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Abstract. The problem of solving polynomial equations over finite fields has many ap-
plications in cryptography and coding theory. In this paper, we consider polynomial equa-
tions over a “large” finite field with a “small” characteristic. We introduce a new algorithm
for solving this type of equations, called the Successive Resultants Algorithm (SRA) in
the sequel. SRA is radically different from previous algorithms for this problem, yet it is
conceptually simple. A straightforward implementation using Magma was able to beat the
built-in function Roots for some parameters. These preliminary results encourage a more
detailed study of SRA and its applications. Moreover, we point out that an extension of
SRA to the multivariate case would have an important impact on the practical security
of the elliptic curve discrete logarithm problem in small characteristic.

1 Introduction

Let p be a “small” prime number and let d and n be two natural numbers. Let Fpn be
the finite field with pn elements, and let f be a polynomial of degree d over Fpn . The
root-finding problem is the problem of computing one, several or all elements x ∈ Fpn

such that

f(x) = 0.

This problem has a lot of applications, in particular for the more general problem of
factoring f and its applications [19], but also in cryptography and in coding theory.

Many algorithms have been proposed to solve this problem. Most of them first reduce
f to a square-free and split polynomial, and then progressively factor this polynomial
through successive attempts [1,13,17,4].

In this paper, we introduce the Successive Resultant Algorithm (SRA), a new de-
terministic algorithm to solve this problem. Our approach is conceptually simple, yet
radically different from previous ones. We show that SRA has an asymptotic complex-
ity comparable to Berlekamp’s well-known trace algorithm for large degree polynomials
(d2 > n or d > n depending on the type of polynomial arithmetic) and in all cases
if certain field constants used in the algorithm are precomputed. We also provide a
straightforward implementation using Magma [21] and we emphasize some parameter
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sets for which this implementation has beaten Magma’s corresponding built-in function
Roots.

We finally discuss open problems and a potential extension of our work. In particular,
we believe that our ideas form an important step towards a much more efficient resolu-
tion of polynomial systems arising from a Weil descent in the multivariate case [11]. We
stress that a multivariate version of SRA would have a very strong impact on the practi-
cal security of the Elliptic Curve Discrete Logarithm Problem in the small characteristic
case.

1.1 Outline

This paper is organized as follows. In Section 2, we review the basics of finite field
arithmetic and previous root finding algorithms in Fpn . In Sections 3 and 4, we provide
both a basic version of our algorithm and an optimized version for fast arithmetic. We
also analyze the complexity of our algorithms in these sections. In Section 5, we provide
experimental timings obtained with a Magma implementation of our algorithm. We
finally conclude the paper and present interesting open problems in Section 6.

2 Preliminaries

2.1 Finite Field and Polynomial Ring Arithmetic

Let p be a “small” prime number, let n be a positive integer, let Fpn be the finite field
with pn elements and let f be a univariate polynomial of degree d over Fpn . We also
define s as the number of solutions of f over Fpn .

We will suppose that p is small enough for us to treat it as a constant in our
estimations. Unless explicitely mentioned, we take an operation over Fp as a basic step
in all our complexity evaluations. We use both the “big O” and “big O tilde” notations
in our estimations. Remember that f is Õ(g) if and only if f is O(g logc(g)) for some
constant c. Solving a linear system of size m over Fp has a cost O(mω), where ω is
the linear algebra constant. The best algorithms today achieve ω as small as 2.3727 for
generic systems [22].

We denote by a(n) and m(n) the cost of an addition and a multiplication over Fpn ,
and by A(d) and M(d) the cost of an addition and a multiplication of two polynomials
of degree d over Fpn . We also denote by G(d) the cost of computing the greatest common
divisor of two polynomials of degree d over Fpn . We will consider both “classical” and
“fast” polynomial arithmetics in this paper.

Classical arithmetic is a reasonable choice today for small and medium parameter
sizes for which the overhead of fast arithmetic algorithms is significant. Using this type
of arithmetic, field additions and polynomial additions are respectively executed in O(n)
and O(dn). Polynomial multiplications are performed in a straightforward way with a
quadratic cost with respect to the degree. As a result, we have m(n) = O(n2) and
M(d) = O(d2n2).

Using fast arithmetic, polynomial multiplications are performed in quasi-linear time
with FFT-based methods [15]. As a result, we have m(n) = Õ(n) and M(d) = Õ(dn).



Multiplications modulo a polynomial of degree d can be performed at essentially the
same cost. Field additions and polynomial additions are executed in O(n) and O(dn) as
before. Fast arithmetic is available today in the computer algebra system Magma [21].

The greatest common divisor (gcd) of two polynomials of degree d can be computed
in O(d2) field operations using the Euclidean algorithm or Õ(d) field operations using a
more involved Schönhage-type algorithm [14,16]. In our estimations, we will assume for
simplicity that the Euclidean algorithm is always used together with classical arithmetic
and that fast gcd algorithms are always used together with fast arithmetic. Table 1
summarizes the various costs respectively for “classical” and “fast” arithmetics with
this convention.

Table 1: Costs of finite field and polynomial arithmetic
a(n) m(n) A(d) M(d) G(d)

Classical O(n) O(n2) O(dn) O(d2n2) O(d2n2)

Fast O(n) Õ(n) O(dn) Õ(dn) Õ(dn)

2.2 Finding Roots in Fpn

Let f be a univariate polynomial over Fpn with degree d having exactly s distinct
roots. The problems of computing one, several or all roots of f have many applications
in cryptography and coding theory. Several algorithms have been proposed for this
problem, with complexities depending on the arithmetic type and on the parameters d
and n.

In most root-finding algorithms, the polynomial f is assumed to be split and square-
free (all its irreducible factors are linear and distinct), hence s = d. Given an arbitrary
polynomial f , its squarefree split part is easily recovered through the gcd computa-
tion gcd(xp

n − x, f(x)), after successively computing the polynomials xp
i

mod f(x) for
i = 0, . . . , n − 1 with a square-and-multiply algorithm. These computations require
O(d2n) operations over Fn

p or O(d2n3) operations over Fp using standard arithmetic,

and only Õ(dn2) over Fp using fast arithmetic.
The simplest algorithms for the root finding problem are variants of exhaustive

search. A better approach was proposed by Berlekamp et al. in [3]. This algorithm
first constructs a polynomial L such that L(x) =

∑d−1
i=0 Lix

pi and f divides L. The

computation of L only requires computing xp
i

mod f(x) for i = 0, . . . , d − 1 and then
solving a d × d linear system over Fpn . Since L is a linear application over Fp, the
algorithm of [3] then solves L with linear algebra over Fp and tests each solution for f .
The algorithm is still not very efficient in general since L may have up to pd solutions
in the worst case, and all these solutions are tested to identify the roots of f .

The best known algorithm for computing all the roots is probably Berlekamp’s trace
algorithm (BTA) that was originally presented in his celebrated paper on the factoriza-
tion of polynomials [1]. This algorithm tries to factor a split squarefree polynomial f



as

f(x) =
∏
r∈Fp

gcd
(
f(x),Tr(αix)− r

)
for some α ∈ Fpn with algebraic degree n and for various i ∈ {0, . . . , n − 1}. Each gcd
computation costs O(d2n3) or Õ(dn2) operations over Fp, using respectively classical
or fast arithmetics. It is known that at least one value of i leads to a non-trivial fac-
torization [1] and that testing O(log n) of them is required on average [10]. Once f is
split into at least two distinct factors, the process is then recursively applied to all these
factors. Since the recursive step has a cost larger than any linear function in d, we can
in fact recover all the linear factors of f using O(d2n3) or Õ(dn2) operations over Fp,
depending on the arithmetic type [18, Th. 14.11].

Other splitting strategies are also possible. When p is odd, Rabin’s root-finding
algorithm [13] computes gcd

(
f(x), (x+ δ)(p

n−1)/2 − 1
)

for a random δ ∈ Fpn . The total
complexity of this approach is similar to BTA.

Compared to BTA, the Affine Method of van Oorschot and Vanstone [17] first com-
putes a polynomial L as in [3]. The trace function used in BTA is generalized to other
polynomials B(x) that are also linear over Fp. The gcd between f and B is then com-
puted in two steps as gcd(f(x), gcd(L(x), B(x)). The affine method is more efficient
than BTA when d < n and standard arithmetic is used, since their respective costs are
then equivalent to O(d2n) and O(dn2) multiplications over Fpn [17]. However with fast
arithmetic, the computation B(x) mod L(x) alone already requires Õ(dn2) following the
method of [17], so the Affine Method is at best as fast as BTA.

The modular Frobenius exponentiation x → xp
i

mod f(x) is a key ingredient of
all the methods described above. Von zur Gathen and Shoup [20] suggested to use
repeated modular compositions and multipoint evaluation instead of the straightfor-
ward square and multiply algorithm to perform these exponentiations. This idea led
to the asymptotically fastest polynomial factorization algorithms today. Kaltofen and
Shoup [8] proposed an algorithm running in a time Õ(d1.815n2), though not completely
practical since it relies on fast matrix multiplication. By introducing new, asymptoti-
cally faster algorithms for the modular composition problem, Kedlaya and Umans [9]
derived a randomized algorithm to factor f entirely in time Õ(d3/2n+ dn2).

Our new algorithm has an asymptotic complexity O(n4+d2n3) with standard arith-
metic and Õ(n3 + dn2) with fast arithmetic, where the n4 and n3 terms are spent on
computing certain field constants. This asymptotic complexity is similar to BTA for
large degree polynomials or if the field constants are precomputed. Our experiments
suggest that the new algorithm may compete with the ones currently used in practice
for some parameters.

3 The Successive Resultants Algorithm

We now describe our new algorithm for solving polynomial equations over finite fields
of small characteristic.



3.1 A polynomial system

Let {v1, . . . , vn} be an arbitrary basis of Fpn over Fp. From this basis, we recursively
define n+ 1 functions L0, L1, . . . , Ln from Fpn to Fpn such that

L0(z) = z

L1(z) =
∏

i∈Fp
L0(z − iv1)

L2(z) =
∏

i∈Fp
L1(z − iv2)

. . .

Ln(z) =
∏

i∈Fp
Ln−1(z − ivn).

The functions Lj are examples of linearized polynomials as defined in [2, Ch. 11]. They
satisfy the following properties.

Lemma 1. a) Each polynomial Li is split and its roots are all elements of the vector
space generated by {v1, . . . , vi}. In particular, we have Ln(z) = zp

n − z.

b) We have Li(z) = Li−1(z)
p − aiLi−1(z) where ai := (Li−1(vi))

p−1.

c) If we identify Fpn with the vector space (Fp)
n, then each Li is a p to 1 linear map

of Li−1(z) and a pi to 1 linear map of z.

Proof. Part a) is clear by construction. We first prove Part b) for L1. We have zp− z =∏
i∈Fp

(z − i) by identification of the roots on both sides. Substituting x by z/v1, we

deduce zp − vp−11 z =
∏

i∈Fp
(z − iv1) = L1(z). From this equality, it is clear that L1 is

a linear map over Fp, and in particular L1(z − iv2) = L1(z) − iL1(v2) for all i ∈ Fp.
Substituting z by Lj(z) and v1 by Lj(vj+1), part b) follows by induction. For part c),
notice that the kernel of the linear map z →

∏
i∈Fp

(z − i) has size p.

We now consider the following polynomial system:
f(x1) = 0

xpj − ajxj = xj+1 j = 1, . . . , n− 1

xpn − anxn = 0

(1)

where the ai ∈ Fpn are defined as in Lemma 1. Any solution of this system provides us
with a root of f by the first equation, and the n last equations together imply that this
root belongs to Fpn .

Lemma 2. Let (x1, x2, . . . , xn) be a solution of System (1). Then x1 ∈ Fpn is a solution
of f . Conversely, given a solution x1 ∈ Fpn of f , we can reconstruct a solution of
System (1) by setting x2 = xp1 − a1x1, etc.

Proof. By Lemma 1, the equations of System (1) imply xi = Li−1(x1), and in particular
xpn − anxn = xp

n

1 − x1 so x1 ∈ Fpn .



3.2 Solving System (1) with Resultants

In order to solve System (1), we notice that it has a quasi-diagonal structure: the first
equation only depends on x1, each equation xpj − ajxj = xj+1 only depends on xj and
xj+1, and the last equation only depends on xn. Our new algorithm will exploit this
structure to solve System (1), hence the polynomial f .

In the first step of the algorithm, we successively compute f (1) = f, f (2), . . . , f (n)

such that f (j) has the same degree as f and only depends on the variable xj . Let fi be

the coefficients of f , such that f(x) =
∑d

i=0 fix
i. We compute f (2) as

f (2)(x2) = Resx1(f (1)(x1), x2 − (xp1 − a1x1))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 −a1 −x2 0 0 . . . 0
1 0 . . . 0 −a1 −x2 0 0 . . . 0

. . .
. . .
1 0 . . . 0 −a1 −x2 0

1 0 . . . 0 −a1 −x2

fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0 0 . . . 0 0
fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0 0 . . . 0

. . .
fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0 0

fd fd−1 fd−2 . . . fp+1 fp fp−1 . . . f2 f1 f0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2)

which is clearly a polynomial in x2 only. Its degree is exactly d since the variable x2
appears exactly d times in the above determinant, in different rows and columns. We
then successively compute

f (j+1)(xj+1) = Resxj

(
f (j)(xj), xj+1 − (xpj − ajxj)

)
for j = 2, . . . , n − 1, which all have degree d for the same reasons. A simple algorithm
to compute these resultants is provided in Section 3.4 below.

In the second step of our algorithm, we successively recover values for xn, xn−1, . . .,
and finally x1. We first compute

g(n)(xn) := gcd
(
f (n)(xn), xpn − anxn

)
.

By construction, g(n) is a polynomial of degree at most p, dividing xpn − anxn. If this
polynomial is a non zero constant, then f has no solution over Fpn . Otherwise, it follows
from Lemma 1 c) that g(n) is split. Its roots x̂n correspond to the values of the variable
xn in the solutions of System (1). For each of these x̂n values, we then compute

g(n−1)(xn−1) := gcd
(
f (n−1)(xn−1), x̂n − (xpn−1 − an−1xn−1)

)
. (3)

By construction, g(n−1) is a polynomial of degree at most p, dividing x̂n − (xpn−1 −
an−1xn−1). If this polynomial is a constant, then there is no solution. Otherwise, it
follows from Lemma 1 c) that g(n−1) is split. We compute the factorization of g(n−1)

using any classical root-finding algorithm, or any dedicated root-finding algorithm for



the linear polynomial x̂n − (xpn−1 − an−1xn−1) followed by a small exhaustive search.

The roots of g(n−1) correspond to the values of the variables xn−1 in the solutions
of System (1). Proceeding recursively, we finally obtain all x1 values that satisfy the
equation f (1)(x1) = 0. The whole algorithm is deterministic if no probablistic algorithm
is used for the resultant computation and small degree root-finding routines.

3.3 Example

We provide a small example of SRA execution when p = 2, n = 5 and d = 6. Let α be
a root of t5 + t2 + 1 over F25 . Let vi := αi−1, i = 1, . . . , 5. The precomputation step of
SRA leads to a1 = 1, a2 = α19, a3 = α6, a4 = α4 and a5 = α2.

Let now f(x) := x5 + α20x4 + α27x3 + α4x2 + α14x + α9. In the first step of SRA,
we successively compute

f (1)(x1) = x51 + α20x41 + α27x31 + α4x21 + α14x1 + α9,

f (2)(x2) = x52 + α28x42 + α23x32 + α4x22 + α12x2 + α19,

f (3)(x3) = x53 + αx43 + α23x33 + α23x23 + x3,

f (4)(x4) = x54 + α4x44 + α7x34 + α11x24,

f (5)(x5) = x55 + αx35.

In the second step of SRA, we then compute

g(5)(x5) = gcd(f (5)(x5), x
2
5 + a5x5) = x5,

g(4)(x4) = gcd(f (5)(x5), x
2
4 + a4x4) = x24 + α4x4 = x4(x4 + α4).

The root x̂4 = α4 leads to

g(3)(x3) = gcd(f (3)(x3), x̂4 + x23 + a3x3) = x3 + α3,

g(2)(x2) = gcd(f (2)(x2), x̂3 + x22 + a2x2) = x2 + α,

g(1)(x1) = gcd(f (1)(x1), x̂2 + x21 + a1x1) = x1 + α3.

The root x̂4 = 0 leads to

g(3)(x3) = gcd(f (3)(x3), x̂4 + x23 + a3x3) = x23 + α6x3 = x3(x3 + α6).

The root x̂3 = 0 leads to

g(2)(x2) = gcd(f (2)(x2), x̂3 + x22 + a2x2) = x2 + α19,

g(1)(x1) = gcd(f (1)(x1), x̂2 + x21 + a1x1) = x1 + α18.

The root x̂3 = α6 leads to

g(2)(x2) = gcd(f (2)(x2), x̂3 + x22 + a2x2) = x2 + α30,

g(1)(x1) = gcd(f (1)(x1), x̂2 + x21 + a1x1) = x1 + α19.

The solution set of f is therefore {α3, α18, α19}. For this example, the computation of
this set required 5 resultants, 10 gcds and the factorizations of 2 degree 2 (linear over
F2) polynomials.



3.4 Computing the Resultants

Resultants are the basic operations in the first step of SRA algorithm. Under simple
row manipulations, we have

f (2)(x2) = Resx1(f (1)(x1), x2 − (xp1 − a1x1))

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 −a1 −x2 0 0 . . . 0
1 0 . . . 0 −a1 −x2 0 0 . . . 0

. . .
. . .
1 0 . . . 0 −a1 −x2 0

1 0 . . . 0 −a1 −x2

Fp−1,p−1 . . . Fp−1,2 Fp−1,1 Fp−1,0

Fp−2,p−1 . . . Fp−2,2 Fp−2,1 Fp−2,0

. . .
F1,p−1 . . . F1,2 F1,1 F1,0

F0,p−1 . . . F0,2 F0,1 F0,0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
Fp−1,p−1 . . . Fp−1,2 Fp−1,1 Fp−1,0

Fp−2,p−1 . . . Fp−2,2 Fp−2,1 Fp−2,0

. . .
F1,p−1 . . . F1,2 F1,1 F1,0

F0,p−1 . . . F0,2 F0,1 F0,0

∣∣∣∣∣∣∣∣
where Fj,i satisfy

p−1∑
i=0

Fj,i(x2)x
i
1 = xj1f(x1) mod (x2 − (xp1 − a1x1)) .

In particular, p degFj,i + i ≤ d+ j. The resultant can therefore be computed as follows:

1. Reduce the last row of (2) by the first d ones to obtain the coefficients F0,i. This
amounts to computing

h(x1, x2) :=

p−1∑
i=0

F0,i(x2)x
i
1 = f(x1) mod (xp1 − a1x1 − x2). (4)

2. Shift these coefficients on the left and further reduce by the first d rows to obtain
all coefficients Fi,j . This amounts to successively computing

p−1∑
i=0

Fj,i(x2)x
i
1 = xj1h(x1, x2) mod (xp1 − a1x1 − x2)

= x1

(
xj−11 h(x1, x2)

)
mod (xp1 − a1x1 − x2)

=

p−1∑
i=1

Fj−1,i−1(x2)x
i
1 + Fj−1,p−1(x2) (a1x1 + x2)

3. Compute the last determinant with a few multiplications of polynomials with degrees
smaller than d.



3.5 Complexity Analysis

The complexity of SRA can be analyzed as follows. First, we note that all the values ai
of Lemma 1 can be (pre)computed at a total cost of O(n2) operations over Fpn , that is
O(n4) operations over Fp using classical arithmetic or Õ(n3) operations over Fp using
fast arithmetic.

Next we evaluate the cost of the resultant algorithm of Section 3.4. The last row can
be computed with O(d) elementary row reduction steps, each one involving O(p · dp) =
O(d) multiplications over Fpn . All the other polynomials Fi,j can then be computed using
O(d) operations over Fpn . Finally, the last determinant requires O(p3) multiplications
of polynomials of degrees at most d over Fpn . Computing one resultant therefore costs
O(d2n2) operations over Fp using standard arithmetic and Õ(d2n) operations over Fp

using fast arithmetic. Completing the first step of SRA costs n resultants, that isO(d2n3)
operations over Fp using standard arithmetic and Õ(d2n2) operations over Fp using fast
arithmetic.

In the second step of SRA, we compute several gcds between a degree d and a
degree p polynomial over Fpn . This requires O(d) operations over Fpn for each gcd. We
also need to factor all the polynomials g(j) that have degree larger than 1. Since each
polynomial g(j) has degree at most p, each factorization costs O(n3) operations with
classical arithmetic or Õ(n2) operations with fast arithmetic, using a classical equal-
degree factorization algorithm like Berlekamp trace algorithm [1] or Cantor-Zassenhaus
algorithm [4]. Note that these algorithms are only applied here on polynomials with
degree smaller than p = O(1). Alternatively, we can also factor the polynomials x̂j −
(xpj−1 − aj−1xj−1) using linear algebra over Fp, and test each solution in g(j−1)(xj−1).

The number of times these two operations will be repeated in SRA second step
depends on the number of solutions for each of x1, x2, . . . , xn. By the properties of
resultants, any solution for xi leads to at least one solution for all xj , j ≤ i. If f has
exactly s ≤ d roots, then these roots are solutions for x1, but several of these solutions
may “merge” into common solutions for x2, x3, etc., and xn can of course take at most
p values. In any case, at most ns polynomials g(j) will be computed, and at most s/2
of them will need to be factored. The second step of our algorithm can therefore be
completed with O(dn3s+ n3s) = O(dn3s) operations over Fp using classical arithmetic
and Õ(dn2s + n2s) = Õ(dn2s) operations over Fp using fast arithmetic. Note that the
complexity of the second step is identical if f has more than s roots but we are only
interested in computing s of them.

The total complexity of SRA is therefore O(d2n3 + n4) using classical arithmetic
and Õ(d2n2 + n3) using fast arithmetic. When only classical arithmetic is available,
this complexity is similar to BTA if d2 > n or if the field constants ai in Lemma 1 are
precomputed.

4 Fast SRA

When fast polynomial arithmetic is available, the basic SRA algorithm presented above
does not compete with BTA. To compete again with BTA in this context, we introduce



two new algorithms to perform SRA first and second steps. The first algorithm sim-
ply uses the linearity of the Frobenius. The second one uses multipoint evaluation of
polynomials, hence it crucially relies on fast polynomial arithmetic.

4.1 Improved Resultant Algorithm

The first step of the basic SRA algorithm consists in computing n resultants using the
algorithm of Section 3.4. The most expensive part of this algorithm is the computation
of the polynomial

h(x1, x2) := f(x1) mod (xp1 − a1x1 − x2)

in a straightforward way. We now present an alternative algorithm taking advantage of
the linearity of the Frobenius.

Let k := blogp dc and let hk(x1, x2) := f(x1). The alternative algorithm first com-

putes ap
i

1 for i = 0, . . . , k − 1 in time Õ(n logp d). It then successively computes

hi

(
x1, x

pi

2

)
:= hi+1

(
x1, x

pi+1

2

)
mod

(
xp

i+1

1 − ap
i

1 x
pi

1 − x
pi

2

)
(5)

for i = k − 1, . . . , 0. We observe that

hi

(
x1, x

pi

2

)
= f(x1) mod (xp1 − a1x1 − x2)

pi

so in particular h(x1, x2) = h0(x1, x2).

The polynomial hi

(
x1, x

pi

2

)
has degree at most pi+1 in x1 and at most pk−i in xp

i

2 .

Each reduction step (5) involves reducing at most (p−1)pi+1 terms cj

(
xp

i

2

)
·xj1 where cj

are polynomials of degree pk−i, so it takes Õ(dn). There are logp d steps so the total cost

to compute h(x1, x2) is also Õ(dn). Using fast polynomial multiplication to compute the
determinant as in Section 3.4, each resultant in the first step of SRA can be computed
using only Õ(dn) operations over Fp.

As a consequence, the first step of SRA can be performed in time Õ(dn2) operations
using fast arithmetic.

4.2 Simultaneous Evaluation of gj for all x̂j+1

The second step of SRA requires the evaluation of

g(j−1)(xj−1) := gcd
(
f (j−1)(xj−1), x̂j − (xpj−1 − aj−1xj−1)

)
for all solutions x̂j , and for j = n− 1, . . . , 2. We notice that unless

f (j−1)(xj−1) = 0 mod
(
x̂j − (xpj−1 − aj−1xj−1)

)
,

we have

g(j−1)(xj−1) = gcd
(
f (j−1)(xj−1) mod

(
x̂j − (xpj−1 − aj−1xj−1)

)
, x̂j − (xpj−1 − aj−1xj−1)

)
.



Moreover, all the polynomials

f (j−1)(xj−1) mod
(
xj − (xpj−1 − aj−1xj−1)

)
=

p−1∑
i=0

F
(j−1)
0,i (xj)x

i
j−1

are computed in the first step of SRA.

Using a multipoint evaluation algorithm, each polynomial F
(j−1)
0,i (xj) (that has de-

gree smaller than d) can be evaluated at the almost s ≤ d solutions x̂j in time Õ(dn).
Once these values have been computed, each final gcd is performed on two polynomials
of degrees smaller than p = O(1), hence it only requires O(1) operations over Fpn . The
total cost for computing the polynomial gj−1(xj−1) for all solutions x̂j is therefore Õ(dn)
instead of Õ(dns), and the cost of the second step of SRA decreases from Õ(dn2s) to
Õ(dn2) using this algorithm.

4.3 Complexity of Fast SRA

Using the algorithms of Sections 4.1 and 4.2, the cost of SRA with fast arithmetic can
be reduced to Õ(dn2 +n3), where the n3 term comes from the (pre)-computation of the
ai in Lemma 1. Possibly up to logarithmic factors, this complexity is similar to BTA if
d > n or if the field constants ai are precomputed.

5 Proof-of-Concept Implementation Results

As a proof of concept, we implemented both the basic and fast versions of the Successive
Resultant Algorithm in Magma [21]. We chose Magma for its simplicity of use and
because it provides many of the subroutines that we need in our algorithm. We point
out that Magma claims to have efficient fast algorithmic routines. The code of the basic
version (given in Appendix A) is only a few lines. To implement multipoint evaluation in
Fast SRA, we followed the description of [5]. We stress that we did not put any effort in
optimizing neither the basic nor the fast SRA implementations. On the contrary, when
a generic Magma function was available for a specific task, we always used this function,
even if the particular inputs used in our algorithms could open the way to more efficient
implementations. In particular, we did not implement straightforward simplifications
when p = 2.

5.1 Experiments

We tested our implementation against Magma Roots function for p ∈ {2, 3, 5, 7, 11, 13, 17},
for n = 2en and d = 2ed with ed, en ∈ {2, . . . , 12}, and for three types of polynomials:

– Random polynomials: polynomials of degree d over Fpn with randomly chosen coef-
ficients.

– Random polynomials with a single root: to generate these polynomials, we chose
random polynomials as above and we used Magma functions to test whether it had
a single root or not.



– Split polynomials: polynomials f(x) :=
∏d

i=1(x−xi) for xi randomly chosen in Fpn .

For every polynomial, we recorded the time needed by Magma Roots function as well
as the precomputing time and the time for the first and second steps of both Basic
SRA and Fast SRA. All timings recorded were real time (seconds). We repeated every
experiment ten times and we averaged computation times over these ten experiments.
All experiments were performed on an Intel Xeon CPU X5500 processor running at 2.67
GHz, with 24 GB RAM.

5.2 Selected Results

With the exception of very small d values, the precomputation part of SRA had always
a small or negligible cost compared to the first and second steps of the algorithm. For
random polynomials and polynomials with only one root, we observed that the first
part of our algorithm was by far the most time-consuming one. For split polynomials,
the first and second parts tended to be more balanced.

Figures 1 and 2 show log-log graphs of the timings obtained for p = 2 and split
polynomials, respectively as a function of n for various d and as a function of d for
various n. We observed that the Roots function generally performed significantly better,
and the two variants of SRA generally had similar timings. The timing evolutions with
n is similar for the three algorithms, but both versions of SRA seem less efficient than
Roots as d increases.

For larger p values, the gap between Roots and SRA performances is considerably
reduced or completely removed, suggesting that even a slightly optimized version of
BasicSRA could become competitive with respect to Roots. Table 2 reports some pa-
rameters and timing results for which either BasicSRA or FastSRA was the most efficient
algorithm to compute roots. All these parameters involve split polynomials.

We believe that the relatively poor performances of both SRA implementations
with respect to Roots for p = 2 are due to a default of optimizations to this case in our
implementations with respect to Magma’s Roots function. The advantage of FastSRA
over BasicSRA will probably become more obvious for larger parameter sizes.

6 Conclusion and Open Problems

In this paper, we presented the Successive Resultant Algorithm (SRA), a new algorithm
for finding roots in extension fields Fpn with a small characteristic. The preliminary
analysis conducted here suggests that SRA has an asymptotic complexity similar to
Berlekamp’s well-known trace algorithm for “large” polynomials (d2 ≥ n with classical
arithmetic, d ≥ n with fast arithmetic) in general, and for any parameters if certain
field constants used in SRA are precomputed. Preliminary performance results obtained
with a straightforward Magma implementation suggest that SRA could also become
competitive with currently used algorithms in practice.

We leave a more thorough comparison analysis of our algorithm with previous work,
including logarithmic factors and dependency in p, to further work. We also leave as an



Table 2: Timings for selected parameters. The average total time needed by the full
basic and fast SRA is provided as a quotient with respect to the average time needed
by Roots; the other timings are given in seconds. bSRA=Basic SRA, fSRA=Fast SRA,
p=precomputation, f=first step, s=second step, t= total.
p n d type Roots bSRAt fSRAt bSRAp bSRAf bSRAs fSRAp fSRAf fSRAs

5 32 128 Split 1.17 0.91 1.33 0.01 0.64 0.42 0.01 0.63 0.93
5 64 64 Split 1.85 0.83 1.22 0.02 0.83 0.68 0.02 0.83 1.40
5 128 32 Split 3.39 1.00 1.33 0.11 1.71 1.56 0.11 1.62 2.76
5 256 32 Split 25.08 0.92 1.10 0.67 11.45 11.03 0.68 10.57 16.37
5 128 64 Split 10.99 0.83 1.02 0.11 4.79 4.23 0.11 4.43 6.67
5 64 128 Split 5.93 0.79 1.05 0.02 2.65 1.98 0.02 2.73 3.45
5 32 256 Split 3.78 0.95 1.17 0.01 2.25 1.32 0.00 2.18 2.22
5 64 256 Split 19.60 0.82 0.99 0.02 9.66 6.46 0.02 9.93 9.41
5 128 128 Split 35.58 0.81 0.94 0.11 15.76 13.00 0.11 15.23 18.17
5 256 64 Split 80.28 0.80 0.90 0.69 32.82 30.59 0.69 28.56 42.79
5 256 128 Split 257.45 0.78 0.82 0.67 106.21 93.30 0.68 94.05 116.64
5 128 256 Split 112.35 0.88 0.93 0.11 55.75 43.00 0.11 55.04 49.66
5 64 512 Split 62.00 0.94 1.01 0.02 36.09 22.31 0.02 37.52 25.21
7 8 256 Split 0.56 0.97 1.14 0.00 0.36 0.18 0.00 0.28 0.36
7 128 128 Split 105.48 0.94 0.97 0.30 54.84 44.03 0.30 47.60 54.82

11 8 256 Split 0.67 0.97 1.35 0.00 0.42 0.23 0.00 0.34 0.56
11 8 512 Split 2.22 0.99 1.08 0.00 1.50 0.69 0.00 1.14 1.26
13 4 512 Split 0.13 0.95 2.18 0.00 0.06 0.06 0.00 0.08 0.21
13 4 1024 Split 0.42 0.91 1.56 0.00 0.23 0.16 0.00 0.29 0.37
13 32 256 Split 11.17 0.91 1.22 0.01 5.90 4.25 0.01 5.70 7.87
13 4 2048 Split 1.39 0.96 1.53 0.00 0.91 0.43 0.00 1.42 0.71
13 32 512 Split 36.04 0.90 1.09 0.01 19.37 13.01 0.01 18.80 20.55
13 64 256 Split 65.39 0.97 1.14 0.06 36.27 27.12 0.06 33.56 41.24
13 128 256 Split 473.03 0.95 1.06 0.36 254.74 193.41 0.36 224.49 275.74
13 64 512 Split 208.16 0.97 1.07 0.06 116.97 84.03 0.06 109.83 113.69
13 128 512 Split 1470.15 0.94 1.00 0.36 791.85 587.40 0.36 712.66 759.20
17 32 256 Split 14.91 0.88 1.28 0.01 7.72 5.45 0.01 7.88 11.26
17 32 512 Split 47.08 0.81 1.11 0.01 22.72 15.26 0.01 23.38 28.74
17 64 256 Split 88.08 0.87 1.20 0.06 45.13 31.81 0.06 47.40 58.11
17 128 256 Split 585.80 0.99 1.22 0.32 339.87 238.68 0.32 326.88 385.81
17 64 512 Split 277.01 0.77 1.06 0.06 125.70 88.81 0.05 135.35 156.97
17 32 1024 Split 148.99 0.83 1.05 0.01 75.58 47.98 0.01 78.30 78.74
17 64 1024 Split 868.82 0.77 1.00 0.06 393.51 275.06 0.06 438.24 433.83
17 128 512 Split 1838.89 0.88 1.08 0.33 943.57 682.31 0.32 923.52 1057.06

5 256 256 Split 805.93 0.86 0.85 0.68 377.99 314.11 0.68 347.00 335.68
5 256 512 Split 2856.05 1.01 0.95 0.81 1587.23 1284.40 0.80 1615.68 1105.31
7 8 512 Split 1.86 1.02 0.97 0.00 1.36 0.54 0.00 0.98 0.82
7 8 1024 Split 5.99 1.17 0.93 0.00 5.32 1.71 0.00 3.66 1.92
7 128 256 Split 329.42 1.00 0.97 0.31 186.53 142.08 0.30 165.90 153.01



open problem to propose an optimized implementation of SRA together with parameters
of practical interest for which SRA would consistently perform better than previous
algorithms. On the algorithmic side, we believe that efficiency improvements can be
achieved in SRA through a careful choice of the basis used in Lemma 1.

Our algorithm is radically different from previous ones. While traditional root-
finding algorithms have used various strategies to separate the root set, SRA first
“merges” the roots together using successive resultants with the polynomials xj+1 −
(xpj − ajxj), and it then progressively separates them using gcds and root-finding algo-
rithms on polynomials of small degrees only. It would be interesting to explore alterna-
tive merging strategies, in other words to take successive resultants with polynomials
xj+1 − L̃j(xj) where the functions L̃j would be other non injective functions. An al-
ternative multipoint evaluation method could then be used instead of the dedicated
Frobenius approach of Section 4.1 to preserve the resultant computation complexity
with fast arithmetic.1

To conclude this paper, we would like to mention a very interesting and important
open problem. This problem is the extension of our work to solve multivariate polyno-
mials f(x1, . . . , xm) = 0 under linear constraints xi ∈ Vi, where Vi ⊂ Fpn are vector
spaces of dimension n′ ≈ n/m over Fp. This problem is of great interest in cryptography,
to the factorization problem in SL(2,F2n) and to various discrete logarithm problems
in small characteristic [6,7,11]. Following the same reasoning as in Section 3.1, we can
write a polynomial system

f(x1,1, . . . , xm,1) = 0

xpij − aijxij = xi,j+1 i = 1, . . . ,m; j = 1, . . . , n′ − 1

xpi,n′ − ai,n′xi,n′ = 0 i = 1, . . . ,m

(6)

which includes the linear constraints and has a “block diagonal” structure. This system
can clearly be solved by construction of new polynomials f (i1,...,im) where the variables
are successively replaced with resultants as well. However, we have not been able to
design an algorithm that does not increase the degree of the new polynomials, and we
could therefore not provide any good complexity bound. Nevertheless, we believe that
this approach is very promising. Besides proving Petit and Quisquater’s conjecture to
some extent [11], it may also lead to huge practical improvements on the cryptanalysis
of ECDLP in characteristic 2 if the time and memory required to solve a multivariate
polynomial with linear constraints were significantly decreased.

Acknowledgements The author would like to thank Tim Hodges, Sylvie Baudine and
the program committee of ANTS for carefully reviewing previous versions of this paper.
Nicolas Veyrat and Jean-Jacques Quisquater are also thanked for discussions related to
this work. Finally, Jens Groth and Alan Lauder are thanked for hosting the author while
writing this paper, respectively at University College London and University of Oxford.
The research leading to these results has received funding from the Fonds National de

1 We thank an anonymous reviewer of ANTS for this suggestion.



la Recherche - FNRS and from the European Research Council through the European
ISEC action HOME/2010/ISEC/AG/INT-011 B-CCENTRE project.



F
ig

.1
:

lo
g
2

of
co

m
p

u
ti

n
g

ti
m

es
(i

n
se

co
n

d
s)

fo
r

M
ag

m
a

R
oo

ts
fu

n
ct

io
n

,
b
as

ic
S

R
A

,
fa

st
S
R

A
an

d
th

ei
r

m
ai

n
co

m
p

o
n

en
t

p
a
rt

s.
T

h
e

gr
ap

h
s

d
is

p
la

y
th

e
cu

rv
es

fo
r

se
v
er

al
d

va
lu

es
.



F
ig

.2
:

lo
g
2

of
co

m
p

u
ti

n
g

ti
m

es
(i

n
se

co
n

d
s)

fo
r

M
ag

m
a

R
oo

ts
fu

n
ct

io
n

,
b
as

ic
S

R
A

,
fa

st
S
R

A
an

d
th

ei
r

m
ai

n
co

m
p

o
n

en
t

p
a
rt

s.
T

h
e

gr
ap

h
s

d
is

p
la

y
th

e
cu

rv
es

fo
r

se
v
er

al
n

va
lu

es
.



References

1. E. Berlekamp. Factoring polynomials over large finite fields. Mathematics of computation, 111:713–
735, 1970.

2. E. R. Berlekamp. Algebraic coding theory. Aegean Park Press, Laguna Hills, CA, USA, 1984.
3. Elwyn R. Berlekamp, H. Rumsey, and G. Solomon. On the solution of algebraic equations over

finite fields. Information and Control, 10(6):553–564, June 1967.
4. David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite fields.

Mathematics of Computation, 36 (154):587592, 1981.
5. Yuanmi Chen and Phong Q. Nguyen. Faster algorithms for approximate common divisors: Breaking

fully-homomorphic-encryption challenges over the integers. In Pointcheval and Johansson [12], pages
502–519.

6. Jean-Charles Faugère, Ludovic Perret, Christophe Petit, and Guénaël Renault. New subexponential
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A Magma SRA code

// given a univariate polynomial over Fq, return its solutions

basicSRA:=function(pol)



// recover parameters

Rpol:=Parent(pol);

Fq<x>:=BaseRing(Rpol);

p:=Characteristic(Fq);

n:=Degree(Fq);

d:=Degree(pol);

// precomputing part

// ------------------

R:=PolynomialRing(Fq,n,"lex");

AssignNames(~R,["Y" cat IntegerToString(ind): ind in [1..n]]);

// arbitrary choice of basis

basis := [x^ind: ind in [0..n-1]];

// equations relating the Yi variables

Lval:=basis[1]^(p-1);

squareEq:=[];

for ind in [1..n-1] do

// compute next

squareEq:=squareEq cat [(R.ind)^p - Lval*R.ind - R.(ind+1)] ;

// compute Lval = value of last equation evaluated at Y1=basis[ind]

Lval:=R.1-basis[ind+1];

for ind2 in [1..ind] do

Lval:=NormalForm(squareEq[ind2],[Lval]);

end for;

Lval:=-MonomialCoefficient(Lval,1)

/MonomialCoefficient(Lval,R.(ind+1));

Lval:=Lval^(p-1);

end for;

// compute last

squareEq:=squareEq cat [(R.n)^p - Lval*R.n] ;

// part depending on pol

// ---------------------

pol:=(hom<Parent(pol) -> R | R.1>)(pol);

polEq:=[pol];

// get an equation in R.n

for var in [1..n-1] do

pol:=Resultant(pol,squareEq[var],R.var);



polEq:=polEq cat [pol];

end for;

// compute gcd of pol with last squareEq

pol:=GCD(pol,squareEq[n]);

solEq:=[fac[1]: fac in Factorization(pol) | Degree(fac[1]) eq 1] ;

// successively recover values of Y_n-1, Y_n-2, etc

for indvar in [n-ind+1: ind in [2..n]] do

newSolEq:=[];

for sol in solEq do

pol:=GCD(polEq[indvar],NormalForm(squareEq[indvar],[sol]));

if Degree(pol) eq 1 then

newSolEq:= newSolEq cat [pol];

end if;

if Degree(pol) gt 1 then

newSolEq:= newSolEq cat [fac[1]: fac in

Factorization(pol) | Degree(fac[1]) eq 1] ;

end if;

end for;

solEq:=newSolEq;

end for;

return solEq;

end function;


