
Lightweight Diffusion Layer from the kth root of the
MDS Matrix

Souvik Kolay1, Debdeep Mukhopadhyay1

1Dept. of Computer Science and Engineering
Indian Institute of Technology Kharagpur, India
{souvik1809,debdeep.mukhopadhyay}@gmail.com

Abstract. The Maximum Distance Separable (MDS) mapping, used in cryptog-
raphy deploys complex Galois field multiplications, which consume lots of area
in hardware, making it a costly primitive for lightweight cryptography. Recently
in lightweight hash function: PHOTON, a matrix denoted as ‘Serial’, which re-
quired less area for multiplication, has been multiplied 4 times to achieve a
lightweight MDS mapping. But no efficient method has been proposed so far
to synthesize such a serial matrix or to find the required number of repetitive
multiplications needed to be performed for a given MDS mapping. In this pa-
per, first we provide an generic algorithm to find out a low-cost matrix, which
can be multiplied k times to obtain a given MDS mapping. Further, we optimize
the algorithm for using in cryptography and show an explicit case study on the
MDS mapping of the hash function PHOTON to obtain the ‘Serial’. The work
also presents quite a few results which may be interesting for lightweight imple-
mentation.

Keywords: MDS Matrix, kth Root of a Matrix, Lightweight Diffusion Layer

1 Introduction

With several resource constrained devices requiring support for cryptographic algo-
rithms, the need for lightweight cryptography is imperative. Several block ciphers,
like Kasumi[19], mCrypton[24], HIGHT[20], DESL and DESXL[23], CLEFIA[34],
Present[8], Puffin[11], MIBS[22], KATAN[9], Klein[14], TWINE[36], LED[16], Pic-
colo [33] etc and hash functions like PHOTON[33], SPONGENT[7], Quark [3] etc.
have been developed specifically to ensure that sufficient security is provided at the cost
of less area, less power etc. Designing lightweight ciphers brings several challenges to
cryptographers: as classical cryptography depends on resource intensive mathematical
operations which cannot be directly be adopted for lightweight platforms directly [27].
Recently another thread of research in the domain of lightweight ciphers have started
to evolve: to design lightweight crypto-primitives which can be used to design a family
of secured but efficient solutions. One of the fundamental properties of ciphers are their
diffusion quality, which is often achieved by error-correcting codes, popularly called as
Maximum Distance Separable (MDS) codes. The use of MDS matrix in cryptography to
provide perfect diffusion was proposed in [37]. Galois fields arithmetic in characteristic
2, denoted as GF(2n) is used extensively for realizing these MDS mappings. Typically



in the ciphers, MDS matrices are multiplied in GF(2n) to provide diffusion or mix
the input bits to this transformation. Famous examples of such applications are block
ciphers like AES [13], Twofish [32], and Camellia [2]. Popular stream ciphers like
Mugi [39] and hash functions like WHIRLPOOL [4] also employ such mappings. How-
ever in the lightweight literature of ciphers, the initial constructions like HIGHT[20],
mCrypton[24], PRESENT [8] do not employ such mappings. Though the use of MDS
matrices for diffusion provides good security, but it is costly for hardware implemen-
tation. For example, the most compact implementation of AES [26] consumes almost
11% of the total GE only for diffusion layer, which is a GF(28) multiplication of an
MDS matrix. Due to this problem, MDS matrices were not so popular initially for com-
pact implementations and in particular for lightweight cryptography. However in the
more recent constructions like the block cipher Klein, MIBS, PICCOLO, LED and the
hash function PHOTON the use of MDS mappings can be observed. In Klein, MIBS
and PICCOLO a circulant MDS mapping is used and the MDS mapping is defined in
a smaller GF(24) field instead of GF(28), while in the block cipher LED and hash
function PHOTON the MDS mapping has been realized by iterating a different matrix,
which is easy to implement. While in the former case, using of the smaller field does not
provide the same security guarantees and requires re-evaluation, in the later construc-
tion no algorithm or constructive methodology is provided to find out such lightweight
matrices which can be iterated to generate the MDS mappings.

Many recent works try to explore new MDS matrices with different features. There
are few works where authors construct MDS matrices from Companion matrices [17],
Vandermonde matrices [30] and Cauchy matrices [40] which have good cryptographic
property and can be implemented efficiently in hardware. In a recent work [31], authors
show that it is possible to find some MDS matrices, which can be realized using a re-
cursive Feistel network. In the design of lightweight hash function: PHOTON [15], an
instance of MDS matrix is shown which can be obtained from a lightweight matrix,
defined as Serial(1, 2, 1, 4) (refer Section 2). These serial matrices [15] can be imple-
mented efficiently in hardware due to its structure. For compact diffusion layer, authors
in [15] suggest repetitive multiplications of the serial matrix to get an MDS matrix.
Hence, the MDS matrix is denoted as M = Serial(z0, . . . , zd−1)

k, where k denotes,
number of times Serial(z0, . . . , zd−1) needs to be multiplied. But, by picking any ran-
dom serial matrix and repetitively multiplying will not necessarily produce an MDS
matrix with good cryptographic properties. To search for such a serial matrix authors
in [15] used an exhaustive search technique using MAGMA and picked the most com-
pact candidate, such that Serial(z0, . . . , zd−1)k is an MDS matrix. To the best of our
knowledge no efficient method has been proposed so far to obtain such a serial matrix
from a given MDS matrix.

In this paper, we investigate the possibility of the existence of a lightweight matrix
which can be iterated to realize a MDS mapping using a generalized methodology to
compute the kth root of the given MDS mapping. The paper is organized as follows.
Some preliminaries on coding theory, linear algebra and finite fields are discussed in
section 2. Section 3 presents an algorithm for finding kth root of a matrix, whose el-
ements are in Galois field. In section 4 we show the usefulness of the algorithm in
cryptography, with an example of MDS mapping used in the hash function: PHOTON.



Further, we show some interesting results obtained using our algorithm. Finally, we
summarize the work done and conclude in section 7.

2 Preliminaries

In this section we present a preliminary overview on the theory of linear block codes,
linear algebra and finite field, which will be useful to understand the subsequent sec-
tions.

2.1 Preliminaries on Linear Block Code

In cryptography, diffusion is an important property which makes the data bits depend
on one another. Due to certain properties of MDS matrix, it is used in cryptography to
guarantee a perfect diffusion. In this section, we provide some preliminaries of linear
block code for the clarification of the use of MDS matrix in cryptography. For more
details on coding theory the readers are referred to [25,29]

Definition 1. Linear Code: A block code of length n and 2k codewords is called a
linear (n, k) code if and only if its 2k codewords form a k-dimensional subspace of the
vector space of all the n-tuples over the field GF(2).

Definition 2. Binary Block Code: A binary block code is linear iff the modulo-2 sum
of two codewords is also a codeword.

Definition 3. (n, k, d) Code: The Hamming distance d of a system of codewords deter-
mines the number of errors that can be detected and corrected. If (n−k) check bits are
appended to k information bits to get a distance-d code, it is called (n, k, d) code[25].

Definition 4. MDS Code: For a linear (n, k, d) code over any field, d ≤ n − k + 1.
Codes with d = n− k + 1 are called Maximum Distance Separable (MDS) codes.

Definition 5. MDS Matrix: An m× n matrix over a finite field K is an MDS matrix if
it is the transformation matrix of an MDS code. In other words, an (n, k, d) code with
generator matrix G = [I|A], where A is a k × (n− k) matrix is MDS iff every square
submatrix (formed from any i rows and any i columns) from i = 1, 2, . . . ,min(k, n−k)
of A is non-singular.

2.2 Preliminaries on Linear Algebra in Galois Field

As the work concentrate on the finding the kth root of a matrix, where the elements of
the matrix is in Galois fields, in this section, some basic concepts of linear algebra and
Galois field has been discussed. For more details the readers are referred to [18,21]

Definition 6. Galois field: A field with finite number of elements is said to be Galois
field or finite field. Following are some properties of Galois field:

– The number of elements in a field is called the order of the field.



– The order of a Galois field is always a prime or power of a prime. Galois fields
or finite fields are therefore represented by GF(q), where q = pm, p is a prime
number and m is a positive integer.

– Any element, k of GF(q) can be represented by a polynomial, where the coef-
ficients of the polynomial are elements of GF(p) and maximum degree of the
polynomial is m. For example, the polynomial representation of 35 in GF(38) is :
1× 33 + 0× 32 + 2× 31 + 2× 30 ⇒ x3 + 2x+ 2.

– Addition or multiplication of two elements in finite field is done by the polyno-
mial addition and polynomial multiplications respectively and the coefficients of
the polynomials follow the arithmetic of GF(p).

– If p = 2, the field is often called as binary field.

Definition 7. Subfield: A subset S of a field F is said to be a subfield of F , if the
elements of S satisfy the five field properties1.

Definition 8. Extension Field: A fieldK is said to be an extension of a fieldF , denoted
by K/F if F is a subfield of K. GF(k)/GF(q) represents that GF(k) is an extension
field of GF(q).

Definition 9. Characteristic Polynomial: IfMn is a matrix of order n × n, then the
characteristic polynomial of the matrix is defined as follows:

det(Mn − In · x)

where In denotes the identity matrix of order n× n.

Definition 10. Eigenvalues and Eigenvectors: The roots of the characteristic equa-
tion are known as eigenvalues of the matrix. For each eigenvalue λ, there is a eigen-
vector X which satisfies the following equation:

(Mn − Inλ)×X = 0 (1)

Definition 11. Diagonal Matrix: A diagonal matrix, Dn is a square matrix of order
n× n of the form:

Dn =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


where λi is the eigenvalue of the matrix. A diagonal matrix Dn is often denoted as
diag(λ1, λ2, · · · , λn)

Theorem 1. A matrix is diagonalizable if and only if all the eigenvalues of the matrix
are distinct.

1For both addition and multiplication operations, associativity, commutativity, distributivity
holds and the identity and inverse element exists



Theorem 2. Let Dn be a diagonal matrix, then the following relation holds for any k:

Dk
n = (diag(λ1, λ2, · · · , λn))k = diag(λk1 , λ

k
2 , · · · , λkn)

Theorem 3. Eigen Decomposition: LetP be a matrix of eigenvectors of a given square
matrixA andD be a diagonal matrix with the corresponding eigenvalues on the diago-
nal. Then, if P is a square matrix,A can be written as the follow decomposition, known
as Eigen Decomposition:

A = P ×D × P−1

Theorem 4. Let A = P ×D × P−1, then the following relation exists for any k:

Ak = P ×Dk × P−1

Here are some special types of matrices, which have been used in the subsequent
sections.

Definition 12. Companion Matrix: Let p(t) = c0 + c1t + · · · + cn−1t
n−1 + tn be a

polynomial with coefficients over an arbitrary field. Then the matrix

C(p) =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
0 1 . . . 0 −c2
...

...
. . .

...
...

0 0 . . . 1 −cn−1


is called the companion matrix of the polynomial p(t) since its characteristic polyno-
mial is p(t).

Definition 13. Serial: Serial(z0, . . . , zd−1) is defined as follows:

Serial(z0, . . . , zd−1) =



0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
z0 z1 z2 . . . zd−2 zd−1


where z0, z1, z2, . . . ,∈ F2n , for some n. It may be noted that Serial is the transpose of
the companion matrix.

2.3 Lightweight matrix

In this section, first we discuss the alternative options to implement an MDS matrix.
Then we suggest some properties by which we can say whether the matrix is lightweight
or not, i.e whether the matrix can be implemented in a compact way.
Typically, a lightweight solution can be achieved using the standard hardware serial-
ization techniques. In these cases, the size of the datapath is splitted, so that smaller



amount of data is processed in each clock cycle. Thus, a smaller hardware can be used
repetitively in some clock cycles to process the whole data. Now, in case of any crypto-
algorithm there are also other operations along with the MDS mapping. Let ‘Block 1’
and ‘Block 2’ denotes the hardware for the operations need to be performed before and
after the MDS mapping respectively. The other alternative is to follow the approach
adopted by the designers of PHOTON. In this case, without splitting the data path a
serial matrix, which can be implemented efficiently in hardware, is multiplied in some
clock cycles to obtain the desired MDS matrix. Figure 2 shows the basic structural dif-
ference between architecture of two approaches: (a) Using a lightweight matrix and (b)
Using serialized MDS matrix. In standard serialization techniques, (see figure 2(b)), a
multiplexer is required before the MDS mapping for splitting the datapath and a register
is required after the MDS mapping to hold and accumulate the processed data. ‘Seral-
ized MDS’ denotes the smaller hardware, which can process the splitted datapath in one
clock cycle. The additional register requirement may be overcome using the techniques
mentioned in [33]. While, in case of ‘Lightweight matrix’ based implementation, the
lightweight matrix of same datapath width is multiplied in each clock cycles. As the
size of the datapath remains the same, no extra multiplexer or register is required (see
figure 2(b)).

Now, suppose there are two matrix S and L. S is a serial matrix and Sk = MS ,
while L is not a serial matrix, but requires same hardware resource as S and Lk =
ML. BothMS andML are MDS matrices with desired cryptographic properties. In
this case, if we want to implement both the two matrices in hardware within k clock
cycle, both will require the exact same resource. But if we want to apply the traditional
lightweight implementation techniques, to obtain more compact implementation, these
two cases may not produce the same result. For example, suppose we want to split
the data path in 4 parts, i.e we will compute one byte in each clock cycle. So, we
only require the hardware to process each byte in a clock cycle and 4 clock cycle is
required to complete the multiplication of a single instance. Now for S, we will require
the exact same hardware resources, what is required for the normal implementation
(non-serialized). This is because of the fact that by definition serialize matrix carries
all the weight in last row. So, the implementation of first three rows will be just a
wiring, no gates are required for that, but for the last row, we require the exact same
hardware, what was required for the normal implementation. In contrary, for L the
weights are distributed in all the rows. So, the hardware to implement each rows can be
shared. In this case, the hardware requirement can be less that or equal to the normal
implementation.

From these observation, and keeping the need of hardware serialization for lightweight
cryptography in mind, we define a non-serialize matrix to be lightweight, whose each
row can be implemented in hardware at around one fourth hardware cost of a serialize
matrix.



n

n
Block 1

n k k
Register Block 2

n n

Register
n

MDS

Serialized

Block 1 Block 2

Register

n

n n n n

n

(b) Using Serialized MDS matrix

(a) Using Lightweight Matrix

Matrix

Light−

weight

Fig. 1. Lightweight Implementation Techniques for MDS Mapping

3 Finding kth root of a matrix with elements in GF(pm)

In this section, we discuss the algorithm to find out the the kth roots of a given matrix,
where the elements of the matrix are in finite field or Galois field. Algorithm 1 provides
the steps in brief. Currently the algorithm works for diagonalizable matrix.

Let q = pm, where p is a prime number andm is an integer.Mn(q) denotes an n×n
matrix with elements in GF(q). The characteristic polynomial of the matrixMn(q) is
defined as CMn(x) = det(Mn(q) − In · x), where In is the identity matrix of order
n × n and det(A) denotes the determinant of matrix A. CMn

(x) is a polynomial of
degree n and all the operations is done according to GF(q) arithmetic. The roots of the
polynomial CMn

(x) are the eigenvalues of the matrixMn(q).
The roots of the polynomial can be found by factoring the polynomial CMn

(x).
Berlekamp’s algorithm [6] and Cantor-Zassenhaus algorithm [10] are two most
popular probabilistic algorithm for factoring polynomial over finite fields. Berlekamp’s
algorithm is faster but it has higher space complexity compare to Cantor-Zassenhaus.
On the other hand, Ben-Or’s algorithm[5] is slightly faster than Cantor-Zassenhaus,
without using extra space complexity. For this reason, we choose Ben-Or’s algorithm
for factorization of the characteristic polynomial. Note that there exists Victor Shoup’s



deterministic algorithm[35] for polynomial factorization in finite field but it has a
slow performance compared to the other techniques. The output returned by any of
these algorithms will be as follows:

CMn
(x) = fe11 (x).fe22 (x).fe23 (x) · · · fess (x)

where fi(x), is an irreducible polynomial of GF(q) and
∑
ei = n, 1 ≤ i ≤ s.

– If fi(x) is a polynomial of degree 1, then there is a root in GF(q), which is the
additive inverse of the constant of the polynomial fi(x).

– Else the roots are in the extension field GF(qdi)/GF(q), w.r.t the primitive polyno-
mial fi(x), where di is the degree of the polynomial. x is the trivial root of fi(x) as
x satisfies the equation fi(x) = 0. Other roots are (xq)

j , where 1 ≤ j ≤ (di − 1).
In GF(qdi), x is the polynomial representation of q. Hence, the roots of fi(x) are
q,(qq)1, (qq)2 · · · (qq)di−1. These roots can be computed using any of the expo-
nentiation by squaring and multiplication method.

Subsequently, finding the roots of all fi(x), 1 ≤ i ≤ s, the eigenvalues of the matrix
Mn(q) can be computed. Eigen vector corresponding to different eigenvalues can be
computed using the equation 1.

Let the eigenvalues be: λ1, λ2, · · · , λn and the eigenvectors corresponding to them
are X1,X2, · · · ,Xn respectively, where Xi = {x1i, x2i, · · · , xni}. Now, according to
Eigen Decomposition Theorem,Mn(q) can be written as follows:

Mn(q) = Pn(q
m)×Dn(q

m)× P−1n (qm)

where m =maximum degree of the factors of CMn(x), P−1n (qm) is the inverse of
Pn(q

m) and

Pn(q
m) =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xn1 xn2 . . . xnn

 Dn(q
m) =


λ1 0 0 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


Finally, from the theorem 4Mk

n(q) can be computed as follows:

Mk
n(q) = (Pn(q

m)×Dn(q
m)× P−1n (qm))k

= Pn(q
m)×Dk

n(q
m)× P−1n (qm)

= Pn(q
m)× (diag(λ1, λ2, · · · , λn))k × P−1n (qm)

= Pn(q
m)× diag(λk1 , λk2 , · · · , λkn)× P−1n (qm) (2)

when 0 < k < 1, equation 2 returns the kth root of the matrixMk
n(q).

3.1 Complexity of the Algorithm

The complexity of the algorithm can be analyzed as follows:



Algorithm 1: Finding the kth root of the MatrixMn(q)

Input: MDS Matrix:Mn(q), k

Output: kth root of the MatrixMn(q):M
1
k
n (q)

/* Compute the characteristic polynomial(CMn(x)) */
CMn(x) = det(Mn(q)− In · x)
/* Find the factors of CMn(x)) using Ben-Or’s algorithm */
CMn(x) = fe1

1 (x).fe2
2 (x).fe2

3 (x) · · · fes
s (x)

/* Find the roots of the factors in the extension field of
GF(q) using the procedure mentioned in section 3 */

CMn(x) = (x− λ1).(x− λ2) · · · (x− λn)
/* λi is the eigenvalue of Mn(q) in GF(qm), where m is the

maximum degree of the factor */
{λ1, λ2 · · ·λn} = Eigenvalues [CMn(x)]
/* Xi is the eigenvector w.r.t the eigenvalue λi */

Xi = {x1i, x2i, · · · , xni}T = Eigenvector[CMn(x), λi]
/* Construct Pn(q

m) and Dn(q
m) */

Pn(q
m) =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xn1 xn2 . . . xnn

 Dn(q
m) =


λ1 0 0 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn


/* Compute the inverse of Pn(q

m) */

P−1
n (qm) =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

. . .
...

xn1 xn2 . . . xnn


−1

/* Compute the D
1
k
n (qm) */

D
1
k
n (qm) =


λ

1
k
1 0 0 0

0 λ
1
k
2 . . . 0

...
...

. . .
...

0 0 . . . λ
1
k
n


M

1
k
n (qm) = Pn(q

m)×D
1
k
n (qm)× P−1

n (qm)

1. Characteristic polynomial can be computed in O(n3) using Hessenberg algo-
rithm [12].

2. Factorization of polynomial using Ben-Or’s algorithm required expected time
complexity ofO(n2 . log n . log log n . log q) which is less thanO(n3) if q = O(n).

3. Computation of the eigenvalues requires O(log q) multiplications using the expo-
nentiation by squaring method.

4. Eigen vectors can be obtained using the Gaussian-Elimination method, which
requires complexity of O(n3) in finite field [38].

5. Matrix multiplication using school book techniques can be done in O(n3).
6. Matrix inversion using Guass-Jordan elimination [1] can also be done in O(n3).



Hence, the overall complexity of the algorithm is O(n3).

4 Optimization of the algorithm for Cryptography

Further this generic algorithm for finding the kth root of any matrix whose elements are
Galois field, can be optimized for cryptography. Because, in cryptography 4 × 4 MDS
matrices are used for diffusion, where each element of the matrix is represented in
GF(28). For finding kth root of the MDS matrix, all the computations should be done
in GF(28) and its extension field GF(28m)/GF(28), where 2 ≤ m ≤ 4. For binary
field (GF(28)) both addition and subtraction is exclusive OR(⊕) and multiplication is
bitwise AND(·).

Let q = 28 andM4(q) denotes an 4 × 4 matrix with the elements in GF(q). The
characteristic polynomial of the matrixM4(q), CM4(x) = det(M4(q)⊕I4 ·x) can be
factored using any of the algorithm discussed in section 3.

– If a factor is of degree 1, then there is a root in GF(28), which is the constant part
of the factor.

– Else the roots are 256, 256256, 256512 · · · 256256×(di−1) in GF(28×di)/GF(28),
where di is the degree of the factor. All the di roots of the factor can be computed
using 8 squarings and (di − 2) multiplications. As, di can be at most 4, so, all the
roots can be found by only 8 squarings and (di − 2) multiplications.

Let Xi be the eigenvector corresponding to the eigenvalue λi of the matrix M4(q),
where

M4(q) =

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

 Xi =

x1ix2i
x3i
x4i


Now, from equation 1m11 ⊕ λi m12 m13 m14

m21 m22 ⊕ λi m23 m24

m31 m32 m33 ⊕ λi m34

m41 m42 m43 m44 ⊕ λi

×
x1ix2i
x3i
x4i

 =

0
0
0
0


(m11 ⊕ λi).x1i ⊕m12.x2i ⊕m13.x3i ⊕m14.x1i = 0 (3)
m21.x1i ⊕ (m22 ⊕ λi).x2i ⊕m23.x3i ⊕m24.x1i = 0 (4)
m31.x1i ⊕m32.x2i ⊕ (m33 ⊕ λi).x3i ⊕m34.x1i = 0 (5)
m41.x1i ⊕m42.x2i ⊕m43.x3i ⊕ (m44 ⊕ λi).x1i = 0 (6)

By the definition of eigenvalues, λi, det(M4(q)− I4 · λi) = 0. So, there must be non-
trivial solution for equation 3, 4, 5 and 6. A non-trivial solution can be found using the
Gaussian-Elimination method[38].
Further we can use the Eigen decomposition theorem to represent the matrix in the
following form:

M4(q) = P4(q
m)×D4(q

m)× P−14 (qm)



Finally, using equation 2, Mk
4(q) can be obtained. Note that if all the elements of

Mk
4(q), where 0 < k < 1 are in GF(28), then kth root of the matrix M4(q) exists

in GF(28), else the kth root is in the extension field of GF(28).
The above algorithm can be used to determine the kth root of a given MDS map-

ping. In the absence of such an algorithm an exhaustive search needs to be performed
to iterate a chosen lightweight matrix, and compute at which power it becomes MDS.
However, such a method may be infeasible because of the large number of possible
choices for lightweight matrices. Thus the designers of PHOTON, restrict their choice
to only Serial matrices as lightweight. In the following example, we show the applica-
tion of the above theory to determine the 4th root of the MDS matrix of PHOTON. One
may note that the choice of k = 4 is assumed to be known. However, one may vary that
depending on the allowed no of clock cycles which is typically small, as mentioned in
section 5.

Example 1. Let M4(q) represent the MDS matrix of PHOTON and the Serial matrix
S4(q) = Serial(1, 2, 1, 4) be such that SK4 (q) =M4(q). The objective of this exercise
is thus to compute S4(q) givenM4(q).

M4(q) =

 1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

 V S4(q) =

0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4


V The characteristic polynomial ofM4(q) is:

CM4
(x) = det(M4(q)⊕ I4 · x)

= x4 ⊕ 27x3 ⊕ x2 ⊕ 16x⊕ 1

= (x⊕ 37)(x⊕ 217)(x2 ⊕ 231x⊕ 30)

Hence, 37 and 217 are two eigenvalues, which are in GF(28) and the other two eigen-
values are in GF(28)2. As explained in section 4, the roots of x2 ⊕ 231x ⊕ 30 =
0 are 256 and 256256 = 487, which are in GF(28)2. So, the four eigenvalues are
37, 217, 256, 487.

Gaussian-Elimination method has been used to find out the following eigenvectors
corresponding to the eigenvalues.

Eigenvalues Eigenvectors
37 {232, 228, 94, 1}
217 {181, 133, 146, 1}
256 {11003, 43997, 53119, 1}
487 {10920, 43960, 53169, 1}

P4(q
2) =

232 181 11003 10920
228 133 43997 43960
94 146 53119 53169
1 1 1 1

 P−14 (q2) =

 234 62 81 38
43 218 243 199

48831 60741 54807 28627
48766 60883 54965 28467





D4(q
2) =

37 0 0 0
0 217 0 0
0 0 256 0
0 0 0 487

 D
1
4
4 (q

2) =

97 0 0 0
0 50 0 0
0 0 43041 0
0 0 0 43126


Hence from equation 2,

M
1
4
4 (q) =P4(q

2)×D
1
4
4 (q

2)× P−14 (q2)

=

232 181 11003 10920
228 133 43997 43960
94 146 53119 53169
1 1 1 1

×
97 0 0 0

0 50 0 0
0 0 43041 0
0 0 0 43126



×

 234 62 81 38
43 218 243 199

48831 60741 54807 28627
48766 60883 54965 28467



=

228 133 43997 43960
94 146 53119 53169
1 1 1 1
97 50 43041 43126

×
 234 62 81 38

43 218 243 199
48831 60741 54807 28627
48766 60883 54965 28467



=

0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

 = S4(q)

Thus, using the steps of the algorithm 1, we can get the Serial matrix, S4(q) from the
actual MDS matrix used in PHOTON.

So far, we have seen the way to compute M
1
k
4 (q), where is M4(q) denotes the gen-

eral MDS matrix used in cryptography. Now, we need to guess the possible values of k,
for which S4(q) =M

1
k
4 (q) is a lightweight matrix.

5 Guessing the k and finding the lightweight matrix

In this section, first we compare the advantages of our work with the alternative options
available for lightweight implementations and then propose some heuristics to guess
the possible values of k, so that the advantages can be maximized.

We are trying to find a lightweight matrix S4(q)(which can be a serial matrix or
not), such that Sk4 (q) is an MDS matrixM4(q).

Alternately a lightweight solution can be achieved using the standard hardware se-
rialization techniques. In these cases, the size of the datapath is splitted, so that smaller
amount of data is being processed in each clock cycle. Thus, a smaller hardware can be
used repetitively in some clock cycles to process the whole data.

5.1 Comparison between two paradigms

For any crypto-algorithm there are also other operations along with the MDS map-
ping. Let ‘Block 1’ and ‘Block 2’ denote the hardware for the operations need to be



performed before and after the MDS mapping respectively. Figure 2 shows the basic
structural difference between architecture of two approaches: (a) Using a lightweight
matrix (defined later in section 5.2) and (b) Using serialized MDS matrix2. To compare
these two approaches first we fix the metrics for area and throughput.

Metric for Area: As all the computations should be done in GF(28), so the entire
MDS matrix multiplication can be performed using only XORs. Due to this reason,
we have chosen the XORs count of the circuit to measure the area requirement.

Metric for Throughput: The maximum frequency for lightweight devices is gener-
ally very low (around 100 KHz) [8] because higher frequency requires more power,
which is not available for these resource constrained devices. Thus, we can assume
that whatever may be the delay of the critical path of the diffusion layer, it will be
still faster enough to support the maximum frequency of these lightweight devices.
Hence, the number of clock cycle required plays the most important role on the
throughput. For this reason, we consider the number of clock cycles as a measure
of the throughput.

n

n
Block 1

n k k
Register Block 2

n n

Register
n

MDS

Serialized

Block 1 Block 2

Register

n

n n n n

n

(b) Using Serialized MDS matrix

(a) Using Lightweight Matrix

Matrix

Light−

weight

Fig. 2. Lightweight Implementation Techniques for MDS Mapping

– In standard serialization techniques, (see figure 2(b)), a multiplexer is required
before the MDS mapping for splitting the datapath and a register is required after
the MDS mapping to hold and accumulate the processed data. ‘Serialized MDS’

2This is not the ‘Serial’ matrix, but a standard hardware serialization technique adopted to
perform the MDS matrix multiplication



denotes the smaller hardware, which can process the splitted datapath in one clock
cycle. The additional register requirement may be overcome using the techniques
mentioned in [33].

– In case of ‘Lightweight matrix’ based implementation, the lightweight matrix of
same datapath width is multiplied in each clock cycles. As the size of the datapath
remains the same, no extra multiplexer or register is required (see figure 2(b)).

5.2 Area Requirement for a Matrix to be ‘Lightweight’

Let the number of XORs required for S4(q) be #XORS4(q) and the number of XORs
required forM4(q) be #XORM4(q). Now, if we try to serialize the implementation of
M4(q) ‘using serialized MDS matrix’, which requires k clock cycles and area require-
ment ASerialize(M4(q)), then ideally the following holds:

ASerialize(M4(q), k) = Area

(
#XORM4(q)

k

)
+Area

(
(k : 1) MUX of width

n

k

)
(7)

where n is the actual bit width of the datapath.
But using S4(q), k times to getM4(q) have the following advantages:

– This does not need additional MUX, because we are not modifying the size of the
datawidth, i.e the same size matrix is being multiplied each time with the column
vectors.

– The estimation provided in equation 7 is only a lower bound. In actual scenario, this
can be violated significantly because it is not always possible to use all the shared
hardware(XORs) in each of the clock cycle, which also leads to some extra MUX
in the design. Note that the different rows in MDS mapping can not be implemented
without extra MUX. Whereas in case of lightweight matrix based implementation,
as the matrix to be multiplied is always the same, all the XORs are being used in
each of the clock cycle. Hence, we do not need any extra MUX.

Hence a matrix, obtained from the algorithm 1 can only be considered as a lightweight
matrix, if it takes lesser area than its serialized implementation i.e if #XORS4(q)
equals to or nearly equals to the ASerialize(M4(q), k).

5.3 Choosing the proper value of k

Keeping these facts in mind, we recommend to pick k, such that gate equivalent of
#XORS4(q) equals to or nearly equals to the ASerialize(M4(q), k). Generally, for stan-
dard lightweight implementation k should be small else the number of clock cycle
required will be high. For our experiments, we keep k in the range [2, 6]. Hence, a
lightweight matrix S4(q) can be obtained from a given MDS matrixM4(q) using the
following steps:

1. Compute the number of XORs(#XORM4(q)) required for the hardware imple-
mentation of the MDS matrixM4(q).

2. Initialize k as 2
3. Apply algorithm 1 to compute S4(q) =M

1
k
4 (q)



4. Compute the XOR requirement, #XORS4 for the matrix S4(q)
5. Estimate the area requirement ASerialize(M4(q), k) for the standard hardware seri-

alization techniques using equation.
6. If Area(#XORS4(q)) is less than ASerialize(M4(q), k), add the matrix S4(q) as a

probable lightweight solution.
7. Increment the value of k by one and go to step 3 until k equals to 6
8. If there are more than one lightweight matrix, by the repetitive multiplication of

which, the original matrix can be obtained, then choose the one which is best suited
in terms of metrics for area and throughput.

6 Results

Though the proposed algorithm can also be used to find out a ‘Serial Matrix’ (if exists)
from a given MDS matrix. One can point out that the output of the algorithm will not
always produce a ‘Serial’ matrix but it is actually an advantage of the algorithm.

Any 4 × 4 ‘Serial’ matrix can never produce an MDS matrix if it is multiplied
less than four times.
Let S be a ‘Serial’ matrix, then the following holds.

S =


0 1 0 0
0 0 1 0
0 0 0 1
x1 x2 x3 x4

 S2 =


0 0 1 0
0 0 0 1
x1 x2 x3 x4
x5 x6 x7 x8

 S3 =


0 0 0 1
x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12


Now any 4 ∗ 4 matrix must have all non-zero element to be an MDS matrix[17] (nec-
essary but not sufficient condition). Hence S , S2 and S3 cannot be an MDS. Whereas
using the proposed algorithm, we can find a lightweight matrix which can be multiplied
less than four times to get an MDS matrix.
We picked some number of random 4×4 MDS matrices whose elements are in GF(28)
and used the proposed algorithm to find the kth root of the matrix. Table 1 shows some
of the interesting results obtained. It may also be noted that serialized hardware is a
popular technique for lightweight cipher implementation. However the implementation
becomes efficient in the context of the MDS mapping when the matrix has the rows
with similar computation overheads. However it can be observed that the Serial matrix
has only one row with the entire computation whereas the other rows do not have any
computation. Hence a serialized approach does not provide any benefit in that case.
This motivates further the search for other lightweight matrices which can be iterated
to obtain an MDS mapping. The second example in Table 1 illustrates this point for
PHOTON, where our algorithm in addition to the Serial matrix provides a 7th root
lightweight matrix (which is not a Serial matrix) but because of its uniform distribution
is more amenable to hardware serialization.

7 Conclusion

In this paper, we proposed an efficient technique to compute kth root of a diagonalizable
matrix, whose elements are in Galois field within the complexity ofO(n3). After having



Table 1. Some interesting MDS matrices

MDS Matrix kthroot of the Matrix k Comments
14 3 11 35
2 2 1 3
13 1 11 40
26 6 21 71



0 1 0 2
1 0 1 0
2 0 1 3
1 0 1 4

 3 This is an example where we can get an matrix,
almost as lightweight as a ‘Serial’ matrix but
can produce an MDS matrix in only 3 multipli-
cations. Obtaining an MDS matrix by 3 times
multiplication is not possible for any ‘Serial’
matrix.

1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11



255 204 172 250
250 16 54 105
105 40 121 137
137 96 161 107

 7 This is the MDS matrix used in PHOTON. The
interesting property of this MDS matrix is that
it does not have any root for k = 5, 6, but it
has a 7th root. This 7th root of the matrix can
be used as an alternative to standard hardware
serialization technique.

4 2 1 1
8 6 5 6
11 14 10 6
2 2 15 11



0 1 0 0
0 0 1 0
0 0 0 1
4 2 1 1

 4 This is the MDS matrix used in the diffusion
layer of the lightweight block cipher LED. So
far this is the only algorithm other than PHO-
TON to use a ‘Serial’ matrix for diffusion layer.

the kth root of the matrix, say S, we can estimate the hardware requirement for S.
We also suggest some heuristics to choose the value of the k, so that the hardware
requirement of S is less. Further, we provide an explicit case study for the hash function
PHOTON and show the reduction in hardware due to the proposed architecture. The
paper also presents few results which may be interesting for the implementation of
lightweight diffusion layer. . We believe that using the proposed algorithm one can find
quite a few lightweight matrix, which will be suitable for lightweight cryptography.



References

1. S. C. Althoen and R. McLaughlin. Gauss-jordan reduction: a brief history. Am. Math.
Monthly, 94(2):130–142, Feb. 1987.

2. K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, A. M. Matsui, S. Moriai, J. Nakajima, and
T. Tokita. Camellia: A 128-bit block cipher suitable for multiple platforms - design and
analysis, 2000.

3. J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia. Quark: A lightweight hash.
J. Cryptology, 26(2):313–339, 2013.

4. P. S. L. M. Barreto and V. Rijmen. Whirlpool. In H. C. A. van Tilborg and S. Jajodia, editors,
Encyclopedia of Cryptography and Security (2nd Ed.), pages 1384–1385. Springer, 2011.

5. M. Ben-Or. Probabilistic algorithms in finite fields. Foundations of Computer Science, IEEE
Annual Symposium on, 0:394–398, 1981.

6. E. R. Berlekamp. Factoring polynomials over finite fields. In Bell System Technical Journal,
page 18531859, 1967.

7. A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede. Spon-
gent: The design space of lightweight cryptographic hashing. IEEE Trans. Computers,
62(10):2041–2053, 2013.

8. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block cipher. In P. Paillier and
I. Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in Computer Science, pages
450–466. Springer, 2007.

9. C. D. Cannière, O. Dunkelman, and M. Knezevic. Katan and ktantan - a family of small and
efficient hardware-oriented block ciphers. In C. Clavier and K. Gaj, editors, CHES, volume
5747 of Lecture Notes in Computer Science, pages 272–288. Springer, 2009.

10. D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite
fields. In Mathematics of Computation, Vol 36. American Mathematical Society.

11. H. Cheng, H. M. Heys, and C. Wang. Puffin: A novel compact block cipher targeted to
embedded digital systems. In DSD, pages 383–390, 2008.

12. H. Cohen. A Course in Computational Algebraic Number Theory. Springer, 1993.
13. J. Daemen and V. Rijmen. The block cipher rijndael. In Quisquater and Schneier [28], pages

277–284.
14. Z. Gong, S. Nikova, and Y. W. Law. Klein: A new family of lightweight block ciphers. In

RFIDSec, pages 1–18, 2011.
15. J. Guo, T. Peyrin, and A. Poschmann. The photon family of lightweight hash functions. In

P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages
222–239. Springer, 2011.

16. J. Guo, T. Peyrin, A. Poschmann, and M. J. B. Robshaw. The led block cipher. In CHES,
pages 326–341, 2011.

17. K. C. Gupta and I. G. Ray. On constructions of mds matrices from companion matrices
for lightweight cryptography. In A. Cuzzocrea, C. Kittl, D. E. Simos, E. Weippl, L. Xu,
A. Cuzzocrea, C. Kittl, D. E. Simos, E. Weippl, and L. Xu, editors, CD-ARES Workshops,
volume 8128 of Lecture Notes in Computer Science, pages 29–43. Springer, 2013.

18. I. N. Herstein. Topics in Algebra. Wiley, June 20, 1975.
19. V. T. Hoang and P. Rogaway. Design principles of the kasumi block cipher. IACR Cryptology

ePrint Archive, 2010:301, 2010.
20. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. Koo, C. Lee, D. Chang, J. Lee, K. Jeong,

H. Kim, J. Kim, and S. Chee. Hight: A new block cipher suitable for low-resource device.
In CHES, pages 46–59, 2006.



21. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, February 23,
1990.

22. M. Izadi, B. Sadeghiyan, S. S. Sadeghian, and H. A. Khanooki. Mibs: A new lightweight
block cipher. In CANS, pages 334–348, 2009.

23. G. Leander, C. Paar, A. Poschmann, and K. Schramm. New lightweight des variants. In FSE,
pages 196–210, 2007.

24. C. H. Lim and T. Korkishko. mcrypton - a lightweight block cipher for security of low-cost
rfid tags and sensors. In WISA, pages 243–258, 2005.

25. F. J. MacWilliams. The Theory of Error-Correcting Codes. North-Holland Mathematical
Library, 1977.

26. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits: A very compact
and a threshold implementation of aes. In K. G. Paterson, editor, EUROCRYPT, volume 6632
of Lecture Notes in Computer Science, pages 69–88. Springer, 2011.

27. A. Y. Poschmann. LIGHTWEIGHT CRYPTOGRAPHY. PhD thesis, February, 2009.
28. J.-J. Quisquater and B. Schneier, editors. Smart Card Research and Applications, This In-

ternational Conference, CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-16, 1998,
Proceedings, volume 1820 of Lecture Notes in Computer Science. Springer, 2000.

29. T. R. N. Rao and E. Fujiwara. Error-Control Coding for Computer Systems. Prentice Hall
series in computer engineering, January 1989.

30. M. Sajadieh, M. Dakhilalian, H. Mala, and B. Omoomi. On construction of involutory mds
matrices from vandermonde matrices in gf(2q). Des. Codes Cryptography, 64(3):287–308,
2012.

31. M. Sajadieh, M. Dakhilalian, H. Mala, and P. Sepehrdad. Recursive diffusion layers for block
ciphers and hash functions. In A. Canteaut, editor, FSE, volume 7549 of Lecture Notes in
Computer Science, pages 385–401. Springer, 2012.

32. B. Schneier and D. Whiting. Twofish on smart cards. In Quisquater and Schneier [28], pages
265–276.

33. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai. Piccolo: An
ultra-lightweight blockcipher. In B. Preneel and T. Takagi, editors, CHES, volume 6917 of
Lecture Notes in Computer Science, pages 342–357. Springer, 2011.

34. T. Shirai, K. Shibutani, T. Akishita, S. Moriai, and T. Iwata. The 128-bit blockcipher clefia
(extended abstract). In FSE, pages 181–195, 2007.

35. V. Shoup. Smoothness and factoring polynomials over finite fields. In Math. Comp, pages
398–406, 1996.

36. T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. Twine: A lightweight, versatile
block cipher. In ECRYPT Workshop on Lightweight Cryptography - November 2011, volume
2011, pages 148–169, 2011.

37. S. Vaudenay. On the need for multipermutations: Cryptanalysis of md4 and safer. In B. Pre-
neel, editor, FSE, volume 1008 of Lecture Notes in Computer Science, pages 286–297.
Springer, 1994.

38. F. R. W. Linear Least Squares Computations. Marcel Dekker, 1988.
39. D. Watanabe, S. Furuya, H. Yoshida, K. Takaragi, and B. Preneel. A new keystream generator

mugi. IEICE Transactions, 87-A(1):37–45, 2004.
40. A. M. Youssef, S. Mister, and S. E. Tavares. On the design of linear transformations for

substitution permutation encryption networks. In School of Computer Science, Carleton
University, pages 40–48, 1997.


