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Abstract. KLEIN is a family of lightweight block ciphers which pro-
posed at RFIDSec 2011 by Gong et. al. It has a 64-bit state and 64,
80 or 96-bit key size which introduce its version. It uses 16 same 4-bit
S-boxes combined with two AES’s MixColumn transformations for each
round. This approach allows compact implementations of KLEIN in both
low-end software and hardware. Such an innovative combination attracts
the attention of cryptanalysts, and several security analyses have been
published. The most successful one was represented in FSE 2014 which
was a truncated differential attack. They could attack up to 12, 13 and
14 rounds out of total number of 12, 16 and 20 rounds for KLEIN-64,
-80 and -96, respectively. In this paper, by finding two new truncated
differential paths with better probabilities and a slight changing in key
recovery method we present two truncated differential attacks on KLEIN,
which recover the full secret key with better time and data complexities
for the previously analyzed number of rounds. Also by using these trun-
cated differential paths we are able to attack up to 14 and 15 rounds
for KLEIN-80 and -96, respectively, which are the highest rounds ever
analyzed.
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1 Introduction

Designing a secure and lightweight primitive for constrained environments such
as RFID tags or wireless sensor networks is one of the interesting majors in
cryptographic community. In order to find solutions for this ever-increasing de-
mand, lightweight cryptography is developed as one of the most active areas in
symmetric cryptography community. In this direction, a number of lightweight
block ciphers have been proposed in the recent years, one of which is KLEIN
block cipher [1].

KLEIN family of lightweight block ciphers is proposed by Gong et al. in
RFIDSec 2011. It has three versions named KLEIN-64, -80 and -96, indicating
the key size, with 12, 16 and 20 rounds respectively. It has an SPN structure,
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which combines 4-bit S-boxes with AES’s MixColumn. Such a combination al-
lows a compact and low memory implementation in software and hardware,
which results show that this cipher is utilizable in constrained-resource environ-
ments.

Despite of some basic evaluations carried out on KLEIN by the designers [1],
its real security level is not determined without further external analysis. So far,
some cryptanalyses have been published on KLEIN, most of which exploiting the
security drawbacks arisen from its innovative structure [2,3,4,5,6,7]. Apart from
the Biclique attacks [4,5] which is inherently a brute-force-like attack analysing
the full round version, the most successful attack was discovered and exploited
by Lallemand and Naya-Plasencia in FSE 2014 [7] which can recover the master
key in full 12-, reduced 13- and 14-round for KLEIN-64, -80 and -96, respectively.

Truncated differential attack is a generalization of differential attack, that
Lars Knudsen developed the technique in 1994 [8]. Whereas ordinary differential
cryptanalysis analyzes the full difference between two texts, the truncated vari-
ant considers differences that are only partially determined. That is, the attack
makes predictions of only some of the bits instead of the full state.

In this paper, by finding new truncated differential paths and a slight chang-
ing in key recovery method we present two truncated differential attacks, which

Table 1. Summary of cryptanalytic results on KLEIN

Version Rounds Time Data Memory Attack Type Ref.

KLEIN-64

7 245.5 234.3 CP 232 Integral [2]
8 246.8 232 CP 216 Truncated [2]
8 235 235 CP – Truncated [3]
10 262 1 KP 260 PC MitM* [6]
12 262.8 239 CP 24.5 Biclique [4]
12 257 254.5 CP 216 Truncated [7]
12 254.9 248.6 CP 232 Truncated Sec. 4
12 258 245.5 CP 232 Truncated Sec. 4

KLEIN-80

8 277.5 234.3 CP 232 Integral [2]
11 274 2 KP 274 PC MitM* [6]
13 276 252 CP 216 Truncated [7]
13 269 254.6 CP 232 Truncated Sec. 4
13 272 251.5 CP 232 Truncated Sec. 4
14 275 260.6 CP 232 Truncated Sec. 4
14 278 257.5 CP 232 Truncated Sec. 4
16 279 248 CP 260 Biclique [5]

KLEIN-96

13 294 2 KP 282 PC MitM* [6]
14 289.2 258.4 CP 216 Truncated [7]
14 283 260.6 CP 232 Truncated Sec. 4
14 286.1 257.5 CP 232 Truncated Sec. 4
15 292.1 263.5 CP 232 Truncated Sec. 4
20 295.2 232 CP 260 Biclique [5]

* Parallel Cut Meet in the Middle KP/CP: Known/Chosen Plaintext
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outperform [7] in data and time complexities for full round KLEIN-64, 13-round
KLEIN-80 and 14-round KLEIN-96. Also these attacks can analyze one round
more for KLEIN-80 and KLEIN-96. The complexity of existing attacks and ours
are summarized in Table 1.

This paper is organized as follows: Section 2 presents a brief description of
KLEIN. In Section 3, new truncated differential paths will be introduced and
in Section 4 the outline of the key recovery attack on KLEIN with all details
and its complexities evaluations are presented. Finally, Section 5 concludes this
paper.

2 Description of KLEIN

KLEIN is a Substitution-Permutation Network (SPN) family of block ciphers
with 64-bit block size and three types of key size that introduce its version:
KLEIN-64, KLEIN-80 and KLEIN-96, which have 12, 16 and 20 rounds, respec-
tively. Every round consists of four layers:

1. AddRoundKey (ARK): Xor-ing the entering state with the round-key.
2. SubNibbles (SN): State is divided to 16 nibbles, and each nibble passed

through a 4-bit S-box.
3. RotateNibbles (RN): Rotating state two bytes to the left.
4. MixNibbles (MN): Applying AES’s MixColumn transformation to each half

of the state.

All 16 S-boxes are the same and the reason of this choice by designers is that
a 4-bit S-box has less implementation costs and memory compared to a 8-bit.
Also for reducing the decryption costs, they choose an involutive S-box [1].

An additional ARK layer is proceed after last round. So the encryption routine
requires one more key than the number of rounds. The structure of one round of
KLEIN is shown in Fig. 1 that X(r) and K(r) are the input state and the subkey
of round r, respectively.

Let us focus on AES’s MixColumn transformation, which works according to
the following matrix multiplication in GF (28) with the irreducible polynomial

S	S	 S	S	S	S	S	S	S	S	 S	S	 S	S	 S	S	

Mix	Column	 Mix	Column	

X(r)	

X(r+1)	

K(r)	

Fig. 1. Round structure of KLEIN
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x8 + x4 + x3 + x + 1:

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 . (1)

For reminding, multiplication by 2 in this transformation can be performed as
follows:

2× x =

{
x� 1 if msb(x) = 0

x� 1⊕ 0x1b if msb(x) = 1
(2)

where x� n means shifting x, n bits to left and msb is the most significant bit.
Also the multiplication by 3 is equal to:

3× x = 2× x⊕ x (3)

These descriptions of finite field multiplications will be more useful in ex-
plaining the MN layer properties in the next section. It is better to note that
only MN layer is byte-wise while the others can be seen as nibble-wise.

The Key Schedule of KLEIN is designed under implementation considera-
tions. The round keys are computed from the master key with the Key Schedule
algorithm that follows a Feistel-like swap. The round keys K(r), r = 1, · · · , R
(R is the number of rounds), and the final whitening key K(R+1) is generated
as follows. First, the master key is stored in a key register as K(1). Then the
following steps are iteratively applied generate R more subkeys:

1. Rotate the two halves of the key state to the left, one byte each.
2. Swap the two halves by a Feistel-like structure.
3. In left half of key state, xor 3rd byte from left with round counter r.
4. In right half of key state, substitute 2nd and 3rd bytes using four KLEIN

S-boxes.

At the end of round r, the leftmost 64 bit of the key register is K(r+1). Fig. 2
shows one round of the key schedule for KLEIN-64.

SS

K(r)

K(r+1)

r

SS

Fig. 2. Key schedule of one round of KLEIN-64
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3 Truncated Differential Paths

In this section, we will introduce two new truncated differential paths which
have better probabilities than the truncated differential paths in [7].

Proposition 1. [2,3] If the eight nibbles entering MixColumn are of the form
0X0X0X0X, where the wild-card X represents any 4-bit value, then the output
is of the same form if and only if the msb of the 4 lower nibbles all have the
same value. This case occurs with probability 2−3.

Proposition 2. If the eight nibbles entering MixColumn are of the form 0X0X
0X0X, then the output is the form of 00000X0X or 0X0X0000 with probability
of 31× 2−15.

Proposition 1 explained enough in previous cryptanalyses, especially in [7],
so we do not discuss more about that. The proof of Proposition 2 is as follow.

Proof. Consider 0A0B0C0D be the eight nibbles entering MixColumn and 0000
0E0F be the eight output nibbles. Also consider that X = x0x1x2x3, which x0

is the msb of X. As two most significant bytes of output is zero, we must have:{
B = 3×A⊕ 2× C
D = 7×A⊕ 7× C

⇒
{
E = 11×A⊕ 9× C
F = 14×A⊕ 13× C

(4)

Since B,D,E and F are only four bits (higher nibbles in every byte are zero),
it is equal to:  c0 = a0

c1 = a1
c2 = a0 ⊕ a2

(5)

Therefore, from 216 − 1 cases for A,B,C and D only 25 of them are acceptable.
One of these 32 cases is all zeros which should be excluded. So the probability
for this event is 31 × 2−16. By purposing second form of MixColumn’s output
(0E0F0000) the probability would be 31× 2−15. ut

Using Proposition 1, an iterated truncated differential path for one round is
presented in previous cryptanalyses [2,3]. Its probability is 2−6 which is caused
by using the event in the Proposition 1 twice. This iterated truncated differential
path is shown in Fig. 3.

Fig. 3. Iterated truncated differential path for one round of KLEIN
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Also using Proposition 2, we introduce two new truncated differential paths
for four or three rounds that are shown in Fig. 4 and 5, respectively. In the first
path (path I), we consider that the event which was introduced in Proposition 2
happens for both of MixColumns of round 1 with a condition that output active
nibbles be close to each other after RN layer. Then its probability is

p1 =
1

2
× (31× 2−15)2 ' 2−21.1.

Therefore only one MixColumn is active in round 2 and if the mentioned event
happens again, its probability would be

p2 = 31× 2−15 ' 2−10.

So there are at most 2 active lower nibbles for input of the third round. These
lower nibbles will activate only one MixColumn, and only lower nibbles in output
of MixColumn will be active with probability of

p3 =
2

31
× 7

15
+

29

31
× (

7

15
)2 ' 2−2.1.

Regarding to p3, it must be stated that for 2 cases of 31 cases, only one lower
nibble is active, and when a nibble is active with probability one, the probability
for that output difference of S-box has a msb equal to 0 is 7

15 . After this input of
each MixColumn in fourth round has at most 2 active lower nibbles. Probability
of that output of fourth round have only active lower nibbles is

p4 = (
7

15
)4 ' 2−4.4.

The second path (path II) is look like the first one, except that event of the
second round in first path is omitted. Therefore the probability for that only

Fig. 4. Truncated differential path for 4 round of KLEIN
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Fig. 5. Truncated differential path for 3 round of KLEIN

lower nibbles are activated is p2 = 2−3 for second round and p3 = 2−4.4 for third
round. In both of the paths, we will use introduced iterated truncated path
for the reminding rounds. The probability for an (R−1)-round distinguisher of
KLEIN will be p = 2−6×R−7.6 and p = 2−6×R−4.5, respectively using paths I
and II, respectively. As we will see, using these two paths, we will be able to
attack up to 14 and 15 rounds, respectively. It must be considered that in Fig.
4 or Fig. 5 only one side of the probability is shown.

4 Truncated Differential Cryptanalysis of KLEIN

In this section, we will make use of key recovery method which was used in
[7] first and we improve it a little to fix it to the truncated differential paths
introduced in previous section. At he last, the complexities of our attacks will
be represented.

For recovering master key’s lower nibbles we use a slightly modified version
of the key recovery attack used in [7]. First we will bring two propositions that
introduced in previous cryptanalyses. Using these propositions we will be able
to partially decrypt the lower or higher nibbles in each round.

Proposition 3. [2,3] In the Key Schedule algorithm, lower nibbles and higher
nibbles are not mixed: the lower/higher nibbles of any round-key can be com-
puted directly from the lower/higher nibbles of the master key.

Proposition 4. [7] The values of the lower/higher nibbles outputting MixCol-
umn depend on the values of the lower/higher nibbles at the input and 3 more
bits computed from the higher/lower nibbles that we will call them information
bits. A similar property holds for the computation of the output lower/higher
nibbles of inverse MixColumn.

Proof of Proposition 4 is given in [7] and we don’t bring it here. These two
properties of KLEIN will let us to recover lower and then higher nibbles of the
master key. The key recovery method is as follow:
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1. Collecting enough pairs of data: For being ensured to get one pair that
conforms our differential path, we must generate a certain number of plain-
texts. So we must have about p−1 differential pairs, and for reducing data
complexity we use structural chosen plaintext attack. The size of each struc-
ture will be determined by number of active bits in the truncated difference
entering the first round. As our truncated differential paths have 32 active
bits in the plaintext, the size of structures will be 232 plaintexts and each
structure has about 22×32−1 = 263 pairs.
For obtaining the required p−1 differential pairs, we must encrypt about

p−1 × 232

263 = p−1 × 2−31 plaintexts then this number is our data complexity.
All 232 plaintexts in a structure will be saved and processed and then be
deleted, so we need a memory to save all these plaintexts. As we will see, this
is our salient memory complexity and other needs to memory is negligible.

2. Sieving ciphertext pairs: As in a right differential pair, the differential
in the output of round R − 1 has differences just in lower nibbles and this
difference will continue until the input of MN layer. By inverting the cipher-
text difference through the last MN layer, we can observe the value of the
difference entering this layer and then discard the ones that have the active
higher nibbles. With this work we can eliminate such pairs that we are sure
do not verify the differential path (wrong differential pairs). Only fraction
of 2−32 wrong pairs can survive this filtering, so there will be p−1 × 2−32

remaining differential pairs.
In practical, it is not necessary to invert all of ciphertext pairs, because if
only lower nibbles in input of MN layer are active, the output higher nibbles
could be only 0 or 1. Using this property, we can sieve ciphertext pairs with
a negligible time complexity.

3. Guessing lower nibbles of first subkey: For each remaining differential
pair that has passed the sieving of the previous step, we will find possible
values of the first 8 lower nibbles of the key in two levels.
For event described in Proposition 2 there are 2×31 possible input differences
for each MixColumn, so 62×216 pairs are possible for half of the output SN.
Therefore there are normally 62 pairs which have the same difference in the
input of SN. By passing these pairs from SN−1 = SN and saving the input
pair to SN and their output difference before MixColumn in a table sorted by
their difference in the input of SN, we can find all 62 possible keys for 4 lower
nibbles only by xoring the plaintexts with pairs in the table that difference
of pairs are equal to the corresponding 4 nibbles in plaintexts difference.
Using this method again we can find 31 possible keys for other 4 lower
nibbles. In other meaning, for each pair of plaintexts and their ciphertexts
that pass the previous step, we have 2 × 312 key candidate for the 8 first
lower nibbles of the master key.
This step requires a negligible time complexity because there are only two
look-ups to precomputed table and all other used operations are xoring. This
lets us to compute half of both states at the input of the first MN layer that
already satisfies the conditions of round 1. This pair of half states will be
denoted by (S, S′)∗.
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For KLEIN-64, the lower nibbles of first subkey determine all the lower
nibbles of the whole key, but for obtaining all the possible lower nibble
values of KLEIN-80 and KLEIN-96, we have to make additional guesses for
other 8 and 16 bits of lower nibbles, respectively. After this step, we will have
p−1×2−31×312×28×(0,1,2) possible candidates of (C,C ′, klow), respectively
for KLEIN-64, -80 and -96.

4. Sieving candidate subkeys on second round: In second round of path
I, the mentioned event of Proposition 2 happens again. We can use the saved
table again to know whether candidates for the lower nibbles of key can pass
this round or not.

Because the values of input lower nibbles for one of MixColumns in first
round for both plaintexts are known, we can guess their values after Mix-
Column (We will path value of four nibbles through MixColumn. This value
is one of the possible values and the other one is this value xored with 0xb).
But for each of 24 possible pairs the difference is the same. So we will search
through this difference in the table to examine if that value of 4 nibbles
xored with corresponding 4 nibbles of subkey of candidate key is equal with
the saved values in table or not.

A plaintext pair and a candidate key can pass through this sieve with prob-
ability of 62×2−16×24, so there will be p−1×2−42×313×28×(0,1,2) possible
candidates (C,C ′, klow), respectively for KLEIN-64, -80 and -96. Note that
this step will be used only with the path I. Like previous step, time com-
plexity of this step is negligible.

5. Inverting pairs of ciphertexts: At this step we will invert every possible
triple of (C,C ′, klow), generating possible pairs (S, S′)r for r = R,R−1, . . . ,
(which (S, S′)r shows the value of lower nibbles entering round r).

As for every MixColumn we have 3 information bits, inverting one round
costs 23 round encryptions per triple. During the iterative rounds, the num-
ber of possible triples stays the same, because from 26 possible values of
inverting, only 2−6 of them can satisfy the condition of Proposition 1. But
during the non-iterative rounds, because of tight conditions, number of can-
didates gets reduced significantly (factor of reduction for each event of Propo-
sition 2 is 2−11).

Once we have computed (S, S′)3 (for the first path and (S, S′)2 for the second
path), we have to guess the 3 bits needed to invert the second (or first) one
MixColumn, and then we have to match values with the already computed
values (S, S′)∗. After the matching condition, number of key candidates for
a pair of ciphertexts gets so smaller than 2klow . So, the cost of recovering the
key is much smaller than an exhaustive search.

The cost of this step is given by the number of candidate triples multiplied
by 23 (cost of inverting one round), multiplied by the number of iterative
rounds. The cost for inverting non-iterative rounds are so small, because the
number of candidates have been reduced so much. Time complexity for the
other steps are negligible, this step will determine time complexity for this
attack.
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6. Recovering higher nibbles of master key: If a klow candidate for a pair
of ciphertext and their corresponding plaintexts can path matching condition
in previous step, with an exhaustive search for higher nibbles we will find
the whole bits of the master key.

4.1 Results and Complexities

Applying described key recovery attack to both paths, we will be able to attack
up to 14 and 15 rounds KLEIN which cases introduced in [7] could not reach.
Results of our attacks are shown in Table 2. In all of our attacks the memory
complexity is 232 of block size.

As it can be seen, using path I makes a good time complexity and path II
makes a good data complexity. These have a trade-off between time and data. For
the attacks with same number of rounds, despite of more memory complexity, our
attacks are faster in time or need less data than attacks in [7] (and in some cases
both). Also, except biclique attacks, cryptanalyzing reduced 14-round KLEIN-80
and reduced 15-round KLEIN-96 are introduced for first time.

5 Conclusions

In this paper we introduced two new truncated differential paths for KLEIN, as
well as an improved key recovery method based on what proposed by Lallemand
and Naya-Plasencia. Results show that our attacks have the best time and data
complexities on full-round KLEIN-64, reduced 13-round KLEIN-80 and reduced
14-round KLEIN-96 so far. Also, we introduced two new attacks on reduced
14-round KLEIN-80 and reduced 15-round KLEIN-96 for first time.

The block cipher KLEIN has two main weaknesses: 1. MixNibbles layer using
Rijndael’s MixColumn transformation does not correctly mix higher and lower
nibbles, as it is the only transform that does. 2. Key Schedule does not mix higher
and lower nibbles. These two help the cryptanalyst to perform a reduced partial
key search, so maybe considering other diffusion layer instead of Rijndael’s and
a stronger Key Schedule could help to prevent the attacks.

Table 2. Summary of the complexities of our attacks

Version/Rounds Path Probability Time Data

KLEIN-64/12
I 2−79.63 254.91 248.63

II 2−76.49 257.98 245.49

KLEIN-80/13
I 2−85.63 268.96 254.63

II 2−82.49 272.02 251.49

KLEIN-80/14
I 2−91.63 275.01 260.63

II 2−88.49 278.05 257.49

KLEIN-96/14
I 2−91.63 283.01 260.63

II 2−88.49 286.05 257.49

KLEIN-96/15 II 2−94.49 292.08 263.49
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