On the Classification of Finite Boolean
Functions up to Fairness

Nikolaos Makriyannis

Departament de Tecnologies de la Informaci6 i les Comunicacions
Universitat Pompeu Fabra, Spain
nikolaos.makriyannisQupf.edu

Abstract. Two parties, P1 and P, wish to jointly compute some func-
tion f(z,y) where P; only knows x, whereas P> only knows y. Further-
more, and most importantly, the parties wish to reveal only what the
output suggests. Function f is said to be computable with complete fair-
ness if there exists a protocol computing f such that whenever one of
the parties obtains the correct output, then both of them do. The only
protocol known to compute functions with complete fairness is the one of
Gordon et al (STOC 2008). The functions in question are finite, Boolean,
and the output is shared by both parties. The classification of such func-
tions up to fairness may be a first step towards the classification of all
functionalities up to fairness. Recently, Asharov (TCC 2014) identifies
two families of functions that are computable with fairness using the
protocol of Gordon et al and another family for which the protocol (po-
tentially) falls short. Surprisingly, these families account for almost all
finite Boolean functions. In this paper, we expand our understanding of
what can be computed fairly with the protocol of Gordon et al. In partic-
ular, we fully describe which functions the protocol computes fairly and
which it (potentially) does not. Furthermore, we present a new class of
functions for which fair computation is outright impossible. Finally, we
confirm and expand Asharov’s observation regarding the fairness of fi-
nite Boolean functions: almost all functions f : X xY — {0, 1} for which
|X| # |Y| are fair, whereas almost all functions for which |X| = |Y| are
not.

Keywords: Complete Fairness, Secure Two-Party Computation

1 Introduction

Assume that k parties wish to jointly compute some functionality on k£ inputs
where each party holds exactly one of the inputs. Secure Multi-Party Com-
putation explains how, given certain security requirements and under certain
assumptions, this task may be accomplished. For instance, using the standard
convention, in the presence of an adversary that is malicious (may deviate from
a protocol arbitrarily), computationally bounded, and only corrupts a strict mi-
nority of parties, it is well known [9] that for any functionality there exist pro-
tocols that guarantee at the same time, privacy - parties learn only what their

2 Nikolaos Makriyannis

(personal) inputs/outputs suggest, correctness - parties’ outputs are distributed
according to the prescribed functionality, independence of inputs - no party can
choose his input as a function of another party’s input, complete fairness - if a
certain party learns the correct output then all of them do. On the other hand,
if the adversary corrupts more than half of the parties, then protocols are known
to exist that satisfy the first three requirements but not the last. Whether or
not there exist protocols that guarantee complete fairness (fairness for short)
is an open problem. In fact, the problem remains open even for the case where
only two parties are involved and the functionality in question is finite, Boolean
and deterministic. The aim of the present paper is to shed some light on this
particular case: fairness of finite Boolean functions in 2PC.

It was long thought that non-trivial functions are not computable with fair-
ness. Cleve’s seminal paper [8], while not explicitly about fairness, has some
clear implications regarding the topic in question. Loosely speaking, any func-
tion that can be used for coin-tossing is mot computable with fairness. This
includes, among others, the exclusive-or operation XOR : (z,y) — = @ y. Ar-
guably, the implications of Cleve’s paper may have deterred others from pursuing
the question.

In a surprising turn of events, Gordon et al [10] showed that the folklore is
false. In particular, all finite Boolean functions f that do not contain embedded
XORs (i-e. Ax1,y1, T2, y2 such that f(x1,y1) = f(x2,y2) # f(x1,92) = f(x2,91))
are computable with fairness. These functions roughly correspond to the Mil-
lionaire’s Problem (i.e. f(z,y) =0 < x > y). The authors also show that even
certain XOR-embedded functions are fair. Using the real/ideal world paradigm,
they design a protocol (that we henceforth refer to as the GHKL-protocol) and
show that for certain functions, any real world adversary can be simulated in
the ideal model. Thus proving that in an execution of the GHKL-protocol, the
adversary cannot gain any advantage in learning the output over the honest
party. On the other hand, in [5], Asharov et al give a complete characterization
of finite Boolean functions that are not fair due to the coin-tossing criterion. In
other words, there exists a class of functions (strictly balanced functions) that
cannot be computed fairly, since the realisation of any such function yields a
completely fair coin-toss. What’s more, they show that functions that are not
in that class cannot be reduced to the coin-tossing problem, meaning that any
new negative results with respect to fairness must rely on different criteria.

Another major advancement towards characterizing all finite Boolean func-
tions up to fairness appears recently in [3]. The author shows that there exists an
extensive amount of functions that can be computed fairly using a slightly gen-
eralised version of the GHKL-protocol. Thus proving that these functions are
inherently fair. Surprisingly, the author shows that taking a random function
where players have input domains of different size will result, with overwhelm-
ing probability, in a fair function. On the flip side, Asharov shows that the
GHKL-protocol does not account for all functions whose fairness remains un-
known (In fact, almost all functions f : X x Y — {0,1} for which |X| = |Y]).
These functions are not reducible to coin-tossing, nor are they computable with

On the Classification of Finite Boolean Functions up to Fairness 3

fairness using the GHKL-protocol, leaving the problem of determining whether
they are fair or not wide open. Finally, the author also considers asymmetric
and non-binary functions.

Preventing one party from gaining an advantage over the other seems like
a desirable security requirement for 2PC. Fairness guarantees exactly that. In
addition, apart from its obvious appeal as a security requirement, fairness is
important to the theoretical foundation of Multi-Party Computation. The char-
acterization of finite Boolean functions that are computable with fairness may
be a first step towards the classification of all functionalities up to fairness.

Our Results. In the present paper, we take another step towards characterizing
finite Boolean functions up to fairness. Ideally, we would like to find a universal
criterion to determine whether a deterministic single-output Boolean function is
computable with fairness. We remind the reader that certain functions are known
to be fair (using the GHKL-protocol) and certain functions are not (due to the
coin-tossing criterion). We contribute to both of these fronts. First, we give a
definite answer to the following question: Given a finite Boolean function f :
X xY — {0,1}, is f computable with fairness using the GHKL-protocol? In [3],
Asharov answers the question for three particular families of functions. We settle
the question using linear algebra. Next, we expand our knowledge of functions
which are provably unfair. We show that certain functions are reducible to the
sampling problem: P; and P» generate separate random bits according to some
joint probability distribution. The sampling problem is a natural generalisation
of coin-tossing and was shown not to be computable with fairness by Agrawal and
Prabhakaran [2]. Finally, by using the same argument, we confirm and expand
Asharov’s observation regarding the fairness of finite Boolean functions: almost
all functions f : X xY — {0,1} for which |X| # |Y| are fair, whereas almost
all functions for which | X| = |Y| are not.

Outline of the Paper. The next section contains notation and definitions. In
particular, we introduce secure computation and the ideal model paradigm. In
Section 3 we give an informal description of the GHKL-protocol (in its gener-
alised version proposed by Asharov [3]) and a brief overview of the simulation
strategy. We conclude with a sufficient criterion for fairness, as it appears in [10].
Our contributions begin in Section 4 where we find an equivalent criterion in-
volving the linear dependence of the columns of a certain associated matrix.
Section 5 contains the classification of all functions with respect to these crite-
ria. Finally, the last section contains our negative result. We present a class of
functions for which fair computation is impossible.

2 Preliminaries

We begin with notation and definitions. Throughout the paper we focus on
functions of the form f: X xY — {0,1}, where X and Y are finite and ordered

4 Nikolaos Makriyannis

sets, that is X = {x1,...,2¢} and Y = {y1,...,yx}. To every such function
we associate a matrix M € R where M, ; = f(x;,y;). The ith row and jth
column of M will be denoted row; and col;, respectively. Thus,

row;

M = : :(coll‘...‘colk)

rowy

More generally, we use capital letters for matrices (M, P, ...). We denote the ker-
nel and image of M by ker(M) and im(M) respectively, and its transpose by M.
Vectors will be denoted by lower case letters (u, v, . ..) or bold letters (p, q, X, . . .).
In particular, 1, and 0, represent the all-1 and all-0 vector respectively, these
elements will also be called monochromatic. We say that p? = (p1,...,pr) is a
probability vector if). p; =1 and p; > 0, for every j.

Let R* denote the real vector space of dimension k and let (u|v) = uTv
denote the standard inner product. As usual, two vectors are orthogonal if their
inner product is equal to 0. Similarly, two subsets of R¥ are orthogonal if every
element of the first is orthogonal to every element of the second. Recall the
fundamental theorem of linear algebra: for a given matrix M € R®**_ ker(M)
and im(MT) are orthogonal and their sum spans the entire space. Furthermore,
let 1%* (™) denote the orthogonal projection of R¥ onto ker(M) i.e. I**(™) s the
unique linear map from R* onto itself that annihilates the elements of im(M7T)
and corresponds to the identity when restricted to ker(M). Finally, given a vector
space V C R* and a k x k matrix P, we say that P defines an endomorphism of
Vif Pv eV, for every v € V.

2.1 Two-Party Computation

Let n € N denote the security parameter. A function wu(-) is negligible if it
vanishes faster than any (positive) inverse-polynomial. A distribution ensemble
X = {X(a,n)}ecA, nen is an infinite sequence of random variables indexed by
A, and N. Two distribution ensembles, X and Y, are computationally indistin-
guishable if for every non-uniform polynomial-time algorithm D, there exists a
negligible function p such that for every a and n

[Pr[D(X (a,n)) = 1] - Pr[D(Y (a,n)) = 1]| < u(n).

Furthermore, we say that X and Y are statistically close if for all a and n, the
following sum is upper-bounded by a negligible function in n:

1

5 2 [Pr(X(a,n) = 5| = PrlY (a,n) = 5]

S

[lo

where s ranges over the support of either X (a,n) or Y(a,n). We write X =Y

when the ensembles are computationally indistinguishable and X Z Y when
they are statistically close.

On the Classification of Finite Boolean Functions up to Fairness 5

Let Py, P, denote the parties. A two-party functionality F = {fn}nen, is
a sequence of random processes such that each f, maps pairs of inputs (one
for each party) to pairs of random variables (one for each party). The domain
of f, is denoted X,, x Y;, and the output (f!, f2). A two-party protocol m for
computing a functionality F, is a polynomial-time protocol such that on inputs
z € X, and y € Y,,, the joint distribution of the outputs of any honest execution
of 7 is statistically close to f,(z,vy) = (fl(z,v), f2(x,)).

The Adversary. Following the usual convention, we introduce an adversary A
given auxiliary input z corrupting one of the parties. The adversary is assumed
to be malicious and computationally bounded. For a protocol m computing F,
let (Outie(ag)’w,Viewie(a;)m)(x,y,n) denote the joint distribution of the honest
party’s output and the adversary’s view during an execution of w, where x and
y are the prescribed inputs and n is the security parameter.

2.2 The Ideal Model Paradigm

Let F = {fn}nen be a two-party functionality and let m be a protocol for
computing F. Further assume that an adversary is corrupting one of the parties.
Security in two-party computation is defined via an ideal model. Namely, we
assume that parties have access to a trusted party that performs the computation
for them, and we attempt to show that protocol m emulates this ideal scenario.
We will now describe three ideal models and give definitions of security for
each of them. The first corresponds to complete fairness which is the topic of the
present paper. Our goal is to show there exist (or not) protocols which are secure
with respect to this model. The other two are stepping stones which will help
us achieve that goal. We now describe the ideal model with complete fairness
(Figure 1).

Inputs: P; holds 1" and = € X,,, P> holds 1" and y € Y,,. The adversary is given an
auxiliary input z € {0, 1}*.

Parties send inputs: The honest party sends his input to 7, the corrupted party
sends a value of the adversary’s choice. Write (z’,%’) for the pair of inputs received
by T.

Trusted party performs computation: If either 2’ or ¥’ are not in the appropriate
domain, then T reassigns the aberrant input to some default value. Write (z',y’)
for the pair of inputs after (possible) reassignment. The trusted party then chooses
a random string r and computes (fr, f2) = fo(z',y';7).

Trusted party sends outputs: Party P; receives f., Pa receives f2.

Outputs: The honest party outputs whatever 7 sent him, the corrupted party outputs
nothing and the adversary outputs a probabilistic polynomial-time function of its
view.

Fig. 1: Ideal model with complete fairness

6 Nikolaos Makriyannis

Let & be an adversary given auxiliary input z corrupting one of the par-
ties. Write (Outi,s'\/(lzf)a:;, Viewi,s'\/(lzf)a:;)(x, y,n) for the joint distribution of the honest
party’s output and the adversary’s view, where x and y are the prescribed inputs
and n is the security parameter. We now define security with respect to the ideal
model with complete fairness.

Definition 2.1. Let w be a protocol for computing F. We say that m securely
computes F with complete fairness (or F is fair for short) if for every non-
uniform polynomial time adversary A in the real model, there exists a non-
uniform polynomial time adversary S in the ideal model such that

{ (outit o viewt) o) |

e

(2,y)EXn XYy,
z€{0,1}*,neN

{ (Out!y(zf)a’ig__, Viewls'v(';fjr}-) (x, Y, n) }(ey
2,y)EXn XYy,
2€{0,1}*,neN

In effect, showing that the above distribution ensembles are computationally
indistinguishable implies that, in the plain model, the information acquired by
the adversary together with his influence over the honest party’s output is no
worse than what can be achieved in an idealized situation. Moving on, we also
define the ideal model with abort (Figure 2) and define security with respect
to this model. We note that all functionalities are securely computable with
abort (Definition 2.2). Once again, let S be an adversary given auxiliary input z
corrupting one of the parties, and write (Out!gM(;)l?}’rt, View!gM(;)l?}“)(x, y,n) for the
joint distribution of the honest party’s output and the adversary’s view, where
x and y are the prescribed inputs and n is the security parameter.

Definition 2.2. Let m be a protocol for computing F. We say that m securely
computes F with abort if for every non-uniform polynomial time adversary A
in the real model, there exists a non-uniform polynomial time adversary S in the
ideal model such that

{ (outit o viewt)) |

e

(2,y)EXn XYy,
z€{0,1}*,neN

{ <Out|,5'\/(|za)tjgt, Viewg'\/('za)tjgt) (x, Y, n)} .
(z,y)EXn X Yn,
2€{0,1}*,neN

The Hybrid Model. In secure computation, the hybrid model is a tool that
allows us to break some cryptographic task into subtask and, assuming these
subtasks can be implemented securely, prove the security of the overlying task.

On the Classification of Finite Boolean Functions up to Fairness 7

Inputs: P; holds 1" and =z € X,,, P> holds 1" and y € Y,,. The adversary is given an
auxiliary input z € {0, 1}*.

Parties send inputs: The honest party sends his input to 7, the corrupted party
sends a value of the adversary’s choice. Write (z’,%’) for the pair of inputs received
by T.

Trusted party performs computation: If either 2’ or ¥’ are not in the appropriate
domain, then T reassigns the aberrant input to some default value. Write (z’,y’)
for the pair of inputs after (possible) reassignment. The trusted party then chooses
a random string r and computes (fr, f2) = fo(z',y';7).

Trusted party sends outputs: Corrupted party P; receives f. from the trusted
party. The adversary then decides either to abort or continue. In the first case,
T sends L to the honest party. In the second case, Ps_; receives fo—°.

Outputs: The honest party outputs whatever 7 sent him, the corrupted party outputs
nothing and the adversary outputs a probabilistic polynomial-time function of its
view.

Fig. 2: Ideal model with abort

Let Fi,...,F, and F be two-party functionalities. A protocol 7w for computing
F in the (Fi,...,Fy)-hybrid model consists in an protocol computing F that
proceed in rounds such that at any given round:

e Parties exchange information as in the real model or
e Parties invoke a trusted party computing F; according to a specified ideal
model.

We say that m computes F securely in the (Fi,...,F,)-hybrid model if for
any adversary corrupting one of the parties in the hybrid model, there exists
a simulator S in the ideal model such that the joint distribution of the adver-
sary’s view and honest party’s output is indistinguishable in both worlds. Hence,
applying the composition theorem of [7], and assuming there exists secure pro-
tocols p1, ..., pm computing Fi,...,F,,, protocol 7P1--Pm securely computes F,
where 7wP1-Pm is obtained by replacing ideal calls to the trusted party with the
appropriate protocols.

Reactive Functionalities. A reactive functionality G is a cryptographic task
that proceeds in several phases, where the input of one phase may depend on
the output of previous phases. With respect to the ideal model with abort, every
reactive functionality can be computed securely. Let m be a protocol for com-
puting F that does not involve any direct exchange of information between the
parties. Rather, at any given round, parties make a single call to a trusted party
computing G with abort. The composition theorem still holds, that is if the joint
distribution of the adversary’s view and honest party’s output is indistinguish-
able in the G-hybrid and ideal model with complete fairness, then protocol 7
securely computes F with complete fairness, where p securely computes G with
abort. In fact, following Asharov [3], the GHKL-protocol in the next section is
defined by means of a reactive functionality.

8 Nikolaos Makriyannis

3 Computing Fair Functions

In this section, we focus on the GHKL-protocol [10], the only protocol that
provably computes (certain) functions with complete fairness. We follow the de-
scription and generalisation proposed by Asharov in [3]. The protocol is defined
in the hybrid model where parties have access to a trusted party computing a
certain reactive functionality with abort. We give an informal description of the
protocol and a brief overview of the simulation strategy. The complete descrip-
tion and simulation strategy can be found in [11] and [4], in their respective
appendices.

3.1 Informal Description of the Generalised GHKL-Protocol

Let f: X xY — {0, 1} be a finite Boolean function, suppose that the prescribed
inputs of Py, P» are x and y respectively. The GHKL-protocol for computing f
is parametrized by three values: a real number « € (0, 1), a probability vector
p € R’ and the security parameter n. Prior to the execution of the protocol, the
number of rounds is fixed at 7 = o~ - w(In(n)).

e Compute Backup Outputs: P; chooses y € Y according to the uniform
distribution and computes ag = f(x;,y), P> chooses T € X according to
distribution p and computes by = f(Z,y;).

e Preliminary Phase: Parties are instructed to send their inputs to the
trusted party. If either input is not in the correct domain, the trusted party
responds with an abort symbol to both parties and halts. Otherwise, write
(', ") for the pair of inputs received by the trusted party. The trusted party
is instructed to choose an integer ¢* according to the geometric distribution
with parameter «, and constructs the following bits:

— Fori=1...i* = 1,set a; = f(«',7®) and b; = f(T?, %) where 7 and
(0 are chosen according to the uniform distribution and distribution p,
respectively.

— Fori=1d*...r,set a; = b; = f(2',9').

e Online Phase: Fori=1...r

1. P, sends proceed to the trusted party, P, then receives a;.

2. P; sends proceed to the trusted party, P> then receives b;.

If either party sends abort, then both receive | and the trusted party halts.

e Outputs: Parties are instructed to output the last a;/b; they successfully
constructed/received.

3.2 Security

In order to prove security, we need to show that any adversary in the hybrid
model can be simulated in the ideal model with complete fairness. On an intuitive
level, note that a corrupted P, cannot affect the protocol’s fairness. No matter
what, P; always receives the correct input first. In fact, a corrupted P, can be
simulated regardless of the parameters, for any function (see [10] and [3]). On

On the Classification of Finite Boolean Functions up to Fairness 9

the other hand, precisely because P; receives the correct input first, an adversary
A controlling P; can potentially affect the protocol’s fairness. We focus on the
latter case and give an incomplete description of the simulator S in the ideal
model.

Suppose that A hands € X to S for the computation of f. The simulator
chooses a value ¢* according to the geometric distribution with parameter a.
Now, for i = 1...7* — 1, simulator S hands a; = f(z,7) to A, where 7
is chosen according to the uniform distribution. If at any point the adversary
decides to abort, S chooses x’ according to probability distribution x{a) (that
we define below), sends 2’ to the trusted party, outputs whatever A outputs,
and halts. Otherwise, at ¢ = i*, the simulator sends z to the trusted party and
receives aout = f(z,y) which it hands to A. If A aborts, then S outputs whatever
A outputs, and halts. Finally, for ¢ =¢* +1...r, the simulator hands aqy; to A.
Once again, if A aborts, then S outputs whatever A outputs, and halts.

Recall that the protocol is secure if the joint distributions of the adversary’s
view and the honest party output in the ideal and hybrid model are computa-
tionally indistinguishable. The simulation strategy boils down to the existence
of x,(xa) that will do the trick. Using the fact that i* is chosen according to a
geometric distribution, it can be shown that the above simulation works if for
all a € {0,1}, for all x € {z1,...,x¢},

MT . Xga) _ cgpa)7

where M, ; = f(zi,y;),

Q-Py;

O (j) 2§ Pws if f(z,y;) =1
=a)(=py TPy, Otherwise

)

a(py; —1) .
gyt [FEE) =1
- Dy, otherwise

and
def def
(pylv"-apyk-) = pT'Mv (pﬂ?u-"apme)T = M (l/kval/k)T

Theorem 3.1. Using the notation above, if for some probability vector p and
a € (0,1), and for alli € {1,...,L}, there exist probability vectors x;?), x;ﬁ.) € R¢
such that

MT - x(@) — o)
then f is computable with complete fairness using the GHKL-protocol.

Arguably, a function that does not satisfy the criteria of the above theorem
may still be computable with fairness using the GHKL-protocol. Of course, such
a claim must be accompanied by a new valid simulation strategy, since the one
described above will not work. With that in mind, and for the rest of the paper,
a function will be said to be GHKL-fair if it satisfies the hypothesis of Theorem
3.1. In other words, a function is GHKL-fair if it is computable with fairness
using the GHKL-protocol and the particular simulation strategy described above
proves it.

10 Nikolaos Makriyannis

4 Equivalent Conditions for GHKL-Fairness

The conditions of Theorem 3.1 depend heavily on parameters of the protocol,
namely o, {pg, }i+ and {py, },. A universal criterion for fairness would only depend
on the function itself. Failing that, we aim to find equivalent conditions that
are “easier” to verify. In this section, starting with the equations of Theorem
3.1, we present a new set of conditions that do not depend on «, nor {py,},
but only {py,}; and the function itself. Let f be a finite boolean function, and
assume that f is GHKL-fair i.e. for some « € (0,1) and probability vector p,
and all ¢ € {1,...,/}, there exist probability vectors x;l),xg) € Rf such that
MT . x (a) = cgf) Define

50 def 1 =) = pz,) (x - p)
L . L

~ 1- T
se(n) def (1= pe, (x) ~p) .
, " ,

and note that

MTx) = (1)

where
E(Q)(j) _ 0 if f(zi,y;) =1 7 E(l,)(j) _ JPy; — 1 if fwg,y;) =1
z py, otherwise i 0 otherwise
Furthermore,

Zsz@ (2)

i, % (J)Ew-[—p(j)ﬂ—p(j)] ,)
vi, 50 e Lo gy 1)) @)

Conversely, if for some probability vector p and « € (0,1), and for all ¢, there

exist i&o) and i&” satisfying relations (1) to (4), then we can construct xg) and

x&? satisfying Theorem 3.1. Specifically,

ax® . % .
<0 —) Ty TP Hpe AL @) Wﬂ) if pa, # 0

P otherwise P otherwise

Simplifying Assumption. Probability vector p will be considered without
zero-components i.e. V4, p(j) # 0. Note that, in this case, the intervals defined
in (3) and (4) grow arbitrarily as «a tends to zero. Thus, we are only required to
verify relations (1) and (2). On the other hand, we claim that this simplifying

On the Classification of Finite Boolean Functions up to Fairness 11

assumption does not incur any loss of generality: If there exists a “suitable”
with zero-entries, then we can construct another “suitable” probability vector
that is strictly positive. For further details, see Appendix A. To sum up, we
conclude with the following theorem.

Theorem 4.1. Using the notation above, function f is GHKL-fair if and only

if for some strictly positive p, and all i € {1,...,¢}, there exist XE«?) and X 1)

such that
MT. ig“) = 65;” and Z x(“)

Recall that pT’ M = (py,,...,py,). Define P(M,p) = diag(py,, ..., py,) i.e
the diagonal matrix whose components are the p,, . If no confusion arises, P(M, p)
will be denoted P. In Figure 3, we express the conditions of Theorem 4.1 with
respect to matrix P. In effect, function f is GHKL-fair if (17 — row;)P and

For all i € {1,...,¢}, for all a € {0, 1}, there exists (NE 1), TS z) that satisfies

L3 u(a) =0,
2. (Mgog, o)M = (1] — row;) P,
3. (ugll), c uglz))M = row; (P — Idg).

Fig. 3: GHKL-fairness conditions

row; (P — Idy) belong to the image of M7 and admit a suitable pre-image. Let
V= {v e R >, vi = 0}. By considering an appropriate basis of V, we note
that the image of V by M7 corresponds exactly to the image of M'T, where

row; rowg
, row; rows
M = . —
rows rowy
Furthermore, a quick analysis shows that ker(M {v € Rk | Mv = (6 Lo)T}.

Going back to the conditions of Figure 3, funct1on f is GHKL-fair if (17 —row;) P
and row; (P — Idy) belong to the image of M'T. By orthogonality,

(1F —row;)Pv =0
row;(P —Idg)v =0

)

Vo € ker(M'), {

both of which boil down to row; Pv = 4. By letting ¢ vary, we deduce the following
Proposition.

Proposition 4.2. Function f is GHKL-fair if and only if there exists p such
that Mv = M Pv, for every v € ker(M’).

12 Nikolaos Makriyannis

Already, we see that for a given p, verifying that a function f is GHKL-fair
is very easy. Take a basis of ker(M’) and check that M (Id; — P)v = 0Oy, for every
element of the basis. Of course finding p is a non-trivial task, and we look into
that later on. For the remainder of the section, we show that certain functions
are not viable candidates for GHKL-fairness, regardless of the value of p.

Lemma 4.3. Assuming Mv = M Puv, for every v € ker(M'), matriz P defines
an endomorphism of ker(M) as well as im(M7T).

Proof. First of all, if v € ker(M), then M Pv = Mv = 0 and thus Pv € ker(M).
On the other hand, let v € im(M7T) and v € ker(M). Since P is diagonal,
we deduce that (Pu|v) = (u|Pwv), and thus (Pu|v) = 0. Since v is arbitrary,
Pu € im(MT). O

Lemma 4.4. Suppose that Mv = M Pv, for every v € ker(M'). Furthermore,
assuming it exists, let b € RF denote the unique pre-image of 1, by M that is
orthogonal to ker(M). Then, b(j) # 0 implies col; = 1,.

Proof. We know that (Idx — P)b € ker(M). Now, since P is an endomorphism
of im(M7T), and thus (Idy — P)b € im(MT), we deduce that (Id, — P)b = 0.
Consequently b(j) # 0 implies P;; = 1, and since P; ; = p”col; and p > 0y, we
conclude that col; = 1,. O

Theorem 4.5. Using the notation above, f is GHKL-fair if and only if

1. no linear combination of the non-monochromatic columns of M yields 1y,
2. there exists a strictly positive p such that matriz P defines an endomorphism

of ker(M).

Proof. The second item is necessary because of Lemma 4.3. For the first item,
suppose without loss of generality that the first £’ columns contain 1, in their
linear span, and none of them is monochromatic. We show that b(j) # 0, for some
j€{1,...,k'}, in contradiction with Lemma 4.4. Let v = (vy,...,v%,0,...,0),
such that Mv = 1,. We know that v = b+ v’, where v’ € ker(M). Consequently,
(v]|b) = (b]b) > 0, and we conclude that at least one of the first &’ entries of b
is non-zero.

Conversely, we show that the two conditions imply Proposition 4.2. First,
since P is an endomorphism of ker(M), then 0 = Mv = M Pv, for all v € ker(M).
It remains to show that Mb = M Pb. Since the non-monochromatic columns of
M do not span the all-1 vector, we deduce that b(j) # 0 if and only if col; = 1,
and thus P;; = 1. Consequently, Pb = b, and thus f is GHKL-fair. It can also
be shown that neither condition is sufficient on its own. ad

5 Classification of GHKL-Fair Functions

‘We now present a classification of finite Boolean functions with respect to GHKL-
fairness. We subdivide functions into four families, three of which can be ac-
counted for almost immediately. First, we prove a couple of claims.

On the Classification of Finite Boolean Functions up to Fairness 13

Proposition 5.1. If f is GHKL-fair, then the same is true of 1 — f.

Proof. We prove the claim by applying Proposition 4.2. Assuming that M is

the associated matrix of f, write M for the associated matrix of 1 — f. Using

the same p, assuming that Mv = M Pu, for every v € ker(M’'), and noting
—

that ker(M) = ker(M’), we conclude that Mv = M - P(M,p) - v, for every

v e ker(Ml). O

Corollary 5.2. Suppose that f is GHKL-fair. Further assume that the first k'
columns of M are non-monochromatic. Then, Zle v;col; = 0y implies Zle v; =
0.

Proof. If not, we obtain a contradiction with the above proposition and the first
item of Theorem 4.5. O

Define M,,, € {0,1}**" obtained from M by deleting all monochromatic columns.
We distinguish 4 types of functions depending on the following properties of their
associated matrix:

(Type 1) 1, € im(Mo,1) .

(Type 2) 1, ¢ im(Mo,1) and ker(My,1) = {04 }.

(Type 3) 1, ¢ im(My,,) and ker(Mo,1) # {0k} and ker(Mo,1) C
(Type 4) 1, ¢ im(Mo,1) and ker(Mo1) # {0y } and ker(Mo,1) ¢

Theorem 5.3. Let f be a finite Boolean function.

o If f is of type 1 or 4, then it is not GHKL-fair.
o If f is of type 2, then it is GHKL-fair.

Proof. Functions of type 1 do not satisfy the first item of Theorem 4.5. Similarly,
functions of type 4 are not in accordance with Corollary 5.2. On the other hand,
and by applying Theorem 4.5, we note that functions of type 2 and 3 do not
contain 1y in the linear span of the non-monochromatic columns. It remains
to show that there exists a strictly positive p such that matrix P defines an
endomorphism of the kernel. If f is of type 2, then columns of M that are
linearly dependent are all monochromatic. Knowing that (py,,...,py,) = pT M,
a quick analysis shows that matrix P defines an endomorphism of ker(M), for
any p. Finally, for functions of type 3, the existence of p depends on the linearly
dependent columns of M, ,,, and so a general rule cannot be extrapolated at this
point. a

The theorem above confirms the findings of Asharov. Namely, in [3], the
author identifies two families of GHKL-fair functions, both of which are of type
2. On the flip side, the author finds a family of functions for which the simulation
strategy we consider falls short. Indeed, these are type 1 functions.

14 Nikolaos Makriyannis

5.1 Finding the Probability Vector

Theorem 5.3 does not account for functions of type 3. Indeed, the existence of
p depends on the linearly dependent columns of M,,,. In the remainder of this
section, we show that the existence of p is subject to the resolution of a linear
program. We note that the program is defined in the broadest possible terms,
meaning that it’s a “one size fits all” way to find p. To illustrate, consider a
matrix M € {0,1}*** of type 2. Construct a new matrix by concatenating a
column of M to itself. Now, M is of type 2 and thus GHKL-fair, whereas the
other is of type 3. It is easy to see however that it is also GHKL-fair, for any p.
Moving on, recall that I**(™) denotes the orthogonal projection onto the kernel
of M. Furthermore, for all 4, let I""* denote the diagonal matrix I;°"" = row;(j).

Theorem 5.4. Let f be a finite Boolean function of type 3. Function f is
GHKL-fair if and only if

Iker(M) . Jrow1 r 0

: MEL)= (5)
Iker(M) . Jrowe) 0

admits a strictly positive solution.

Proof. Let p = (r1,...,r,)T. First, note that P =Y. r;I™, and that P defines
an endomorphism of ker(M) if and only if

Vie{l,..., ¢}, <Z riImW"') roij €im(MT) . (6)

Since the matrices are all diagonal, and thus commute, we deduce that

<Z ril '°W”’> row; = (Z ril ,oWi> I 1y = I (Z rirDWiT)
— oW (Z nYOW?) — row; | MT(rl, .. ,T‘g)T

Consequently, (6) holds if and only if (5) admits a strictly positive solution, in
which case the probability vector is obtained by normalisation. a

5.2 Complete Fairness and GHKL-Fairness

We take a moment to discuss the relationship between complete and GHKL-
fairness. Recall that the latter depends on a specific protocol (and simulation
strategy), and constitutes a sufficient criterion for complete fairness. Let f be
a finite Boolean function and define f7 : (y,z) — f(z,y). It might be the case
that f7 is GHKL-fair, while f is not. It is easy to see however that f is indeed

On the Classification of Finite Boolean Functions up to Fairness 15

computable with complete fairness, the protocol in question being the GHKL-
protocol with the players’ roles interchanged. We conclude that for any f, if
either f or fT are GHKL-fair, then f is computable with complete fairness.

Another possibility is to consider computationally equivalent functions [10]
i.e. functions obtained by adding/deleting redundant inputs. By applying The-
orem 4.5 however, one can show that GHKL-fairness is preserved. In particular,
adding/deleting redundant inputs for P» has no effect, and with a straightfor-
ward modification of the probability vector, the same can be shown for P;. In
summary, assuming a given function f is fair, if neither f nor f7 is GHKL-
fair then to the best of our knowledge, there is no immediate way to design a
completely fair protocol computing f from the one of Gordon, Hazay, Katz and
Lindell.

On the other hand, assume that fair computation is impossible for a given
function f. Further assume that the function is not reducible to coin-tossing (not
strictly balanced [5]). Then we need a new argument to prove that it is indeed
unfair. In the next section, we do exactly that.

6 A Class of Unfair Functions

In this section, we present a new class of functions for which fair computation
is impossible. We begin with an example. Let f : {z1,..., 24} X {y1,..., 94} —
{0,1} be the function with associated matrix

0101
1110
0010
1000

First, note that neither f nor f7 are GHKL-fair, since both of them are of type
1. Assuming there exists a completely fair realization of function f, consider the
following: P; chooses among {x1, z3,24} with equal probability, P> chooses y4
with probability 2/5, or one of his other inputs with probability 1/5. Players
compute f on the chosen inputs and obtain b. Define

1—-0 if P, chose yo

Out1 = b, Out2 = { .
b otherwise

A quick analysis shows that Pr[Out; = 1] = 1/3, Pr[Outy = 1] = 2/5, and that
the two are equal with probability 4/5. If Out; and Outy were independent,
they would be equal with probability 8/15, which is not the case. Finally, it is
not hard to see that any malicious behaviour by either party does not affect the
probability distribution of the other party’s output.

In fact, we have just described a non-trivial instance of the sampling problem:
parties P, and P» generate bits b; and bs, respectively, according to some joint
probability distribution. Secure sampling is said to be non-trivial if the outputs

16 Nikolaos Makriyannis

are not independent. In [2], Agrawal and Prabhakaran show that this problem
cannot be realised with complete fairness. In what follows, we demonstrate that
there exists a large class of functions that are reducible to the sampling problem,
and are thus unfair. Formally, let Fgg denote the following functionality:

e Parameters p, ¢ € [0,1] and x € [2max(p+¢—1,0)—2pq, 2min(p, q) —2pq].
e Inputs Empty for both parties.
e Outputs P; and P; receive bits by and be € {0, 1}, respectively, such that
1. Pr[by = 1] = p,
2. Prby = 1] = ¢,
3. Pr[by = bo] =pg+ (1 —p)(1 —q) + x-

Theorem 6.1. Unless x = 0, functionality Fggs is not computable with complete
fairness.

Proof. The proof is a natural generalisation of Cleve’s [8] original argument
(where p = ¢ = 1/2) and can be found in [2]. Note that if x = 0, then b; and by
are independent and Fgg is trivially fair. O

In fact, Fgs is not computable with complete fairness even if we allow the
adversary to learn the honest party’s output. Formally, we augment the ideal
model with complete fairness such that after sending the outputs, the trusted
party divulges the honest party’s output to the adversary. We claim that Fgg
is not securely computable in this new augmented model. The claim is true
because Cleve’s argument makes no assumption regarding the privacy of the
parties’ outputs. As a corollary, we deduce that any finite Boolean function that
can be reduced to an instance of the sampling problem is inherently unfair, even
if the adversary learns the honest party’s output.

6.1 Semi-Balanced Functions

In [3], the author identifies a class of functions that are not GHKL-fair. Here,
we go one step further and show that they are inherently unfair. In particular,
they are all reducible to a (non-trivial) instance of the sampling problem.

Definition 6.2. Let f be a finite boolean function with matriz representation
M and write M for the matriz representation of 1 — f. We say that f is right
semi-balanced if

Mqgq=1
3q € R* such that -d ¢
Mq # 0¢
Similarly, f is left semi-balanced if
MTp=1
Jp € R’ such that _Tp F
M p # 0y

Theorem 6.3. If [is left and right semi-balanced, then f is not computable
with complete fairness.

On the Classification of Finite Boolean Functions up to Fairness 17

We dedicate the rest of the section to the proof of Theorem 6.3. We show that
any secure protocol computing f with respect to the ideal model with complete
fairness, implies the existence of a secure protocol computing Fgg with respect
to the augmented model where the adversary learns the honest party’s output.
Assuming f is left and right semi-balanced, fix q € R*, p € R’ such that

doilpil =1 doilail =1
pTM:((Sl,...,(Sl), 61 >0, Mq=(52,...,(52)T, 62 >0
pI'M # (0,...,0) Mq # (0,...,0)T

Suppose that parties have access to a trusted party 7 computing f. Consider
protocol 7 in the f-hybrid model:

e Inputs: On empty inputs, P; chooses z; with probability |p;|, P> chooses
column y; with probability |g;|.

e Invoke Trusted Party: P, P> invoke the trusted party on inputs x; and
y; respectively. As per the ideal model with complete fairness (Figure 1), 7
hands both parties a bit b.

e Outputs: If p; < 0, then P; outputs 1 — b. Similarly, if ¢; < 0, then P
outputs 1 — b. Otherwise, parties are instructed to output b.

Define p*,q*,p~, ¢~ such that p~ =1 -p* =37 _([pil, and ¢~ =1 ¢+ =

qu<0 |qj|
Lemma 6.4. (p* —p~)d2 = (¢" — ¢)d1.
Proof.

(pt —p)02 =p"(d2,...,02)" =p"Mq
= (51,...,51)(31: (qu _qi)dl .

Lemma 6.5. An honest execution of w yields the following outputs:

° Pr[Out1 = 1] =6 +p,
e Pr[Oute =1 =682+ ¢,
e Outy and Outy are not independent random variables.

Proof. Write Outgl)(xi) for Pr[Outy = 1|z = x;], then

T
<out§>(x1), y .,outg”(w)) =Y Jal(1e — coli) + > |gicol;

q:<0 qi>0
k
= E lqi| 1o + E gicol;
4:<0 i=1

=q¢ L +Ma= (¢ +0,....,q" +d&)"

18 Nikolaos Makriyannis

The output of P, is obtained in a similar fashion. Moving on, if Out; and Out,
are independent, then they are equal with probability

(014+p7)02 +q7)+ (=01 +p")(=d2+q") .

On the other hand, when the players execute 7, they will agree on the output if
and only if both players flip their bits, or both players do not. Thus, Pr[Out; =
Outy] = p~q¢~ +ptq*. Consequently, if Out; and Outs are independent random
variables, we deduce that

(b1 +p)b2+q)+ (=01 +pT)(—=b2+q")=p ¢ +pTq¢" .

which boils down to 26102 = §1(¢" — ¢~) + d2(pT — p~). Now, by Lemma 6.4
and knowing that 61,02 # 0, we deduce that that 52 = >_, ¢; and 61 = Ele Di-

These in turn are equivalent to Mq = 0, and p”’ M = 07, which we have ruled
out by assumption. Hence, we conclude that

Pr[Out; = Outy] =
Pr[Out; = 0]Pr[Outy = 0] 4+ Pr[Out; = 1]Pr[Outy = 1] + x

for some x # 0. ad

It remains to show that every adversary in the f-hybrid model can be sim-
ulated in the ideal model. We briefly describe the simulation strategy for a
corrupted P, the other case being identical. First, construct £ x k matrix M
such that the j-th column of M is equal to col; if g; > 0, and 1 — col; otherwise.
Now, simulator S invokes A on the security parameter and auxiliary input z.
The adversary hands z; to S for the computation of f, and the simulator invokes
the trusted party for computing Fgg. As per the augmented model with com-
plete fairness, the trusted party leaks the honest party’s output, say Outs, to S.
The simulator chooses y; according to the prescribed distribution conditioned on
J\Z,j = Outs. If ¢; < 0, the simulator hands 1 — Outs to A. Otherwise, S hands
Outs to A. In any case, the simulator outputs whatever A outputs, and halts. It
is easy to see that the simulation strategy yields identical output distributions
in the hybrid and ideal world.

Conclusion

To conclude, we make an observation regarding the number of functions that
are either GHKL-fair or semi-balanced. A weaker version appears in [3] and the
argument is based on [14]. Take a random function f : X xY — {0, 1} such that
|X| > |Y|. Then, with probability greater than 1 — v(]Y]), where v(x) is some
negligible function, f is GHKL-fair. Intuitively, this occurs because k random
0/1-vectors of size ¢ (with ¢ > k) will almost surely form a linearly independent
set and yet their linear span will not contain the all-1 vector.

Similarly, take a random function f : X x Y — {0,1} such that |X| =
|Y|. Then, with probability greater than 1 — v(|Y]), where v(*) is the same

On the Classification of Finite Boolean Functions up to Fairness 19

negligible function, f is (left and right) semi-balanced. The intuition now relies
on the fact that for a random square matrix M, both M and M are non-singular
with overwhelming probability. Putting everything together, we come to the
following conclusion: Almost all functions for which |X| # |Y| are computable
with fairness, whereas almost all functions for which |X| = |Y| are not.

References

[1] Agrawal, S., Prabhakaran, M.: On fair exchange, fair coins and fair sampling.
In: Canetti, R., Garay, J. (eds.) CRYPTO ’13, LNCS, vol. 8042, pp. 259-276.
Springer, Heidelberg (2013)

[2] Asharov, G.: Towards characterizing complete fairness in secure two-party com-
putation. In: Lindell, Y. (ed.) TCC ’13, LNCS, vol. 8349, pp. 291-316. Springer,
Heidelberg (2014)

[3] Asharov, G.: Towards characterizing complete fairness in secure two-party com-
putation (extended version). Cryptology ePrint Archive, Report 2014/098 (2014),
http://eprint.iacr.org/2014 /098

[4] Asharov, G., Lindell, Y., Rabin, T.: A full characterization of functions that imply
fair coin tossing and ramifications to fairness. In: Sahai, A. (ed.) TCC ’13, LNCS,
vol. 7785, pp. 243-262. Springer, Heidelberg (2013)

[5] Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23-27 (1983)

[6] Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptology 13(1), 143-202 (2000)

[7] Cleve, R.: Limits on the security of coin flips when half the processors are faulty.
pp. 364-369. STOC 86, ACM (1986)

[8] Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press (2004)

[9] Gordon, D.S., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-
party computation. pp. 413-422. STOC 08, ACM (2008)

[10] Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure
two-party computation (extended version). Cryptology ePrint Archive, Report
2008/303 (2008), http://eprint.iacr.org/2008/303

[11] Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: TCC ’09. pp.
1-18. LNCS, Springer, Heidelberg (2009)

[12] Yao, A.C.: Protocols for secure computations pp. 160-164 (1982)

[13] Ziegler, G.M.: Lectures on 0/l-polytopes. In: Kalai, G., Ziegler, G.M. (eds.)
Polytopes Combinatorics and Computation, DMV Seminar, vol. 29, pp. 1-41.
Birkhauser Basel (2000)

A Considering Probability Vectors with
Zero-Components

Let f={x1,...,2¢} x {y1,...,yx} — {0,1} and consider its associated matrix
M. Furthermore, fix a probability vector p € R’ and define k x k matrix P =
diag(py,, - .., Py,) where

(pyl7""pyk-) = pTM .

20 Nikolaos Makriyannis

Recall the alternate GHKL-fairness conditions: for all ¢ € {1,...,¢}, for all
a € {0,1}, there exists (ul(.fll), e a/%(:,ae)) satisfying

2. (i),)M = (1T — row;) P with u”) > 0 if p(j) = 0,

3. (i), 1d))M = row; (P —1di) with p!') > 0 if p(j) = 0.
Without loss of generality, suppose that p(1) = 0 and that the GHKL-fairness
conditions are satisfied. Then

(),)M = (AT — rowy) P
(,ugli +1,..., ,uglz)M =row P .

Add the two expressions together:

W+ i+ L+)M = 1P ="M .
Thus,
(Mfi)+ 1-p(1),)+l - p(f)) M=0,
and note that uﬂ —|—uﬂ +1—p(1) > 0. Now, define D = {j|p(j) = 0} and let

d = |D|. Using the same trick as above for every row indexed by D, deduce that
(v1,...,v0)M = 0, where

o vi=1+Yp(l) +ul)>0ifieD,

o =B+ el +) T D,
[Zz vV, = 0.

Next, choose v > 0 such that
—p@) <v-v; <1l—p@),

for every ¢ € {1,...,¢}, and define probability vector p = p + 7 - v. By noting
that pT M = pTM = (py,,...,py,.), we conclude that function f is GHKL-fair
for a new probability vector without zero entries.

