
A Probabilistic Algebraic Attack on the Grain Family of Stream

Ciphers

Pratish Datta, Dibyendu Roy and Sourav Mukhopadhyay
Department of Mathematics,

Indian Institute of Technology Kharagpur,
Kharagpur-721302, India

{pratishdatta,dibyendu.roy,sourav}@maths.iitkgp.ernet.in

Abstract:- In 2005, Hell, Johansson and Meier submitted a stream cipher proposal named Grain
v1 to the estream call for stream cipher proposals and it also became one estream finalists in the
hardware category. The output function of Grain v1 connects its 160 bits internal state divided
equally between an LFSR and an NFSR, using a non-linear filter function in a complex way. Over
the last years many cryptanalyst identified several weaknesses in Grain v1. As a result in 2011 the
inventors modified Grain v1 and published a new version of Grain named Grain-128a which has
a similar structure as Grain v1 but with a 256 bits internal state with an optional authentication
is the latest version of Grain family resisting all known attacks on Grain v1. However both these
ciphers are quite resistant against the classical algebraic attack due to the rapid growth of the degree
of the key-stream equations in subsequent clockings caused by the NFSR. This paper presents a
probabilistic algebraic attack on both these Grain versions. The basic idea of our attack is to
develop separate probabilistic equations for the LFSR and the NFSR bits from each key-stream
equations. Surprisingly it turns out that in case of Grain-128a our proposed equations hold with all
most sure probability, which makes the sure retrieval of the LFSR bits. We also outline a technique
to reduce the growth of degree of the equations involving the NFSR bits for Grain v1. Further
we high light that the concept of probabilistic algebraic attack as proposed in this paper can be
considered as a generic attack strategy against any stream cipher having similar structure of the
output function as in case of the Grain family.
Keywords:- Boolean Function, Grain v1, Grain-128a, Algebraic Attack, Probabilistic Algebraic
Attack.

1 Introduction

Grain v1 [11] is one of the finalist in the hardware category of the estream project. This cipher is
based on an 80 bits LFSR, an 80 bits NFSR and a non-linear filter function. This stream cipher
was introduced by Hell, Johansson and Meier [11] in 2005. The key-stream generation function
combines some particular state bits of the LFSR as well as the NFSR using the non-linear Boolean
function in a complex way. Detail specification of this cipher is described in Section 3.

Grain-128a [2] is the latest modified version of Grain family. This cipher is based on an 128 bits
LFSR , an 128 bits NFSR and a non-linear filter function and two different modes of operations:

1

with or without authentication. This cipher is proposed by Agren, Hell, Johansson and Meier in
2011. Design specification of this cipher is described in Section 4.

Algebraic attack, introduced by N.T. Courtois and W. Meier [6], is a well studied cryptanalytic
technique against stream ciphers. The basic principle of this attack is to express the relation
between some internal state (may be the secret key itself) and some known key-stream bits (may
not be consecutive) as a large system of multivariate polynomial equations and attempt to solve
this system in order to retrieve that secret internal state subsequently. There are some existing
algorithm e.g. re-linearization, XL algorithm [5] and Gröbner bases [13], [9], [10] etc. algorithm for
solving systems of multivariate polynomial equations. However, the efficiency of these algorithms
strongly depends on the algebraic degree of the equations.

In 2003 Courtois et.al. [6] proved the existence of low degree multiple of Boolean functions and
showed how to use them to generate low degree multivariate equations. In [6] Courtois and Meier
proved that finding low degree multiple of Boolean function f is actually equivalent to finding low
degree annihilators of f or 1 + f .

However, this classical version of algebraic attack is well suited for combiner or filter models purely
based on LFSR, this method cannot be applied directly to stream ciphers involving NFSR such as
Grain v1 [11] or Grain-128a [2]. This is due to the non-linear feedback function and presence of
bits from NFSR bits in non-linear filter function, the degree of the generated equations increases
quite rapidly in successive clockings.

In 2005 An Braeken and Bart Preneel [4] introduced one type of probabilistic variant of algebraic
attack for LFSR based stream ciphers combined with non-linear Boolean function. Their method
involves finding probabilistic equations of certain low degree by determining approximate low degree
annihilators of the combiner or filter function or its boolean complement with high probability. But
this method is again unsuitable for Grain family due to the structure of its output function.

In many papers in the literature they have given different types of attack on Grain v1 [1], [12] [14],
[3]. The only paper concerning the algebraic attack on Grain v1 is by Mehreen Afzal and Ashraf
Masood [1]. But in [1], the author described algebraic attack on Grain v1 based on computer
simulations. But there is no proper explanation of the results obtained. In case of Grain-128a,
however, no such attempt has yet been made.

In this paper we attempt to develop a probabilistic algebraic attack on Grain family. The basic
idea of our attack is to generate two simultaneous probabilistic equations, one involving only LFSR
bits and the other only NFSR bits, from each output equations. Then we can construct two
separate probabilistic systems corresponding to LFSR and NFSR bits respectively. Now the classical
algebraic attack strategy can be applied on the LFSR part. For the NFSR part of Grain v1 we show
that by knowing half of the NFSR state bits provides sufficient number of low degree equations
which may helpful for algebraic attack. In this connection we would also like to mention that,
though the basic process of generation of the probabilistic equations in both the cases is the same,
for Grain-128a we obtain overwhelming probability (close to 1) of the generated equations which
makes our attack more effective for this case. We also show that the probability of obtaining the
correct internal state of LFSR part for Grain family following our strategy. Our approach in this
paper can be viewed as a general attack strategy against stream cipher having similar structure
of the output function as in case of the Grain family. To the best of our knowledge, this type of
probabilistic approach in algebraic attack has not been attempted in the literature previously. The
details of our attack is described from Section 7.

2

The rest of the paper is organised as follows: in Section 2 we discuss some basic definitions.
Algebraic attack for LFSR based stream cipher is discussed in Section 5. Low degree multiple
of NFSR feedback function of Grain v1 is given in Section 6. Then in Section 7 we discuss our
probabilistic algebraic attack for Grain v1. Low degree multiple for LFSR bits equations of Grain
v1 is discussed in Section 8. Construction of low degree probabilistic equations for the NFSR part
of Grain v1 is given in Section 9. In Section 10 we discuss some observations on the NFSR bits
equations for Grain v1. Probabilistic algebraic attack on the LFSR of the Grain-128a stream cipher
is discussed in Section 11. In Section 12 we discuss about the success probability of obtaining the
LFSR states of Grain family. Finally the paper is concluded in Section 13.

2 Definitions

Definition 1. Boolean function
A Boolean function of n variables is a mapping from {0, 1}n to {0, 1}. The set of all Boolean
functions of n- variables is denoted by Bn
Definition 2. Algebraic normal form
The algebraic normal form of a Boolean function f is the multivariate polynomial expression of
that function. The polynomial expression is given by

f(x1,, xn) = a0 ⊕
⊕

1≤i≤n
aixi ⊕

⊕
1≤i<j≤n

aijxixj ⊕⊕ a12...nx1x2....xn.

Definition 3. Degree of Boolean function
The algebraic degree or simply degree of a Boolean function f is defined as the number of variables
present in the highest order product term of its ANF.
Definition 4. Linear and Non-linear Boolean function
A Boolean function f is affine if the degree of that function is one. The set of all affine functions
of n variables is denoted by A(n). Any affine function can be written as lu,b(x) =< u, x > +b,
where u = (a1,, an) ∈ Fn

2 and b = a0 ∈ F2. An affine function with constant term equal to zero
(i.e. a0 = 0) is called a linear function and the set of all n variable linear functions is denoted by
Cn. Any n variable Boolean function which lies outside An is called non-linear Boolean function.

3 Design specification of Grain v1 stream cipher

Grain v1 [11] stream cipher is based on one 80 bits LFSR, one 80 bits NFSR and one non-linear
filter function of 5 variables. The initial LFSR’s bits are denoted by si, i = 0, 1,, 79 and the
initial NFSR’s bits are denoted by bi, i = 0, 1,, 79. The feedback polynomial of the LFSR is
denoted by f(x) and it is a primitive polynomial in F280 . The feedback polynomial of the NFSR is
denoted by g(x). And the non-linear filter function is denoted by h(x). The design of Grain v1 is
given in Fig.1 where f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80. So the update function of the
LFSR is si+80 = si+62 + si+51 + si+38 + si+23 + si+13 + si. The feedback polynomial of the NFSR is

g(x) =1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66 + x71 + x80

+ x17x20 + x43x47 + x65x71 + x20x28x35 + x47x52x59 + x17x35x52x71

+ x20x28x43x47 + x17x20x59x65 + x17x20x28x35x43 + x47x52x59x65x71

+ x28x35x43x47x52x59

3

So the form of the state update function of NFSR will be

bi+80 =si + bi+62 + bi+60 + bi+52 + bi+45 + bi+37 + bi+33 + bi+28 + bi+21 + bi+14

+ bi+9 + bi + bi+63bi+60 + bi+37bi+33 + bi+15bi+9 + bi+60bi+52bi+45+

bi+33bi+28bi+21 + bi+63bi+45bi+28bi+9 + bi+60bi+52bi+37bi+33+

bi+63bi+60bi+21bi+15 + bi+63bi+60bi+52bi+45bi+37+

bi+33bi+28bi+21bi+15bi+9 + bi+52bi+45bi+37bi+33bi+28bi+21.

(1)

These contents of LFSR and NFSR are the current states of the registers. From these states 5
variables are taken as the input for the non-linear function h(x). This h(x) is a non-linear function
of 5 variables of non-linearity 12. Among 5 inputs in h(x) 4 are coming from LFSR and one
input is coming from NFSR, where, h(x) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 +
x0x2x4 + x1x2x4 + x2x3x4 , where the variable x4 is coming from NFSR and the other variables
x0,x1,x2,x3 are coming from the LFSR, where x0, x1, x2, x3 correspond to si+3, si+25, si+46, si+64

and the variable x4 corresponds to bi+63. The expression of the key stream bit is zi =
∑
k∈A

bi+k +

h(si+3, si+25, si+46, si+64, bi+63) where A = {1, 2, 4, 10, 31, 43, 56}. The h(x) can be rewritten as
h(x) = x4 · u(x0, x1, x2, x3) + v(x0, x1, x2, x3), where u(x0, x1, x2, x3) = 1 + x3 + x0x2 + x1x2 + x2x3
and v(x0, x1, x2, x3) = x1 + x0x3 + x2x3 + x0x1x2 + x0x2x3 [3].

3.1 Key initialization of Grain v1

Before producing any key-stream bits, the cipher must be initialized with the secret key K and initial
value IV . Let the secret key bits be ki, 0 ≤ i ≤ 79 and the initial value bits be IVi, 0 ≤ i ≤ 63.
The cipher is initialized by the following procedure:

• First load the secret key bits by bi = ki, 0 ≤ i ≤ 79 in the NFSR .

• Then load the initial value by si = IVi, 0 ≤ i ≤ 63 in the LFSR for first 64 positions, fill the
remaining positions by 1 i.e. si = 1, 64 ≤ i ≤ 79.

After that the cipher is clocked 160 times without generating any key-stream bits. Whatever the
output is coming is fed-back an XOR-ed with the input of the LFSR and the NFSR. The description
is given in the following figure.

NFSR LFSR

h(x)

g(x) f(x)

Figure 1: Design specification of Grain v1

NFSR LFSR

h(x)

g(x) f(x)

Figure 2: Key initialization of Grain v1

4

4 Design specification of Grain-128a

Grain-128a [2], latest modified version of Grain family of stream ciphers is based on one 128
bits LFSR, one 128 bits NFSR and one non-linear filter function. It consists of a procedure which
produces a pre-output stream and two different modes of operation: with or without authentication.
The state of the LFSR is denoted by si 0 ≤ i ≤ 127 and the state of the NFSR is denoted by bi, 0 ≤
i ≤ 127. The primitive polynomial of the LFSR is denoted by f(x), where f(x) = 1+x32+x47+x58+
x90+x121+x128. So the update function of the LFSR is si+128 = si+si+7+si+38+si+70+si+81+si+96.
The non-linear feedback function for the NFSR is g(x), where

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67 + x69x101

+ x80x88 + x101x111 + x115x117 + x46x50x58 + x103x104x106 + x33x35x36x40

The state update function of the NFSR is

bi+128 =si + bi + bi+26 + bi+56 + bi+91 + bi+96 + bi+3bi+67 + bi+11bi+13+

bi+17bi+18 + bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84+

bi+88bi+92bi+93bi+95 + bi+22bi+24bi+25 + bi+70bi+78bi+82

The non-linear filter function h is defined by h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8. Among
the 9 variables 2 variables are coming form NFSR state and 7 variables are coming from LFSR
state. The variables x0, x1,, x8 correspond to bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and
si+94 respectively. The output function of the cipher is given by yi = h(x) + si+93 +

∑
j∈A bi+j

where A = {2, 15, 36, 45, 64, 73, 89}. The design description of the output generator is given by the
following figure.

4.1 Key and IV initialization of Grain-128a

Before producing any key-stream by the cipher must be initialized with the key and the IV. The
secret key is denoted by ki, 0 ≤ i ≤ 127 and the IV bits IVi, 0 ≤ i ≤ 95. First 128 bits of the
NFSR is loaded by the secret key bits, bi = ki, 0 ≤ i ≤ 127, and the first 96 bits of the LFSR
are filled by the IV bits, si = IVi, 0 ≤ i ≤ 95. The last 32 bits are filled by ones and zeros
as si = 1, 96 ≤ i ≤ 126, s127 = 0. After that the cipher is clocked 256 without producing any
key-stream. Instead the output is XORed with the input of the NFSR and LFSR. The design
description is given by the following figure.

NFSR LFSR

g f

524

7
2

6

7

h

Figure 3: Design specification of Grain-128a

NFSR LFSR

g f

524

7
2

6

7

h

Figure 4: Key initialization of Grain-128a

5

4.2 Key-stream generation of Grain-128a

Grain-128a[2] is based on two different modes of operations, with and without authentication.
Authentication is in on mode when IV0 = 1 and when IV0 = 0 then authentication is in off mode.
When IV0 = 1, then the expression of the key-stream bits is zi = yi+64, i.e. we will get even
position output as key-stream bits after 64 outputs of the cipher. These 64 bits and the odd
positions outputs will be used for authentication purpose.

When IV0 = 0, then the expression of the key-stream bits will be zi = yi. Details of the cipher can
be found in [2].

5 Algebraic attack on stream cipher

Algebraic attack on LFSR based stream cipher was first introduced by Courtois and Meier in 2003
[6]. The basic strategies of this attack are-

• First find algebraic system of equations over the unknown secret key or internal state of the
cipher.

• Then try to solve this system to get the secret key.

Suppose the attacker knows some plain-text bits and the corresponding cipher-text bits. Then
the attacker will XOR these plain-text bits and the cipher-text bits to get the corresponding key-
stream bits. After knowing these key-stream bits, the attacker will try to construct an algebraic
system of equations over the unknown secret key, then try to solve this system to get the secret
key. In case of LFSR based stream cipher algebraic attack can be implemented efficiently due to
the linearity of the LFSR. But in case of the NFSR based stream cipher it is not so easy because
of the non-linearity and degree of the feedback function of the NFSR. At each clocking the degree
of the expression of the key-stream bits in terms of the secret internal state variables will increase
rapidly. In 2003 N.T. Courtois [6] proved a theorem for existence of low degree multiple of a given
boolean function. The statement of that theorem is as follows
Theorem 5.1. For any f ∈ Bn, there is a non-zero g ∈ Bn of degree at most dn2 e such that fg is
of degree at most dn2 e.

If the degree of the equation of the key-stream is high then we can multiply that expression by a low
degree boolean function to make it a low degree equation. Previous theorem ensures the existence
of such low degree multiple of a Boolean function. In case of NFSR based stream cipher we may
get low degree multiples of different degrees for each equations as the degree of the key-stream
expressions changes with different clockings.

6 Existence of low degree multiple of non-linear feedback function
of Grain v1

The expression of the key-stream bit of Grain v1 stream cipher is
zi =

∑
k∈A bi+k + h(si+3, si+25, si+46, si+64, bi+63), A = {1, 2, 4, 10, 31, 43, 56}.

Where the bi’s are coming from the NFSR and si’s are coming from the LFSR. As the degree of the
NFSR feedback function is 6 then the degree of the expression of the key-stream bit will change in

6

multiples of 6. The bi’s present in the expression of the key-stream bit equations are either linear
or it can be expressed in terms of the previous state variables by a sixth degree equation. Now if
we multiply g(x) by x20

′
x52

′
we will get

g(x) · x20′x52′ = x20
′
x52

′
[1 + x18 + x28 + x35 + x43 + x47 + x59 + x66 + x71 + x80 + x43x47 + x65x71]

So g(x) · x20′x52′ = U(x) · V (x), where, U(x) = x20
′
x52

′
and

V (x) = 1 + x18 + x28 + x35 + x43 + x47 + x59 + x66 + x71 + x80 + x43x47 + x65x71. So, if we multiply
g(x) by x20

′
x52

′
then we are getting g(x) · x20′x52′ as a multiplication of two low degree Boolean

functions of degree 2. Now if we multiply the state update function by b′i+28 · b′i+60 then we will
also get same form of bi+80 · (b′i+28 · b′i+60). The expression will be,

bi+80 · (b′i+28 · b′i+60) =b′i+28 · b′i+60[si + bi+62 + bi+52 + bi+45 + bi+37 + bi+33+

bi+21 + bi+14 + bi+9 + bi + bi+37bi+33 + bi+15bi+9].

Using this technique we can reduce the degree of the equations of the key-stream bits.

7 Probabilistic algebraic attack on Grain v1

In this section we shall introduce a new probabilistic algebraic attack on the stream cipher Grain
v1. The key-stream expression of the Grain v1 stream cipher has two components, one is a linear
combination of the NFSR bits and the other is the output of the non-linear filter function. Precisely,

zi = Ai + bi+63u(·) + v(·), where Ai =
∑
k∈A

bi+k where A = {1, 2, 4, 10, 31, 43, 56}. Now for zi = 0 we

are getting Ai +(bi+63u(·)+v(·)) = 0, similarly for zi = 1 we will get 1+Ai +(bi+63u(·)+v(·)) = 0.
First we consider the equation for zi = 0, i.e. Ai+(bi+63u(·)+v(·)) = 0. Now multiply this equation
by u′(·) = 1 + u(·). After this multiplication we get u′(·)Ai + u′(·)v(·) = 0. This equation is of the
form Xi + Yi = 0 where Xi = u′(·)Ai and Yi = u′(·)v(·) (exactly in the same way we can construct
similar type of equation for zi = 1 with Xi = (1 + Ai)u

′(·), Yi = u′(·)v(·)).

We will discuss the case for zi = 0, the discussion will be similar for zi = 1. Now for zi = 0 we
are getting Xi + Yi = 0. From this equation we can easily tell that there are only two possible
cases for Xi, Yi either (i) Xi = 0, Yi = 0 or (ii) Xi = 1, Yi = 1. Let p = Pr[Xi = 0, Yi = 0] and
q = Pr[Xi = 1, Yi = 1]. Now obviously we will choose the case corresponding to the higher one
between p and q in order to increase our success probability. In fact we will prove shortly that
p > q and similarly for zi = 1 .

Thus in this way, for each clocking we get two probabilistic equations with certain probability.
Now consider the equations corresponding to Yi’s. This equations will be of the form u′(·)v(·) = Yi,
where Yi ∈ F2. This is a probabilistic system of equations involving only LFSR bits, which we can
solve using the classical algebraic attack technique to obtain probabilistic values of the LFSR state
bits. The low degree multiple of these equations, as described in Section 8 can be useful in this
respect.

After solving the previous system involving the LFSR state bits we will put all LFSR bits values to

the original equations of zi. Then the form of these equations will be zi =
∑
k∈A

bi+k+bi+63 ·u(·)+v(·)

where u(·) and v(·) are known as all bits of the LFSR state are now known, only NFSR bits are

7

now unknown variables in these equations. The procedure for solving this system of NFSR state
variables will be considered in more detail in the Section 10.

Now we will calculate p = Pr[Xi = 0, Yi = 0]. Firstly we note that here we assume that the
probability of each of the initial state variables being 0 or 1 after the key initialization phase is 1

2 .

Moreover as clearly mentioned in [11] the NFSR feedback function is balanced, so Pr[
∑
k∈A

bi+k =

0 or 1] is 1
2 . Also the functions u′(·) and v(·) both are balanced Boolean functions, but Yi = u′(·)v(·)

is not balanced in fact Pr[Yi = 0] is 3
4 . Truth table of these functions are given in the appendix A.

Now,
p = Pr[Xi = 0, Yi = 0] = Pr[Xi = 0|Yi = 0] · Pr[Yi = 0] = 3

4 · Pr[Xi = 0|Yi = 0] Now we need to
find Pr[Xi = 0|Yi = 0]. Clearly,

Xi = 0 =⇒ (i) u′(·) = 0,
∑

k∈A bi+k = 0; or (ii) u′(·) = 0,
∑

k∈A bi+k = 1;
or (iii) u′(·) = 1,

∑
k∈A bi+k = 0

Also, Yi = 0 =⇒ (i) u′(·) = 0, v(·) = 0; or (ii) u′(·) = 0, v(·) = 1;
or (iii) u′(·) = 1, v(·) = 0

Total number of cases when u′(·) = 0, v(·) = 0 and u′(·) = 0, v(·) = 1 is 8 as u′(·) is balanced
function, under these cases

∑
k∈A bi+k can take any values to make Xi = 0. Hence total number of

favourable cases under above scenario will be 8×27. Total number of cases when u′(·) = 1, v(·) = 0
is 4, under this case

∑
k∈A bi+k can take only 0 value to make Xi = 0. Hence total number of

favourable cases under this scenario will be 4 × 26. Hence total number of favourable cases will
be 8 × 27 + 4 × 26. The number of cases when Yi = 0 is 12. Now total number of possible cases

will be 12 × 27. Hence the probability Pr[Xi = 0|Yi = 0] = (8×27+4×26)
12×27 = 5

6 . Hence the required

probability is Pr[Xi = 0, Yi = 0] = 3
4 ×

5
6 = 5

8

Thus we see that for zi = 0; Xi = 0, Yi = 0 has the higher probability of occurrence. A similar
study can be done for zi = 1. Now due to the independence of the equations corresponding to
different clockings, the probability of the total system of equations will be obtained by multiplying
all the probabilities corresponding to all the clockings considered.

8 On the solution of the equations involving LFSR bits of Grain
v1

By the discussion of the Section 3 the expression of the key-stream bit is

zi =
∑
k∈A

bi+k + h(si+3, si+25, si+46, si+64, bi+63)

=
∑
k∈A

bi+k + bi+63 · u(si+3, si+25, si+46, si+64) + v(si+3, si+25, si+46, si+64).

Now after multiplying the above equation by u′(·) we will get an equation of the form Xi + Yi = 0.
Now by the discussions of the previous section we will choose the equations Xi = 0, Yi = 0 for
zi = 0 (similar study for zi = 1). Now Yi = 0 means u′(·)v(·) = 0. This is an equation involving
only LFSR bits. The expression of the function u′(·)v(·) is x0x3 + x1x3 + x1x2 + x0x1x2. So the
degree of each equations involving LFSR bits will be 3 and remains constant for all clockings. As
u′(·)v(·) is a third degree function of 4 variables, by the theorem in Section 5 we can surely tell that
u′(·)v(·) has low degree multiple such that the degree of the resulting function becomes at most

8

2. So finally we have a probabilistic system of equations of degree at most 2 involving only LFSR
bits as unknowns. This system can be solved by using any existing polynomial system solving
algorithms [5], [13], [9], [10]. After solving this system we will get the probabilistic LFSR state bits.

Time complexity for solving this system:- The degree of each equation for the LFSR of Grain-
v1 is finally 2. The number of monomials of degree 2 of 80 state variables is T =

(
80
2

)
= 3160.

So we need 3160 number of variables to linearize the system. After linearization we will solve the
system by Gauss elimination method. As modern CPU can handle 64 operations in one single clock
of CPU. Hence the complexity of Gauss reduction for this system will be 7·T log27

64 ≈ 230 CPU clocks
which is less than exhaustive search.

9 Existence of low degree probabilistic equations for the NFSR of
Grain-v1

In this section we will discuss the existence of low degree probabilistic equations for the NFSR part

of Grain-v1. The expression of the key-stream bit of Grain-v1 is zi =
∑
k∈A

bi+k + bi+63 · u(·) + v(·)

where u(·), v(·) are balanced Boolean function. If we multiply both sides of the expression by b′i+63

we will get, b′i+63 · [zi +
∑

k∈A bi+k] + b′i+63 · v(·) = 0. Now consider Ai = b′i+63 · [zi +
∑
k∈A

bi+k] and

Bi = b′i+63 · v(·). i.e Ai + Bi = 0. From this equation we can tell either (i) Ai = 0, Bi = 0 or

(ii) Ai = 0, Bi = 1. As b′i+63, zi +
∑
k∈A

bi+k and v(·) are balanced by same (previously described)

procedure we will get Pr[Ai = 0, Bi = 0] = 5
8 . Now Ai = 0 is an equation involving only NFSR bits

of Grain-v1. So for each clocking we can construct these types of probabilistic low degree equations
involving NFSR bits only.

10 Some observations on the degree of the equations involving
NFSR bits of Grain v1

In this section we will discuss some observations on the NFSR bits’ equations. In the Section 8 we
have discussed how to tackle the LFSR bits equations using classical algebraic attack technique.
However due to the non-linear feedback function, the degree of the equations involving the NFSR
bits does not remain fixed, rather it increases quite rapidly. In this section we will try to control
this rapid increase in the degree of the equations and will finally show that if we know half of the
NFSR bits, then we obtain sufficient number of equations of quite low degree (at most degree 4)
which is feasible to solve by the existing algorithms.

The equation involving the NFSR bits are of the form
∑
k∈A

bi+k + bi+63u(·) + v(·) = 0 where A =

{1, 2, 4, 10, 31, 43, 56}. Note that unless i + 63 = 80 i.e. i = 17 no equation of above form will
involve any of the bits that are derived from the non-linear feed back. Thus we will obtain 17
linear equations involving the NFSR bits. Similarly one can observe that the next 7 equations will
involve derived bits in only one position, next 13 equations with feedback in two positions, next 12
equations with feedback in three positions, next 21 equations with feedback in four positions, next

9

6 equations with feedback in five positions and next 2 equations with feedback in six positions and
next equation with feedback in seven positions and next onwards we will have derived bits in all the
eight positions. Now consider the NFSR feedback expression 1. Note that this feedback function
has the following low degree multiple of degree 2.

bi+80 · (b′i+28 · b′i+60) = b′i+28·b′i+60[si + bi+62 + bi+52 + bi+45 + bi+37 + bi+33+

bi+21 + bi+14 + bi+9 + bi + bi+37bi+33 + bi+15bi+9]

Now consider the following strategy:
For all derived bits present in the output equation, we will multiply the equation by appropriate
variables in view of reducing the degree of the equation. We furnish below some examples which
will make our strategy more clear. Consider the 18-th equation (considering zi = 0, similarly for
other case) b19 + b20 + b22 + b28 + b49 + b61 + b74 + b80 · u(·) + v(·) = 0

Note that this equation, when expressed in terms of initial NFSR bits, has degree 6. Now consider
the following,

b′28.b
′
60[b19 + b20 + b22 + b28 + b49 + b61 + b74 + u(·)(s0 + b62 + b52 + b45 + b37

+ b33 + b21 + b14 + b9 + b0 + b37b33 + b15b9) + v(·)] = 0

Thus we get now an equation of degree 4.

However in order to solve 80 variables in polynomial time by any of the available method, we must
have an over determined system i.e. more than 80 equations. In the following, we demonstrate,
what will happen when we will apply this strategy to the 80-th equation

b81 + b82 + b84 + b90 + b111 + b123 + b136 + b143u(·) + v(·) = 0 (2)

Now the term b81 + b82 + b84 + b90 is of degree at most 6, as the all terms have at most 6th degree
expressions. Now for b111 term we need to multiply by b′59b

′
91 both sides of the previous equations

for b111 element. We can find one 4th degree expression for b91 by using its low degree multiple.
Also in b111 there is one term b83, similarly it also has 6th degree expression. So the final degree
of the term b81 + b82 + b84 + b90 + b111 becomes 11. Similarly we can find the degree of the term
b81 + b82 + b84 + b90 + b111 + b123 and the degree will be 21 . Now consider the term b136. The low
degree multiple of b123 is b′84b

′
116. So we need to multiply the whole equation by this low degree

multiple b136b
′
84b
′
116 = b′84b

′
116[linear part + b93b89 + b71b65]. Now the degree of the term b′84 is 4

by its low degree expression. Also the degree of the term b93b89 + b71b65 is 8. So we can see that
the degree of the equation 2 becomes strictly greater than 33. So the degree of the 80th equation is
strictly greater than 33. We need over defined system for 80 unknown variables. Then the degree
of the system will even much higher than 33, which is difficult to solve by usual techniques. Thus
although this strategy is able to reduce the growth of the degree of the resulting system, but still it
has a very high solving complexity. Next we are going to present a new strategy to find low degree
equations.

Consider the scenario when half of the NFSR bits are known. In the following we assume that all
the bits in the odd positions are known. The argument will be similar for even position bits also.
Note that now we have only 40 unknown bits and therefore now we will require much less number
of equations, closed to 40. Now as we have mentioned earlier in this case also we have 24 linear
equations over the NFSR bits. Now look at the non-linear feedback equation. The distribution of
odd and even position bits in the terms of degree ≥ 3 are as follows:

10

Term Degree Odd position Even position

bi+60bi+52bi+45 3 1 2

bi+33bi+28bi+21 3 2 1

bi+63bi+45bi+28bi+9 4 3 1

bi+60bi+52bi+37bi+33 4 2 2

bi+63bi+60bi+21bi+15 4 3 1

bi+63bi+60bi+52bi+45bi+37 5 3 2

bi+33bi+28bi+21bi+15bi+9 5 4 1

bi+52bi+45bi+37bi+33bi+28bi+21 6 4 2

Thus when all the odd bits are known and the expression of a derived bit in terms of the NFSR
feedback function does not contain any other previously derived bit, the degree of the expression
is 2 if it is an even bit and 4 if it is an odd bit. Note that in the non-linear feedback equation, the
highest variable present within the non-linear terms is bi+63, next bi+60 and next is bi+52. Thus the
first 17 derived bits will not have any previously derived bits among the non-linear terms in their
expression, the next 3 has only one derived bit and the next 8 has only two. Now as noted earlier
after the first 17 linear equations, the next 7 equations have derived bits in only one position namely
bi+63 and the next 13 in two positions namely bi+63 and bi+56 and the next 12 equations in three
positions namely bi+63, bi+56 and bi+43. So from the above discussion it is clear that following the
first 17 linear equations we will get 7 equations which will be of degree 2 and degree 4 alternatively,
the next 12 equations are of degree 2 or 4 and the next equation is of degree at most 6 and next 8
equations are of degree at most 8. Thus upto this point we have obtained an over defined system of
45 equations in 40 unknown variables of which 17 linear, 19 quadratic or bi-quadratic one equation
is of degree 6 and 8 equations of degree 8. We observe that the degree of the equations involving
NFSR bits is not increasing so fast after using 40 known values of states, which may be helpful for
algebraic attack on the NFSR part.

11 Probabilistic algebraic attack on the LFSR part of Grain-128a

In this section we will discuss the probabilistic algebraic attack on the LFSR part of Grain-128a.
The expression of the key-stream bits of Grain-128a has two parts one is the linear combinations of
some NFSR bits and one LFSR bit other one is the output of the non-linear function h(·). Precisely

zi = Ai + h(·) (when IV0 = 0, similar study can be done for IV0 = 1), where Ai =
∑
k∈A

bi+k + si+93

where A = {2, 15, 36, 45, 64, 73, 89}. For zi = 0 we are getting Ai + h(·) = 0, similarly for zi = 1
we will get 1 + Ai + h(·) = 0. We will discuss the case for zi = 0 when IV0 = 0, similar study
can be done for other cases as degree of the LFSR part remains same for all cases. For the
operation with authentication we will consider the initial internal state of the cipher to be the
one of the clocking when the authentication register has also been initialized. So for zi = 0 we
are getting Ai + x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8 = 0. Where x0, x1,, x8 correspond to
bi+12, si+8, si+13, si+20, bi+95, si+42, si+60, si+79 and si+94 respectively. Now multiply the equation
by x′1 ·x′5 ·x′8 then we will get x′1 ·x′5 ·x′8 · [x2 ·x3 +x6 ·x7]+x′1 ·x′5 ·x′8 ·Ai = 0. Let u1(x) = x′1 ·x′5 ·x′8
and u2(x) = x2 · x3 + x6 · x7. i.e. we are getting u1(·) · u2(·) + u1(·) · Ai = 0, where u1(·), u2(·) are
two functions involving only LFSR bits si+8, si+13, si+20, si+42, si+60, si+79 and si+94 respectively.

Let’s take Xi = u1(·) · u2(·) and Yi = u1(·) · Ai. i.e. for zi = 0 implies Xi + Yi = 0. From this
equation we can easily tell that there are only two possible cases for Xi, Yi, either (i) Xi = 0, Yi = 0

11

or (ii) Xi = 1, Yi = 1. Let p = Pr[Xi = 0, Yi = 0] and q = Pr[Xi = 1, Yi = 1]. Now we will
choose the case where probability will be high. In fact we will prove that p > q and similarly for
other cases (IV0 = 1, zi = 1). Indeed this probability p is quite overwhelming. Thus in this way
we get probabilistic system of equations Xi = u1(·) · u2(·) and Yi = u(·) · Ai where Xi, Yi ∈ {0, 1}.
Now Xi = u1(·) · u2(·) is an equation involving only LFSR bits only. In this way we can construct
a probabilistic system of equations with high probability involving only LFSR bits, which we can
solve by using any existing algorithm in literatures [5], [13], [9], [10] to obtain the LFSR bits with
high probability.

Now we will find the probability p = Pr[Xi = 0, Yi = 0]. Firstly we will assume that the probability
of each of the initial state variables being 0 or 1 after key initialization is 1

2 . Moreover as clearly

mentioned in [2] that the NFSR feedback function is balanced, so Pr[
∑
k∈A

bi+k + si+93 = 0 or 1] is

1
2 . From the truth table of u1(·) and u2(·) it has been observed that Pr[Xi = 0] = 61

64 . Truth table
of these functions are given in the appendix B. Now, p = Pr[Xi =, Yi = 0] = Pr[Xi = 0] · Pr[Yi =
0|Xi = 0] = 61

64 · Pr[Yi = 0|Xi = 0]. Now, we need to calculate Pr[Yi = 0|Xi = 0]. Clearly,
Xi = 0⇒ (i) u1(·) = 0, u2(·) = 0; or (ii) u1(·) = 0, u2(·) = 1;

or (iii) u1(·) = 1, u2(·) = 0;
Also, Yi = 0⇒ (i) u1(·) = 0, Ai = 0; or (ii) u1(·) = 0, Ai = 1;

or (iii) u1(·) = 1, Ai = 0;

Total number of cases when u1 = 0, u2 = 0; u1 = 0, u2 = 1; u1 = 1, u2 = 0 are 70, 42 and 10
respectively. Under the cases u1 = 0, u2 = 0 and u1 = 0, u2 = 1 Ai can take any values to make
Yi = 0. So the total number of favourable cases under above scenario will be (70 + 42)× 28. Now
under the case u1 = 1, u2 = 0; Ai can take only 0 to make Yi = 0. Hence the total number of cases
under this scenario will be 10× 27 (as Ai is balanced). Hence the total number of favourable cases
will be (70+42)×28+10×27. The total number of cases when Xi = 0 is 122. Now total number of

possible cases will be 122× 28. Hence the probability Pr[Yi = 0|Xi = 0] = (70+42)×28+10×27
122×28 = 117

122 .

Hence the required probability Pr[Xi = 0, Yi = 0] = 61
64×

117
122 = 0.914, which is quite overwhelming.

Hence we see that for zi = 0; Xi = 0, Yi = 0 has the higher probability of occurrence. Now we
will choose Xi = 0 for zi = 0 to construct a probabilistic system of equations (similarly for zi = 1)
involving LFSR bits only, then by using classical algebraic attack technique described in Section 5
we can get the probabilistic LFSR bits after key initialization step of Grain-128a.

Note:- If we take Ai =
∑
k∈A

bi+k and u2 = si+13 · si+20 + si+60 · si+79 + si+93 then the above

probability Pr[Xi = 0, Yi = 0] will be 0.906 which is slide lesser than 0.914. For this reason we are
not involving si+93 in u2.

Time complexity for solving the system involving LFSR bits only:- The degree of each
equation involving LFSR bits is 4 (after reducing by its low degree multiple). The number of terms
of degree 4 of 128 variables is T =

(
128
4

)
. We need T number of variables to linearize the system.

After the linearization part is over we will solve this system by Gauss elimination method. As the
modern system can perform 64 operations in each CPU clock the complexity of solving this system
will be 7·T log27

64 ≈ 263 CPU clocks which is less than exhaustive search.

12

12 Note on the success probability of the attack for the LFSR of
Grain family

In this section we analyse the success probability of our attack on LFSR part of Grain family. Let for
the LFSR part we require approximately k equations. Thus in effect we need approximately k key-
stream bits equations. Thus our probabilistic system of equations have probability approximately
(12 + p)k. Let p1 = Pr[Solution is exact solution]

p1 = Pr[Solution is exact and system is exact]

+ Pr[Solution is exact and system is not exact]

≥ Pr[Solution is exact and system is exact]

= Pr[Solution is exact|system is exact]Pr[system is exact]

= Pr[system is exact] =
(1

2
+ p
)k

Hence the solution obtain from it will have probability greater than
(
1
2 + p

)k
of matching with the

exact solution. Note that as per the discussion in the previous sections we are able to construct
a probabilistic system of algebraic equations involving LFSR bits only from the key-stream bits
equations of Grain family with significant probability. Now to find the values of the state bits we
need to solve this non-linear system. There are many existing algorithms in literature for solving
this kind of over defined non-linear system some of them are XL [5], Gröbner bases [13], [9], [10].
The time complexity for solving this system by linearization method is already discussed in Section
8, 11

13 Conclusion

In this paper we have described a feasible probabilistic algebraic attack on the LFSR part of the
Grain family of stream ciphers. Note that Grain v1 and Grain-128a has been designed so as to
restrict the classical form of algebraic attack on stream ciphers. This is mainly because of the
fact that due to the presence of the NFSR bits in the output function, the degree of the algebraic
equations increases rapidly in state of remaining fixed as was the case for classical algebraic attacks
on simple LFSR based stream cipher. Our approach in this paper has two significant features.
Firstly by our method we are able to separate out the equations involving the LFSR and the NFSR
bits for Grain v1 and Grain-128a. Then we are able to recover whole LFSR state of Grain v1 and
Grain-128a with significant probabilities (surprisingly quite higher in case of Grain-128a). We have
also observed some properties of algebraic equations involving NFSR bits of Grain v1 which may
be helpful for algebraic attack. Secondly our approach may be considered as a generic version of
probabilistic algebraic attack on stream cipher with similar structure of the output function as in
case of Grain family.

References

[1] Afzal, M., Masood, A.: Algebraic cryptanalysis of a nlfsr based stream cipher. In: Information
and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd

13

International Conference on. pp. 1–6. IEEE (2008)

[2] Ågren, M., Hell, M., Johansson, T., Meier, W.: A new version of grain-128 with authentication.
In: Symmetric Key Encryption Workshop (2011)

[3] Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family of stream
ciphers. In: Cryptographic Hardware and Embedded Systems–CHES 2012, pp. 122–139.
Springer (2012)

[4] Braeken, A., Preneel, B.: Probabilistic algebraic attacks. In: Cryptography and Coding, pp.
290–303. Springer (2005)

[5] Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined
systems of multivariate polynomial equations. In: Advances in CryptologyEUROCRYPT 2000.
pp. 392–407. Springer (2000)

[6] Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. Advances
in CryptologyEUROCRYPT 2003 pp. 644–644 (2003)

[7] Crama, Y., Hammer, P.L.: Boolean models and methods in mathematics, computer science,
and engineering (2010)

[8] Cusick, T.W., Stănică, P.: Cryptographic Boolean functions and applications. Academic Press
(2009)

[9] Faugre, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and
Applied Algebra 139(1–3), 61–88 (June 1999), http://www-salsa.lip6.fr/~jcf/Papers/

F99a.pdf

[10] Faugre, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5). In: Proceedings of the 2002 international symposium on Symbolic and algebraic
computation. pp. 75–83. ISSAC ’02, ACM, New York, NY, USA (2002), http://www-salsa.
lip6.fr/~jcf/Papers/F02a.pdf

[11] Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environments.
International Journal of Wireless and Mobile Computing 2(1), 86–93 (2007)

[12] Karmakar, S., Chowdhury, D.R.: Fault analysis of grain-128 by targeting nfsr. In: Progress in
Cryptology–AFRICACRYPT 2011, pp. 298–315. Springer (2011)

[13] Segers, A.: Algebraic attacks from a gröbner basis perspective. Master’s Thesis (2004)

[14] Zhang, H., Wang, X.: Cryptanalysis of stream cipher grain family. IACR E-print Archiv,
Report 109 (2009)

A Truth Table of u′(·), v′(·)

Truth table of the functions u′(·), v(·) and u′(·)v(·) where u′(x0, x1, x2, x3) = x3 + x0x2 + x1x2 +
x2x3, v(x0, x1, x2, x3) = x1 + x0x3 + x2x3 + x0x1x2 + x0x2x3 and u′(·)v(·) = x0x3 + x1x3 + x1x2 +
x0x1x2 is given by,

u′(·)⇒ 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0, v(·)⇒ 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1,
u′(·)v(·)⇒ 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0

14

B Truth Table of u1(·), u2(·)

Truth table of the functions u1(x0, x1,, x6) and u2(x0, x1,, x6) are given below. Where u1(x0, x1,, x6) =
x′0 · x′3 · x′6 and u2(x0, x1,, x6) = x1 · x2 + x4 · x5. Truth table of u1(·) is given by,

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0
0 0

Truth table of u2(·) is given by,

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0

15

