
Sealing the Leak on Classical NTRU Signatures

Carlos Aguilar Melchor1, Xavier Boyen2, Jean-Christophe Deneuville1, Philippe Gaborit1

1 XLIM-DMI, Université de Limoges, France
2 QUT, Brisbane, Autralia

Abstract. Initial attempts to obtain lattice based signatures were closely related to reducing
a vector modulo the fundamental parallelepiped of a secret basis (like GGH [9], or NTRUSign

[12]). This approach leaked some information on the secret, namely the shape of the par-
allelepiped, which has been exploited on practical attacks [24]. NTRUSign was an extremely
efficient scheme, and thus there has been a noticeable interest on developing countermeasures
to the attacks, but with little success [6].
In [8] Gentry, Peikert and Vaikuntanathan proposed a randomized version of Babai’s nearest
plane algorithm such that the distribution of a reduced vector modulo a secret parallelepiped
only depended on the size of the base used. Using this algorithm and generating large, close to
uniform, public keys they managed to get provably secure GGH-like lattice-based signatures.
Recently, Stehlé and Steinfeld obtained a provably secure scheme very close to NTRUSign [26]
(from a theoretical point of view).
In this paper we present an alternative approach to seal the leak of NTRUSign. Instead of
modifying the lattices and algorithms used, we do a classic leaky NTRUSign signature and
hide it with gaussian noise using techniques present in Lyubashevky’s signatures. Our main
contributions are thus a set of strong NTRUSign parameters, obtained by taking into account
latest known attacks against the scheme, a statistical way to hide the leaky NTRU signature
so that this particular instantiation of CVP-based signature scheme becomes zero-knowledge
and secure against forgeries, based on the worst-case hardness of the Õ(N1.5)-Shortest Inde-
pendent Vector Problem over NTRU lattices. Finally, we give a set of concrete parameters to
gauge the efficiency of the obtained signature scheme.

Keywords: Lattice-based Cryptography, Digital Signatures, NTRUSign, Provable Secu-
rity, SIS

1 Introduction

Lattice based cryptography has met growing interest since the seminal work of Ajtai
[1] which introduced the so called worst-case to average-case reductions. Based upon this
work, a long list of cryptographic primitives such as One Way Functions, Collision-Resistant
Hash Functions, Digital Signatures, or Identification schemes have been revisited to provide
more confidence about security. The most efficient known digital signature scheme provably
secure is BLISS [5] 1 which leads to signatures of about 5kb 2 for a security level of 128
bits.

Digital signatures have shown great promise since 1997, when was introduced GGH
[9]. The most famous particular instantiation of GGH is NTRUSign, which uses convolution
modular lattices. The particularity of those schemes is their lack of strong worst-case to
average-case security reductions, but they offer amazing performances regarding classical

1 which improves [19] with a better rejection sampling
2 for the space-optimized version, see Table 3 of [5] for more details

2

schemes based on number theory or discrete logarithm. For instance, for a 128 bit security
level, a NTRUSign signature would be only 1784 bits long (see [11]).

NTRUSign, first known as NSS [13], was first introduced at EuroCrypt’01 by Hoffstein,
Pipher and Silverman. It was amazingly fast and benefited from small keys due to the cyclic
structure of the underlying convolution modular lattices that were used. The authors were
aware that their scheme was vulnerable to transcript attacks i.e. wasn’t zero-knowledge, but
unfortunately they overestimated its length, and Nguyen and Regev succeeded in breaking
the scheme in 2006 [24] by a nice gradient descent over the even moment polynomials.
Initially, their attack required about 100.000 NTRU signatures to recover the hidden paral-
lelepiped that reveals the secret basis, but still due to the cyclic structure of convolution
modular lattices, they were able to shrink this threshold to about only 400 signatures for
a claimed security level of 80 bits. In order to tackle this issue, several heuristical counter-
measures were proposed such as the use of perturbations [12] and the deformation of the
fundamental parallelepiped [15], but none of them were capable to resist to the improved
attack by Ducas and Nguyen [6].

1.1 Our contribution

We revisit NTRUSign in order to provide it with a zero-knowledge proof. Our technique is
inspired from Lyubashevsky’s scheme [19], where the secret key S consists of a matrix in
{−d, . . . , d}m×k, the message is hashed to a vector c← {−1, 0, 1}k such that ‖c‖1 ≤ κ, and

the signature consists of Sc shifted by a mask y
$← Dm

σ where Dm
σ represents the discrete

gaussian distribution in dimension m with standard deviation σ.
Instead of hiding Sc, we get a leaky signature from NTRUSign, and then use this signa-

ture as the secret and hide it with a well chosen y. The critical technicality resides in the
choice of the dimension N and the standard deviation σ : if it was chosen too small, the
secret isn’t properly hidden, and our modification doesn’t seal any leak, if σ is too big, so
will be our signatures and our scheme loses in efficiency and practicality.

We note that unlike other provably secure signature schemes such as GPV [8] or [25],
we do not modify the initial NTRU signature scheme, except by choosing public parameters
more conservatively, and thus keep its inherent size and computational efficiency. Of course
masking the signature in a second step comes at a price, but we manage to get signature
of size ≈ 10kb together with public and secret keys respectively around 7000 and 1500 kb.

We choose to hide NTRU signatures with a noise based on the assumption that the leak
in the signatures is exploitable but that there are no structural attacks against the public
NTRU key (and thus we suppose that sealing the leak is enough to secure the scheme).
This is based on the observation that the research community has published no noticeable
structural attacks on NTRU lattices in the last decade and that problems such as SIS do not
seem to be easier than in random lattices (if we take into account the gap induced by the
small secret key).

1.2 Organization of the paper

In section 2, we present the basic elements and notations used in NTRUSign and Lyuba-
shevsky’s signature scheme, then describe these schemes respectively in sections 3 and 4.

3

Finally, we present the scheme we propose in section 5 along with its security proofs and
sets of parameters.

2 Background and Problems

In this section, we introduce basics of lattice-based cryptography. Nevertheless, due to
space restriction, some of them will be omitted and we refer the reader to [23] for further
details and proofs.

2.1 Notation

Sets. Throughout this paper, Z will denote the set of integer numbers, and for q ∈ Z, Zq
will denote the set of integers taken modulo q, in the set

[
− q

2 ; q2
)
. We will make heavy use

of the notation Rq to represent Zq[X]/(XN−1), the ring of polynomials of degree less than
N , modulo q and XN − 1. Vectors and/or polynomials will be represented with bold-face
letters, for any x ∈ Rq, we will use either its polynomial notation x =

∑N−1
i=0 xi . X

i or
its vector representation x = (x0, x1, . . . , xN−1)

t. Matrices such as the public key will be
represented with bold-face capital letters A ∈ ZN×2Nq .

In section 3, the NTRUSign secret polynomials f ,g will be sampled from a particular
subset T (d) of Rq, which consists of polynomials f of degree strictly less that N , with
exactly d + 1 coefficients equal to 1, d equal to −1 and the N − 2d − 1 others equal to 0.
All logarithms will be based 2 unless explicitly mentioned.

Norms. For any s, t ∈ Rq, we will make use of several norms :

– The centered norm : ‖s‖2c =
∑N−1

i=0 s2i − 1
N

(∑N−1
i=0 si

)2
= N .Variance(si)

– The balanced norm : ‖(s, t)‖2ν = ‖s‖2c + ν2 . ‖t‖2c
– The euclidian norm : ‖s‖22 =

∑N−1
i=0 s2i , or just ‖s‖2 for simplicity as this norm is the

most standard in lattice-based cryptography

The first and second norms are somehow typical to NTRU, and don’t give many intuition
on the actual length of a vector, in the common (euclidian) sense. Therefore, we describe
a method to experimentally translate a balanced norm into a euclidian one with arbitrary
desired probability. As ‖s‖c = σs

√
N where σs is the standard deviation of the sis, each si

is approximately σs, and by lemma 2.3.2 we have

‖s‖2 ≤ α . σs
√
N with probability 1− 2−k

where k is the security parameter and the corresponding α can be read in table 1. Even if
the sis are not sampled according to a gaussian, it is possible to upper bound ‖s‖2 during
the NTRU signing process. This allows us to set two versions of parameters in our scheme,
a speed-optimized one and a size-optimized one.

4

2.2 Digital Signatures

For completeness, we recall the definition of a Digital Signature scheme.

Definition 2.2.1 (Signature Scheme) A signature scheme is composed of 3 polynomial-
time algorithms (K,S, V) :

1. KeyGen K : which given a security parameter 1k as input returns a couple of keys
(pk, sk)

2. Sign S : which given the secret key sk and a message µ returns a signature s of this
message

3. Verify V : which given the public key pk, the signature s and the message µ, ensures
that this signature was indeed generated using sk

such that for any (pk, sk)← K(1k), Pr[V (pk, µ, S(sk, µ)) = 1] = 1.

There are two ways to attack a signature scheme, either try to create a signature from
other couples (µ, s) and the public key pk, or recover the secret key sk directly from pk
and eventually some signed messages. The former idea leads to the following definition :

Definition 2.2.2 (Forgery) A signature scheme (K,S, V) is said to be secure against
forgeries, if for any polynomial-time adversary A who has access to pk and couples (µ1, s1),
. . ., (µn, sn) of its choosing, A only has a negligible probability (depending on the security
parameter k) to create a couple (µ 6= µi, s

′) such that V (pk, µ, s′) = 1, that is to say a valid
signature.

2.3 Discrete Normal Distribution

In this section, we define the Discrete Normal Distribution and describe some of its
desirable properties, that fit particularly well with lattices.

Definition 2.3.1 (Continuous Normal Distribution) The Continuous Normal Dis-
tribution over R2N centered at v with standard deviation σ is defined by

ρ2Nv,σ(x) = (
1

σ
√

2π
)2N . exp(−‖x− v‖22

2σ2
).

In order to make this distribution fitting with lattices and obtain a probability function,
we need to scale this distribution by the lattice quantity ρ2N0,σ(Z2N) =

∑
x∈Z2N ρ2N0,σ(x). This

quantity does not depend on the choice of the vector.

Definition 2.3.2 (Discrete Normal Distribution) The Discrete Normal Distribution
over Z2N centered at v with standard deviation σ is defined by D2N

v,σ(x) = ρ2Nv,σ(x)/ρ2Nv,σ(Z2N).

The next lemma gives us an idea of how big the standard deviation must be to ensure
that the inner product of two vectors doesn’t overflow a certain amount. This lemma is
crucial to determine our signature size in table 3 with overwhelming probability.

Lemma 2.3.1 ([19])

∀v ∈ R2N , ∀σ, r > 0,we have Pr
[
| 〈x,v〉 | > r; x

$← D2N
σ

]
≤ 2e

− r2

2‖v‖2σ2 .

5

Optimally, we will set r = α . ‖v‖σ. Table 1 shows how big α should be to ensure k
bits of security. We also need a few more material to prove that our NTRU signature will be
correctly hidden by our mask. This material is given by the following lemma.

Lemma 2.3.2 ([19])

1. ∀α > 0,Pr
[
|x| > ασ;x

$← D1
σ

]
≤ 2e−

α2

2

2. ∀η ≥ 1,Pr
[
‖x‖ > ησ

√
2N ; x

$← D2N
σ

]
< η2NeN(1−η2))

3. ∀x ∈ Z2N and σ ≥ 3√
2π

, we have D2N
σ (x) ≤ 2−2N

Security parameter k 80 100 112 128 160

Gap factor α 11 12 13 14 15

Table 1: α = d
√

2(k + 1)ln(2) e as a function of the security level k

For our purposes, as the mask y is sampled from a Discrete Normal Distribution, we
might have to re-sample several times before obtaining a valid signature, but still, we want
our signature procedure to terminate, in a reasonable (polynomial) time. This is ensured
by the next lemma, whose proof is essentially detailed in [19] for a security level of k = 100
bits. We extend the proof of this lemma (in appendix A.1) to make it fitting better with
different security levels.

Lemma 2.3.3 ([19] extended) For any v ∈ Z2N and σ = ω(‖v‖2
√

log2(2N)), we have

Pr
[
D2N
σ (x)/D2N

v,σ(x) = O(1); x
$← D2N

σ

]
= 1− 2−ω(log2(2N))

and more concretely, ∀v ∈ Z2N , if σ = α‖v‖ for some positive α, then

Pr
[
D2N
σ (x)/D2N

v,σ(x) < e1+1/(2α2); x
$← D2N

σ

]
> 1− 2−k

This lemma ensures us that Lyubashevsky’s layer of the signing procedure will be called
at most M = e1+1/(2α2) times with probability at least 1−2−k. Keeping this repetition rate
down is of major importance especially as this layer involves a NTRUSign procedure which
is itself also a loop. In table 3, we provide two versions of parameters for each security
level. In the first one, the NTRUSign part is generated in only one round with overwhelming
probability, before applying the rejection step with M ≈ 2.8, leading to a speed-optimized
version. In the second one, we allow the generation of the NTRU signature to take at most
5 rounds whilst reducing its norm. This implies more rejection steps (M ≈ 7.5) but allows
us to shrink the signature sizes by approximately 15%.

To prove the security of our scheme, we also need the following rejection sampling
lemma, which will be used in the proof of theorem 2.3.5 that will help us getting our
security reduction to SIS.

6

Lemma 2.3.4 ([19]) For any set V , and probability distributions h : V → R and f :
Z2N → R, if gv : Z2N → R is a family of probability distributions indexed by v ∈ V such

that ∃M ∈ R / ∀v ∈ V, Pr[Mgv(z) ≥ f(z); z
$← f] ≥ 1 − ε then the outputs of algorithms

A and F

Algorithm A Algorithm F
1: v

$← h 1: v
$← h

2: z
$← gv 2: z

$← f

3: output (z, v) with probability min
(

f(z)
Mgv(z)

, 1
)

3: output (z, v) with probability 1/M

are within statistical distance ε/M .

The next theorem is a direct consequence of lemmas 2.3.3 and 2.3.4 by replacing V by
the subset of Z2N of vector v of length at most T , f by D2N

σ and gv by D2N
v,σ.

Theorem 2.3.5 ([19]) Let V =
{
v ∈ Z2N ; ‖v‖ ≤ T

}
, σ = ω(T

√
log 2N) ∈ R and h :

V → R a probability distribution. Then ∃M = O(1) such that distributions of algorithms

A and F below are within statistical distance 2−ω(log 2N)

M . Moreover, A outputs something

with probability at least 1−2−ω(log 2N)

M

Algorithm A Algorithm F
1: v

$← h 1: v
$← h

2: z
$← gv 2: z

$← f

3: output (z,v) with probability min
(

f(z)
Mgv(z)

, 1
)

3: output (z,v) with probability 1/M

2.4 Average-Case SIS Problems

Problems. The last part of this background section describes the main average-case
lattice problem we will base our signature scheme upon, namely the Short Integer Solution
(SIS) Problem, which is a least as hard as the worst-case of Shortest Independent Vector
Problem (SIVP) [1] up to a polynomial approximation factor.

Definition 2.4.1 (`2-SISq,N,2N,β problem) For any A ∈ ZN×2Nq , the `2-SISq,N,2N,β prob-

lem consists in finding a vector v ∈ Z2N
q \ {0} such that Av = 0 and ‖v‖2 ≤ β.

Relations between parameters q,N and β will be discussed later in this section as they
condition the length of the shortest expected vector, but we can already mention that for
a `2-SISq,N,2N,β solution to exist, we need to set β ≥

√
2Nq.

Definition 2.4.2 (SISq,N,2N,d distribution) Given a matrix A ∈ ZN×2Nq , and a random

v ∈ Z2N
q , output (A,Av mod q).

Definition 2.4.3 (Search SISq,N,2N,d) Given (A, t) ∈ ZN×2Nq × ZNq , find v ∈ {−d, . . .,

0, . . ., d}2N such that Av = t.

Definition 2.4.4 (Decisional SISq,N,2N,d) Given (A, t) ∈ ZN×2Nq × ZNq , decide whether

it comes from the SISq,N,2N,d distribution or the uniform distribution over ZN×2Nq × ZNq
with non-negligible advantage.

7

Relations between these problems. We now recall existing relations between the
problems described above, together with relationships between their parameters which
somehow strengthen or weaken these problems. First, it is rather intuitive that the smaller
d, the harder the problem, but this remark doesn’t take the modulus q into account. We
can see the matrix multiplication by A ∈ ZN×2Nq as a linear map whose domain is Z2N

q

(of size q2N) and range is ZNq (of size qN). So by constraining the domain to Z2N
d , we

need d to be of order
√
q for domain and range to be in one-to-one correspondence (even

if it is not a sufficient condition). As a consequence, when d � √q there will be only one

v ∈ {−d, . . . , 0, . . . , d}2N satisfying Av = t with high probability, which makes it easier to
distinguish between the SISq,N,2N,d distribution and the uniform one. On the other hand,
increasing d far beyond

√
q leaves room for multiple solutions to the Search SISq,N,2N,d

Problem with high probability. Therefore, we can reasonably expect the hardest SISq,N,2N,d
instances to rely where d ≈ √q.

Besides relationships between those parameters, there are reductions from some of
these problems to others. For instance, as it is often the case between search and decisional
problems, one can build a distinguisher from an oracle solving Decisional SISq,N,2N,d to
solve the search version, and that is what the following theorem states :

Theorem 2.4.6 ([16, 21]) For any d ∈ O(N), there is a polynomial-time reduction from
solving Search SISq,N,2N,d to solving Decisional SISq,N,2N,d.

Actually, the best (known) way to solve the search version of SIS appears to be solving
the decisional version. However, the next lemma gives us confidence about the hardness
of the decisional SIS problem when the solution is allowed to be larger and larger, which
translates the fact that the SIS distribution comes closer and closer to the uniform distri-
bution.

Lemma 2.4.7 ([19]) For any α ≥ 0 such that gcd(2α + 1, q) = 1, there is a polynomial-
time reduction from solving Decisional SISq,N,2N,d to solving Decisional SISq,N,2N,(2α+1)d+α.

As mentioned in [23], when the dimension equals twice the rank (m = 2N), and above
all if β is small enough, the actual best known way to solve Decisional SISq,N,2N,d is to
solve the `2-SISq,N,2N,β problem.

Lemma 2.4.8 ([23]) If 4dβ ≤ q, there is a polynomial-time reduction from solving Deci-
sional SISq,N,2N,d to solving `2-SISq,N,2N,β.

As a consequence, it has been shown in [22, 19] that for `2-SISq,N,2N,β to be hard, one
has to ensure that the following inequality is satisfied for any desired security level k :

2β

√
N . d(d+ 1)

3
>
q

π

√
k . ln(2) (1)

This lemma already gives us a first restriction for setting the parameters. Indeed, by

rewriting the above inequality, we have 4 .
(
dβ
q

)2
. N(d+1)π2

3 ln(2) > k, and as 4π2

3 ln(2) ≈ 42 and
4dβ
q ≤ 1, this condition means that N .(d + 1) is greater than k by some multiplicative

8

gap. We now discuss about another kind of restriction due to the expected length of “the”
shortest vector in a given convolution modular lattice (i.e Gaussian Heuristic) relatively
to lattice basis reduction techniques.

Since its introduction in 1982 by Lenstra, Lenstra and Lovász [17] with the LLL algo-
rithm, lattice reduction has known great applications and generalizations. Among all those
techniques lives a perpetual trade-off between the running time of the reduction algorithm
and the quality of the (eventual) output, which is gauged by the Hermit Factor δ. This
factor plays a crucial role in the hardness of the `2-SISq,N,2N,β problem in the sense that
lattice reduction algorithms can find vectors v ∈ Z2N

q such that Av = 0 and ‖v‖2 ≤ δ2N
√
q

[7]. Even if δ ≈ 1.007 seems to be a lower bound for reasonable future [4], deepest explo-
rations on this factor have been made in [18], and more precise approximations have been
extrapolated for different security levels. Parameter δ in table 4 has been set sticking to
these extrapolations.

Further analysis led Micciancio and Regev [23] to the conclusion that the SIS problem
does not become that harder by increasing the number of columns. Actually, they show
that one can find a lattice vector v such that

‖v‖ ≈ min
(
q, 22

√
N log q log δ

)
(2)

and Av = 0 using only
√
N log q/ log δ of the 2N columns of the matrix A. This bound

will gives us another restriction when setting our parameters in section 5.

3 General overview of NTRUSign

In this section, we briefly describe the NTRUSign scheme. For a complete description of the
scheme, we refer the reader to [10, 11]. The basic set for NTRUSign is Rq = Zq/(XN − 1)
with addition and polynomial multiplication modulo XN − 1, also known as convolution
product and denoted by ∗ :

(f ∗ g) (X) =

N−1∑
k=0

 ∑
i+j≡k mod N

figi

Xk (3)

The public and private keys will be matrices P, and S defined by :

P =

1 0 . . . 0 h0 hN−1 . . . h1
0 1 . . . 0 h1 h0 . . . h2
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 hN−1 hN−2 . . . h0
0 0 0 0 q 0 . . . 0
0 0 0 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q

S =

f0 fN−1 . . . f1 F0 FN−1 . . . F1

f1 f0 . . . f2 F0 FN−1 . . . F1
...

...
. . .

...
...

...
. . .

...
fN−1 fN−2 . . . f0 FN−1 FN−2 . . . F0

g0 gN−1 . . . g1 G0 GN−1 . . . G1

g1 g0 . . . g2 G0 GN−1 . . . G1
...

...
. . .

...
...

...
. . .

...
gN−1 gN−2 . . . g0 GN−1 GN−2 . . . G0

(4)

where h = f−1 ∗ g mod q for f ,g ∈ Rq, F,G ∈ Rq are given by the keyGen algorithm
1, and verify f ∗G− g ∗ F =q. As operations are performed modulo q and as (F,G) can

9

be obtained efficiently from (f ,g) using [12], we will denote P = (1 h) and S = (f g) for
short. The NTRU lattice is :

Λq(A) = {(y1,y2)/y2 = y1 ∗ h mod q} (5)

Algorithms. We now recall the algorithms used in NTRUSign. More sophisticated versions
of this signature scheme have been elaborated, such as the one with perturbations [12] or
the deformation of the fundamental parallelepiped [15] to counter the attack of [24], but
all these upgrades have been broken with the later improved attack of [6]. Therefore, we
will further use the basic instantiation of NTRUSign for our scheme, which offers greater
performances together with smaller keys. We will discuss the security of our scheme in
section 5.

Key generation and signing procedures are described respectively in algorithms 1 and
2. The NTRU signature s ∈ Rq is a simple Babäı’s round-off [2] of the target (0,m) using
the secret key sk, where m = H(µ) is the hash of the message µ to be signed by H :
{0, 1}∗ → Rq. In order to process this round-off, for any x ∈ R we will denote by bxe the
nearest integer to x so that {x} = x − bxe ∈ (−1

2 ,
1
2]. By extension, for any x ∈ Rq, {x}

will denote the previous operation applied to every xi. Due to the particular structure of
the NTRU lattice and to the fact that the NTRU signature is a lattice vector, giving s as the
signature suffices to reconstruct the right part using the public key. This trick permits to
save half of the space needed to represent the NTRU signature.

Algorithm 1: KeyGen(N , q, d, N , ν)

Input: N , q, d, N , and ν
Output: pk = h = f−1 ∗ g mod q and

sk = f ,g
begin

repeat

f
$← T (d), g

$← T (d);
until f is invertible in Rq;
h = g ∗ f−1;

return pk =

(
1 h
0 q

)
, sk =

(
f F
g G

)
;

Algorithm 2: NTRUSign(pk, sk, µ)

Input: Public and private keys, and
µ ∈ {0, 1}∗ the message to sign

Output: s the NTRU signature
begin

cpt← 0;
repeat

cpt← cpt+ 1;
m← H(µ, cpt) ∈ Rq;

(x,y) = (0,m) .
(
G −F
−g f

)
/q;

s = −{x} ∗ f − {y} ∗ g;

until ‖(s, s ∗ h−m)‖ν ≤ N ;
return (s, cpt);

Algorithm 3: Verify(pk = h, s, cpt, µ)

Input: Public key pk, the signature s, and the message µ ∈ {0, 1}∗
Output: true if and only if s is a valid signature of µ
begin

m = H(µ, cpt);
if ‖(s, s ∗ h−m)‖ν ≤ N then

return true;

else
return false;

10

Polynomials F and G in algorithm 1 can be obtained efficiently using the technique
described in [12], but as we are using the transpose NTRU lattice, those polynomials are
not even used for signing nor verifying the signature. So in the case of a constrained
environment, one can just skip this computation. Nevertheless, F and G play a role in the
size of the error when rounding-off the target. The technique of [12] permits to find those

polynomials in such a way that ‖F‖ ≈ ‖G‖ ≈
√

N
12‖f‖ so that the error when signing using

sk is of size approximately (
√

N
6 + ν N

6
√
2
)‖f‖. As a comparison, a invalid signer trying to

sign using pk instead of sk would generate an error of magnitude ν
√

N
12q.

k N d q ν N ωcmb c ωlk ωfrg γ ωlf R L

100 431 34 210 0.16686 141 167 3.714 187 172 0.0516 415 131 180

112 479 42 210 0.15828 165 200 4.232 209 137 0.0558 470 157 200

128 541 61 211 0.14894 211 269 3.711 239 329 0.0460 541 207 226

160 617 57 211 0.13946 217 269 3.709 272 360 0.0431 627 210 258

Table 2: New NTRUSign parameters, ρ = 1, no perturbation

Parameters. Setting concrete NTRUSign parameters for a given security level seems to
be an unclear task to perform. Nevertheless, the authors of [10] provide a generic algorithm
to generate such parameters, given the security parameter k, the signing tolerance ρ 3, and
an upper bound Nmax on the degree of the polynomials f and g. Even if this algorithm
doesn’t take into account best known attacks, it can provide one with a hint of how the
parameters should look like, relatively to one another. Therefore we will use it to get N ,
q, d, N , and ν, and then check that best known attacks are out of range. We will not care
about the transcript length as the fix we propose hides the leaky part of the signature, and
an adversary would not learn anything more from issued signatures.

4 General overview of Lyubashevsky’s scheme

In this section, we recall briefly the signature scheme presented by Lyubashevsky at
EuroCrypt’12, and refer the reader to the original paper [19] for more details. The most
efficient instantiations of this scheme rely on the average-case hardness of two problems :
the SISq,n,m,d decisional problem and the `2-SISq,n,m,β problem, which are at least as hard
as the worst-case of the O(n1.5)-SIVP [1].

As mentioned by the author, key sizes can be shrunk by a factor k using more structured
matrices and relying on the ring version of the SIS problem, but we will skip this detail
in this section for simplicity. Public and private keys are respectively uniformly random
matrices A ∈ Zn×mq and S ∈ {−d, . . . , 0, . . . , d}m×k and the signature process invokes a

3 if E is the expected size of a signature, the verifying process should fail for every signature whose size is
greater than ρE . Notice that the author also use one in [19], namely η. We will be tempted to set ρ = η
in next sections.

11

Algorithm 4: KeyGen(n,m, k, q)

Input: n,m, k, q
Output: pk = (A,T) ∈ Zn×mq × Zn×kq and

sk = S ∈ Zm×kq

begin

S
$← {−d, . . . , 0, . . . , d}m×k;

A
$← Zn×mq ;

T← AS;
return pk = (A,T), sk = S;

Algorithm 5: Sign(pk, sk, µ)

Input: Public and private keys, and
µ ∈ {0, 1}∗ the message to sign

Output: (z, c) the signature
begin

y
$← Dm

σ ;
c← H(Ay, µ);
z← Sc + y;
return (z, c) with probability

min
(

Dmσ (z)

M .Dm
Sc,σ

(z)
, 1
)

;

Algorithm 6: Verify(pk, (z, c), µ)

Input: Public key, message µ, and the signature (z, c) to check
Output: true if and only if (z, c) is a valid signature of µ
begin

if H(Az−Tc, µ) = c and ‖z‖ ≤ ησ
√
m then

return true;

else
return false;

random oracle H : {0, 1}∗ →
{

v : v ∈ {0, 1}k , ‖v‖1 ≤ κ
}

. A signature (z, c) of a message

µ corresponds to a combination of the secret key and the hash of this message, shifted by
a commitment value also used in the random oracle.

5 Description of our scheme

5.1 Putting the pieces together

Before exposing our scheme, we want to recall an important property over the NTRU lattice
that we will make use of. We denote :

Λ⊥q (P) =
{

(y1,y2)/(1 h) .(y1 y2)t = 0 mod q
}

=
{

(−h ∗ x mod q,x),x ∈ ZNq
}

(6)

Then one can see Λ⊥q (P) = q . Λq(P)∗, and Λq(P) = q . Λ⊥q (P)∗. If we borrow the notation

from code-based cryptography, if Λq(P) is generate by P = (1,h) then Λ⊥q (P) is generated
by (h,−1).

As the key generation part of our scheme is exclusively constituted by the NTRUSign

key generation process, we use the algorithm described in [10] to get N , q, d, N , and ν,
then invoke algorithm 1 for our keyGen procedure, to get the public and private matrices
P and S as depicted in algorithm 7.

To sign a message µ ∈ {0, 1}∗, we will need a regular random oracle H : {0, 1}∗ → Rq.
To add some randomness to our signature, the oracle’s input will be an element of Rq
represented under a bit string concatenated with our message µ. We then NTRUSign the
oracle’s output to get our leaky sample, which we shift by a mask (y1,y2) large enough to

12

Algorithm 7: KeyGen(N , q, d, N ,
and ν)

Input: N , q, d, N , and ν
Output: pk = h = g ∗ f−1 mod q and

sk = f ,g
begin

repeat

f
$← T (d), g

$← T (d);
until f is invertible in Rq;
h = g ∗ f−1;
return P = (−h,1), S = (f ,g);

Algorithm 8: Sign(P,S, µ)

Input: Public and private keys, and
µ ∈ {0, 1}∗ the message to sign

Output: (x1,x2), e the signature
begin

y1
$← DN

σ , y2
$← DN

σ ;
e = H(P(y1,y2), µ) =
H(y2 − h ∗ y1, µ);
(s, t) = NTRUSignS(0, e);
(x1,x2) = (0, e)− (s, t) + (y1,y2);

return (x1,x2), e with probability

min

(
D2N
σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1

)
;

Algorithm 9: Verify(P, (x1,x2), e, µ)

Input: Public key P, a signature (x1,x2), e, and a message µ
Output: true if and only if (x1,x2), e is a valid signature of µ
begin

if ‖(x1,x2)‖2 ≤ ησ
√

2N and H(P .(x1,x2)− e, µ) = e then
return true;

else
return false;

statistically hide this leak. Finally, we apply a rejection sampling step to ensure that the
overall signature follows the expected distribution.

We insist on the fact that in the original scheme with perturbations, the aim was to sign
the message µ enough times so that the transcript an adversary could collect with couples
of messages and signatures is short enough to make all secret key recovery techniques fail.
The main difference in our scheme consists in hiding the leaky part with something larger
so that it becomes indistinguishable, whether than sign it again and again. In other words,
the leaky part of NTRUSign plays the role of the secret key in [19].

5.2 Sets of parameters

Hereafter is a set of parameters for our signature scheme, given different security levels.
One interesting aspect of those sets is that we had to raise q and N for our NTRUSign part
to be secure, but due to the small norm of our NTRU signature, this q is not raised as much
as in [19]. This results in the nice property of lowering key and signature sizes.

13

Security parameter (bits) k 100 100 112 112 128 128 160 160

Optimized for Size Speed Size Speed Size Speed Size Speed

N 431 431 479 479 541 541 617 617

d 34 34 42 42 61 61 57 57

log2(q) 16 16 16 16 16 16 16 16

η (lemma 2.3.2) 1.296 1.296 1.297 1.297 1.299 1.299 1.314 1.314

ν 0.16686 0.16686 0.15828 0.15828 0.14894 0.14894 0.13946 0.13946

N 109 139 128 165 160 213 165 218

α (lemma 2.3.1) 6 12 6.5 13 7 14 7.5 15

σ = ηαN 848 2162 1080 2783 1455 3874 1627 4297

M = e1+1/(2α2) (lemma 2.3.3) 7.492 2.728 7.477 2.726 7.465 2.725 7.455 2.724

signature size (bits) ≈ 2N log2(ασ) 10700 12700 12300 14600 14500 17100 16800 19800

pk size (bits) ≈ N log2(q) 6900 6900 7700 7700 8700 8700 9900 9900

sk size (bits) ≈ 2N log2(3) 1400 1400 1550 1550 1750 1750 2000 2000

Table 3: Parameters, signature and key sizes for our scheme, given the security level k

5.3 Security of our scheme

In this section, k will represent the security parameter, typically k = 80 for a “toy”
security, k = 100 or 112 for a current security, and k = 128 to 160 for a “strong” security.
Due to space restrictions, we will only mention the different known kinds of attack the
reader can find in the literature. For further details, we refer to [11, 20, 6, 14] for the
NTRUSign part, and to [19, 18, 23] for Lyubashevsky’s scheme. Due to the hybridness of
our scheme, potential attacks could be of three types, that we exposed in what follows,
before tackling them.

The first one consists in attacking the NTRU lattice by trying to find back the private
key (f ,g) only from the public key h = g ∗ f−1 (and eventually some signatures after
Lyubashevsky’s layer). Even if there is no theoretical proof on the intractability of this
attack, there hasn’t been (to the best of our knowledge) any efficient way to do so neither.
Parameters given in table 3 have been chosen so that someone succeeding in doing so
would achieve a lattice reduction with better Hermit factors than those described in 4
respectively to the security parameter k. Such a good algorithm could obviously be used
to solve worst-case of lattice problems on general convolution modular lattices. A second
way to break our signature scheme, still by finding out the secret key, could be trying to
isolate the NTRU signature inside our signature to find enough leaky parts to then proceed
to a [6]-like attack. This issue is addressed by Theorem 2.3.5. Finally, we show that if an
adversary succeed in creating a forgery in polynomial-time, then we can use this forgery
to solve the SIS problem, which is the main theorem (5.3.1) of this section.

Regarding attacks against the NTRUSign, all parameters have been heighten so they
ensure way more than k bits of security. We are aware that some attacks might lower the
security level [20, 7, 14, 6], but also due to our lack of knowledge on how to benefit from
the singular structure of NTRU lattices, we take a conservative gap between claimed and
effective security. Nevertheless, all parameters given in table 2 were set in such a way that
lattice reduction techniques are meant to fail, either by finding a short vector too long,
either by a computational complexity blow up. Also due to recent attacks such as [14, 7, 6],

14

the NTRUSign parameters presented in [11] don’t reach the claimed security. Therefore, we
ran the Baseline Parameter Generation Algorithm of [10], and integrated the most recent
known attacks. As one can notice, we intentionally took a “huge” degree N , and a big q
for two reasons. It first gives more confidence about the security of the underlying NTRU

lattice, and it was also necessary for proofs to work after applying Lyubashevsky’s layer to
our scheme.

As far as we know, lattice-reduction over Λ⊥q (A) is the most efficient technique to solve
random instances of knapsack problems. Experiments in [7] led to the ability of finding
a vector v ∈ Λ⊥q (A) whose norm is at most ‖v‖2 ≤ δ2N .

√
q, for δ depending on the

lattice-reduction algorithm which is used (see below). Experiments from Micciancio and

Regev [23] conducted to a minimum of δm . qn/m ≈ min(q, 22
√
N log2(q) log2(δ)) for m ≈√

N log2(q)/ log2(δ).
In 2011, Lindner and Peikert [18] achieved to give an approximation of the best δ

reachable for a given security level k, using a conservative approximation on BKZ’s running
time :

tBKZ(δ) = log2(TBKZ(δ)) = 1.8/ log2(δ)− 110 (7)

where TBKZ(δ) is the running time of BKZ in second, on their machine. So assuming one
can achieve 230 operations per second on a “standard” computer, to determine δ given the
security parameter k, we have :

log2(δ) :=
1.8

log2(
TBKZ(δ)

230
) + 110

=
1.8

k − 30 + 110
=

1.8

k + 80
(8)

This equation gives us a way to get δ as a function of the security parameter k, see table 4.
Similarly to [19], in order to hide properly our leaky part (0, e)− (s, t), we will use Lemmas
2.3.1 and 2.3.2 to get a proper α.

k 100 112 128 160

δ 1.00696 1.00652 1.00602 1.00521

α 12 13 14 15

Table 4: δ and α as a function of the security level k

Against forgeries. In this section, we give a short overview of the material that will
be needed to base our signature scheme upon the SIS problem over random NTRU lattices.
This leads to a signature scheme based on the worst-case hardness of the Õ(N1.5)-SIVP
problem over general convolutional modular lattices.

We now expose the core of the reduction, which allows us to base the security of
our signature scheme upon the `2-SISq,N,2N,β Problem of general NTRU lattices. Our main
theorem will be proved by two lemmas, mostly proved in [19], but revisited in appendix A
in some of the details in order to fit best with our sets of parameters.

Theorem 5.3.1 ([19] revisited) Assume there is polynomial-time forger F , which makes
at most s (resp. h) queries to the signing (resp. random) oracle, who breaks our signature

15

Hybrid 1

Sign(P,S, µ)

1. y1
$← DN

σ , y2
$← DN

σ

2. e
$←Rq

3. (s, t) = NTRUSignS(0, e)
4. (x1,x2) = (0, e)− (s, t) + (y1,y2)

5. with probability min(
D2N
σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1) :

– Output (x1,x2), e
– Program H(P .(x1,x2)− e, µ) = e

Hybrid 2

Sign(P,S, µ)

1. e
$←Rq

2. (x1,x2)
$← D2N

σ

3. with probability 1/M :
– Output (x1,x2), e
– Program H(P .(x1,x2)− e, µ) = e

Fig. 1: Signing Hybrids

scheme (with parameters such those in Table 3), then there is a polynomial-time algorithm

to solve the `2-SISq,N,2N,β Problem for β = 2ησ
√

2N with probability ≈ δ2

h+s . Moreover, the

signing algorithm 8 produces a signature with probability ≈ 1
M and the verifying algorithm

9 accepts the signature produced by an honest signer with probability at least 1− 2−2N .

Proof. We begin the proof by showing that our signature algorithm 8 is statistically close

(within distance ε = s(h+ s) . 2−N+1 + s . 2
−ω(log2 2N)

M by Lemma 5.3.2) to the one in Hybrid
2 in Figure 1. Given that Hybrid 2 outputs something with probability 1/M , our signing
algorithm will output something too with probability (1− ε)/M . Then by Lemma 5.3.3, we
show that if a forger F succeeds in forging with probability δ when the signing algorithm is
replaced by the one in Hybrid 2, then we can use F to come up with a non-zero lattice vector

v such that ‖v‖ ≤ 2ησ
√

2N and Pv = 0 with probability at least
(
δ − 2−k

) (
δ−2−k
h+s − 2−k

)
.
ut

Lemma 5.3.2 ([19] revisited) Let D be a distinguisher who can query the random oracle
H and either the actual signing algorithm 8 or Hybrid 2 in Figure 1. If he makes h queries
to H and s queries to the signing algorithm that he has access to, then for all but a
e−Ω(N) fraction of all possible matrices P, his advantage of distinguishing the actual signing

algorithm from the one in Hybrid 2 is at most s(h+ s) . 2−N+1 + s . 2
−ω(log2 2N)

M .

Lemma 5.3.3 ([19] revisited) Suppose there exists a polynomial-time forger F who
makes at most h queries to the signer in Hybrid 2, s queries to the random oracle H,
and succeeds in forging with probability δ. Then there exists an algorithm of the same time-

complexity as F that for a given P
$← ZN×2Nq finds a non-zero v such that ‖v‖2 ≤ 2ησ

√
2N

and Pv = 0 with probability at least(
δ − 2−k

)(δ − 2−k

h+ s
− 2−k

)
.

Conclusion

In this work, we described a method for sealing NTRUSign signatures’ leak, based on
the worst-case hardness of standard problems over ideal lattices. This method differs from

16

existing heuristic countermeasures such the use of perturbations [12] or the deformation
of the parallelepiped [15] - both broken [6] - but also from provably secure modifications
of NTRUSign like [26] which uses gaussian sampling techniques in order to not disclose the
secret basis [8]. Moreover, this technique seems to be sufficiently generic to be applied on
GGH signatures. Details on this will be provided in a longer version of this paper.

We show that it is actually possible to use the rejection sampling technique from [19] in-
stead of gaussian sampling to achieve zero-knowledgeness, while keeping most of NTRUSign’s
efficiency. Moreover, parameter refinements allowed us to lower the rejection rate, leading
to performance improvements regarding [19], together with smaller signature and secret
key sizes.

It might be possible to improve the rejection sampling procedure even more using
techniques such those in [5], but it seems necessary to break the public key’s particular
shape to do so. Therefore, it is still an open question whether the resulting benefit in the
signature size would worth the key sizes growth.

Acknowledment. The authors thank Léo Ducas for helpful discussions on rejection
sampling, and the anonymous PQCrypto reviewers for their valuable comments.

References

[1] Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, ACM (1996) 99–108

[2] Babai, L.: On lovász’ lattice reduction and the nearest lattice point problem (shortened
version). In: Proceedings of the 2nd Symposium of Theoretical Aspects of Computer
Science. STACS ’85, London, UK, UK, Springer-Verlag (1985) 13–20

[3] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a gen-
eral forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security. CCS ’06, New York, NY, USA, ACM (2006) 390–399

[4] Chen, Y., Nguyen, P.Q.: Bkz 2.0: Better lattice security estimates. In: ASIACRYPT.
Volume 7073 of Lecture Notes in Computer Science., Springer (2011) 1–20

[5] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal
gaussians. In: CRYPTO (1). (2013) 40–56

[6] Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of ntrusign
countermeasures. In: Proceedings of the 18th international conference on The Theory
and Application of Cryptology and Information Security. ASIACRYPT’12, Berlin,
Heidelberg, Springer-Verlag (2012) 433–450

[7] Gama, N., Nguyen, P.Q.: Predicting Lattice Reduction. In: Proceedings of the theory
and applications of cryptographic techniques 27th annual international conference on
Advances in cryptology. EUROCRYPT’08, Berlin, Heidelberg, Springer-Verlag (2008)
31–51

[8] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC. (2008) 197–206

[9] Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice re-
duction problems. In: Proceedings of the 17th Annual International Cryptology Con-

17

ference on Advances in Cryptology. CRYPTO ’97, London, UK, UK, Springer-Verlag
(1997) 112–131

[10] Hoffstein, J., Howgrave-graham, N., Pipher, J., Silverman, J.H., Whyte, W.: Perfor-
mance Improvements and a Baseline Parameter Generation Algorithm for NTRUSign.
In: In Proc. of Workshop on Mathematical Problems and Techniques in Cryptology.
(2005) 99–126

[11] Hoffstein, J., Howgrave-Graham, N., Pipher, J., Whyte, W.: Practical lattice-based
cryptography: NTRUEncrypt and NTRUSign. Nguyen, Phong Q. (ed.) et al., The LLL
algorithm. Survey and applications. Dordrecht: Springer. Information Security and
Cryptography, 349-390 (2010). (2010)

[12] Hoffstein, J., Howgrave-graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: Digital Signatures Using the NTRU Lattice. In: City University of Hong
Kong, Springer-Verlag (2002)

[13] Hoffstein, J., Pipher, J., Silverman, J.H.: Nss: An ntru lattice-based signature scheme.
In: EUROCRYPT. (2001) 211–228

[14] Howgrave-Graham, N.: A hybrid lattice-reduction and meet-in-the-middle attack
against ntru. In: CRYPTO. (2007) 150–169

[15] Hu, Y., Wang, B., He, W.: Ntrusign with a new perturbation. IEEE Trans. Inf. Theor.
54(7) (July 2008) 3216–3221

[16] Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as secure as
subset sum. Journal of Cryptology 9 (1996) 236–241

[17] Lenstra, H.j., Lenstra, A., Lovász, L.: Factoring polynomials with rational coefficients.
Mathematische Annalen 261 (1982) 515–534

[18] Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-based Encryption.
In: Proceedings of the 11th international conference on Topics in cryptology: CT-RSA
2011. CT-RSA’11, Berlin, Heidelberg, Springer-Verlag (2011) 319–339

[19] Lyubashevsky, V.: Lattice Signatures Without Trapdoors. In: Proceedings of the
31st Annual international conference on Theory and Applications of Cryptographic
Techniques. EUROCRYPT’12, Berlin, Heidelberg, Springer-Verlag (2012) 738–755

[20] May, A., Silverman, J.H.: Dimension reduction methods for convolution modular
lattices. In Silverman, J.H., ed.: Cryptography and Lattices, International Conference,
CaLC 2001, Providence, RI, USA, March 29-30, 2001, Revised Papers. Volume 2146
of Lecture Notes in Computer Science., Springer (2001) 110–125

[21] Micciancio, D., Mol, P.: Pseudorandom knapsacks and the sample complexity of lwe
search-to-decision reductions. In: Proceedings of the 31st annual conference on Ad-
vances in cryptology. CRYPTO’11, Berlin, Heidelberg, Springer-Verlag (2011) 465–484

[22] Micciancio, D., Regev, O.: Worst-case to Average-case reductions based on Gaussian
measure. SIAM Journal on Computing 37(1) (2007) 267–302 Preliminary version in
FOCS 2004.

[23] Micciancio, D., Regev, O.: Lattice-based Cryptography. In Bernstein, D., Buchmann,
J., Dahmen, E., eds.: Post-Quantum Cryptography. Springer Berlin Heidelberg (2009)
147–191

[24] Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of ggh and ntru
signatures. In: Advances in Cryptology - EUROCRYPT 2006, 25th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
Volume 4004 of Lecture Notes in Computer Science., Springer (2006) 271–288

18

[25] Stehlé, D., Steinfeld, R.: Making ntru as secure as worst-case problems over ideal
lattices. In: Proceedings of the 30th Annual international conference on Theory and
applications of cryptographic techniques: advances in cryptology. EUROCRYPT’11,
Berlin, Heidelberg, Springer-Verlag (2011) 27–47

[26] Stehlé, D., Steinfeld, R.: Making ntruencrypt and ntrusign as secure as standard
worst-case problems over ideal lattices. Cryptology ePrint Archive, Report 2013/004
(2013) http://eprint.iacr.org/.

A Proofs

A.1 Section 2

Most of the lemmas of Section 2 are proved in [19]. We therefore refer the reader to
the original paper for these proofs. Nevertheless, we adapted lemma 2.3.3 to make bounds
tighter with respect to different security levels. We prove the correctness of our modification
:

Proof.

D2N
σ (x)/D2N

v,σ(x) = ρ2Nσ (x)/ρ2Nv,σ(x) = exp

(
‖x− v‖2 − ‖x‖2

2σ2

)
= exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
By lemma 2.3.1 and using the fact that σ = ω(‖v‖

√
log(2N)), with probability 1 −

2−ω(log(2N)) we have

exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
< exp

(
‖v‖2 + ω(σ‖v‖

√
log(2N))

2σ2

)
= O(1).

And more precisely, by setting r = α‖v‖σ in lemma 2.3.1 with α determined by the security
parameter k in table 1, we obtain with probability 1− 2−k that

exp

(
‖v‖2 − 2〈x,v〉

2σ2

)
< exp

(
‖v‖2 + 2α‖v‖σ

2σ2

)
= exp

(
‖v‖2

2σ2
+
α‖v‖
σ

)
σ=α‖v‖

= e1+1/(2α2).

ut

A.2 Proofs of Section 5

We begin with the proof of lemma 5.3.2, which states that our actual signing algorithm 8
is indistinguishable from Hybrid 2 depicted in Figure 1, using Hybrid 1 as an intermediate
step.

Proof. First, let us prove that D has an advantage of at most s(h+s) . 2−N+1 of distinguish-
ing between the actual signature scheme 8 and Hybrid 1. The only difference between those
algorithms is the output of the random oracle H. It is chosen uniformly at random from Rq
in Hybrid 1, rather than according to H(Py, µ) for y

$← D2N
q in the real signing algorithm.

19

Random oracle in Hybrid 1 is then programmed to answer H(Px− e, µ) = H(Py, µ) with-
out checking whether (Py, µ) was already queried or not. Since D calls H (resp. algorithm
8) h (resp s) times, at most s+ h values of (Py, µ) will be set. We now bound the proba-
bility of generating such an already set value. Using lemma 2.3.2, we can see that for any
t ∈ ZNq ,

Pr[Py = t; y
$←D2N

q] = Pr[y1 = (t− h ∗ y0); y
$← D2N

q] ≤ max
t′∈ZNq

Pr[y1 = t′; y1
$← DN

q] ≤ 2−N .

Therefore, if Hybrid 1 is called s times with the probability of getting a collision begging
less than (s + h) . 2−N+1 for each call, then the probability of coming up with a collision
after s calls is at most s(s+ h) . 2−N+1.

We pursue by showing that the outputs of Hybrids 1 and 2 are statistically within

distance 2−ω(log2 2N)

M . As noticed in [19], this is an almost straightforward consequence of
theorem 2.3.5 : assuming both Hybrids output (x, (−s, e− t)) with respective probabilities

min

(
D2N
σ (x)

M .D2N
(−s,e−t),σ

(x)
, 1

)
for Hybrid 1 and 1/M for Hybrid 2, they respectively play the role

of A and F (with T = ηαN). Even if both Hybrids only output e, this does not increase the
statistical distance because given e, one can generate (−s, e− t) such that P(−s, e− t) = e
simply by NTRUSigning (0, e), and this will have the exact same distribution as the e in
both Hybrids. Finally, as the signing oracle is called s times, the statistical distance between

the two Hybrids is at most s . 2
−ω(log2 2N)

M , or more concretely s . 2
−k

M . The claim in the lemma
is obtained by summing both distances. ut

We now prove lemma 5.3.3, which provides us with a `2-SISq,N,2N,β solver using a
polynomial-time successful forger.

Proof. Let t = h+ s be the number of calls to the random oracle H during F ’s attack. H
can be either queried by the forger or programmed by the signing algorithm when F asks
for some message to be signed. We pick random coins φ (resp. ψ) for the forger (resp. the
signer), along with r1, . . . , rt ← Rq, which will correspond to the H’s responses. We now
consider a subroutine A, which on input (P,φ, ψ, r1, . . . , rt) initializes F by giving it P and
φ and run it. Each time F asks for a signature, A runs Hybrid 2 using the signer’s coins ψ
to get a signature, and H is programmed to answer with the first unused ri ∈ (r1, . . . , rt).
A keeps track of the answered ri in case F queries the same message to be signed again.
Similarly, if F queries directly the random oracle, H will answer with the first unused
ri ∈ (r1, . . . , rt), unless the query was already made. When F ends and eventually come
up with an output (with probability δ), A simply forwards F ’s output.

With probability δ, F succeeds in forging, coming up with (x, e) satisfying ‖x‖ ≤
ησ
√

2N and H(Px− e, µ) = e for some message µ. If H was not queried nor programmed
on some input w = Px − e, then F has only a 1/|Rq| = q−N (i.e. negligible) chance of
generating a e such that e = H(w, µ). Therefore, F has at least a δ − q−N chance of
succeeding in a forgery with e being one of the ri’s. Assume e = rj , we are left with two
cases : rj is a response to a random oracle query made by F , or it was program during the
signing procedure invoked by A.

20

Let first assume that the random oracle was programmed to answer H(Px′−e, µ′) = e
on input µ′. If F succeeds in forging (x, e) for some (possibly different) message µ, then
H(Px′ − e, µ′) = H(Px − e, µ). If µ 6= µ′ or Px′ − e 6= Px − e, then F found a pre-
image of rj . Therefore, µ = µ′ and Px′ − e = Px − e, so that P(x− x′) = 0. We know
that x− x′ 6= 0 (because otherwise (x, e) and (x′, e) sign the same message µ), and since
‖x‖2, ‖x′‖2 ≤ ησ

√
2N , we have that ‖x− x′‖ ≤ 2ησ

√
2N .

Let now assume that rj was a response of the random oracle invoked by F . We start
by recording F ’s output (x, rj) for the message µ, then generate fresh random elements
r′j , . . . , r

′
t ← Rq. We then run A again with input (P, φ, ψ, r1, . . . , rj−1, r

′
j , . . . , r

′
t), and by

the General Forking Lemma [3], we obtain that the probability that r′j 6= rj and the forger
uses the random oracle response r′j (and the query associated to it) in its forgery is at least(

δ − 1

|Rq|

)(
δ − 1/|Rq|

t
− 1

|Rq|

)
,

and thus with the above probability, F outputs a signature (x′, r′j) of the message µ and

Px − e = Px′ − e′ where we let e = rj and e′ = r′j . By rearranging terms in the above
equality we obtain

P(x− x′)−

P((0,e)−(0,e′)−((s,t)−(s′,t′)))︷ ︸︸ ︷
(e− e′) = 0

P
(
y − y′

)
= 0 (9)

But since H(Py, µ) = e = rj 6= r′j = e′ = H(Py′, µ), necessarily y 6= y′, and as

‖y‖2, ‖y′‖2 ≤ ησ
√

2N , we finally have that ‖y − y′‖2 ≤ 2ησ
√

2N with probability(
δ − 2−k

)(δ − 2−k

h+ s
− 2−k

)
.

ut

