
Single-shot security for one-time memories in
the isolated qubits model

Yi-Kai Liu

Applied and Computational Mathematics Division
National Institute of Standards and Technology (NIST)

Gaithersburg, MD, USA
yi-kai.liu@nist.gov

Abstract. One-time memories (OTM’s) are simple, tamper-resistant
cryptographic devices, which can be used to implement sophisticated
functionalities such as one-time programs. Can one construct OTM’s
whose security follows from some physical principle? This is not possi-
ble in a fully-classical world, or in a fully-quantum world, but there is
evidence that OTM’s can be built using “isolated qubits” — qubits that
cannot be entangled, but can be accessed using adaptive sequences of
single-qubit measurements.
Here we present new constructions for OTM’s using isolated qubits,
which improve on previous work in several respects: they achieve a stronger
“single-shot” security guarantee, which is stated in terms of the (smoothed)
min-entropy; they are proven secure against adversaries who can per-
form arbitrary local operations and classical communication (LOCC);
and they are efficiently implementable.
These results use Wiesner’s idea of conjugate coding, combined with
error-correcting codes that approach the capacity of the q-ary symmet-
ric channel, and a high-order entropic uncertainty relation, which was
originally developed for cryptography in the bounded quantum storage
model.

Keywords: Quantum cryptography; information theory; local opera-
tions and classical communication (LOCC); oblivious transfer; one-time
programs

1 Introduction

One-time memories (OTM’s) are a simple type of tamper-resistant cryp-
tographic hardware. An OTM has the following behavior: a user Alice
can write two messages s and t into the OTM, and then give the OTM
to another user Bob; Bob can then choose to read either s or t from
the OTM, but he can only learn one of the two messages, not both. A
single OTM is not especially exciting by itself, but when many OTM’s
are combined in an appropriate way, they can be used to implement
one-time programs, which are a powerful form of secure computation
[3,4,5,6]. (Roughly speaking, a one-time program is a program that can
be run exactly once, on an input chosen by the user. After running once,
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the program “self-destructs,” and it never reveals any information other
than the output of the computation.)

Can one construct OTM’s whose security follows from some physical
principle? At first glance, the answer seems to be “no.” OTM’s can-
not exist in a fully classical world, because information can always be
copied without destroying it. One might hope to build OTM’s in a quan-
tum world, where the no-cloning principle limits an adversary’s abil-
ity to copy an unknown quantum state. However, this is also impos-
sible, because an OTM can be used to perform oblivious transfer with
information-theoretic security, which is ruled out by various “no-go” the-
orems [7,8,9,10].

One way around these no-go theorems is to try to construct protocols
that are secure against restricted classes of quantum adversaries, e.g., ad-
versaries who can only perform k-local measurements [11], or adversaries
who only have bounded or noisy quantum storage [12,13,14,15,16,17].
More recently, Liu has proposed a construction for OTM’s in the iso-
lated qubits model [1], where the adversary is only allowed to perform
local operations and classical communication (LOCC). That is, the ad-
versary can perform single-qubit quantum operations, including single-
qubit measurements, and can make adaptive choices based on the clas-
sical information returned by these measurements; but the adversary
cannot perform entangling operations on sets of two or more qubits.
(Honest parties are also restricted to LOCC operations.) The isolated
qubits model is motivated by recent experimental work using solid-state
qubits, such as nitrogen vacancy (NV) centers; see [1] for a more com-
plete discussion of this model, and [18] for earlier work on implementing
quantum money using NV centers. 1

In this paper we show a new construction and security analysis for OTM’s
in the isolated qubits model, which improves on the results of [1] in sev-
eral respects. First, we show a stronger “single-shot” security guarantee,
which is stated in terms of the (smoothed) min-entropy [19,20]. This
shows that a constant fraction of the message bits remain hidden from the
adversary. This stronger statement is necessary for most cryptographic
applications; note that the previous results of [1] were not sufficient, as
they used the Shannon entropy.

Second, we prove security against general LOCC adversaries, who can
perform arbitrary measurements (including weak measurements), and
can measure each qubit multiple times. This improves on the results of
[1], which only showed security against 1-pass LOCC adversaries that
use 2-outcome measurements. Our new security proof is based solely
on the definition of the isolated qubits model, without any additional
assumptions.

Third, we show a construction of OTM’s that is efficiently implementable,
i.e., programming and reading out the OTM can be done in polynomial

1 Note that the devices constructed in [1], and in this paper, are more precisely de-
scribed as leaky OTM’s, because they can leak additional information to the adver-
sary. It is not known whether such leaky OTM’s are sufficient to construct one-time
programs as defined in [3]. We will discuss this issue in Section 1.2; for now, we will
simply refer to our devices as OTM’s.
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time. This improves on the construction in [1], which was primarily an
information-theoretic result, using random error-correcting codes that
did not allow efficient decoding. (In fact, our new construction is quite
flexible, and does not depend heavily on the choice of a particular error-
correcting code. Our OTM’s can be constructed using any code that
satisfies two simple requirements: the code must be linear over GF (2),
and it must approach the capacity of the q-ary symmetric channel. We
show one such code in this paper; several more sophisticated construc-
tions are known [22,23,24].)
We will describe our OTM construction in the following section. Here, we
briefly comment on some related work. Note that OTM’s cannot make
use of standard techniques such as privacy amplification. This is because
OTM’s are non-interactive and asynchronous: all of the communication
between Alice and Bob occurs at the beginning, while the adversary can
wait until later to attack the OTM. (To do privacy amplification, Alice
would have to first force the adversary to take some action, and then
send one more message to Bob. This trick is very natural in protocols
for quantum key distribution and oblivious transfer, but it is clearly
impossible in the case of an OTM.) As we will see below, the security of
our OTM’s follows from rather different arguments. (A similar issue was
studied recently in [17], albeit with a weaker, non-adaptive adversary.)
In addition, it is a long-standing open problem to prove strong upper-
bounds on the power of LOCC operations. Previous results in this area
include demonstrations of “nonlocality without entanglement” [25] (see
[26] for a recent survey), and constructions of data-hiding states [27,28,29,30].
Our OTM’s are not directly comparable to these earlier results, as the
security requirements for our OTM’s are quite different.

1.1 Our construction

We now describe our OTM construction, which is based on Wiesner’s
idea of conjugate coding [21]. Our OTM will store two messages s, t ∈
{0, 1}`, and will use n lg q qubits, where q is a (large) power of 2. Let
C : {0, 1}` → {0, 1}n lg q be any error-correcting code that satisfies the
following two requirements: C is linear over GF (2), and C approaches
the capacity of the q-ary symmetric channel Eq with error probability
pe := 1

2
− 1

2q
(where the channel treats each block of lg q bits as a single

q-ary symbol). Note that, when q is large, the capacity of the channel Eq
is roughly 1− pe, which is roughly 1

2
, so we have n lg q ≈ 2`.

Given two messages s and t, let C(s) and C(t) be the corresponding
codewords, and view each codeword as n blocks consisting of lg q bits.
We prepare the qubits in the OTM as follows. For each i = 1, 2, . . . , n,

– Let γi ∈ {0, 1} be the outcome of a fair and independent coin toss.
– If γi = 0, prepare the i’th block of qubits in the standard basis state

corresponding to the i’th block of C(s).
– If γi = 1, prepare the i’th block of qubits in the Hadamard basis

state corresponding to the i’th block of C(t).
To recover the first message s, we measure every qubit in the standard
basis, which yields a string of measurement outcomes z ∈ {0, 1}n lg q,
and then we run the decoding algorithm for C. To recover the second
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message t, we measure every qubit in the Hadamard basis, then follow the
same procedure. It is easy to see that all of these procedures require only
single-qubit state preparations and single-qubit measurements, which are
allowed in the isolated qubits model. 2

(We remark that this OTM construction uses blocks of qubits, rather
than individual qubits as in [21] and [1]. That is, we set q large, instead
of using q = 2. This difference seems to help our security proof, although
it is not clear whether it affects the actual security of the scheme.)

We now sketch the proofs of correctness and security for this OTM. With
regard to correctness, note that an honest player who wanted to learn
s will obtain measurement outcomes that have the same distribution as
the output of the q-ary symmetric channel Eq acting on C(s); hence the
decoding algorithm will return s. A similar argument holds for t.

To prove security, we consider adversaries that make separable measure-
ments (which include LOCC measurements as a special case). The basic
idea is to consider the distribution of the messages s and t, conditioned
on one particular measurement outcome z obtained by the adversary.
Since the adversary is separable, the corresponding POVM element Mz

will be a tensor product of single-qubit operators
⊗n lg q

a=1 Ra (up to nor-
malization). Now, one can imagine a fictional adversary that measures
the qubits one at a time, and happens to observe this same string of
single-qubit measurement outcomes R1, R2, . . . , Rn lg q. This event leads
to the same conditional distribution of s and t. But the fictional adver-
sary is easier to analyze, because it is non-adaptive, it measures each
qubit only once, and the measurements can be done in arbitrary order.

Now, our proof will be based on the following intuition. In order to
learn both messages s and t, the adversary will want to determine the
basis choices γ = (γ1, γ2, . . . , γn), so that he will know which blocks of
qubits should be measured in the standard basis, and which blocks of
qubits should be measured in the Hadamard basis. The choice of the
code C is crucial to prevent the adversary from doing this; for instance,
if the adversary could predict some of the bits in the codewords C(s)
and C(t), he could then measure the corresponding qubits, and gain
some information about which bases were used to prepare them. (Note
moreover that the adversary has full knowledge of C, before he measures
any of the qubits.) We will argue that certain properties of the code C
prevent the adversary from learning these basis choices γ perfectly, and
that this in turn limits the adversary’s knowledge of the messages s and
t.

Since C is a linear code over GF (2), it has a generator matrix G, which
has rank `. Thus there must exist a subset of ` bits of the codeword
C(s) that look uniformly random, assuming the message s was chosen
uniformly at random; and a similar statement holds for C(t). Now, let
A be the subset of ` qubits that encode these bits of C(s) and C(t). We
can imagine that the fictional adversary happens to measure these qubits
first. Therefore, during these first ` steps, the fictional adversary learns
nothing about which bases had been used to prepare the state, i.e., the

2 We note in passing that Winter’s “gentle measurement lemma” [31] does not imply
an attack on this OTM using LOCC operations; see the full paper [2] for details.
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basis choices γ are independent of the fictional adversary’s measurement
outcomes.
One can then show that the conditional distribution of s and t after
these first ` steps of the fictional adversary is related to the distribution
of measurement outcomes when the state

⊗
a∈ARa is measured in a

random basis. This kind of situation has been studied previously, in
connection with cryptography in the bounded quantum storage model. In
particular, we can use a high-order entropic uncertainty relation from [16]
to show a lower-bound on the smoothed min-entropy of this distribution.
We then use trivial bounds to analyze the remaining n lg q − ` steps of
the fictional adversary. Roughly speaking, we get a bound of the form:

Hε
∞(S, T |Z) & 1

2
`, (1)

for any separable adversary (where Z denotes the adversary’s measure-
ment outcome). Thus, while the OTM may leak some information, it still
hides a constant fraction of the bits of the messages s and t. For more
details, see Section 3.
Finally, we show one construction of a code C that satisfies the above
requirements and is efficiently decodable. The basic idea is to fix some
q0 < q, first encode the messages s and t using a random linear code C0 :
{0, 1}` → {0, 1}n lg q0 , then encode each block of lg q0 bits using a fixed
linear code C1 : {0, 1}lg q0 → {0, 1}lg q. The code C1 is used to detect the
errors made by the q-ary symmetric channel; these corrupted blocks of
bits are then treated as erasures, and we can decode C0 by solving a linear
system of equations, which can be done efficiently. Moreover, choosing
C0 to be a random linear encode ensures that, with high probability,
C approaches the capacity of the q-ary symmetric channel. For more
details, see Section 4.

1.2 Outlook

The results of this paper can be summarized as follows: we construct
OTM’s based on conjugate coding, which achieve a fairly strong (“single-
shot”) notion of security, are secure against general LOCC adversaries,
and can be implemented efficiently. These results are a substantial im-
provement on previous work [1].
We view these results as a first step in a broader research program that
aims to develop practical implementations of isolated qubits, one-time
memories, and ultimately one-time programs. We now comment briefly
on some different aspects of this program.
Experimental realization of isolated qubits is quite challenging, though
there has been recent progress in this direction [39,40]. Broadly speaking,
isolated qubits seem to be at an intermediate level of difficulty, some-
where between photonic quantum key distribution (which already exists
as a commercial product), and large-scale quantum computers (which
are still many years in the future).
Working with quantum devices in the lab also raises the question of fault-
tolerance: can our OTM’s be made robust against minor imperfections in
the qubits? We believe this can be done, by slightly modifying our OTM
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construction: we would use a slightly noisier channel to describe the im-
perfect measurements made by an honest user, and we would choose the
error-correcting code C accordingly. The proof of security would still hold
against LOCC adversaries who can make perfect measurements. There
is plenty of “slack” in the security bounds, to allow this modification to
the OTM’s.
In addition, one may wonder whether our OTM’s are secure against
so-called “k-local” adversaries [11], which can perform entangled mea-
surements on small numbers of qubits (thus going outside the isolated
qubits model). There is some reason to be optimistic about this: while we
have mainly discussed separable adversaries in this paper, our security
proof actually works for a larger set of adversaries, who can generate
entanglement among some of the qubits, but are still separable across
the partition defined by the subset A (as described in the proof). Also,
from a physical point of view, k-local adversaries are quite natural. In
particular, even when one can perform entangling operations on pairs of
qubits, it may be hard to entangle large numbers of qubits, due to error
accumulation.
Finally, let us turn to the construction of one-time programs. Because
our OTM’s leak some information, it is not clear whether they are suffi-
cient to construct one-time programs. There are a couple of approaches
to this problem. On one hand, one can try to strengthen the security
proof, perhaps by proving constraints on the types of information that
an LOCC adversary can extract from the OTM. We conjecture that,
when our OTM’s are used to build one-time programs as in [3], the spe-
cific information that is relevant to the security of the one-time program
does in fact remain hidden from an LOCC adversary.
On the other hand, one can try to strengthen the OTM constructions,
in order to eliminate the leakage. As noted previously, standard privacy
amplification (e.g., postprocessing using a randomness extractor) does
not work in this setting, because the adversary also knows the seed for
the extractor. However, there are other ways of solving this problem, for
instance by assuming the availability of a random oracle, or by using
something similar to leakage-resilient encryption [32,33] (but with a dif-
ferent notion of leakage, where the “leakage function” is restricted to use
only LOCC operations, but is allowed access to side-information).

2 Preliminaries

2.1 Notation

For any natural number n, let [n] denote the set {1, 2, . . . , n}. Let lg(x) =
log2(x) denote the logarithm with base 2.
For any random variable X, let PX be the probability density function
of X, that is, PX(x) = Pr[X = x]. Likewise, define PX|Y (x|y) = Pr[X =
x|Y = y], etc. For any event E , define PEX to be the probability density
function of X smoothed by E , that is PEX(x) = Pr[X = x and E occurs].
We say that C is a binary code with codeword length n and message
length k if C is a subset of {0, 1}n with cardinality 2k. We say that C
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has minimum distance d = minx,y∈C dH(x, y), where dH(·, ·) denotes the
Hamming distance.
We say that C is a binary linear code if C is a linear subspace of GF (2)n.
(Note, GF (2) and {0, 1} denote the same set, but we will write GF (2) in
situations where we use arithmetic operations.) In this case, there exists
a matrix G ∈ GF (2)k×n, such that the map x 7→ xTG is a bijection from
GF (2)k to the code subspace C. We will overload the notation and use
C to denote the map x 7→ xTG; then the codewords consist of the strings
C(x) for all x ∈ GF (2)k.

2.2 The q-ary symmetric channel

The q-ary symmetric channel with error probability pe acts as follows:
given an input x ∈ GF (q), it returns an output y ∈ GF (q), with condi-
tional probabilities Pr(y|x) = 1− pe (if y = x) and Pr(y|x) = pe/(q − 1)
(if y 6= x). The capacity of this channel, measured in q-ary symbols per
channel use, is given by [23]:

L(pe) = 1 + (1− pe) logq(1− pe) + pe logq(pe)− pe logq(q − 1)

= 1− h2(pe)

lg q
− pe

lg(q − 1)

lg q
≥ 1− 1

lg q
− pe,

(2)

where h2(·) is the binary entropy function.

2.3 LOCC adversaries and separable measurements

An LOCC adversary is an adversary that uses only local operations
and classical communication (LOCC). Here, “local operations” consist
of quantum operations on single qubits, and “classical communication”
refers to the adversary’s ability to choose each single-qubit operation
adaptively, depending on classical information, such as measurement out-
comes, that were obtained from previous single-qubit operations. How-
ever, the adversary is not allowed to make adaptive choices that depend
on quantum information, or perform entangling operations on multiple
qubits.
Formally, an LOCC adversary can be described as follows. Consider a
system of n qubits. The adversary makes a sequence of steps, labelled
by i = 1, 2, 3, . . .. At step i, the adversary chooses one of the qubits
qi ∈ [n], and performs a general quantum measurement Mi on that
qubit; this returns a measurement outcome, which is described by a
classical random variable Zi. The adversary’s choices of qi and Mi can
depend on Z1, Z2, . . . , Zi−1. Also, note that the adversary can perform
weak measurements, and can measure the same qubit multiple times.
Finally the adversary discards the qubits, and outputs the sequence of
measurement outcomes Z1, Z2, Z3, . . ..
A POVM measurement M = {Mz | z = 1, 2, 3, . . .} is called separable if
every POVM element Mz can be written as a tensor product of single-
qubit operators. It is easy to see that any LOCC adversary can be simu-
lated by a separable measurement, i.e., for any LOCC adversary A, there
exists a separable POVM measurementM, such that for every quantum
state ρ, the output of M acting on ρ has the same distribution as the
output of A acting on ρ [38].
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2.4 Leaky OTM’s

We will use the following definition of a leaky OTM [1].

Definition 1. Fix some class of adversary strategies M, some leakage
parameter δ ∈ [0, 1], and some failure probability ε ∈ [0, 1]. A leaky one-
time memory (leaky OTM) with parameters (M, δ, ε) is a device that has
the following behavior. Suppose that the device is programmed with two
messages s and t chosen uniformly at random in {0, 1}`; and let S and
T be the random variables containing these messages. Then:
1. Correctness: There exists an honest strategyM(1) ∈ M that interacts

with the device and recovers the message s with probability ≥ 1− ε.
Likewise, there exists an honest strategy M(2) ∈ M that recovers the
message t with probability ≥ 1− ε.

2. Leaky security: For every strategy M ∈ M, if Z is the random vari-
able containing the classical information output byM, then Hε

∞(S, T |Z) ≥
(1− δ)`.

Here Hε
∞ is the smoothed conditional min-entropy, which is defined as

follows [19,20]:

Hε
∞(X|Y ) = max

E: Pr(E)≥1−ε
min
x,y

[
− lg

[
PEX|Y (x|y)

]]
, (3)

where the maximization is over all events E (defined by the conditional
probabilities PE|XY ) such that Pr(E) ≥ 1 − ε. Observe that a lower-
bound of the form Hε

∞(X|Y ) ≥ h implies that there exists an event E
with Pr(E) ≥ 1− ε such that, for all x and y, Pr[E , X = x|Y = y] ≤ 2−h.
The definition of a leaky OTM is weaker than that of an ideal OTM in
two important respects: it assumes that the messages s and t are chosen
uniformly at random, independent of all other variables; and it allows
the adversary to obtain partial information about both s and t, so long
as the adversary still has (1 − δ)k bits of uncertainty (as measured by
the smoothed min-entropy). We suspect that this definition of a leaky
OTM is not strong enough to construct one-time programs (although we
conjecture that our actual constructions of OTM’s in Sections 3 and 4
are, in fact, strong enough for this purpose).

2.5 Uncertainty relations for the min-entropy

We will use an uncertainty relation from [16], with a slight modification to
describe quantum systems that consist of many non-identical subsystems:

Theorem 1. Consider a quantum system with Hilbert space
⊗`0

i=1 C
di ,

i.e., the system can be viewed as a collection of `0 subsystems, where the
i’th subsystem has Hilbert space dimension di.
For each i ∈ [`0], let Bi be a finite collection of orthonormal bases for Cdi ,
and suppose that these bases satisfy the following uncertainty relation: for
every quantum state ρ on Cdi , |Bi|−1∑

ω∈Bi
H(Pω) ≥ hi, where Pω is

the distribution of measurement outcomes when ρ is measured in basis
ω.
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Now let ρ be any quantum state over
⊗`0

i=1 C
di , let Θ = (Θ1, . . . , Θ`0) be

chosen uniformly at random from B1×· · ·×B`0 , and let X = (X1, . . . , X`0)
be the measurement outcome when ρ is measured in basis Θ (i.e., each
Xi is the outcome of measuring subsystem i in basis Θi).
Then, for any τ > 0, and any λ1, . . . , λ`0 ∈ (0, 1

2
), we have:

Hε
∞(X|Θ) ≥ −τ +

`0∑
i=1

(hi − λi), (4)

where ε ≤ exp(−2τ2/c), and c =
∑`0
i=1 16

(
lg |Bi|di

λi

)2
.

The proof is essentially the same as in [16]; it uses a martingale argument
and Azuma’s inequality, but it allows the martingale to have different
increments at each step.
In addition, we will use the following chain rule for the smoothed min-
entropy [20]:

Hε+ε′
∞ (X|Y ) > Hε

∞(X,Y )−H0(Y )− lg( 1
ε′ ). (5)

3 One-time memories

We now show the correctness and security of the OTM construction
described in Section 1.1. Recall that this OTM uses n lg q qubits, stores
two messages of length `, and uses an error-correcting code C. We will
show how to set n and q, and how to choose the code C.
Let us introduce some notation. We view the code C as a function
C : {0, 1}` → {0, 1}n lg q. We view each codeword x ∈ {0, 1}n lg q as a
sequence of n blocks, where each block is a binary string of length lg q.
We write the codeword as x = (xij)i∈[n],j∈[lg q], and we write the i’th
block as xi = (xij)j∈[lg q]. Finally, let H be the Hadamard gate acting
on a single qubit.
We now prepare the qubits in the OTM as follows. For each i = 1, 2, . . . , n,

– Let γi ∈ {0, 1} be the outcome of a fair and independent coin toss.
– If γi = 0, prepare the i’th block of qubits in the state |C(s)i〉.
– If γi = 1, prepare the i’th block of qubits in the state H⊗(lg q)|C(t)i〉.

To recover the first message s, we measure every qubit in the standard
basis, which yields a string of measurement outcomes z ∈ {0, 1}n lg q,
and then we run the decoding algorithm for C. To recover the second
message t, we measure every qubit in the Hadamard basis, obtain a string
of measurement outcomes z, and again run the decoding algorithm for
C.
We will prove the following general theorem, which works for any code
C that satisfies certain properties:

Theorem 2. Let q ≥ 2 be any power of 2. Let Eq be the q-ary symmetric
channel with error probability pe = (1/2)− (1/2q). Let ` ≥ 1 and n ≥ 1,
and let C : {0, 1}` → {0, 1}n lg q be any error-correcting code that satisfies
the following two requirements:
1. C can transmit information reliably over the channel Eq (where the

channel treats each block of lg q bits as a single q-ary symbol).
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2. C is a linear code over GF (2).
Then the above OTM stores two messages s, t ∈ {0, 1}`, and has the
following properties:
1. The OTM behaves correctly for honest parties.
2. For any small constants 0 < λ� 1

2
, 0 < τ0 � 1, and 0 < δ � 1, the

following statement holds. Suppose the messages s and t are chosen
independently and uniformly at random in {0, 1}`. For any separable
adversary,3 we have the following security bound:

Hδ+ε
∞ (S, T |Z)

≥
(

( 1
2
− λ)− 4τ0 (1 + 1√

lg q
(1 + lg 1

λ
)) + (2− 1

α
)
)
· `− lg 1

δ

&
(

1
2

+ (2− 1
α

)
)
· `.

(6)

Here S and T are the random variables describing the two messages,
Z is the random variable representing the adversary’s measurement
outcome, we have ε ≤ exp(−2τ20 `/ lg q), and α = `/(n lg q) is the
rate of the code C.

Note that, to get a strong security bound, one must use a code C whose
rate α is large. It is useful to ask, then, how large α can be. Let Lq denote
the capacity of the channel Eq, measured in q-ary symbols per channel
use. Using a good code C, we can hope to have rate α ≈ Lq. Moreover,
Lq is lower-bounded by:

Lq ≥ 1− 1
lg q
− pe = 1

2
− 1

lg q
+ 1

2q
≈ 1

2
, (7)

which is nearly tight when q is large. So we can hope to have α ≈ 1
2
, in

which case our security bound becomes:

Hδ+ε
∞ (S, T |Z) & 1

2
`. (8)

3.1 Correctness for honest parties

We first show the “correctness” part of Theorem 2. Without loss of gener-
ality, suppose we want to recover the first message s. (A similar argument
applies if we want to recover the second message t.) Let z ∈ {0, 1}n lg q be
the string of measurement outcomes obtained by measuring each qubit
in the standard basis. Observe that z is the output of a q-ary symmet-
ric channel Eq with error probability pe = (1/2)− (1/2q), acting on the
string C(s) ∈ {0, 1}n lg q (viewed as a sequence of n symbols in GF (q)).
Since the code C can transmit information reliably over this channel, it
follows that we can recover s.

3.2 Security against separable adversaries

We now show the “security” part of Theorem 2. Let us first introduce
some notation (see Figure 1). Suppose the OTM is programmed with

3 Note that this includes LOCC adversaries as a special case.
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two messages s and t that are chosen independently and uniformly at
random in {0, 1}`. Let S and T be the random variables representing
these messages. Let Γ be the random variable representing the coin flips
γ = (γ1, . . . , γn) used in programming the OTM. C denotes the error-
correcting code, which maps {0, 1}` to {0, 1}n lg q. “Select” is an operation
that maps {0, 1}n lg q × {0, 1}n lg q to {0, 1}n lg q, depending on the value
of Γ , as follows:

Select(x, y)i,j =

{
xi,j if Γi = 0,

yi,j if Γi = 1,
for all i ∈ [n], j ∈ [lg q]. (9)

“Select” outputs a string of n lg q classical bits, which are converted
into n lg q qubits (in the standard basis states |0〉 and |1〉). H denotes a
Hadamard gate controlled by the value of Γ ; that is, for each i ∈ [n] and
j ∈ [lg q], if Γi = 1, then H is applied to the (i, j)’th qubit.

Fix any separable adversary A, let L be the number of possible outcomes
that can be observed by the adversary, and let M = {Mz | z ∈ [L]} be
the separable POVM measurement performed by the adversary. Let Z
be the random variable representing the adversary’s output; so Z takes
values in [L].

Coin flips Γ

Message S

Message T

C

Select

C

s
H

s
Adversary A Z [Z = z]

Fictional A(f) Q [Q = 0]

Fig. 1. OTM with separable adversary A, and “fictional” adversary A(f). In the proof,
we will analyze the distributions of S and T conditioned on the events Z = z and
Q = 0.

Fix some small constant δ > 0. We say that a measurement outcome
z ∈ [L] is “negligible” if Pr[Z = z] ≤ (δ/2n lg q) tr(Mz). Note that the
probability of observing any of these “negligible” measurement outcomes
is small:

Pr[Z is “negligible”] =
∑

z “negl.”

Pr[Z = z] ≤ (δ/2n lg q)
∑

z “negl.”

tr(Mz) ≤ δ.

(10)

The proof will proceed as follows: for all messages s, t ∈ {0, 1}`, and
for all measurement outcomes z ∈ [L] that are not “negligible,” we will
upper-bound Pr[S = s, T = t|Z = z]. This will imply a lower-bound on
Hδ
∞(S, T |Z), which is what we desire.
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A fictional adversary We begin by fixing some measurement out-
come z ∈ [L] that is not “negligible.” Since the adversary performed
a separable measurement, we can write the corresponding POVM ele-
ment Mz as a tensor product of single-qubit operators. In particular, we
can write Mz = tr(Mz)

⊗n
i=1

⊗lg q
j=1Rij , where each Rij is a single-qubit

operator, positive semidefinite, with trace 1.
We now construct a fictional adversary A(f), which we will use in the
proof. The fictional adversary acts in the following way: for each qubit
(i, j) ∈ [n] × [lg q], it performs the POVM measurement {Rij , I −Rij}
on qubit (i, j), which yields a binary measurement outcome Qij (where
Qij = 0 corresponds to the POVM element Rij , and Qij = 1 corresponds
to I − Rij). Let us write the vector of measurement outcomes as Q =
(Qij)i∈[n], j∈[lg q], which takes values in {0, 1}n lg q. Let 0 denote the vector

(0, 0, . . . , 0) ∈ {0, 1}n lg q.
Intuitively, the event Q = 0 (in an experiment using the fictional adver-
sary) corresponds to the event Z = z (in an experiment using the real
adversary). More precisely, for any s, t ∈ {0, 1}`, we have

PST |Z(s, t|z) =
PZ|ST (z|s, t)PST (s, t)

PZ(z)

=
PQ|ST (0|s, t) tr(Mz)PST (s, t)

PQ(0) tr(Mz)
= PST |Q(s, t|0).

(11)

We will proceed by upper-bounding PST |Q(s, t|0) (with the fictional ad-
versary); this will imply an upper-bound on PST |Z(s, t|z) (with the real
adversary).

Properties of the codewords C(S) and C(T ) Recall that
the messages S and T are independently and uniformly distributed in
GF (2)`. Now consider the codewords C(S) and C(T ). We claim that
there exists a subset of ` coordinates of C(S) and C(T ) that are inde-
pendently and uniformly distributed in GF (2)`.
To see this, recall that C is a linear code over GF (2). Hence the encoding
operation C : GF (2)` → GF (2)n lg q can be written in the form C(x) =
xTG for some matrix G ∈ GF (2)`×n lg q. Since the codewords C(x) are all
distinct, the matrix G must have row-rank `. Hence the column-rank of G
must also be `, so there exists a subset of ` columns of G that are linearly
independent over GF (2). Let us denote this subset by A ⊂ [n] × [lg q],
|A| = `.
Now look at those coordinates of C(S) and C(T ) that correspond to the
subset A; we write these as C(S)A = (C(S)ij)(i,j)∈A and (C(T )ij)(i,j)∈A.
It follows that C(S)A and C(T )A are independently and uniformly dis-
tributed in GF (2)`.

Behavior of the fictional adversary on the subset of qubits
A We now analyze the behavior of the fictional adversary on those qubits
belonging to the subset A. Without loss of generality, we can assume that
the fictional adversary measures the qubits in the subset A first, and
then measures the remaining qubits in the subset ([n]× [lg q]) \A. (This
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follows because the fictional adversary is non-adaptive, in that it makes
all its decisions about what measurements to perform, before seeing any
of the results of the measurements; and because all of the measurements
commute with one another, since each measurement only involves a single
qubit.)
For convenience, let B = ([n]× [lg q]) \A. Let QA = (Qij)(i,j)∈A denote
the measurement outcomes of the qubits in the subset A, and let QB =
(Qij)(i,j)∈B denote the measurement outcomes of the qubits in the subset
B.
We claim that the OTM’s coin tosses Γ , conditioned on the event QA =
0, are still uniformly distributed in {0, 1}n. This is a fairly straightfor-
ward calculation; see the full paper [2] for details.

Using the uncertainty relation We will upper-bound these prob-
abilities PST |ΓQA

(s, t|γ, 0), using an entropic uncertainty relation. The
basic idea is to consider another experiment, where one runs the OTM
and the fictional adversary “backwards” in time. This experiment can
be analyzed using the uncertainty relation in Theorem 1 (originally due
to [16]).
We now describe this new experiment (see Figure 2). One prepares the
quantum state

⊗
(i,j)∈ARij , one chooses a uniformly random sequence

of measurement bases Θ = (Θ1, . . . , Θn) (where Θi = 0 denotes the
standard basis and Θi = 1 denotes the Hadamard basis), and then one
measures each qubit (i, j) ∈ A in the basis Θi to get a measurement
outcome Xij (which can be either 0 or 1).
Intuitively, the state

⊗
(i,j)∈ARij corresponds to the fictional adversary’s

measurement outcome QA = 0, the random bases Θ correspond to the
OTM’s coin flips Γ , and the measurement outcomes X correspond to
those bits C(S)A and C(T )A used in the OTM. (Note that the OTM’s
coin flips Γ are uniformly distributed, even when one conditions on the
event QA = 0, as shown in the previous section.)

H

s
State

⊗
(i,j)∈ARij

Coin flips Θ

MeasureX

Fig. 2. In order to understand the behavior of the fictional adversary, conditioned on
the event QA = 0, we consider an analogous experiment, where the state

⊗
(i,j)∈ARij

is measured in a random basis. We will analyze this using an entropic uncertainty
relation.

To make this intuition precise, we will first show that:

Hε
∞(S, T |Γ,QA = 0) = Hε

∞(X|Θ) + `. (12)

(See the full version [2] for details.) Then note that conditioning on Γ
can only reduce the entropy, hence we have:

Hε
∞(S, T |QA = 0) ≥ Hε

∞(X|Θ) + `. (13)
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We then use Theorem 1 to show a lower-bound on Hε
∞(X|Θ); see the

full paper [2] for details.

Combining all the pieces The fictional adversary’s complete se-
quence of measurement outcomes is denoted by Q = (QA, QB). So far
we have analyzed the adversary’s actions on those qubits belonging to
the subset A, and we have shown a lower-bound on Hε

∞(S, T |QA = 0).
Now, we will show a lower-bound on Hε

∞(S, T |Q = 0). To do this, we
bound the adversary’s actions on the subset B in a more-or-less trivial
way, using the fact that Pr[Q = 0] = Pr[Z = z]/ tr(Mz) ≥ δ/2n lg q, since
z was assumed to be “non-negligible.”
We will then consider the real adversary, and show a lower-bound on
Hδ+ε
∞ (S, T |Z). Here we use the following identity that relates the real

adversary and the fictional adversary (see equation (11)):

Hε
∞(S, T |Z = z) = Hε

∞(S, T |Q = 0). (14)

Finally we combine these results to prove the theorem; see the full paper
[2] for details.

4 Efficient implementations of one-time
memories

In the previous section, we showed that one-time memories can be con-
structed from any code that approaches the capacity of the q-ary sym-
metric channel, and is linear overGF (2). In this section, we will construct
codes that have these properties, and moreover can be encoded and de-
coded efficiently. Using these codes, we will get efficient implementations
of one-time memories.

Message S
` = k lg q0

C0

n lg q0

lg q0
C1

lg q

C1

(n blocks)

n lg q

Codeword X

Fig. 3. Efficient codes for the q-ary symmetric channel, based on erasure coding and
error detection.

There are several known constructions for codes that approach the ca-
pacity of the q-ary symmetric channel, and are efficiently decodable
[22,23,24]. To illustrate how these techniques can be applied in our set-
ting, we will describe one simple approach, which is based on erasure
coding and error detection [23]. (See Figure 3.)
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The basic idea is to take the message s, encode it using a code C0 that
outputs a string of q0-ary symbols (where q0 < q), and then encode each
q0-ary symbol using a code C1 that outputs a q-ary symbol. The code
C1 is used to detect errors made by the q-ary symmetric channel; once
detected, these errors can be treated as erasures. The code C0 is then
used to correct these erasures, which is relatively straightforward. For
instance, we can choose C0 to be a random linear code; then we can
decode in the presence of erasure errors by solving a linear system of
equations, which we can do efficiently.
We now describe the construction in detail. Let k ≥ 2 be an integer, let
pe ∈ (0, 1), and choose any small constants 0 < ε � 1, 0 < δ � 1 and
0 < θ � 1. Define:

n =

⌊
k

1− pe − θ

⌋
, (15)

q = 2c, c = lg q =
⌊
2
δ

⌋ ⌈
εn+ lg(npe)

⌉
, (16)

q0 = 2c0 , c0 = lg q0 =
⌈
2
δ
− 2
⌉ ⌈
εn+ lg(npe)

⌉
. (17)

Note that our setting is slightly unusual, in that we will be constructing
codes for the q-ary symmetric channel where q is not fixed. In particu-
lar, lg q (the number of bits used to describe each q-ary symbol) grows
polynomially with the codeword length n, which is proportional to the
message length k.
We will construct a code C : {0, 1}k lg q0 → {0, 1}n lg q as follows:
1. Choose a uniformly random matrix G0 ∈ GF (2)k lg q0×n lg q0 , and

define a code C0 : {0, 1}k lg q0 → {0, 1}n lg q0 by setting C0(s) =
sTG0.

2. Fix any full-rank matrix G1 ∈ GF (2)lg q0×lg q, and define a code
C1 : {0, 1}lg q0 → {0, 1}lg q by setting C1(v) = vTG1.

3. Define C(s) = C1 ◦ C0(s), where we view C0(s) ∈ {0, 1}n lg q0 as a
sequence of n blocks of lg q0 bits, and C1 acts separately on each
of these blocks. Equivalently, we can write C(s) = sTG0(

⊕n
i=1G1),

where
⊕n

i=1G1 denotes a direct sum of n copies of the matrix G1.
We use the following decoding algorithm:
1. Given a string z ∈ {0, 1}n lg q, write it as a sequence of n blocks of

lg q bits: z = (zij)i∈[n],j∈[lg q].

2. For each i ∈ [n], try to decode the q-ary symbol zi ∈ {0, 1}lg q, i.e.,
try to find some v ∈ {0, 1}lg q0 such that C1(v) = zi. Let bi be the
result (or set bi = ∗ if zi lies outside the image of C1). Thus we get
a string b = (b1, b2, . . . , bn) ∈

(
{0, 1}lg q0 ∪ {∗}

)n
.

3. Try to decode the string b, treating the ∗ symbols as erasures, i.e.,
try to find some a ∈ {0, 1}k lg q0 such that, for all i ∈ [n] such that
bi 6= ∗, and for all j ∈ [lg q], C0(a)ij = bij . If a solution exists, output
it; if there are multiple solutions, choose any one of them and output
it; otherwise, abort.

Finally, we introduce some more notation. Let us choose a message (rep-
resented by a random variable S) uniformly at random in {0, 1}k lg q0 .
Let Eq be the q-ary symmetric channel with error probability pe. We
take the message S, encode it using the code C, transmit it through the
channel Eq, then run the decoding algorithm, and get an estimate of the
original message; call this Ŝ.
We prove the following statement (see the full paper [2] for details):
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Theorem 3. Let k ≥ 2 be an integer, let pe ∈ (0, 1), and choose any
small constants 0 < ε � 1, 0 < δ � 1 and 0 < θ � 1. Let us construct
the code C : {0, 1}k lg q0 → {0, 1}n lg q as described above. Then C has
the following properties:

1. With high probability (over the choice of the random matrix G0), C
can transmit information reliably over the q-ary symmetric channel
Eq with error probability pe.
More precisely, choose any small constant τ such that 0 < τ < θ,
and choose any large constant λ� 1. Then, with probability ≥ 1− 1

λ

(over the choice of G0), the code C can transmit information over
the channel Eq, and the probability of decoding failure is bounded by:

Pr[Ŝ 6= S] ≤ λ
(
e−2τ2n + 2−εn + 2(−nθ+nτ+1) lg q0

)
≤ e−Ω(n). (18)

2. C is a linear code over GF (2).
3. C has rate α := k lg q0

n lg q
≥ (1−pe−θ)(1−δ). (Note that this approaches

the capacity of the channel Eq, as shown in equation (2), when q is
large.)

4. The encoding and decoding algorithms for C run in time polynomial
in n lg q. (Also note that lg q grows at most linearly with n, and n is
proportional to k.)

Finally, we can take the code C constructed above (for pe = 1
2
), and

combine it with the OTM construction of Theorem 2, to get the following
result:

Corollary 1. For any k ≥ 2, and for any small constant 0 < µ � 1,
there exists an OTM construction that stores two messages s, t ∈ {0, 1}`,
where ` = Θ(k2), and has the following properties:

1. The OTM behaves correctly for honest parties.
2. The OTM can be implemented in time polynomial in k.
3. Let 0 < δ � 1 be any small constant. Suppose the messages s and

t are chosen independently and uniformly at random in {0, 1}`. For
any separable adversary,4 we have the following security bound:

Hδ+ε
∞ (S, T |Z) ≥ ( 1

2
− µ) `− lg 1

δ
. (19)

Here S and T are the random variables describing the two messages,
Z is the random variable representing the adversary’s measurement
outcome, and we have ε ≤ exp(−Ω(k)).
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4 Note that this includes LOCC adversaries as a special case.
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