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Abstract

This paper presents an algorithm to construct cryptographically strong genus 2 curves and their
Kummer surfaces via Rosenhain invariants and related Kummer parameters. The most common
version of the complex multiplication (CM) algorithm for constructing cryptographic curves in
genus 2 relies on the well-studied Igusa invariants and Mestre’s algorithm for reconstructing
the curve. On the other hand, the Rosenhain invariants typically have much smaller height, so
computing them requires less precision, and in addition, the Rosenhain model for the curve can
be written down directly given the Rosenhain invariants. Similarly, the parameters for a Kummer
surface can be expressed directly in terms of rational functions of theta constants. CM-values
of these functions are algebraic numbers, and when computed to high enough precision, LLL
can recognize their minimal polynomials. Motivated by fast cryptography on Kummer surfaces,
we investigate a variant of the CM method for computing cryptographically strong Rosenhain
models of curves (as well as their associated Kummer surfaces) and use it to generate several
example curves at different security levels that are suitable for use in cryptography.

1. Introduction

The extension of the Atkin-Morain complex multiplication (CM) algorithm [1] from elliptic
curves to abelian surfaces began with the work of Spallek in 1994 [32]. In the two decades since
then, the CM method in genus 2 has undergone a vast range of improvements, both theoretical
and computational, which were motivated in large part by its application to generating abelian
surfaces for use in cryptography. For a long time, the CM method was the only practical
way to find abelian surfaces suitable for deployment; while Schoof’s classical point counting
algorithm [29] was more than efficient enough to find cryptographic curves in genus 1, the genus
2 analogue [27] was originally too slow to count points on abelian surfaces with cardinalities
large enough to match their elliptic curve counterparts. Nowadays, genus 2 point counting has
become more efficient, such that (with enough computing power) one can find cryptographically
strong Jacobians of size up to 256-bits [17] suitable for the 128-bit security level. When
targeting higher security levels however, counting points still appears too slow to find suitable
genus 2 curves, and it is likely that the 192- and 256-bit security levels will remain out of reach
of the Schoof-Pila algorithm for some time. On the other hand, the CM method can be used to
efficiently construct cryptographically strong abelian surfaces at any foreseeable security level.
Moreover, a state-of-the-art implementation [14] computes class polynomials for CM fields of
class number well beyond 104, which essentially guarantees that the CM method can be used
to find secure curves over any specific prime field: a larger search pool of CM fields means that
implementers can fix their favorite prime characteristic p in advance, and can then expect to
find such a CM field K where the splitting of p in OK gives rise to almost-prime group order(s)
and thus strong cryptographic curves.
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In this paper we present a variant of the CM method in genus 2. Our primary motivation
is the advent of ‘Kummer cryptography’: based on observations by Chudnovsky and Chud-
novsky [10], Gaudry showed that working on the Kummer surface associated to a genus 2
Jacobian, rather than the Jacobian itself, results in large performance gains in the realm of
public-key cryptography [15]. Just like the Jacobian variety, the Kummer surface, denoted
by K, can be embedded into projective space via the use of theta constants with half integer
characteristics. For hyperelliptic curves of the form C : y2 = f(x), this embedding is linked to
the roots of f(x) (cf. [35]), and hence is also related to the Rosenhain invariants of C: for a
genus 2 curve with f(x) =

∏6
i=1(x− ui), over the algebraic closure, any three of the ui can be

mapped to 0, 1 and∞ using linear fractional transformations to write C in Rosenhain form as

Cλ : y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3), (1.1)

where λ1, λ2 and λ3 are called “the” Rosenhain invariants of C. Gaudry gives explicit relations
between the constants defining the Kummer surface K and the Rosenhain invariants [15, §4],
which can be used to write down Cλ given the coefficients of K, and vice versa.

We propose an algorithm to construct cryptographically strong genus 2 curves and their
Kummer surfaces via Rosenhain invariants and the related Kummer parameters. The main
benefits of the proposed approach include:

– The Rosenhain invariants satisfy minimal polynomials whose coefficients are much smaller
than the coefficients of the Igusa class polynomials, which means that less precision is
required in the computations.

– The equation of the curve C = Cλ (1.1) is immediate once the Rosenhain invariants are
found, in contrast to Igusa invariants, where the Mestre-Cardona-Quer algorithm [24, 9]
is required in order to find the equation for C.

– Minimal polynomials for Kummer parameters can be computed in the same way as those
of the Rosenhain invariants. These provide a direct way of determining the Kummer
surfaces over a finite field Fp, by taking a compatible system of roots. This avoids square
root extractions required when computing K from C (cf. [6, §5.2]), which can give rise to
Kummer surface parameters not defined over the ground field Fp.

To understand the trade-offs involved in this approach, we must consider the following issues:
– While the coefficients of the Rosenhain class polynomials are much smaller than their

Igusa counterparts, the degrees of the Rosenhain polynomials are generally (though not
always) larger†.

– The method does not lend itself to finding cryptographic curves with Jacobian of prime
order, since the entire 2-torsion is rational (i.e. defined over Fp) when the Rosenhain model
is defined over Fp, and thus 16 divides the group order.

To address the first point, we study the relationship between the degrees of the Igusa and
Rosenhain invariants, and show that the degree increases by a small factor which depends on
how the prime 2 splits in the CM field. In practice we can use our formulas to predict the
degree of the Rosenhain invariants (or a small multiple of the degree) before computing them,
which can help with recognizing their minimal polynomials when using algorithms based on
LLL. We also give an algorithm for computing the Galois conjugates of the invariants, which
can be used to compute minimal polynomials directly without LLL.

The second point above turns out to be a benefit, rather than a drawback. While prime order
groups provide the best ratio of security to bit-length, the last decade of research has shown
several benefits of using curves with a small amount of rational torsion. For elliptic curves,
allowing rational 2- and 4-torsion points can facilitate much more efficient cryptography via

†Intuitively, the Igusa polynomials split in the field where the abelian surface C is defined, but the Rosenhain
polynomials only split where the 2-torsion of the Jacobian, Jac(C), is also defined.
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the Montgomery model [26] or variants of the Edwards model [12, 5], while in genus 2 the
benefits are even more extreme: operation counts for Gaudry’s formulas [15] estimate that
allowing rational 2-torsion in order to use the Kummer surface can give rise to cryptographic
operations which are more than twice as fast as working on a prime-order Jacobian [3], and this
was confirmed both by recent performance results in [6] (which compared the two) and in [4]
(which pushed the relative Kummer performance even further ahead). Furthermore, recent
work by Lubicz and Robert [23] shows that it can be advantageous to allow at least one more
rational small-torsion point in addition to the full 2-torsion, in order to facilitate “compatible”
additions on the Kummer surface [28]. The conclusion is that abelian surfaces constructed for
state-of-the-art cryptography will have rational 2-torsion anyway. In addition, the Rosenhain
polynomials can sometimes be used to deduce, for a specific CM field, congruence conditions
on the primes p where all the 2-torsion is rational (Example 2 was chosen to illustrate this).

We give several tables with experimental data reflecting the degrees of the invariants and the
size of the coefficients. Tables 2 and 3 show the degree of the Rosenhain invariants as it relates
to the decomposition of the prime 2 in the CM field K. Table 4 summarizes the coefficient size
for a number of examples which were used to find cryptographically strong curves at different
security levels.

2. Theta functions, Rosenhain invariants, and Kummer surfaces

We give the basic theory of theta functions in §2.1, set our choice of Rosenhain invariants
in §2.2, and recall the Kummer surface parameters in terms of theta functions in §2.3. In
this section we describe everything over the complex numbers. Let Hn = {Ω ∈Mn(C) : Ωt =
Ω, Im Ω is positive definite} denote the n-dimensional Siegel upper half-space parameterizing
n-dimensional principally polarized abelian varieties.

2.1. Theta functions.

Theta functions are modular forms, and we can take quotients to form modular functions
whose values at points in H2 are the invariants of genus 2 curves. We adopt Gaudry’s
notation from [15] for the most part. Let τ ∈ H2. For z ∈ C2, the Riemann theta function
with characteristics c1, c2 ∈ Q2 is defined as

θ[c1, c2](z, τ) =
∑
m∈Z2

exp
(
πi (m+ c1)

t
τ (m+ c1) + 2πi (m+ c1)

t
(z + c2)

)
.

We focus on the case where c1 and c2 are vectors with entries either 0 or 1
2 , so there are 16

possibilities for [c1, c2]. By evaluating at z = (0, 0), this gives rise to 16 theta constants, which
we number consistent with the numberings from [15, §7.1], using the abbreviation θ[c1, c2] =
θ[c1, c2]((0, 0), τ). The first ten theta constants are values of even theta functions, the last six
are odd.

θ1 = θ[(0, 0), (0, 0)]; θ2 = θ[(0, 0), ( 1
2
, 1
2

)]; θ3 = θ[(0, 0), ( 1
2
, 0)]; θ4 = θ[(0, 0), (0, 1

2
)];

θ5 = θ[( 1
2
, 0), (0, 0)]; θ6 = θ[( 1

2
, 0), (0, 1

2
)]; θ7 = θ[(0, 1

2
), (0, 0)]; θ8 = θ[( 1

2
, 1
2

), (0, 0)];

θ9 = θ[(0, 1
2

), ( 1
2
, 0)]; θ10 = θ[( 1

2
, 1
2

), ( 1
2
, 1
2

)]; θ11 = θ[(0, 1
2

), (0, 1
2

)]; θ12 = θ[(0, 1
2

), ( 1
2
, 1
2

)];

θ13 = θ[( 1
2
, 0), ( 1

2
, 0)]; θ14 = θ[( 1

2
, 1
2

), ( 1
2
, 0)]; θ15 = θ[( 1

2
, 0), ( 1

2
, 1
2

)]; θ16 = θ[( 1
2
, 1
2

), (0, 1
2

)].

2.2. Rosenhain invariants.

For generating genus 2 curves for use in cryptography, there are many different possible
combinations of 6 even theta constants which yield a Rosenhain model for the curve Cλ as
in (1.1), with

λ1 =
θ2
i1
θ2
i3

θ2
i2
θ2
i4

, λ2 =
θ2
i3
θ2
i5

θ2
i4
θ2
i6

, λ3 =
θ2
i1
θ2
i5

θ2
i2
θ2
i6

.
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Several different choices for this combination have appeared in the literature: Igusa [20] and
Goren-Lauter [18] use (i1, . . . , i6) = (5, 1, 8, 7, 6, 4) while van Wamelen [36] takes (i1, . . . , i6) =
(3, 5, 9, 8, 2, 6). In this work we find it convenient to adopt the choices of Gaudry [15],
Cosset [11] and Grunewald [19], who all use (i1, . . . , i6) = (1, 2, 3, 4, 8, 10), to write

λ1 =
θ2

1θ
2
3

θ2
2θ

2
4

; λ2 =
θ2

3θ
2
8

θ2
4θ

2
10

; λ3 =
θ2

1θ
2
8

θ2
2θ

2
10

. (2.1)

2.3. Kummer surfaces.

Kummer surfaces for use in cryptography can also be described directly in terms of
their parameters, written as rational functions of the theta constants. We employ Cosset’s
reformulation [11] of Gaudry’s Kummer surface description [15]. The first four theta constants

a = θ1, b = θ2, c = θ3, d = θ4,

can be used to define a model for the level 2 Kummer variety K associated to the abelian
surface corresponding to τ . Further defining

A = a+ b+ c+ d, B = a+ b− c− d, C = a− b+ c− d, D = a− b− c+ d;

F =
a2 − b2 − c2 + d2

ad− bc
, G =

a2 − b2 + c2 − d2

ac− bd
, H =

a2 + b2 − c2 − d2

ab− cd
;

E =
ABCD

(ad− bc)(ac− bd)(ab− cd)
, E′ = 4E2abcd,

then the projective surface K = K(x, y, z, t) is defined by

E′ · xyzt =
(
(x2 + y2 + z2 + t2)− F · (xt+ yz)−G · (xz + yt)−H · (xy + zt)

)2
. (2.2)

In addition to the four constants E′, F,G,H that define the surface, routines for cryptographic
scalar multiplications on K require six additional constants that appear in the (pseudo-)group
law formulas:

y0 =
a

b
, z0 =

a

c
, t0 =

a

d
, y′0 =

A

B
, z′0 =

A

C
, t′0 =

A

D
.

Together with the four constants in (2.2), the above six constants are all that is needed to
instantiate cryptographic scalar multiplications on K – see [15] and [11] for the associated
algorithms. The constant point (a, b, c, d) is the zero element for the (pseudo-)group law on K.

The double-cover JCλ → K maps inverse divisors on the Jacobian of Cλ to the same element
on K; it also identically maps inverse points on JC′λ to K, where C ′λ is the non-trivial quadratic
twist of Cλ, which means that a random point on K can be pulled back (via the formulas in [15,
11]) to either JCλ or JC′λ . Therefore, following an observation made in [2], in state-of-the-art
Kummer cryptography it is essential that Cλ is chosen to be twist-secure, i.e. that both JCλ
and JC′λ have almost prime group orders.

The relation between the Kummer surface parameters and the Rosenhain invariants is given
explicitly in [15] as

λ1 =
ac

bd
; λ2 =

c

d
·

1 +
√
CD/AB

1−
√
CD/AB

; λ3 =
a

b
·

1 +
√
CD/AB

1−
√
CD/AB

. (2.3)

3. The CM Method for Abelian Surfaces

The goal of using the CM method in cryptography is to generate (smooth, projective,
irreducible) curves over a finite field with a given number of points on the Jacobian. The
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complex analytic version of the CM method for genus 2 has been proposed, implemented and
improved in [32, 36, 37, 33, 34, 14]. We do not discuss the p-adic [16] or CRT [13] versions
of the method here. The method works by relating the number of points on the Jacobian of
the curve over a finite field Fp to the endomorphism ring of the Jacobian of the curve. In the
ordinary case, the endomorphism ring determines a CM field K, and then the problem becomes
constructing abelian varieties with CM by the field K. This is accomplished by computing the
CM points on H2 and evaluating certain modular functions at those points. These values are
algebraic numbers lying in some large number field. In order to recognize the invariants of the
curve or variety over a finite field, we first compute the minimal polynomial over Q (or some
extension field of Q), and then reduce modulo the prime p to find its roots. The rest of this
section will explain these steps in detail and give the algorithm we use for evaluating Rosenhain
invariants.

3.1. Determining the Number of points

A (smooth, projective, irreducible) curve over a finite field Fp has a Frobenius endomorphism,
and in genus 2 this endomorphism has a quartic characteristic polynomial f(t) = t4 − s1t

3 +
s2t

2 − ps1t+ p2. If the curve is ordinary and f is irreducible, let K be the quartic CM field
defined by the polynomial f and fix an embedding of K into the complex numbers. Let π be
a complex root of the polynomial f(t). The roots of f consist of conjugate pairs (π, π) and
(π′, π′), with the property π′π′ = ππ = p, and these are called “Weil p-numbers”.

If a solution to ππ = p exists in the field K, then the ideal p = (π) in OK has relative norm
pp = p. So to determine the possible group orders of abelian surfaces over Fp with CM by K,
it suffices to factor the ideal pOK and look for principal generators of the factors.

Thus, given a CM field K and a prime p, the ordinary genus 2 curves over Fp with CM by
K (i.e. with End(JC) ∼= OK) correspond to generators of principal ideals with relative norm
p such that |π| = √p. Note that a generator may have to be scaled by a unit in K to ensure
that |π| = √p. Since #JC(Fp) = (1− π)(1− π)(1− π′)(1− π′), in order to know the possible
group orders for genus 2 curves with CM by K, it suffices to find the prime ideal decomposition
of p in OK (which determines all possible π’s). For primes which split completely into principal
ideals in the reflex field of K, there are always 2 possible group orders when K 6= Q(ζ5) is
Galois cyclic and 4 possible group orders when K is non-Galois (see [13, Proposition 4] for the
possibilities).

In our application, we generate many CM fields K for which we can compute the minimal
polynomials of the Rosenhain invariants, and then we sieve through primes p (of a special form
which are advantageous for implementation) until the pair (p,K) gives rise to group orders
suitable for cryptography.

3.2. Computing CM points on the moduli space

An abelian variety of dimension n over C is analytically isomorphic to Cn/Λ for some lattice
Λ with a nondegenerate Riemann form; this form induces a polarization on the abelian variety.
As above, let Hn be the Siegel upper half plane parameterizing polarized abelian varieties of
dimension n. By constructing a symplectic basis for the lattice with respect to the Riemann
form, we can write Λ as Λ = Zn + τZn where τ ∈ Hn. Any Jacobian variety of a curve has a
principal polarization induced by the curve. In particular, we focus on 2-dimensional abelian
varieties that are Jacobians of genus 2 curves. Our first goal will be to compute at least one τ
given the endomorphism ring.

An abelian variety of dimension n over C is called a CM abelian variety if its endomorphism
ring is isomorphic to an order in the ring of integers of a CM number field of degree 2n. We
will focus here on the case that the endomorphism ring is isomorphic to the maximal order
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OK . A CM number field K is an imaginary quadratic extension of a totally real field K0 of
degree n.

A CM type (K,Φ) is a pair where K is a CM field and Φ is a set of n complex embeddings
of K, Φ = {φ1, ..., φn} such that φi 6= φj , ρφj for i 6= j where ρ is complex conjugation. A CM
type is called simple if it is not lifted from a CM type strictly contained in K. Let a be an
ideal of K and let OK be the ring of integers of K. Then

Φ(α) = (φ1(α), · · · , φn(α))
t
, α ∈ a

forms a lattice in Cn with CM by OK . The corresponding abelian variety is said to have CM
of type (K,Φ). We only study simple CM types of dimension 2. Thus we restrict to quartic
CM number fields K where K/Q is either Galois cyclic or non-Galois, avoiding the biquadratic
case where the Galois group is the Klein 4-group because (K,Φ) is not simple [31, pp. 63-65].

To compute τ , we must also specify the Riemann form on Φ(a). To do so, we use the following
theorems of Shimura and Taniyama [31, Ch. 2, Thm. 4]: If K0 is the real quadratic subfield
and ξ is such that

(1) K = K0(ξ), ξ2 ∈ K0 and Im(φi(ξ)) > 0 for all φi ∈ Φ, and
(2) DK/Qaa = (ξ−1) for some fractional ideal a of K, where DK/Q is the different,

then E(z, w) =
∑n
j=1 φj(ξ)(zjwj − zjwj) defines a principal polarization of type (K,Φ) on

Cn/Φ(a). Furthermore, if (K,Φ) is a simple type, then all principal polarizations of type
(K,Φ) on Cn/Φ(a) are given by such ξ. Shimura and Taniyama also prove that two principally
polarized simple abelian varieties (Cn/Φ(a), ξ1) and (Cn/Φ(b), ξ2) of the same type are
isomorphic if and only if there exists γ ∈ K such that γa = b and ξ1 = γγξ2 [31, Ch. 2 –
Prop. 14, and p. 107]. Together, these theorems give an algorithm to compute the principally
polarized CM abelian varieties with CM by K up to isomorphism. This algorithm was first
proposed by Spallek [32] and then implemented robustly by van Wamelen [36] and Weng [37]
for the Jacobian of a genus 2 curve. In particular, when K0 has class number 1, Weng and
Spallek gave a closed form for the entries of the period matrices for all isomorphism classes
of principally polarized abelian varieties with CM by K. For our results, we implemented the
following algorithm which is an extension of [36, Alg. 1], and essentially the same as [33, Alg.
3.1] and [14, Alg. 1].

Algorithm 1. Input: a primitive quartic CM field K.
Output: period matrices for all principally polarized abelian surfaces with CM by OK .

(i) Compute the class group of K. Each ideal class gives an isomorphism class of complex tori
with CM by OK as above.

(ii) Find all ideal classes [a] such that [aa] = [D−1
K/Q]. Pick an ideal a from each of these ideal

classes and compute a generator b of the ideal DK/Qaa.
(iii) If the ideal class gives an abelian variety with a principal polarization, we can find a unit

u ∈ OK so that ub = −ub. Then set ξ0 = (ub)−1.
(iv) Iterate over the units in OK0 modulo norms of units in OK to find all possible principal

polarizations for each ideal class: for each unit u+ in this set, choose a type Φ so that if
ξ = u+ξ0, Im(φi(ξ)) > 0 for each φi ∈ Φ.

(v) Each ξ defines a principal polarization E of type (K,Φ) on Cn/Φ(a).
(vi) Compute a symplectic basis of B = {e1, e2, f1, f2} of Φ(a) with respect to the symplectic

form 〈z, w〉 = tr(ξzw). Then

ω1 =

(
σ1(e1) σ2(e1)
σ1(e2) σ2(e2)

)
, ω2 =

(
σ1(f1) σ2(f1)
σ1(f2) σ2(f2)

)
, and τ = ω1ω

−1
2 .
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3.3. Igusa Class Polynomials

Let {τi} ∈ H2 be the period matrices as output by Algorithm 1. The three Igusa invariants,
j1,i, j2,i, j3,i, are computed (via the evaluation of the theta functions) as functions of τi, from
which the Igusa class polynomials, H1(x), H2(x), H3(x), are constructed:

H1(x) =
∏
i

(x− j1,i), H2(x) =
∏
i

(x− j2,i), H3(x) =
∏
i

(x− j3,i). (3.1)

The purpose of this paper is to replace the Igusa class polynomials (in the CM method) by
analogous polynomials obtained from the Rosenhain invariants, λ1, λ2, λ3. In both cases, there
is a precise representation of the ideal defining the invariants (proposed for Igusa invariants
in [16, §3]) which is more convenient than (3.1) – we illustrate this modification for the
Rosenhain polynomials in Example 4 and Example 5.

3.4. Computing λ-invariants and Kummer surfaces

Similar to the Igusa invariants case, we compute the Rosenhain invariants as algebraic
numbers by evaluating theta functions to high precision on the period matrices that are
output by Algorithm 1. Recall that we are computing the following choice of Rosenhain

invariants: λ1(τ) =
θ2
1θ

2
3

θ2
2θ

2
4
, λ2(τ) =

θ2
3θ

2
8

θ2
4θ

2
10
, λ3(τ) =

θ2
1θ

2
8

θ2
2θ

2
10

at z = (0, 0). Computer algebra systems

such as Magma and Sage have theta function implementations which can be used to compute
the Rosenhain invariants as complex numbers with given precision. The bottleneck occurs when
trying to recognize the Rosenhain invariants as algebraic numbers. For τ output by Algorithm 1,
if we compute λ1(τ), λ2(τ), λ3(τ) to enough precision, we can use the LLL algorithm [22] to
recognize the minimal polynomials of the Rosenhain invariants.

In Section 5 below, we compute a bound on (actually a multiple of) the degree of the minimal
polynomials of the Rosenhain invariants which helps with the speed and accuracy of the LLL
step. The parameters defining the Kummer surface are also written as rational functions in
the theta constants, and the precise relationship with the Rosenhains was given in (2.3). In
practice, we have recognized the Rosenhain invariants and Kummer invariants for many CM
fields K with this approach, and used them to generate suitable curves and Kummer surfaces
for cryptography – see Section 6. However, the above algorithm does not produce all the Galois
conjugates of the CM values of the Rosenhain functions. In the next section, we describe how
to compute them.

4. Galois Conjugates of a CM point

In this section we will explain how to compute the Galois conjugates of a CM value of the λ
functions and their minimal polynomials. The algorithm we give here follows from the theory
of complex multiplication and does not use Shimura’s reciprocity law (see [39] for further
explanation). We describe the algorithm in concrete terms. A self-contained and readable
account of Shimura’s explicit reciprocity law and its applications to computing the Galois
conjugates of CM values of a modular function is given by Streng [34]. While Streng’s work
deals with a much more general case, we focus on the application to the Rosenhain invariants
and give an algorithm for explicitly computing the Galois conjugates of a CM point and the
minimal polynomials of Rosenhain invariants.

4.1. Preliminaries

Let (K,Φ) be a non-biquadratic quartic CM number field with CM type Φ = {σ1, σ2} and real
quadratic subfield K0. Let (Kr,Φr) be its reflex field and reflex CM type with real quadratic
subfield Kr

0 . Let M = KKr be the Galois closure of K and Kr over Q, then Gal(M/Q) is



Page 8 of 23 C. COSTELLO, A. DEINES-SCHARTZ, K. LAUTER, AND T. YANG

either the dihedral group of order 8 or the cyclic group of order 4. Let

ΦM = {σ ∈ Gal(M/Q) : σ|K = σ1 or σ2}

which is a CM type of M . Similarly, one defines the reflex CM type extension ΦrM of Φr to
M . Then ΦrM = {σ−1 : σ ∈ ΦM}. The type norm NΦr is defined as follows. For an element
x ∈ Kr, one has NΦr (x) = σr1(x)σr2(x). For a fractional ideal b of Kr, one has

NΦr (b) = σr1(b)σr2(b)OM ∩K. (4.1)

Let us identify {±1} ∼= Z/2. For a principally polarized abelian surface (A, λ), the Weil
pairing on the 2-torsion A[2] becomes a non-degenerate symplectic form:

〈 , 〉 A[2]×A[2]→ Z/2.

Recall that X(2) = Γ(2)\H2 is the coarse moduli space of the isomorphism classes of triples
(A, λ,B), where (A, λ) is a principally polarized abelian surface and B = {e1, e2, f1, f2} is an
ordered symplectic basic of A[2]. A CM point of CM type (K,Φ) in X(2) is then indexed by
a tuple (a, ξ, B), where

(1) a is a fractional ideal of K, ξ ∈ K× with ξ̄ = −ξ such that a is self-dual with respect to
the following symplectic form on K

〈x, y〉 = trK/Q ξxȳ, (4.2)

which is equivalent to

ξDK/Qaa = OK . (4.3)

(2) B = {e1, e2, f1, f2} is an ordered symplectic Z-basis with the following property. Let

ω1 =
(
σ1(e1) σ2(e1)
σ1(e2) σ2(e2)

)
, ω2 =

(
σ1(f1) σ2(f1)
σ1(f2) σ2(f2)

)
, and τ = ω1ω

−1
2 .

We require Im τ > 0.
In this case, τ ∈ X(2) gives the CM point, and the associated triple is (Aa, λ,Φ(B)), where

A = C2/Φ(a), λ is given by the symplectic form, Φ(B) = {Φ(e1),Φ(e2),Φ(f1),Φ(f2)}, and
Φ(a) = (σ1(a), σ2(a)) ∈ C2 for a ∈ a. Furthermore, A[2] ∼= 1

2a/a, and the Weil pairing is given
by

1

2
a× 1

2
a→ Z/2, 〈1

2
x,

1

2
y〉 = 〈x, y〉 (mod 2),

where the left hand side is the Weil pairing and the right hand side is the symplectic pairing
given by (4.2).

4.2. The Action

Let CL(Kr,Φr, 2) be the quotient group of fractional ideals of Kr which are prime to 2,
modulo fractional ideals b, with the property

NΦr (b) = αOK , α ≡ 1 (mod 2), αᾱ = N(b).

We call this group the CM class group of Kr of type Φr and level 2. Let H(2) be the associated
class field of Kr with the canonical isomorphism

CL(Kr,Φr, 2) ∼= Gal(H(2)/Kr), [b] 7→ σb.

By the theory of complex multiplication, a CM point τ = (a, ξ, B) of CM type (K,Φ) is defined
over H(2) . We now describe the image of τ under the action of σb−1 .
Step 1: Since NΦr (b)NΦr (b) = N(b) ∈ Q>0, aNΦr (b) is self-dual with respect to the new

symplectic form

〈x, y〉b =
1

N(b)
〈x, y〉.
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Choose a symplectic basis B′ = {e′1, e′2, f ′1, f ′2} of aNΦr (b) with respect to this new symplectic
form, such that τ ′ = ω′1(ω′2)−1 ∈ H2, where ω′i is defined the same way as ωi in this new
context. Then τ ′ = (aNΦr (b), ξ

N(b) , B
′) ∈ X(2) is a CM point of CM type (K,Φ). Note that a

symplectic basis can be computed using the FrobeniusFormAlternating command in Magma,
or the symplecticform command in Sage.
Step 2: To get σb−1τ , we need to modify the symplectic basis B′. Choose an α ∈ NΦr (b)

such that α ≡ 1 (mod 2), i.e., ordv(α− 1) ≥ 0 for v|2 if 2 is unramified, and that αᾱ ∈ Q>0.
One choice is to take α = NΦr (b) with b ∈ b and b ≡ 1 (mod 2).
Step 3: Notice αei

2 ,
αfj
2 ∈ AaNΦr (b)[2], and that

〈αei
2
,
αfj
2
〉b =

αᾱ

N(b)
δij = δij ∈ Z/2,

〈αei
2
,
αej
2
〉b = 〈αfi

2
,
αfj
2
〉b = 0,

where δij is the Dirac symbol. Now we find a γ ∈ Sp4(Z) such that

γ(
e′1
2
,
e′2
2
,
f ′1
2
,
f ′2
2

)t = (
αe1

2
,
αe2

2
,
αf1

2
,
αf2

2
)t mod (aNΦr (b)).

Then, by the main theorem of complex multiplication [30], we have :

σb−1(a, ξ, B) =

(
aNΦr (b),

ξ

N(b)
, γ(B′)

)
, or more concretely, σb−1(τ) = γ(τ ′). (4.4)

Before the next subsection, we give a brief justification of the above steps (see [39, Section
3] for a proof and generalization). Clearly the above definition depends only on the class of
[b]. Let s be a finite idele of Kr such that sv = 1 for a prime v|2 of Kr, and that the ideal of
s is (s) = b−1. Then [30, Thm. 5.15] asserts that σs(Aa) = AaNΦr (b) and it moves a 2-torsion
point x

2 ∈
1
2a/a in Aa to the 2-torsion point y

2 ∈
1
2 (aNΦr (b))/(aNΦr (b)) in AaNΦr (b), where

y ∈ aNΦr (b) satisfies

y

2
=
s−1x

2
= (

s−1
v xv

2
) ∈ K/aNΦr (b) = ⊕Kv/(aNΦr (b))v.

Our construction gives

σs(
ei
2

) =
αei
2
, σs(

fi
2

) =
αfi
2
, i = 1, 2.

So

σb−1(a, ξ, B) = σs(Aa,
ei
2
,
fi
2

) = (AaNΦr (b),
αei
2
,
αfi
2

).

Notice that {αei, αfi, i = 1, 2} does not in general give a Z-basis of aNΦr (b). However, our
modification γ(B′) is a symplectic Z-basis of aNΦr (b) which satisfies

γ(B′)

2
= {αei, αfi, i = 1, 2} mod (aNΦr (b)).

This justifies our construction.

4.3. The minimal polynomial of Rosenhain invariants

Now it is easy to compute class and minimal polynomials of λj(τ), j = 1, 2, 3 over Kr.
Step 4: For each class [b] ∈ CL(Kr,Φr, 2), choose a representative ideal b and compute

σb−1τ = τb ∈ H2.
Step 5: Compute the class polynomial of λj(τ)

λj(x) =
∏

[b]∈CL(Kr,Φr,2)

(x− λj(τb)). (4.5)
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It is defined over Kr by construction. It is actually defined over the real quadratic field Kr
0 of

Kr if at least one of the values λj(τb) is (recognizable as) real, as the Fourier coefficients of λj
are defined over Q. To get the minimal polynomial, we do the same, except that we use only
one λj(τb) value in the case that more than one are the same value. This minimal polynomial
is also defined over Kr

0 when λj(x) is.
Although the coefficients of λj(x) can have denominators, we can clear the denominators by

multiplying by some integer, which is given by formulas proved independently by Yang [38]
and then by Lauter and Viray [21] for more general CM fields. some integer, which is given
by formulas proved independently by Yang [38] and then by Lauter and Viray [21] for more
general CM fields. Actually using the result in [8], one can compute the norm of λj(τ) ∈ Q
with a precise factorization.

Remark 1. We get the other conjugates over Q by varying the CM type to obtain the
minimal polynomial over Q. Note though, that when working over a finite field Fp, we often
work under the assumption that p splits completely in the reflex field. In that case we could
directly use the minimal polynomial arising from one CM type modulo p. Also, an anonymous
reviewer commented that once we have computed a polynomial over Kr

0 , there is actually no
need to compute a second polynomial for the other CM type, since we may simply apply the
real conjugation map to the first polynomial.

In the remainder of the paper, we compute minimal polynomials for the λi by the method
described in Section 3.4 above, using LLL to recognize minimal polynomials over Q, instead
of the method just described which computes all conjugates. This often leads to polynomials
which have different degree for λi and λj , and makes it difficult to find a nice representation for
the ideal which represents the CM points precisely on the moduli space. In fact, the Lagrange
interpolation method from [16, §3] will work smoothly when using the same set of CM points,
e.g., the orbit set just described in this section where all three polynomials have the same
degree (all over Kr

0) but might not be irreducible.

5. Comparing the degree of Igusa and Rosenhain invariants

5.1. Degree of Igusa invariants

In order to understand the potential advantage of computing genus 2 curves via their
Rosenhain invariants, we need to compare the degrees of Igusa and Rosenhain invariants.
Equations (3.1) define the Igusa class polynomials, but they are not necessarily irreducible
over Q, as can be seen already from the examples of genus 2 CM curves over Q given by
van Wamelen [36]. Nonetheless, we will refer to the degree of the Igusa class polynomials as
the degree of the invariants. In other words, it is the number of principally polarized abelian
surfaces with CM by K, which is equal to the number of period matrices output by Algorithm
1 above. It follows from [7, Theorem 3.1 and Cor 3.3] and equivalently from [33, Lemma 3.5]
that the number of isomorphism classes of principally polarized abelian surfaces with CM by
K is equal to c0 · |Cl(K)|/|Cl(K0)| if K/Q is Galois cylic, and 2c0 · |Cl(K)|/|Cl(K0)| if K/Q
is non-Galois, where c0 = |O×K0

/(O×K0
)+|, the order of the group of units in OK0

modulo the
totally positive units, and so c0 = 1 or 2. In what follows we denote the order of the class group
Cl(K) of K, by h = |Cl(K)|, and the order of the quotient h− = h−(K) = |Cl(K)|/|Cl(K0)|.

5.2. Degree of Rosenhain invariants

Next we will relate the degree of the Rosenhain invariants to h−. We define the degree of the
Rosenhain invariants to be the degree of the polynomials λi(x) defined in equation (4.5). In
Section 4.2 above, we used the fact that the CM values λi(τ) lie in the field H(2), an extension
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of Kr of degree hΦr

2 = |CL(Kr,Φr, 2)|. Thus the Rosenhain invariants lie in a field of degree
at most 4hΦr

2 over Q. In what follows we will relate hΦr

2 to h−.
In [25, Theorem 1.7, p. 146], an exact sequence is given which relates the ray class group

with modulus m of a number field K to the class group of K. To simplify, we will assume here
that the modulus m is a product of prime ideals p of OK , (finite primes), with some multiplicity
m(p), and in particular in our application we will take m to be the modulus 2OK (or sometimes
2OK0

). This exact sequence can be used to understand the relationship between hΦr

2 and h−:

0→ U/Um,1 → Km/Km,1 → Cm → Cl(K)→ 0,

where Cm = Cm(K) is the group of fractional ideals of K prime to m, modulo principal ideals
generated by elements of Km,1, where

Km = {α ∈ K× | ordp(α) = 0,∀p | m},

Km,1 = {α ∈ K× | ordp(α− 1) ≥ m(p),∀p | m},

U = U(K) = O×K , U(K0) = O×K0
,

Um,1 = U ∩Km,1, Um0,1(K0) = U(K0) ∩Km0,1.

Thus the order of Cm is given by the formula

|Cm| = h ·N(m) ·
∏
p|m

(1− 1

N(p)
)/[U : Um,1].

Corollary 5.1. Let m0 = 2OK0 and m = 2OK . Denote h−2 (K) = |Cm(K)|/|Cm0(K0)|.
Then

h−2 (K) = h−(K)c(K) (5.1)

where

c(K) =
N(m)

∏
p|m(1− (N(p)−1))

N(m0)
∏

p0|m0
(1−N(p0)−1)

[U(K0) : Um0,1(K0)]

[U(K) : Um,1(K)]
.

Proof. Apply the above exact sequence twice, for Cm(K) and Cm0
(K0).

Now in the case at hand, m0 = 2OK0
and m = 2OK , let h2 = |Cm|. We can determine c(K)

fairly precisely because the following proposition shows that the contribution from the unit
terms is 1, except when K = Q(ζ5), and in that case we have c(Q(ζ5)) = 1.

Proposition 5.2. LetK be a non-biquadratic quartic CM number field with real quadratic
subfield K0. Then
(i) U(K) = U(K0) unless K = Q(ζ5), in which case U(K) = U(K0)〈ζ5〉.
(ii) Assume K 6= Q(ζ5). Then [U(K0) : Um0,1(K0)] = [U(K) : Um,1(K)].

Proof. The case K = Q(ζ5) can be handled with a straightforward calculation. Assume now
K 6= Q(ζ5) so that the only roots of unity in K are ±1. Let u be a unit of K, then there is a
positive integer n such that un = a is a unit of K0 by the Dirichlet unit theorem. So (ū)n = a
and (u/ū)n = 1. This implies ū = ±u. If ū = u, u ∈ U(K0), we are done. If ū = −u, u2 = −ε
for a totally positive unit ε of K0 and K = K0(u) = K0(

√
−ε). Then Kr

0 = Q(
√
εε′) = Q(

√
1),

where ε′ is the real conjugate of ε. This contradicts the assumption that K is non-biquadratic.
Part (ii) follows from part (i).
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It follows from Proposition 5.2 that the value of c(K) is completely determined by the
splitting behavior of the prime in K0 and K. A case-by-case calculation for each possible
decomposition yields the following Proposition:

Proposition 5.3. Let m0 = 2OK0 and m = 2OK and c(K) as in Corollary 5.1. Then the
value of c(K) is given by the following table according to the splitting of 2 in K0 and K.

p0 inert p0 ramified p0 split (in K)

2OK0
= p0 5 4 3

2OK0 = p20 6 4 2

2OK0
= p0p′0 both inert both ramified both split (in K)

9 4 1

1 inert, 1 ramified 1 inert, 1 split 1 ramified, 1 split (in K)

6 3 2

Table 1: Values for c(K), where h−2 (K) = h−(K)c(K)

Although hΦr

2 = |Cl(Kr,Φr, 2)| is not equal to h−2 (K), it is typically a factor of h−2 (K). One
can show the following claim (up to a small 2-power factor) via careful analysis on various class
groups and type norms: if we write the degree of the Igusa class polynomials as c · h−(K), then
the Rosenhain polynomials have degree which is a factor of c · h−2 (K)2r. In another words,
hΦr

2 | h−2 (K)2r for some small non-negative integer r. Therefore, the quotient of the degree of
the Rosenhain polynomials by the degree of the Igusa class polynomials is a factor of c(K) (up
to a small 2-power factor). In Tables 2 and 3 below we give examples of all of these cases.

5.3. Data for degrees of Rosenhain invariants

Here we present some data for h− and h−2 , and compare it with the degree of minimal
polynomials for the λs. We list examples according to the class number h of K, the splitting
of 2 in OK , and the discriminants of the number fields Q(λi) generated by the λi’s. Note that
in all cases, the maximum degree of the λi actually divides 4h−2 as explained in Sections 4.2
and 5.2 above, but also that it can be significantly smaller.

The notation in Tables 2 and 3 is as follows. The CM fields are given by K = Q[x]/(x4 +

Ax2 +B) = Q(
√
−a+ b

√
d) where d = A2 − 4B = n2D, a = A/2, and b = n/2.

In the tables, h denotes the class number of K, h− = h−(K) = |Cl(K)|/|Cl(K0)|, and
h−2 (K) = |Cm(K)|/|Cm0

(K0)|. Let D(K) = discriminant of K, D(Kr) = discriminant of Kr.
Galois cyclic quartic fields in the table are listed under the heading C4, and non-Galois quartic
fields are listed under the heading D4. In Tables 2 and 3, the degree of λi refers to the
degree of the minimal polynomial of λi, not the degree of the polynomials defined in (4.5).
Question marks in the table indicate that either the factorization or the LLL computation did
not terminate yet.

Tables 2 and 3 contain examples for all possible splittings of the prime 2 in OK , exhibiting
all possible values for c(K) given in Proposition 1. There are some blocks where the splitting
is ambiguous in the tables. In the D4-case h = 1 and (2) = p1p2, for the first two lines, (2) is
inert, then split, whereas for the third line (2) is split, then inert. In the D4-case h = 2 and
(2) = p2, for the first three lines (2) is inert and then ramified, and in the last two lines (2) is
ramified and then inert.
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CM field h−, h−2 disc(K) disc(Kr) λi degrees disc(Q(λi))
A,B,D λ1 λ2 λ3

C4 h = 1 (2) = p

5, 5, 5 1, 1 53 53 4, 4, 4 53 53 53

13, 13, 13 1, 5 133 133 20, 20, 20 2161315 2161315 2161315

29, 29, 29 1, 5 293 293 10, 10, 20 28297 28297 2162915

37, 333, 37 1, 5 373 373 10, 20, 10 28377 2163715 28377

53, 53, 53 1, 5 533 533 20, 20, 20 2165315 2165315 2165315

61, 549, 61 1, 5 613 613 20, 20, 20 2166115 2166115 2166115

C4 h = 2 (2) = p

65, 845, 5 2, 10 53132 53132 20, 20, 20 2165151310 2165151310 2165151310

85, 1445, 5 2, 10 53172 53172 20, 20, 20 2165151710 2165151710 2165151710

65, 325, 13 2, 10 52133 52133 10, 10, 20 2854137 2854137 2165101315

D4 h = 1 (2) = p

17, 61, 5 1, 5 5261 5 · 612 20, 20, 20 216556110 216556110 216556110

21, 109, 5 1, 5 52109 5 · 1092 20, 20, 20 2165510910 2165510910 2165510910

26, 149, 5 1, 5 52149 5 · 1492 20, 10, 10 2165514910 28521495 28521495

34, 269, 5 1, 5 52269 5 · 2692 20, 10, 10 2165526910 28522695 28522695

41, 389, 5 1, 5 52389 5 · 3892 20, 20, 20 2165538910 2165538910 2165538910

18, 29, 13 1, 5 13229 13 · 292 10, 20, 10 28132295 2161352910 28132295

D4 h = 2 (2) = p

33, 261, 5 2, 10 325229 32 · 5 · 292 20, 10, 10 216310552910 283452295 283452295

66, 909, 5 2, 10 3252101 32 · 5 · 1012 10, 20, 10 2834521015 2163105510110 2834521015

C4 h = 2 (2) = p1p2

119, 3332 17 2, 18 72173 72173 18, 18, ? 212781713 212781713 ?

D4 h = 1 (2) = p1p2

9, 17, 13 1, 3 132 · 17 13 · 172 12, 12, 6 24133176 24133176 22 · 13 · 173

13, 41, 5 1, 3 52 · 41 5 · 412 12, 6, 12 2453416 225 · 413 2453416

47, 548, 17 1, 9 162 · 137 17 · 1372 18, 18, ? ? ? ?

D4 h = 2 (2) = p1p2

25, 145, 5 2, 6 5329 53292 24, 24, 12 285182912 285182912 2458296

29, 209, 5 2, 6 52 · 11 · 19 5 · 112192 12, 24, 24 2453116196 285611121912 285611121912

17, 65, 29 2, 6 5 · 13 · 292 52132 · 29 12, 24, 24 2456136292 ? ?
13, 33, 37 2, 6 3 · 11 · 372 32112 · 37 12, 24, 24 2436116373 ? ?

D4 h = 1 (2) = p1p2p3

15, 52, 17 1, 3 13 · 172 132 · 17 12, 12, ? 28136173 28136173 ?
11, 20, 41 1, 3 5 · 412 52 · 41 12, 12, 12 2856413 2856413 2856413

D4 h = 2 (2) = p1p2p3

26, 37, 33 2, 6 32112 · 37 3 · 11 · 332 24, 24, 24 ? ? ?

D4 h = 7 (2) = p1p2p3p4

19, 68, 89 7, 7 17 · 892 172 · 89 28, 28, 28 1714897 ? ?

Table 2: Degrees of Rosenhain invariants
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CM field h−, h−2 disc(K) disc(Kr) λi degrees disc(Q(λi))
A,B,D λ1 λ2 λ3

C4 h = 2 (2) = p2

10, 20, 5 2, 8 2653 2653 2, 4, 4 5 2653 2653

26, 52, 13 2, 8 26133 26133 4, 4, 4 26133 26133 26133

C4 h = 4 (2) = p2

15, 45, 5 4, 16 243253 243253 8, 8, 8 283456 283456 283456

D4 h = 1 (2) = p2

22, 89, 8 1, 6 26 · 89 23 · 89 6, 12, ? 25893 214896 ?
34, 281, 8 1, 6 26 · 281 23 · 281 12, 12, ? 2142816 2142816 ?

D4 h = 2 (2) = p2

11, 29, 5 2, 8 2452 · 29 24 · 5 · 292 8, 8, 8 2852294 2852294 2852294

7, 5, 29 2, 8 24 · 5 · 292 2452 · 29 8, 8, 8 2854292 2854292 2854292

14, 44, 5 2, 8 2652 · 11 28 · 5 · 112 4, 4, 4 28 · 5 · 112 28 · 5 · 112 28 · 5 · 112

30, 177, 12 2, 12 2433 · 59 2233592 12, 24, 48 21039596 ? ?
38, 329, 8 2, 12 26 · 7 · 47 2372472 12, 24, 24 21376476 ? ?

D4 h = 8 (2) = p2

26, 145, 24 2, 12 2632 · 529 23 · 3 · 52292 12, 24, ? 2103256296 ? ?

C4 h = 1 (2) = p4

4, 2, 2 1, 4 211 211 4, 2, 2 211 23 23

C4 h = 2 (2) = p4

12, 18, 8 2, 8 21132 21132 4, 4, 4 21132 21132 21132

20, 50, 8 2, 8 21152 21152 4, 4, 4 21152 21152 21152

14, 41, 8 2, 8 28 · 41 25412 16, 32, 32 224418 ? ?

D4 h = 2 (2) = p4

8, 13, 12 2, 8 2832 · 13 26 · 3 · 132 4, 8, 8 26132 21232134 21232134

6, 6, 12 2, 8 2933 21033 4, 8, 8 21033 22236 22236

D4 h = 1 (2) = p21p
2
2

10, 17, 2 1, 2 26 · 17 23172 8, 8, 4 28174 28174 22172

D4 h = 2 (2) = p21p
2
2

18, 33, 12 2, 4 2433 · 11 2233112 16, 8, 8 212312118 2436114 2636114

D4 h = 1 (2) = p21p2p3

5, 2, 17 1, 2 23172 26 · 17 8, 8, 2 216172 216172 22

D4 h = 2 (2) = p21p2p3

9, 12, 33 2, 4 2233 · 11 2433 · 11 8, 16, 16 21236112 224312114 224312114

Table 3: Degrees of Rosenhain invariants
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6. Experimental Results and Examples

Comparing the formulas for Rosenhain invariants (2.1) with the formulas for Igusa invariants,
in terms of the products of even theta constants, we can see directly from comparing the
weights of the modular forms which appear in the numerators and denominators (weight 2
for Rosenhains, weight 60 at worst for Igusas) that the height of the Rosenhain invariants is
likely to be much less, therefore requiring less precision to compute. The same is true for the
Kummer invariants, where the required precision is often much smaller. Indeed, quotients of
theta constants examined in [34] also are quotients of modular forms of low weight and they
too have much smaller height and smaller coefficients than the Igusa polynomials. By the same
argument given there [34, Section 6.1], because the coefficients of the minimal polynomial are
so much smaller, we need much less precision in order to recognize the minimal polynomial via
LLL. This is one of the advantages of our approach: decreasing the amount of precision needed
in computation.

On the other hand, the cost of our approach is that the Rosenhain and Kummer invariants
lie in a potentially larger extension field, so they may have larger degree. As explained in
Section 4.2 above, the CM values of the λ functions lie in the extension H(2)/Kr of the
reflex field. Thus the degree of their minimal polynomials over Q is potentially as large as
4 ·# Gal(H(2)/Kr) = 4 · hΦr

2 or degree hΦr

2 over Kr. We find though, surprisingly, that often
the CM λ-values satisfy minimal polynomials over Q with much smaller degree. We found
cases, for example, where the Rosenhain and Igusa invariants satisfy minimal polynomials over
Q of the same degree, as in the following example:

Example 1. The quartic CM field K = Q[x]/(x4 + 14x2 + 44) is non-Galois, with class
number hK = 2 and K0 = Q(

√
5). The Igusa class polynomials have degree 4 and coefficients

with size up to 164 bits†. The Rosenhain invariants are found as roots of the polynomials

λ1(x) = 49x4 + 1464x3 − 1280x2 + 64x+ 64,

λ2(x) = 30625x4 − 16400x3 − 21736x2 + 7616x+ 16,

λ3(x) = 625x4 + 183600x3 − 173824x2 + 32256x+ 1024. (6.1)

where the coefficients are at most 18 bits. Both the Rosenhain and the Igusa invariants have
degree 4 over Q in this case, but the Rosenhain invariants require less precision to recognize.

6.1. Finding genus 2 curves and Kummer surfaces for cryptography

To generate the examples we present in this work, we computed minimal polynomials
over Q of both Rosenhain and Kummer CM-values for many different CM fields K with
small class number. We then searched over many primes of a special form p = 2s − c or p =
2s−1 − c, pseudo-Mersenne primes for s = 128, 192, 256, which are advantageous for efficient
implementations of curve-based cryptography. For each prime p, we checked all the CM fields
K in our list, using the method described in Section 3.1, to see if the number of points over Fp
on the Jacobian of a curve with CM by K could be suitable for use in cryptography.

Our search was designed to return only those CM fields K and primes p where (i) 24 = 16
divides the two matching curve-twist group orders‡, and (ii) when all small powers of 2 were
removed from each such group order, the remaining factor was a large prime.

†See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=5&A=14&B=44&raw=0

‡Two-torsion is shared by a curve and its quadratic twist, so this is necessary – but not sufficient (cf.
Example 2)– to find a rational Kummer surface over Fp.



Page 16 of 23 C. COSTELLO, A. DEINES-SCHARTZ, K. LAUTER, AND T. YANG

To continue with Example 1 above, the prime p = 2127 − 28719 splits into four principal
ideals in OK . Two of the four possible group orders for JCλ(Fp) are N = 26 · r and N ′ = 24 · r′,
where r = 2248 + r̂ and r′ = 2250 − r̂′ are 249-and 250-bit primes, with

r̂ = 35436667276190183469610103700485440976624669707312674945,

r̂′ = 141746669104761955446228299558628861917994511630039822125.

The minimal polynomials for the λ-invariants (6.1) all split completely in Fp[x]. In this case
there are two roots of λ1(x) that match up with roots of λ2(x) and λ3(x) to give rise to curves
Cλ such that #JCλ(Fp) = N and #JC′λ(Fp) = N ′.

Another advantage of this approach is that the curve is given directly by the Rosenhain
invariants in the form Cλ : y2 = x(x− 1)(x− λ1)(x− λ2)(x− λ3). Note that when the Rosen-
hain model is defined over Fp, with λ1, λ2, λ3 ∈ Fp, then all of the 2-torsion on the Jacobian of
the curve is defined over Fp, i.e. #JCλ(Fp)[2] = 16, because it is generated by the Weierstrass
points on the curve.

6.2. Splitting of Rosenhain polynomials modulo primes

We can give a condition on primes which ensures that the Rosenhain polynomials split
completely modulo those primes. It follows from class field theory that if a rational prime, p,
splits completely in Kr into principal prime ideals with generators which are congruent to 1
mod 2, then the prime p will split completely in the ray class field of Kr modulo 2.

For example, for the field K = Q[x]/(x4 + 13x2 + 13), where h2(K) = 5, the λ-polynomials
have degree 20. There is only one prime less than 1, 000 for which that condition holds, p = 757,
and the lambda polynomials split completely modulo 757.

λ1(x) = x
20 − 10x

19
+ 124x

18 − 831x
17

+ 4509x
16 − 18528x

15
+ 65066x

14 − 190688x
13

+ 368386x
12 − 354722x

11
+ 20742x

10

+207694x
9

+ 44631x
8 − 413118x

7
+ 441258x

6 − 234907x
5

+ 72682x
4 − 13880x

3
+ 1662x

2 − 71x + 1,

λ2(x) = x
20 − 71x

19
+ 1662x

18 − 13880x
17

+ 72682x
16 − 234907x

15
+ 441258x

14 − 413118x
13

+ 44631x
12

+ 207694x
11

+ 20742x
10

−354722x
9

+ 368386x
8 − 190688x

7
+ 65066x

6 − 18528x
5

+ 4509x
4 − 831x

3
+ 124x

2 − 10x + 1,

λ3(x) = x
20

+ 51x
19

+ 503x
18 − 5035x

17
+ 27054x

16 − 136825x
15

+ 499985x
14 − 1157943x

13
+ 1739480x

12 − 1879141x
11

+ 1823741x
10

−1879141x
9

+ 1739480x
8 − 1157943x

7
+ 499985x

6 − 136825x
5

+ 27054x
4 − 5035x

3
+ 503x

2
+ 51x + 1.

6.3. Existence of a Kummer surface over Fp
Another potential advantage of the Rosenhain approach is that, for a fixed CM field K, we

can sometimes determine congruence conditions on the prime p which must hold in order to
find a Kummer surface over Fp (arising as the quotient of a Jacobian variety with CM by K).
When the minimal polynomials λi(x) split completely in Fp, then as just remarked, all of the
2-torsion on the Jacobian of the curve is defined over Fp. This is a necessary condition for the
Kummer surface to be defined over Fp. The following example illustrates this point.

Example 2. The non-Galois quartic CM field K = Q[x]/(x4 + 5x2 + 2) has class number
1 with K0 = Q(

√
17). The prime p = 2256 − 1204385 splits into four principal ideals in OK , and

there are two possible suitable group orders, N = 26 · r and N ′ = 26 · r′, where r = 2506 + r̂
and r′ = 2506 − r̂′ are the 507-and 506-bit primes given by
r̂ = 1042069017142527808074607196449149476090722442842106883749718550538937655101283257400133472983552933838816961141335,

r̂
′

= 1042069017142527808074607196449161749125921965770655297925581003982254064511088864103924137074740555751503901721761.

In this example, the Igusa class polynomials have degree 2 and coefficients with size up to 28
bits†. Running Mestre’s algorithm on triples of Igusa invariants (j1, j2, j3) produces the curves
with group orders N and N ′. In both cases we soon find that the 2-torsion is not entirely
defined over Fp. While we cannot predict this from the Igusa class polynomials, it is readily

†See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=17&A=5&B=2&raw=0
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apparent from the Rosenhain minimal polynomials:

λ1(x) = 1024x8 − 4608x7 + 10368x6 − 15984x5 + 18401x4 − 15984x3 + 10368x2 − 4608x+ 1024,

λ2(x) = 4x8 − 8x7 + 8x6 − 4x5 + x4 − 4x3 + 8x2 − 8x+ 4, λ3(x) = x2 + 1.

The third polynomial λ3(x) has roots in Fp[x] if and only if p ≡ 1 mod 4. Furthermore, we
see (experimentally) that λ1(x) and λ2(x) only have roots in Fp[x] when p ≡ 1 mod 8. In
some cases, the Rosenhain polynomials associated to certain CM fields can be used to derive
analogous congruence conditions to rule out primes p where the entire 2-torsion is not defined
over Fp. This was mentioned in the specific case of K = Q(ζ5) in [6].

6.4. Kummer surfaces for cryptography

In both [6] and [4], record timings for scalar multiplications on Kummer surfaces were
announced, competitive with Diffie-Hellman groups arising from elliptic curves. In [6, Tables 4
and 6], minimal polynomials for Kummer invariants were given for two CM fields (computed
in a different way than in the present paper). In Table 4, the minimal polynomials for the
parameters had very small roots in some cases, for example y0 = t0 = 1, which helps to speed
up scalar multiplication on these surfaces. But the group orders for those CM fields were not
suitable for cryptography over primes fields where the minimal polynomials split. Unfortunately
we have not yet found other examples where the parameters for the Kummer surface and its
arithmetic are as nice, but here are some examples where we computed the minimal polynomials
for the Kummer surface parameters, and produced pairs (p,K) suitable for cryptography.

Example 3. The quartic CM field K = Q[x]/(x4 + 11x2 + 29) is non-Galois, class number
hK = 2 and K0 = Q(

√
5). The minimal polynomials for the four Kummer surface constants

in (2.2) are:

E′(x) = 625x2 − 2169836x+ 219395344, F (x) = 625x4 + 78016x2 − 313600,

G(x) = x4 + 7232x2 − 20480, H(x) = x4 − 83x2 + 845.

In this case, the Kummer polynomials have degree 2 or 4, while the Igusa class polynomials
have degree 2 and coefficients of size up to 61 bits†. This time the Rosenhain polynomials have
degree 8, and have coefficients whose size are at most 27 bits:

λ1(x) = 49x
8 − 3544x

7 − 315732x
6

+ 4407944x
5 − 12245178x

4
+ 16201976x

3 − 11265364x
2

+ 3379800x+ 49,

λ2(x) = 256x
8

+ 12032x
7 − 156096x

6
+ 2945536x

5 − 7106976x
4

+ 44710832x
3 − 74749184x

2
+ 34343600x+ 30625,

λ3(x) = 49x
8

+ 2918x
7 − 27147x

6 − 50376x
5

+ 51502x
4

+ 187134x
3 − 236856x

2
+ 72200x+ 625. (6.2)

The prime p = 2128 − 26567 splits into four principal ideals in OK . Two possible group orders
for JCλ(Fp) are N = 28 · r and N ′ = 24 · r′, where r = 2248 + r̂ and r′ = 2252 − r̂′ are the 249-
and 252-bit primes, given by

r̂ = 18377559752043376142210021622046804420648513728115033993,

r̂′ = 294040956032696278365589529217522617502604803983008251707.

The polynomials in (6.2) all split completely in Fp[x]. In this case we find four triples of roots
which give rise to Cλ such that #JCλ(Fp) = N and #JC′λ(Fp) = N ′.

An associated Kummer surface is defined by the four roots

E′ = 191454713862007738160316578206844341556, F = 277186088880174207254108642006536815063,

G = 85170663011981983214439406226228096956, H = 144009629596880962160390585763815059845.

Example 4. The quartic CM field K = Q[x]/(x4 + 12x2 + 18) is Galois cyclic, with class
number hK = 2 and K0 = Q(

√
2).

†See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=5&A=11&B=29&raw=0
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The Kummer surface constants that are needed for an implementation are: the four constants
that define the surface in (2.2), which can be found as roots of the polynomials

E′(x) = 2401x2 + 20915712x− 2341011456, H(x) = x2 + 28x− 92 ,

F (x) = G(x) = 2401x8 + 1921232x6 − 4039392x4 − 87033088x2 + 289272064 ,

and the six Kummer constants from §2.3 that are required in scalar multiplication routines,
which can be found as roots of the six polynomials:

y0(x) = 49x4 + 2276x3 − 4794x2 + 2276x+ 49, z0(x) = 16x8 + 7520x6 − 18024x4 + 8024x2 + 2401,

t0(x) = 104976x8 + 769824x6 − 1511784x4 + 621000x2 + 2401, y′0(x) = 9x4 − 2508x3 + 4214x2 − 2508x+ 9,

z′0(x) = 4x8 − 608x7 − 6240x6 − 4688x5 + 5092x4 + 912x3 − 5760x2 − 2376x+ 81, t′0(x) = z′0(−x). (6.3)

The defining polynomials have degree either 2, 4, or 8, whereas the Igusa class polynomials
have degree 2 and coefficients with size up to 71 bits†. On the other hand, the Rosenhain
polynomials are all of degree 4 and have coefficients whose size are at most 13 bits:

λ1(x) = 81x4 + 216x3 − 252x2 − 240x+ 196,

λ2(x) = x4 − 44x3 − 78x2 + 268x+ 49,

λ3(x) = 324x4 + 3024x3 + 180x2 − 5880x+ 2401. (6.4)

The prime p = 2191 − 657687 splits into four principal ideals in OK ; two possible matching
curve-twist group orders for JCλ(Fp) are N = 28 · r and N ′ = 24 · r′, where r = 2374 − r̂ and
r′ = 2378 + r̂′ are 374-and 379-bit primes, with

r̂ = 1642431397265461870453489061337752218881221672393863386597703499549543613525809162481.

r̂′ = 26278902356247389927255308936632476538381347724730421570962499591332201354672913898705.

Let λ̃1 be any root of λ1(x). Here we can use the modified Lagrange interpolation [16, §3]
to rewrite the matching roots of λ2(x) and λ3(x) as functions of λ̃1, given as

λ̃2 =
891λ̃3

1 + 1620λ̃2
1 − 4410λ̃1 + 1896

81λ̃3
1 + 162λ̃2

1 − 126λ̃1 − 60
, λ̃3 =

−189λ̃3
1 + 63λ̃2

1 + 126λ̃1 − 98

81λ̃3
1 + 162λ̃2

1 − 126λ̃1 − 60
. (6.5)

Using this representation, we only need to solve for roots λ̃1 of λ1(x), from which we compute
the matching (λ̃2, λ̃3) pair directly from (6.5).

Over Fp, a consistent set of the ten Kummer parameters are the following roots of the
polynomials in (6.3):

E
′

= 567028745068426824959271870555635438345642747742948399604, F = 2359563512175863372369439421514627729762312218124844883233,

G = 78438933438613125880991548664790570721563557962191063173, H = 2553141127707597497835193801508376284561417095268107945756,

y0 = 45365629571161489877386664379507500802568387061984419563, z0 = 2941538177934641682110163770120385873965950872202542311227,

t0 = 994932433097262041511791282516609434498518510981885633649, y
′
0 = 2721123725293931547556650768852663405923251429480259809380,

z
′
0 = 732894276108124698810868226446355739812627305358069217488, t

′
0 = 1896841712432594874397923288612888573534072896353239345204.

6.5. Table of examples

In the following table, we summarize the Rosenhain polynomials corresponding to eight
different example CM fields; four are Galois and four are non-Galois. Four of the examples we
have already explained and the details of the remaining four examples are provided in a more
condensed form in the Appendix. These examples provide a list of cryptographic curves that
are suitable for implementation at a range of security levels.

The notation in Table 4 is as follows. For each CM field K = Q[x]/(x4 +Ax2 +B) of class
number hK , we give the degree over Q (deg) and maximum bitlength over all coefficients (coeff)
of the first Igusa class polynomial, H1(x), and over all coefficients of the three Rosenhain

†See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=8&A=12&B=18&raw=0
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polynomials λ1(x), λ2(x) and λ3(x) corresponding to K. We only give the bitlength of H1(x)
because H2(x) and H3(x) are not needed when using the representation proposed in [16, §3]).

For each K, we also give a cryptographically strong, twist-secure curve C, whose Jacobian
has CM by OK ; the table reports the bitlengths of the underlying field characteristic p and
the large prime factors r and r′, as well as the curve-and-twist cofactors h and h′, such that
#JCλ(Fp) = hr and #JC′λ(Fp) = h′r′.

Ex. CM field hK Gal Igusa Rosenhain p h, h′ r, r′

# A B D deg coeff deg coeff (bits) (bits)

1 14 44 5 2 D4 4 164 4 18 127 26, 24 249, 250
2 5 2 17 1 D4 2 28 8 15 256 26, 26 507, 506
3 11 29 5 2 D4 2 61 8 27 128 28, 24 249, 252

191 28, 24 374, 379
4 12 18 2 2 C4 2 71 4 13 191 24, 25 378, 378

255 24, 25 507, 505
5 28 98 2 4 C4 4 233 8 50 127 24, 25 251, 249
6 10 20 5 2 C4 1 30 4 12 256 24, 24 509, 508
7 35 245 5 4 C4 2 120 8 45 128 24, 24 253, 252
8 15 52 17 1 D4 2 28 12 21 191 25, 25 378, 377

Table 4: Summary of the Rosenhain polynomials for 8 CM fields

Table 1 highlights the trend observed in the majority of examples we computed; namely,
that the Rosenhain polynomials have coefficients which are much smaller than the coefficients
of the Igusa class polynomials in most cases.

6.6. Additional torsion

For a curve Cλ with λ-invariants in Fp, #JCλ(Fp)[2] = 24, so if a higher power of 2 divides
the group order #JCλ(Fp), then there must be some additional 2-power torsion. In Table 4
where all curves have Fp-rational λ-invariants, only the curves in Example 6 and Example 7
have no higher 2-power torsion.

When there is at least one additional small-torsion point on JCλ or JC′λ , then the technique
from [23, 28] allows for “compatible” additions on the Kummer surface K. So in some cases,
it may be worthwhile to allow an extra factor of 2 in the cofactor in order to take advantage
of this technique.

Here we give an additional example with this feature which could be useful in cryptography.
Continuing with the CM field from Example 4 above, the quartic CM field K = Q[x]/(x4 +
12x2 + 18) has class number hK = 2 and K0 = Q(

√
2). We can give another example over this

CM field with only one extra 2 in the cofactor. The prime p = 2191 − 830439 splits into 4
principal ideals in OK . Two possible group orders for Jacobians of curves C with CM by K
are N = 24 · r and N ′ = 25 · r′, where r = 2378 − r̂ and r′ = 2377 + r̂′ are 378-bit primes with

r̂ = 27145707237528389726742606066121237906741397221275189669901645158791934103076877051777,

r̂′ = 13572853618764194863370977236789991112677548782757889556987587506326996397536581679559.

The first Rosenhain polynomial, λ1(x) in (6.4), splits completely in Fp[x]. Substituting any one
of its roots, λ̃1, into (6.5) gives a triple (λ̃1, λ̃2, λ̃3) with #JCλ(Fp) = N and #JC′λ(Fp) = N ′.
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Appendix A. More examples

Here we provide, in condensed form, the other examples constituting Table 4. We only include
the Rosenhain polynomials corresponding to each field K, and the strong curve-twist group
orders N and N ′ corresponding to the specific prime p. If required, a correct combination of
roots of the Rosenhain polynomials giving a model for Cλ can readily be found by testing each
such combinations against N and N ′, until a random divisor on JCλ or JC′λ is anihilated by N
or N ′. However, just as we did in Example 4, in the first example below we use the modified
Lagrange interpolation [16, §3] to avoid the need for any such testing.

Example 5. The quartic CM field K = Q[x]/(x4 + 28x2 + 98) has class number hK = 4
and K0 = Q(

√
2). The Igusa class polynomials have degree 4 with coefficients of size up to 233

bits†. The Rosenhain invariants are found as roots of polynomials of degree 8 with coefficients
of at most 50 bits. The first one, λ1(x), is

λ1(x) = 5096960449x
8 − 59943031251208x

7
+ 370565801837364x

6 − 829064790892296x
5

+ 864603976223110x
4

−431439809757432x
3

+ 92337255217908x
2 − 7241766843640x+ 177302471329,

Using the method in [16, §3], we compute the corresponding Rosenhain invariants as λ̃i =
8

2122849 λ̃i(λ̃1)/λ′1(λ̃1) for i = 2, 3, where λ′1(x) is the derivative of λ1(x) above, and where

λ̃2(λ̃1) = 6966080649859723λ̃
7
1 − 66656192937922707616λ̃

6
1 + 321114020620982081059λ̃

5
1 − 523984877182732532190λ̃

4
1

+356618367465929440173λ̃
3
1 − 95513655888947594364λ̃

2
1 + 8670564050605853061λ̃1 − 244711480729669774,

λ̃3(λ̃1) = 5381839762415508λ̃
7
1 − 60899888803731452258λ̃

6
1 + 290876333336198374072λ̃

5
1 − 471585316360537736770λ̃

4
1

+318626409958501535956λ̃
3
1 − 84104202056044526862λ̃

2
1 + 7281636711144654672λ̃1 − 189571447740024142.

The prime p = 2127 − 373359 splits into four principal ideals in OK . Two of the possible
group orders for #JCλ(Fp) for curves Cλ with CM by K are N = 24 · r and N ′ = 25 · r′, where
r = 2250 + r̂ and r′ = 2249 − r̂′ are 251-and 249-bit primes with

r̂ = 526579428781408080357551267616694433684827725164791989679,

r̂′ = 263289714390711980587065256830062076214183259931934080913.

The polynomial λ1(x) (given above) splits completely in Fp[x]: substituting any one of its
roots into the computation of λ̃2 and λ̃3 defined above gives rise to a Rosenhain triple such
that #JCλ(Fp) = N . For such a Cλ, it follows that the Jacobian of the twist, JC′λ(Fp), has
points of exact order 4, in addition to all 2-torsion rational.

Example 6. The quartic CM field K = Q/(x4 + 10x2 + 20) has class number hK = 2 and
K0 = Q(

√
5). This is one of van Wamelen’s examples [36] of a CM field where the Igusa

invariants‡ are defined over Q. The Rosenhain invariants are found as roots of the polynomials

λ1(x) = x2 + 16x− 16,

λ2(x) = x4 + 204x3 + 2996x2 − 3216x+ 16,

λ3(x) = x4 + 28x3 + 4x2 − 48x+ 16. (A.1)

The prime p = 2256 − 1405067 splits into 4 principal ideals in OK . There are two possible group
orders for #JCλ(Fp) for curves Cλ with CM by K, given by are N = 24 · r and N ′ = 24 · r′,
where r = 2508 + r̂ and r′ = 2508 − r̂′ are 509-and 508-bit primes, with (r̂, r̂′) =

(3266146279590289616697288326643692977601759703506301403850455649701823577098001741197488639944233682641571217767825,

3266146279590289616697288326643733651499461058469703245103446399072893914517667448420904219450927907469641194338455).

†See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=8&A=28&B=98&raw=0

‡See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=5&A=10&B=20&raw=0
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The three Rosenhain polynomials in (A.1) split completely in Fp[x]. For each of the two roots
of λ1(x), precisely one root of λ2(x) and one root of λ3(x) gives rise to #JCλ(Fp) = N and
#JC′λ(Fp) = N ′. This time, only the 2-torsion is Fp-rational on both JCλ and JC′λ .

Example 7. The quartic CM field K = Q/(x4 + 35x2 + 245) has class number hK = 4
and K0 = Q(

√
5). The Igusa class polynomials have degree 2 with coefficients of size up to 120

bits†. The Rosenhain invariants are roots of the polynomials

λ1(x) = 1698181681x
8 − 2332899512272x

7
+ 5239365733308x

6 − 6861052011534x
5

+ 8127472357390x
4

−13335162018684x
3

+ 11133611696793x
2 − 1973034426682x + 73805281,

λ2(x) = 1698181681x
8

+ 2319314058824x
7 − 11043381765528x

6
+ 24320649195262x

5 − 29119911912510x
4

+26204862793688x
3 − 19070415001283x

2
+ 6387184449866x + 73805281

λ3(x) = 38416x
4 − 76832x

3
+ 73304x

2 − 34888x + 5041. (A.2)

where the coefficients are at most 45 bits.
The prime p = 2128 − 1141887 splits into four principal ideals in OK . Two possible curve-

twist group orders for Jacobians with CM by K are N = 24 · r and N ′ = 24 · r′, where r =
2252 + r̂ and r′ = 2252 − r̂′ are the 253-and 252-bit primes with

r̂ = 112614126855406339213862977384037149031714953376246820445

r̂′ = 112614126855503480243717254517447691698953573744137998535

The Rosenhain polynomials in (A.2) all completely split in Fp[x], and there are four triples
(found as roots) that give rise to #JCλ(Fp) = N and #JC′λ(Fp) = N ′.

Example 8. The quartic CM field K = Q[x]/(x4 + 15x2 + 52) has class number hK = 1
and K0 = Q(

√
17). The Igusa class polynomials have degree 2 and coefficients of size up to 28

bits‡. The Rosenhain invariants are roots of the polynomials

λ1(x) = 81x
12 − 90x

11 − 263x
10 − 798x

9
+ 6958x

8 − 15118x
7

+16985x
6 − 14710x

5
+ 13186x

4 − 9442x
3

+ 4093x
2 − 882x + 81,

λ2(x) = 81x
12 − 2205x

11
+ 55216x

10 − 199545x
9

+ 359972x
8 − 662901x

7

+1163639x
6 − 1123328x

5
+ 373568x

4 − 1280x
3

+ 200704x
2 − 229376x + 65536,

λ3(x) = x
6

+ 3x
5 − 9x

3
+ 4x

2
+ 11x − 9. (A.3)

where the coefficients are at most 21 bits.
The prime p = 2191 − 4657 is inert in OK0

but splits into 2 principal ideals in OK . The
two possible group orders for JCλ(Fp) are N = 25 · r and N ′ = 25 · r′, where r = 2377 + r̂ and
r′ = 2377 − r̂′ are the 378-and 377-bit primes given by

r̂ = 13814964007818296929562658172382786817112511302154194840738889014886339390073138377457,

r̂′ = 13814964007818296929562659998729190799520323183340196264904950522076692315001749568595.

The polynomials λ1(x) and λ2(x) in (A.3) both have 6 roots in Fp, while λ3(x) has 4. There
are three triples (of these roots) such that #JCλ(Fp) = N and #JC′λ(Fp) = N ′.

†See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=5&A=35&B=245&raw=0

‡See http://echidna.maths.usyd.edu.au/cgi-bin/dbs/igusa_cm_invariants.py?D=17&A=15&B=52&raw=0
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