · < ik. Then

(i) HT(t ∗ g) = t ∗ xm =
∏k

j=1 xm+ij ;

(ii) deg(t ∗ g) ≥ deg(g) + deg(t)− 1. In particular, the equality holds for k = 1.

Proof. (i) Since

t ∗ g =
k∏

j=1

(
g0(xij , . . . , xm−1+ij)⊕ xm+ij

)
, (3)

it follows that

HT(t ∗ g) =
k∏

j=1

xm+ij .

(ii) The assertion is trivially true for k = 1. We suppose k > 1. By (3), t ∗ g can be

written

t ∗ g = (g0(xi1 , . . . , xm−1+i1)⊕ xm+i1) ·

(
k∏

j=2

xm+ij

)
⊕ u(xi1 , . . . , xm+ik), (4)

where
k∏

j=2

xm+ij - s for all s ∈ T (u).

Since for j = 2, 3, . . . , k,

m+ ij > m+ i1 = ord(g0(xi1 , . . . , xm−1+i1)⊕ xm+i1),

it follows from (4) that

s ·
k∏

j=2

xm+ij ∈ T (t ∗ g)
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for all s ∈ T (g0(xi1 , . . . , xm−1+i1)⊕ xm+i1). Let

s∗ ∈ T (g0(xi1 , . . . , xm−1+i1)⊕ xm+i1)

such that deg(s∗) = deg(g). Then we have that

s∗ ·
k∏

j=2

xm+ij ∈ T (t ∗ g), (5)

and

deg(s∗ ·
k∏

j=2

xm+ij) = deg(s∗) + k − 1 = deg(g) + deg(t)− 1. (6)

Thus the assertion follows from (5) and (6) for k > 1.

Remark 3 If g is not of the form described in Lemma 2, then the results may not hold.

For instance, (x3x4) ∗ (x1x2 ⊕ x2) = 0.

Corollary 4 Let m ∈ N∗ and g(x0, . . . , xm) = g0(x0, . . . , xm−1) ⊕ xm ∈ Bm+1. Then for

any Boolean function f which is not a constant, f ∗ g ̸= 0 and HT(f ∗ g) = HT(f) ∗ xm.

Proof. The assertion follows from Lemma 2 (i) and the fact f ∗ g =
∑

t∈T (f) t ∗ g.

If g, f1, f2 ∈ C∗ such that f1 ∗ g = f2 ∗ g, then it follows from Corollary 4 that f1 = f2

since (f1 ⊕ f2) ∗ g = 0. Thus we have the following uniqueness.

Corollary 5 Let h, g ∈ C∗. If g is a right ∗-factor of h , then there exists a unique Boolean

function f ∈ C∗ such that h = f ∗ g.

4 Decompose A Boolean Function h into h = l ∗ f

In this section, we shall prove that the linear left ∗-factor of the maximal order for a Boolean

function is unique and show how to obtain it. Trivially, the results of this section can be

directly used to decompose an NFSR into a cascade connection of an LFSR into an NFSR.

Besides, the results of this section will be used in Section 6.
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Lemma 6 Let h, g be two Boolean functions which are not constants, and let l be a linear

Boolean function. Then h = l ∗ g if and only if h[i] = l ∗ g[i] for 1 ≤ i ≤ deg(h).

Proof. Suppose h = l ∗ g. Since l is linear, it is easily seen that

h =

deg(g)⊕
i=1

l ∗ g[i].

It follows from Lemma 2 (ii) that l ∗ g[i] is a homogenous Boolean function of degree i for

1 ≤ i ≤ deg(g). Thus, h[i] = l ∗ g[i] for 1 ≤ i ≤ deg(h). The converse is trivially true.

It follows from Lemma 6 that the key problem is decomposing homogenous Boolean

functions. Firstly, we consider a homogenous Boolean function obtained by l ∗ t where l is

a linear Boolean function and t is a term.

Lemma 7 Let h be a homogenous Boolean function of degree d ≥ 1. Then h = l∗s for some

linear Boolean function l and some term s if and only if any two terms t = xi1xi2 · · · xid

and t′ = xj1xj2 · · · xjd in T (h) satisfy that

(i2 − i1, i3 − i1, . . . , id − i1) = (j2 − j1, j3 − j1, . . . , jd − j1).

Proof. (⇐) Let t = xi1xi2 · · · xid be a term of h and let

(i2 − i1, i3 − i1, . . . , id − i1) = (δ1, δ2, . . . , δd−1).

Then it is clear that we can write

t = xi1xi1+δ1 · · · xi1+δd−1
.

Moreover, according to the hypothesis, we can write

h =

|T (h)|∑
k=1

xikxik+δ1 · · · xik+δd−1
. (7)
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Without loss of generality, we assume that i1 < i2 < · · · < i|T (h)|. Then it follows from (7)

that

h =

|T (h)|∑
k=1

xi1+(ik−i1)xi1+δ1+(ik−i1) · · · xi1+δd−1+(ik−i1)

= (

|T (h)|∑
k=1

xik−i1) ∗ (xi1xi1+δ1 · · · xi1+δd−1
)

= (

|T (h)|∑
k=1

xik−i1) ∗ t.

Thus l =
∑|T (h)|

k=1 xik−i1 is the desired linear Boolean function.

(⇒) The converse is trivially true.

Remark 8 In the following section, for a term t = xi1xi2 · · · xid we call (i2 − i1, i3 −

i1, . . . , id − i1) the index distance tuple of t.

Secondly, we consider general homogenous Boolean functions. By Lemma 7, we know

that if all the terms of a homogenous Boolean function h are classified by their index

distance tuple and combine the terms with the same index distance tuple by ∗-product of

the form l ∗ t where l is a linear Boolean function and t is a term, then the function h can

be uniquely represented as the form

h = l1 ∗ t1 ⊕ l2 ∗ t2 ⊕ · · · ⊕ lk ∗ tk

where l1, l2, . . . , lk are linear Boolean functions and t1, t2, . . . , tk are terms with pairwise

distinct index distance tuple. Based on this observation, we immediately get the following

result on homogenous Boolean functions.

Lemma 9 Let h be a homogenous Boolean function of degree d ≥ 1 and

h = l1 ∗ t1 ⊕ l2 ∗ t2 ⊕ · · · ⊕ lk ∗ tk (8)
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where l1, l2, . . . , lk are linear Boolean functions and t1, t2, . . . , tk are terms with pairwise

distinct index distance tuple. Then h = l ∗ g for some Boolean functions l and g where l is

a linear function if and only if ϕ(l) is a divisor of gcd(ϕ(l1), ϕ(l2), . . . , ϕ(lk)).

Proof. (⇐) For i = 1, 2, . . . , k, let ϕ(li) = ϕ(l)ϕ(fi), where fi is a linear Boolean function.

Since

ϕ(l ∗ fi) = ϕ(l)ϕ(fi), i = 1, 2, . . . , k,

it follows that li = l ∗ fi, i = 1, 2, . . . , k, and so

h = (l ∗ f1) ∗ t1 ⊕ (l ∗ f2) ∗ t2 ⊕ · · · ⊕ (l ∗ fk) ∗ tk

= l ∗ (f1 ∗ t1 ⊕ f2 ∗ t2 ⊕ · · · ⊕ fk ∗ tk).

This shows the result holds.

(⇒) Let us write

g = f1 ∗ s1 ⊕ f2 ∗ s2 ⊕ · · · ⊕ fr ∗ sr

where f1, f2, . . . , fr are linear Boolean functions and s1, s2, . . . , sr are terms with pairwise

distinct index distance. Then

h = l ∗ g

= l ∗ (f1 ∗ s1 ⊕ f2 ∗ s2 ⊕ · · · ⊕ fr ∗ sr)

= (l ∗ f1) ∗ s1 ⊕ (l ∗ f2) ∗ s2 ⊕ · · · ⊕ (l ∗ fr) ∗ sr

Comparing this with (8), we know that k = r and li = l ∗ fi for i = 1, 2, . . . , k. Thus, it

immediately follows that ϕ(l) is a divisor of gcd(ϕ(l1), ϕ(l2), . . . , ϕ(lk)).

Remark 10 For a homogenous Boolean function h described in Lemma 9, it can be seen

that gcd(ϕ(l1), ϕ(l2), . . . , ϕ(lk)) is the unique linear left ∗-factor whose order is the largest,

and so we denote it by L(h).

Finally, with these discussions on homogenous Boolean functions, the following result

on general Boolean functions is an immediate consequence of lemmas 6 and 9.
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Theorem 11 Let h ∈ C∗ of degree d > 1 and let l be a linear Boolean function. Then

h = l ∗ g for some Boolean function g if and only if ϕ(l) is a divisor of

gcd(L(h[1]), L(h[2]), . . . , L(h[d])).

5 Decomposition into a Cascade Connection of an N-

FSR into an LFSR

In this section, we discuss theories and algorithms about decomposing an NFSR into a

cascade connection of an NFSR into an LFSR. This problem was extensively studied in [5]

and [6]. In Subsection 5.1, we review the previous methods and results. In Subsection 5.2,

we give a new candidate linear function to reduce the previous verification range.

5.1 Necessary and sufficient conditions on the decomposition

A first necessary and sufficient condition for decomposition into a cascade connection of an

NFSR into an LFSR is proved in [6].

Theorem 12 Let h(x0, x1, . . . , xn) ∈ C∗ and l(x0, x1, . . . , xm) be a linear Boolean function.

Then h = g ∗ l for some function g if and only if {(a0, a1, . . . , an)|a = (a0, a1, . . .) ∈ G(l)}

is included in

{(e0, e1, . . . , en)|h(x0, x1, . . . , xn) = h(x0 ⊕ e0, x1 ⊕ e1, . . . , xn ⊕ en)}.

The following corollary immediately follows from the above theorem, which presents

the necessary and sufficient condition from the aspect of sequences.

Corollary 13 Let h ∈ C∗ and l be a linear Boolean function. Then h = g ∗ l for some

function g if and only if

G(h) = G(h)⊕G(l) = {a⊕ b|a ∈ G(h), b ∈ G(l)}.
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Corollary 13 reveals a kind of closure property of exclusive ors of sequences generated

by h, which is very rare for NFSR sequences. Moreover, it implies the following uniqueness

of linear right ∗-factor.

Corollary 14 For every Boolean function h ∈ C∗, there exists a unique linear right ∗-

factor l whose order is the largest. Furthermore, all the other linear right ∗-factor of h is

a factor of l.

Unlike Theorem 11, both Theorem 12 and Corollary 13 do not tell us how to obtain the

unique largest linear right ∗-factor of a function h from the ANF of h. Until now, all known

algorithms only can extract a multiple of the largest linear right ∗-factor from the ANF of

h, and so a verification step is always needed. Thus, to decompose a function h ∈ C∗ into

the form h = g ∗ l where l is a linear Boolean function, one can obey the following four

steps:

1. Find a candidate linear function m which is a multiple of the largest linear right

∗-factor of h.

2. Factor ϕ(m) in F2[x].

3. Verify which factor of ϕ(m) is the linear right ∗-factor of h with the largest degree.

4. For the linear function l that passes through the verification of the last step, find the

function g such that h = g ∗ l.

To find a candidate linear function m which is a multiple of the largest linear right

∗-factor of h is the most important step. Clearly, it is expected that the candidate linear

function m is close to the real largest linear right ∗-factor of h. Thus we want to find a

candidate linear function m whose order (or equivalently deg(ϕ(m))) is as small as possible.

In [6], the authors gave the following candidate linear function m which is always a factor

of that given in [5].



15

Theorem 15 Let h(x0, x1, . . . , xn) ∈ C∗ of degree d > 1. Suppose h[d] can be written in k

ways as following

h[d] = t1 · l1 ⊕ h1 = t2 · l2 ⊕ h2 = . . . = tk · lk ⊕ hk,

where ti is a term of degree t− 1, li is a linear Boolean function, hi is a Boolean function

of degree d such that each term in hi is not divisible by ti, for 1 ≤ i ≤ k. If l is a linear

right ∗-factor of h, then ϕ(l) divides gcd(ϕ(l1), . . . , ϕ(lk)) in F2[x].

Though we can not prove that the function gcd(ϕ(l1), . . . , ϕ(lk)) given by Theorem 15

is just the largest linear right ∗-factor of h, it is very likely to be the one.

Example 16 Let

h = x7 ⊕ x4x5x6 ⊕ x2x5x6 ⊕ x1x5x6 ⊕ x3x4x6 ⊕ x2x4x6 ⊕ x4x6 ⊕ x2x3x6

⊕x1x3x6 ⊕ x1x2x6 ⊕ x1x6 ⊕ x3x4x5 ⊕ x2x4x5 ⊕ x1x4x5 ⊕ x4x5 ⊕ x2x3x5

⊕x1x3x5 ⊕ x5 ⊕ x1x3x4 ⊕ x3x4 ⊕ x1x2x4 ⊕ x2x4 ⊕ x1x4 ⊕ x4 ⊕ x1x2x3

⊕x2x3 ⊕ x3 ⊕ x2 ⊕ x0

be a characteristic function of an NFSR. It can be seen that deg(h) = 3 and h[3] can be

written in the following ways

h[3] = x4x5x6 ⊕ x2x5x6 ⊕ x1x5x6 ⊕ x3x4x6 ⊕ x2x4x6 ⊕ x2x3x6 ⊕ x1x3x6 ⊕ x1x2x6

⊕x3x4x5 ⊕ x2x4x5 ⊕ x1x4x5 ⊕ x2x3x5 ⊕ x1x3x5 ⊕ x1x3x4 ⊕ x1x2x4 ⊕ x1x2x3

= x5x6 · (x4 ⊕ x2 ⊕ x1)⊕ a1

= x4x6 · (x5 ⊕ x3 ⊕ x2)⊕ a2,

where each term of a1 is not a multiple of x5x6 and each term of a2 is not a multiple of

x4x6. It follows from Theorem 15 that a linear right ∗-factor of h is a factor of

gcd(x4 ⊕ x2 ⊕ x, x5 ⊕ x3 ⊕ x2) = x · (x3 ⊕ x⊕ 1).

It can be verified that actually x3 ⊕ x1 ⊕ x0 is the largest linear right ∗-factor of h.
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5.2 A new result on the candidate linear function m

In this subsection, we give another method to derive the candidate linear function m from

the targeted function h whose theoretical analysis is different from that of [6].

For a Boolean function f , let us denote the unique function g such that

NL(f) = g · xn + r, n = ord(NL(f)), ord(r) < n

by ∆(f). Also ∆(f) can be seen as the quotient of NL(f) divisible by xn. Furthermore,

for an positive integer e, define ∆e(f) = ∆ (∆e−1(f)) where ∆0(f) = f , composition of the

function ∆. In particular, if e is the first nonnegative integer such that deg(∆e(f)) < 2,

then define ∆∗(f) = ∆e(f).

Lemma 17 Let f, g ∈ C∗. Then deg(f ∗ g) ≥ deg(g). Moreover, the equality holds if and

only if deg(f) = 1.

Proof. If deg(f) = 1, then it follows from Lemma 6 deg(f ∗ g) = deg(g). Suppose deg(f) >

1. Then

NL(f) =

deg(f)⊕
k=2

f[k] ̸= 0,

and so by Corollary 4 and Lemma 2 (ii), we have that NL(f)∗g ̸= 0 and deg(NL(f)∗g) >

deg(g). Since

f ∗ g = f[1] ∗ g ⊕NL(f) ∗ g

and deg(f[1] ∗ g) = deg(g) if f[1] ̸= 0, it can be seen that

deg(f ∗ g) = deg(Nf ∗ g) > deg(g).

This completes the proof.

Theorem 18 Let h, f, l ∈ C∗ such that h = f ∗ l and l is a linear Boolean function. Then

∆(h) = ∆(f) ∗ l.
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Proof. If deg(h) = 1, then the result trivially holds. Assume deg(h) > 1 in the following.

Let ord(NL(f)) = n and ord(l) = m. Since deg(h) > deg(l), it follows from Lemma 17

that deg(f) > 1. Then f can be written

f = f[1] ⊕NL(f) = f[1] ⊕∆(f) · xn ⊕ r,

where ord(r) < n. Thus

h = f ∗ l = f[1] ∗ l ⊕ (∆(f) ∗ l) · (xn ∗ l)⊕ r ∗ l. (9)

Since f[1] ∗ l is linear, ord(r ∗ l) < ord(xn ∗ l), and ord(∆(f) ∗ l) < ord(xn ∗ l), it follows

from (9) that

ord(NL(h)) = ord(xn ∗ l) = n+m.

Hence

∆(h) = ∆(f) ∗ l.

This completes the proof.

The function ∆(h) in Theorem 18 may still be a nonlinear function. Then, recursively

using Theorem 18 leads to the following result.

Corollary 19 Let h, f, l ∈ C∗ such that h = f ∗ l and l is a linear Boolean function. Then

∆∗(h) = ∆∗(f) ∗ l.

Obviously Corollary 19 tells us that ∆∗(h) is a multiple of the largest linear right ∗-factor

of h.

Example 20 Let h be as described in Example 16. Then it follows from Corollary 19 that

∆∗(h) = x4 ⊕ x2 ⊕ x1 = x · (x3 ⊕ x⊕ 1)

is a multiple of the largest linear right ∗-factor of h.
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The results of Theorems 15 and 18 can be used together, that is, the gcd of their results

is also a desired candidate linear function. Although Theorems 15 and 18 often give precise

answer for the largest linear right ∗-factor of a given function h, they are not sufficient. It

still remains a problem how to directly identify the largest linear right ∗-factor of function

h not just a multiple of that.

6 General Decomposition

Given a Boolean function h ∈ C∗, in this section we shall show how to find all Boolean

function pairs (f, g) ∈ C∗ × C∗ such that h = f ∗ g. By Lemma 17, we know that deg(g) is

bounded by deg(h). According to this observation, the first main idea of our decomposition

algorithm is to search the desired function pairs (f, g) by the degree of g. A sketch of this

main idea is illustrated in Table 1.

The second main idea of our decomposition algorithm is to reduce the general decom-

position case (i.e., d ≥ 2 in Table 1) to the simple case of decomposing a Boolean function

h′ into h′ = l ∗ f where l is a linear Boolean function, which is completely solved in Section

4. Such reduction process is mainly illustrated in Subsection 6.1. A sketch of this main

idea for solving Sd is illustrated in Table 2.

A small example is given in Appendix 7 to explain the decomposition ideas in this

section.

In the following of this section, we assume that h is a characteristic function in C∗ of

degree greater than 1.

6.1 Find a candidate set for right ∗-factors

In this subsection, given an integer d > 1, we discuss how to find Boolean functions g such

that deg(g) = d and g is a right ∗-factor of h. Note that the case d = 1 has been discussed
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Table 1: Algorithm MAIN

Specification: S ←− MAIN(h)

Given: a Boolean function h ∈ C∗

Find: a finite set S of Boolean function pairs (f, g) ∈ C∗ × C∗ such that

h = f ∗ g

begin

S ←− {(f, l) : h = f ∗ l and deg(l) = 1} (Please refer to Section 5)

for d from 2 to deg(h) do

find the set Sd = {(f, g) : h = f ∗ g and deg(g) = d}

S ←− S ∪ Sd

end for

return(S)

in Section 5.

Let d > 1 be a positive integer. We first generalize the symbol ∆(·) defined in Subsection

5.2 to ∆d(·). For a Boolean function f , let us denote the unique function g such that

NL(f) = g · xn + r,

where n = ord(f[≥d]) and the polynomial r does not contain the variable xn. Also ∆d(f)

can be seen as the quotient of NL(f) divisible by xn. Furthermore, for a positive integer

e, define ∆e
d(f) = ∆d

(
∆e−1

d (f)
)
where ∆0(f) = f , composition of the function ∆d. In

particular, if e is the least nonnegative integer such that deg(∆e
d(f)) < d, then define

∆∗
d(f) = ∆e

d(f).

Example 21 Let f = x9 ⊕ x1x9 ⊕ x6x7x8 ⊕ x4x5x6x8 ⊕ x2x4x7 ⊕ x1. Then

∆3(f) = x6x7 ⊕ x4x5x6 and ∆2
3(f) = x7 ⊕ x4x5.

Moreover, we have that ∆∗
3(f) = ∆2

3(f).
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Table 2: Solve Sd for a given integer d

Specification: Sd ←− Subalgorithm(h)

Given: a Boolean function h ∈ C∗ and an integer d > 2

Find: a finite set Sd of Boolean function pairs (f, g) ∈ C∗ × C∗ such that

h = f ∗ g and deg(g) = d

begin

Find a candiate set G such that if h = f ∗ g, then g ∈ G. (Please refer to

Subsections 6.1 and 6.2)

for ĝ ∈ G do

find f such that h = f ∗ ĝ (f may not exist if ĝ is not correct)(Please

refer to Subsection 6.3)

if such f exists, then Sd ←− Sd ∪ (f, ĝ)

end for

return(Sd)

Theorem 22 Let f, g, h be three Boolean functions such that h = f ∗ g and deg(h) >

deg(g) = d > 2. If g(x0, . . . , xm) = g0(x0, . . . , xm−1)⊕ xm, then

∆d+1(h) = ∆2(f) ∗ g ⊕ r, (10)

for some Boolean function r with deg(r) < d.

Proof. Since deg(h) > deg(g), it follows from Lemma 17 that deg(f) > 1. Then f can be

written

f = f[1] ⊕NL(f) = f[1] ⊕∆2(f) · xn ⊕ q,
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where ord(NL(f)) = n and ord(q) < n. Thus

h = f ∗ g

= f[1] ∗ g ⊕ (∆2(f) · xn) ∗ g ⊕ q ∗ g

= f[1] ∗ g ⊕ (∆2(f) ∗ g) · xn+m ⊕ (∆2(f) ∗ g) · (xn ∗ g0)⊕ q ∗ g. (11)

Let us denote

λ1 = (∆2(f) ∗ g) · xn+m

λ2 = (∆2(f) ∗ g) · (xn ∗ g0)

Note that deg(f[1] ∗ g) = d by Lemma 17, which implies that f[1] ∗ g is irrelavent to

ord(h≥[d+1]), and so

ord(h≥[d+1]) = ord(λ1
≥[d+1] + λ2

≥[d+1] + (q ∗ g)≥[d+1]). (12)

On one hand, it can be seen that

ord(λ2) < n+m and ord(q ∗ g) < n+m. (13)

On the other hand, since by Lemma 17 deg(∆2(f) ∗ g) > d and it is clear that ord(∆2(f) ∗

g) < n+m, it follows that

ord(λ1
≥[d+1]) = ord(λ1) = n+m. (14)

Hence, it follows from (12), (13) and (14) that

ord(h≥[d+1]) = n+m.

Consequently, we deduce from (11) that

∆d+1(h) = ∆2(f) ∗ g ⊕ r,

where the Boolean function r satisfies that

f[1] ∗ g = r · xn+m + r′,

the polynomial r′ does not contain the variable xn+m.
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Remark 23 Let h, f, g be as described in Theorem 22. It is easy to see that Theorem 22

also holds for h = f ∗ g ⊕ p if deg(p) < d, since p is irrelevant to h≥[d+1].

Suppose h = f ∗ g for some h, f, g ∈ C∗. According to Remark 23, one could recursively

using Theorem 22 until the degree of the Boolean function on the left side of the equality

(10) is less than d+ 1, which results in

∆∗
d+1(h) = ∆∗

2(f) ∗ g ⊕ r (15)

for some Boolean function r with deg(r) < d. Since deg(r) < d and ∆∗
2(f) is a linear

Boolean function, the equality (15) implies the following result.

Corollary 24 Let f, g, h be as described in Theorem 22. Then

(
∆∗

d+1(h)
)
[d]

= ∆∗
2(f) ∗ g[d].

Actually, Corollary 24 tells us that we could retrieve g[d] from
(
∆∗

d+1(h)
)
[d]

which is the

case discussed in Section 4. Once we get g[d], let us write (15) as

∆∗
d+1(h) = ∆∗

2(f) ∗ g[d] ⊕∆∗
2(f) ∗ (g[d−1] ⊕ · · · ⊕ g[1])⊕ r,

and so

∆∗
d+1(h)⊕∆∗

2(f) ∗ g[d] = ∆∗
2(f) ∗ (g[d−1] ⊕ · · · ⊕ g[1])⊕ r.

Note that the Boolean function on the left side of the above equality is known. If r[d−1] is

also known, then it is clear that

∆∗
d+1(h)⊕∆∗

2(f) ∗ g[d] ⊕ r[d−1] = ∆∗
2(f) ∗ g[d−1],

and so we could retrieve g[d−1] by decomposing ∆∗
d+1(h) ⊕ ∆∗

2(f) ∗ g[d] ⊕ r[d−1]. Similarly,

if we know r[d−2], then we could retrieve g[d−2], and recursively if we know r[i], then we

could retrieve g[i] for i = d − 3, . . . , 1. Now the key problem is how to reasonably guess

r[d−1], r[d−2], . . . , r[1]. We discuss this problem in the next subsection.
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6.2 How to reasonably guess r[d−1], r[d−2], . . . , r[1]

In this subsection we shall show that r[i] is determined by g[i+1], . . . , g[d] for i = d−1, . . . , 1.

Before we come back to the proof of Theorem 22, let us introduce a notation. Let f be

a Boolean function and t a term. Then we use ⟨f
t
⟩ to denote the quotient of f divisible by

t, i.e.,

f = ⟨f
t
⟩ · t+ q,

where each term of q is not a multiple of t.

Let f, g be as described in Theorem 22. Then according to the proof of Theorem 22,

the Boolean function r in (10) is actually given by

r = ⟨
f[1] ∗ g
xn+m

⟩

and so we rewrite (10) in the following way

∆d+1(h) = ∆2(f) ∗ g ⊕ ⟨
f[1] ∗ g
xn+m

⟩.

Let us denote f[1] = l0 and the linear part of ∆i
2(f) by li for any positive integer i. Assume

∆∗
d+1(h) = ∆e

d+1(h). Then the process of recursively using Theorem 22 could be illustrated

by the following equalities:

∆d+1(h) = ∆2(f) ∗ g ⊕ ⟨
l0 ∗ g
xi0

⟩

∆2
d+1(h) = ∆2

2(f) ∗ g ⊕ ⟨
l1 ∗ g
xi1

⟩ ⊕ ⟨ l0 ∗ g
xi0xi1

⟩

· · ·

∆e
d+1(h) = ∆e

2(f) ∗ g ⊕ ⟨
le−1 ∗ g
xie−1

⟩ ⊕ · · · ⊕ ⟨ l1 ∗ g
xi0 · · · xie−1

⟩ ⊕ ⟨ l0 ∗ g
xi0 · · · xie−1

⟩ (16)

where ij = ord((∆j
d+1(h))≥[d+1]) for j = 0, 1, . . . , e − 1. Since deg(li ∗ g) = deg (g) = d, if

follows from (17) that

r[d−1] = ⟨
le−1 ∗ g[d]
xie−1

⟩
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and so r[d−1] is only relevant to g[d]. Consequently, a reasonable range for ord(le−1) is given

by

ie−1 − ord(g[d]) ≤ ord(le−1) ≤ ord(∆e−1
d+1(h))− ord(g[d])

1.

and so

T (r[d−1]) ∈
ord(∆

(e−1)
d+1 (h))−ord(g[d])∪

i=ie−1−ord(g[d])

T (⟨
xi ∗ g[d]
xie−1

⟩).

Hence we could guess r[d−1] within this range. The rest r[d−2], . . . , r[1] could be guessed

similarly, and we omit such tedious discussion for them.

6.3 How to find f such that h = f ∗ g if g is known

Recall that Subsections 6.1 and 6.2 discuss how to find a candidate set of right ∗-factors g

of h. To complete the search for Boolean function pairs (f, g) such that h = f ∗ g, in this

subsection, we discuss how to find the corresponding left ∗-factor f if a right ∗-factor g of

h is given. Assume ord(g) = m.

The key observation is simple and follows from Lemma 2. Suppose there is a function

f such that h = f ∗ g and f = t1 ⊕ t2 ⊕ · · · ⊕ tk, where t1 ≺ t2 ≺ · · · ≺ tk are terms. Then

h = f ∗ g = t1 ∗ g ⊕ t2 ∗ g ⊕ · · · ⊕ tk ∗ g. (17)

Since by Lemma 2 we have

HT(ti ∗ g) = xm ∗ ti for 1 ≤ i ≤ k,

it follows from (17) that

HT(h) = xm ∗max{t1, t2, . . . , tk} = xm ∗ tk.

This shows that we can easily compute HT(f) = tk from HT(h). Then let

h′ = h⊕ xm ∗ g.
1If ie−1 − ord(g[d]) > ord(le−1), then ord(g[d]) + ord(le−1) < ie−1, and so r[d−1] = 0
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Consequently, we have

h′ = t1 ∗ g ⊕ t2 ∗ g ⊕ · · · ⊕ tk−1 ∗ g,

and so tk−1 can be restored from HT(h′) similarly. Analogously, we could easily restore

tk−2, . . . , t1, and so is f .

Finally we remark that if a given function g is a wrong guess, then the above process to

compute f would break off at some point. Usually the scale of the intermediate functions

appeared during the above process, say h′, h′′ = h′⊕tk−1∗g, etc., will increase dramatically

if g is a wrong guess, while that will decrease gradually if g is a right guess. Thus, setting

a bound, say 2 · |T (h)|, for the number of terms of intermediate functions can save much

time and will not affect the result for the most of the cases.

6.4 Complexity analysis and experimental result

Like many other algorithms related to NFSRs, the precise complexity formula of the general

decomposition algorithm proposed in this section is hard to give. But it is easy to see that

the complexity of the algorithm is related to the ANF of the function being decomposed,

i.e., the number of terms, the degree, and the order. Generally, as the number of terms or

the degree or the order increases, the algorithm needs more time to terminate. This is also

shown by the following experimental results listed in Tables 3, 4, 5, and 6.

We implemented the whole algorithm by the symbolic computation software Singular

except the subalgorithm used for decomposition into a cascade connection of an NFSR into

an LFSR, because this subalgorithm has been well studied in [6]. All the experiments were

done on a PC with Intel Core i5 CPU 2.4 GHZ and 8.0 GB RAM, and the experimental

results are listed in Tables 3, 4, 5, and 6. The data of the first three tables correspond

to Experiment 25 whose aim is to show the impact of the order and the number of terms

of the function being decomposed on running time. It can be seen that the running time

increases as either the order or the number of terms increases. The data of the last table



26

correspond to Experiment 26 whose aim is to show the impact of parameter d described

in Table 1 on running time by comparing with the data of Experiment 25, where d = 2

in Experiment 25 while d = 3 in Experiment 26. It can be seen that the running time

increases as d increases. Overall, it is found that the parameter d has the greatest impact

on the running time. This is because given d, our algorithm is an iterative algorithm and

the number of iterations is d−1, which increases as d increases. Moreover, the more number

of iterations probably leads to more guesses that need to be verified. Since d is bounded

by deg(h), it follows that deg(h) has the greatest impact on running time of the proposed

algorithm compared to the order of h and the number of terms of h.

Experiment 25 We remark that for a random characteristic function h, the probability

that h could be decomposed into h = f ∗ g for some characteristic functions f and g is

very small. Thus, instead of randomly generating h, we randomly generate f and g and

decompose h = f ∗g use our algorithm. Given parameters n, a, b which are positive integers,

the experimental steps are as follows.

Step 1 We randomly generate a sufficient number of pairs of quadratic characteristic func-

tions (fi, gi) of order n each and compute hi = fi ∗ gi.

Step 2 Among the functions generated in Step 1, only keep 1000 instances of hi satisfying

a ≤ |T (hi)| < b and discard all the others. Here we control the number of terms of hi

within a certain prescribed range to show the relation between the number of terms of

the function being decomposed and the running time of our algorithm.

Step 3 For 1 ≤ i ≤ 1000, decompose hi retained in Step 2 using our Singular program to

find fi and gi by directly setting the parameter d to be 2 (see Table 1 for the implication

of the notation d).

Experiment 26 For each n ∈ {20, 30, 40}, the experimental steps are as follows.
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Table 3: Results for Experiment 25 with a = 0 and b = 100

ord(f) & ord(g) ord(h)
Number of

samples

Average Number of

|T (h)|

Average

Time

20 40 1000 56.6 14.8 seconds

30 60 1000 56.2 24.3 seconds

40 80 1000 56.5 40.0 seconds

Table 4: Results for Experiment 25 with a = 100 and b = 200

ord(f) & ord(g) ord(h)
Number of

samples

Average Number of

|T (h)|

Average

Time

20 40 1000 140 38.4 seconds

30 60 1000 140.1 62.1 seconds

40 80 1000 141.8 98.3 seconds

Step 1 We randomly generate a sufficient number of pairs of functions (fi, gi) with deg(fi) =

2 and deg(gi) = 3 of order n each and compute hi = fi ∗ gi.

Step 2 Among the functions generated in Step 1, only keep 100 instances of hi satisfying

|T (hi)| < 300 and discard all the others.

Step 3 For 1 ≤ i ≤ 100, decompose hi retained in Step 2 using our Singular program to

find fi and gi by directly setting the parameter d to be 3 (see Table 1 for the implication

of the notation d).

Remark 27 The average running time for ord(h) = 80 in Table 4 is a bit greater than

that in Table 5. This is because a few instances of the 1000 samples corresponding to

100 ≤ |T (hi)| < 200 happened to be difficult to decompose. This implies that not only the
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Table 5: Results for Experiment 25 with a = 200 and b = 300

ord(f) & ord(g) ord(h)
Number of

samples

Average Number of

|T (h)|

Average

Time

20 40 1000 239 64.7 seconds

30 60 1000 239.8 74.1 seconds

40 80 1000 242.4 92.5 seconds

Table 6: Results for Experiment 26

ord(f) & ord(g) ord(h)
Number of

samples

Average Number of

|T (h)|

Average

Time

20 40 100 87 3.2 minutes

30 60 100 98 4.8 minutes

40 80 100 88 9.5 minutes

number of terms but also the distribution of terms has some impact on running time, whose

influence is hard to predict.

Remark 28 Most of functions decomposed in Experiment 25 have degree 4, and most of

h decomposed in Experiment 26 have degree 6.

7 Conclusion

In this paper we study the problem of decomposing an NFSR into a cascade connection of

two smaller NFSRs. Only a very special case of this problem has been solved before, i.e.,

the cascade connection of an NFSR into an LFSR. We propose an algorithm to completely

solve this decomposition problem. Experimental results show that the proposed algorithm
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is practical.

The uniqueness of decomposing an NFSR into a cascade connection is till open. It

seems that such decomposition is unique for most of the functions but no proof has been

found. This is an interesting theoretical problem and will be one subject of our future

work.

Appendix: An Auxiliary Theorem

Theorem 29 Let h ∈ C∗. If h = f ∗ g for some functions f, g ∈ C, then there are two

functions f, g ∈ C∗ such that h = f ∗ g.

Proof. Assume f ∈ Bn and g ∈ Bm, where n,m are positive integers. First it can be easily

seen that the case f(0, . . . , 0) = 1 and g(0, . . . , 0) = 0 is impossible. Thus, we have two

cases to be discussed.

If f(0, . . . , 0) = 0 and g(0, . . . , 0) = 1, then we write g = g′ ⊕ 1. Consequently, we get

h = f ∗ (g′ ⊕ 1)

= f(x0 ⊕ 1, . . . , xn−1 ⊕ 1) ∗ g′. (18)

Let us denote f ′ = f(x0 ⊕ 1, . . . , xn−1 ⊕ 1). Since h(0, . . . , 0) = 0, it follows from (18) that

f ′(0, . . . , 0) = 0. Thus, we have h = f ′ ∗ g′ and f ′, g′ ∈ C∗.

If f(0, . . . , 0) = 1 and g(0, . . . , 0) = 1, then we write f = f ′ ⊕ 1 and g = g′ ⊕ 1. With

these notations, we get

h = (f ′ ⊕ 1) ∗ (g′ ⊕ 1)

= (f ′ ∗ (g′ ⊕ 1))⊕ 1

= (f ′(x0 ⊕ 1, . . . , xn−1 ⊕ 1) ∗ g′)⊕ 1 (19)

Let us denote f ′ = f(x0 ⊕ 1, . . . , xn−1 ⊕ 1). Since h(0, . . . , 0) = 0 and g′(0, . . . , 0) = 0, it

follows from (19) that f ′(0, . . . , 0) = 1, and so let us further denote f ′ = f ′′⊕1. Thus, (19)
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implies that

h = ((f ′′ ⊕ 1) ∗ g′)⊕ 1 = f ′′ ⊕ g′.

Appendix: A Small Example

In this section, we give a small example to illustrate the discussions of Subsections 6.1, 6.2,

and 6.3.

Let

h = x8 ⊕ x4x5x7 ⊕ x5x7 ⊕ x3x4x7 ⊕ x4x7 ⊕ x3x7 ⊕ x2x7 ⊕ x1x7 ⊕ x7 ⊕ x3x4x5x6

⊕x3x5x6 ⊕ x2x5x6 ⊕ x1x5x6 ⊕ x3x6 ⊕ x6 ⊕ x2x5 ⊕ x1x5 ⊕ x1x3 ⊕ x2 ⊕ x0.

We shall find (f, g) such that h = f ∗ g and deg(g) = 2.

First, we compute

∆3(h) = x4x5 ⊕ x5 ⊕ x3x4 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1,

and it is clear that ∆∗
3(h) = ∆3(h). Then we know that

x4x5 ⊕ x3x4 = ∆2(f) ∗ g[2].

Thus

g[2] ∈ {x1x2, x2x3}.

Case 1 If g[2] = x1x2, then ∆2(f) = x3 ⊕ x2. It follows that

r[1] = 0 or r[1] = ⟨
x5 ∗ g[2]

x7

⟩ = x6.

If r[1] = 0, then

x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 = ∆2(f) ∗ g[1],
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which does not hold since the least subscript of the variables in ∆2(f) ∗ g[1] is at least

2. If r[1] = x6, then

x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 = ∆2(f) ∗ g[1],

which does not hold since x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x is not divisible by ϕ(∆2(f)) in

F2[x]. Hence g[2] ̸= x1x2.

Case 2 If g[2] = x2x3, then ∆2(f) = x2 ⊕ x1. It follows that

r[1] = 0 or r[1] = ⟨
x4 ∗ g[2]

x7

⟩ = x6.

If r[1] = 0, then there is a contradiction the same as in Case 1. If r[1] = x6, then

x6 ⊕ x5 ⊕ x4 ⊕ x3 ⊕ x2 ⊕ x1 = ∆2(f) ∗ g[1],

and so

g[1] = x4 ⊕ x2 ⊕ x0.

Thus we get

g = x4 ⊕ x2x3 ⊕ x2 ⊕ x0.

Then we solve f such that h = f ∗ g. Since HT(h) = x8, we know HT(f) = x4. Set

h(1) = h⊕ x4 ∗ g

= x6x7 ⊕ x4x5x7 ⊕ x5x7 ⊕ x3x4x7 ⊕ x4x7 ⊕ x3x7 ⊕ x2x7 ⊕ x1x7 ⊕ x7 ⊕ x3x4x5x6

⊕x3x5x6 ⊕ x2x5x6 ⊕ x1x5x6 ⊕ x3x6 ⊕ x2x5 ⊕ x1x5 ⊕ x4 ⊕ x1x3 ⊕ x2 ⊕ x0.

Since HT(h(1)) = x6x7, we know x2x3 ∈ T (f). Set

h(2) = h(1) ⊕ (x2x3) ∗ g

= x5x7 ⊕ x3x4x7 ⊕ x3x7 ⊕ x1x7 ⊕ x7 ⊕ x3x4x5x6 ⊕ x3x5x6

⊕x1x5x6 ⊕ x3x4x5 ⊕ x1x5 ⊕ x3x4 ⊕ x4 ⊕ x2x3 ⊕ x1x3 ⊕ x2 ⊕ x0.
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Since HT(h(2)) = x5x7, we know x1x3 ∈ T (f). Set

h(3) = h(2) ⊕ (x1x3) ∗ g

= x7 ⊕ x5x6 ⊕ x5 ⊕ x4 ⊕ x2x3 ⊕ x3 ⊕ x2 ⊕ x0.

Finally, it is easy to see that

h(3) = (x3 ⊕ x0) ∗ g,

and so we get

f = x4 ⊕ x2x3 ⊕ x1x3 ⊕ x3 ⊕ x0.

It is can be verified that

h = (x4 ⊕ x2x3 ⊕ x1x3 ⊕ x3 ⊕ x0) ∗ (x4 ⊕ x2x3 ⊕ x2 ⊕ x0),

and so (f, g) is the right answer.
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