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Abstract

We are interested in secure computation protocols in settings where the number of parties
is huge and their data even larger. Assuming the existence of a single-use broadcast channel
(per player), we demonstrate statistically secure computation protocols for computing (multiple)
arbitrary dynamic RAM programs over parties’ inputs, handling (1/3 —¢€) fraction static corrup-
tions, while preserving up to polylogarithmic factors the computation and memory complexities
of the RAM program. Additionally, our protocol is load balanced and has polylogarithmic
communication locality.
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1 Introduction

The notion of secure multi-party computation (MPC), introduced in the seminal works of Yao [Yao86]
and Goldreich, Micali and Wigderson [GMWRST], is one of the cornerstones in cryptography. An
MPC protocol for computing a function f allows a group of parties to jointly evaluate f over their
private inputs, with the property that an adversary who corrupts a subset of the parties does not
learn anything beyond the inputs of the corrupted parties and the output of the function f.

An emerging area of potential applications for secure MPC is to address privacy concerns in data
aggregation and analysis to match the explosive current growth of the amount of available data.
Large data sets, such as medical data, transaction data, the web and web access logs, or network
traffic data, are now in abundance. Much of the data is stored or made accessible in a distributed
fashion. This necessitated the development of efficient distributed protocols that compute over
such data. In order to address the privacy concerns associated with such protocols, cryptographic
techniques such as MPC for secure function evaluation where data items are equated with servers
can be utilized to prevent unnecessary leakage of information.

However, before MPC can be effectively used to address today’s challenges, we need protocols
whose efficiency and communication requirements scale practically to the modern regime of massive
data. When the data set contains tens or hundreds of thousands of users’ web traffic patterns or
consumer transaction data, it becomes unreasonable to assume any single user can provide memory,
computation, or communication resources on the order of the data of all users. When the same
number of parties are involved, it is infeasible to require each individual to communicate to one
another. When the computations to be executed are lightweight, depend on a small subset of inputs,
or require small memory, it will be unacceptable to obliterate these savings to achieve security.
Instead, we seek secure protocols that tightly preserve the individual memory and computation
requirements of each party with respect to an efficient representation of the function to be evaluated,
even as the number of parties and expanse of data explodes. Explicitly, when dealing with secure
computations in a large-scale setting, the following desiderata are of paramount importance:

1. FEzploiting Random Access. A range of important programs executed on large data sets access
only small number of dynamically chosen data items, rely on conditional branching, or main-
tain small memory. (Consider, for instance, performing some analysis of all Internet users’
web behavior.) We cannot afford to lose these properties—which make the computation of
the program practically viable in the first place—in exchange for security. This means that
converting a program first into a circuit to enable its secure computation, which immediately
removes these gains, will not be a feasible option. We thus here focus on secure computation of
RAM programs. Of course, to achieve standard security where nothing is revealed on parties’
inputs beyond the function output (including, in general, information about which inputs were
accessed in the computation), it is unavoidable that all inputs must be “touched” during the
protocol. This imposes a necessary ©(n) computation requirement (in total computation com-
plexity). However, we may hope that, aside from this ©(n) additive term, secure evaluation
will incur only polylogarithmic overhead in the resources required to perform a (non-secure)
evaluation of the functionality as described as a RAM program.

2. Reusability. Note that while this additive ©(n) one-time cost is necessary to achieve security,
there is no need for it to repeated for every function evaluation. That is, we can hope to
“reuse” the input processing: enabling computation of a sequence of RAM programs II;,
while requiring only resources O(>_ Time(1l;)), plus a single additive term of ©(n).



3. Load balancing. In the large-scale setting, with a vast number of participating parties, there
becomes a great divide between the total required resources, and each party’s “fair share”
of these resources. In such a setting it is of cruicial importantce to balance the load across
nodes. No individual party should be burdened with computation, communication, or memory
comparable to the entire computation, and certainly not to the number of parties (for instance,
in our example of performing some analysis of the data of all Internet users, it is clearly
infeasible for a single user to store all Internet users’ data). Ideally, each party’s requirement
will be 1/n of the corresponding total values. For example, the per-party memory requirement
should be equal only to the size of his own input, together with 1/n fraction of the space
required to evaluate the program.

4. Communication Locality. In an ideal world, each party speaks only with a single trusted party.
In a protocol, we may hope to preserve (up to polylogarithmic factors) this locality of commu-
nication: that is, the number of total parties that each party must send and receive message
to during the course of the protocol. Communication locality has received comparatively little
attention in MPC literature, but plays an important role in feasibility when the number of
parties is huge.

As far as we know, to date, no MPC solution addresses all of these desiderata. Roughly, relevant
prior works fall into the following two categories.

A first line of research initiated by Damgard and Ishai [DI06], known as scalable MPC, focuses
on achieving load balancing while maintaining relatively small global complexities [DI06, DNO7,
DIK 08, DIK10, DKMS12, ZMS14]. However, a common thread among all these results (as with
with nearly all works in secure computation to date) is that the function to be evaluated is assumed
to be in the form of a circuit, and thus computation complexity of the protocols grow linearly in the
circuit size (and while we can always transform a RAM program to a circuit, this transformation
inflicts a multiplicative factor of the total data size.)

A second line of work focuses on MPC for RAM programs, but essentially all results in this
line of work focus on secure two-party computation [0S97, GKK*11, LO13, GGH"13]. To the
best of our knowledge, there have been only two proposed solutions for secure computation of
RAM programs in the multiparty setting: An aside in the work of Damgard, Meldgaard, and
Nielsen [DMN11] on Oblivious RAM,! and the work of Boyle, Goldwasser, and Tessaro [BGT13],
focusing on efficient secure computation of functions that query only a sublinear number of parties’
inputs. Neither of these works satisfy our goals either: the Damgard et al. [DMN11] protocol
requires each party to communicate and maintain memory of size equivalent to all parties’ inputs.
The protocol of Boyle et al. [BGT13] makes progress toward removing this requirement, but does
not support full-fledged RAM program evaluation (their work only supports random access to the
players inputs, but otherwise models the computation as a circuit), it does not provide reusability
(it requires a multiplicative overhead of poly(n) for each function to be compted), and is heavily
load imbalanced.?

! An Oblivious RAM (ORAM) compiler converts any RAM program and associated database to a modified pair,
such that data access patterns of the compiled program hide information about the underlying data.
2 Additionally, the protocol of [BGT13] relies on strong cryptographic hardness assumptions.



1.1 Owur Results: Scalable, Load-Balanced MPC for Dynamic RAM Programs

We achieve MPC for RAM programs on parties’ inputs, with a protocol that preserves the per-party
memory and computation complexity requirements of the participating parties. Our construction
is information theoretically secure against (1/3 — €) statically scheduled corruptions, within a syn-
chronous communication network.

Theorem 1.1 (Informal — Load-Balanced, Communication-Local MPC for RAM Programs). For
any constant € > 0, there exists an n-party statistically secure (with error negligible in n) protocol
for computing any adaptively chosen sequence of N RAM programs I1; (that may have shared state),
handling (1/3—¢€) fraction static corruptions making an initial use of a single broadcast per party (of
polylog(n) bits), and with the following complexities (where |x|, |y| denote input and output size®):

o Memory per party: O <|:E| + Inauxé\f:1 Space(l_[j)/n).
e Computation per party: O (\a:| + Z;VZI Time(11;)/n + N!y|).

e Round complexity: O <Z§V:1 Tz'me(Hj)>.

where Space(1l) and Time(Il) denote the worst-case space and runtime requirements of I over dif-
ferent inputs. Additionally, our protocol achieves polylog(n) communication locality, and a strong
“on-line” load-balancing guarantee such that at all times during the protocol, all parties’ communica-
tion and computation loads vary by at most a multiplicative factor of polylog(n) (up to a polylog(n)
additive term).

Note that the initial one-time uses of a broadcast channel can be implemented via a communication-
local broadcast protocol, such as the O(y/n)-locality protocol of King et al [KSSV06], or the amor-
tized polylog(n)-locality protocol of [BSGH13|. The resulting final protocol achieves comparable
locality at the cost of a one-time per-party computation and communication overhead of O(y/n),
or polylog(n), respectively. We separate the broadcast cost from our protocol complexity measures
to emphasize that any (existing or future) broadcast protocol can be directly plugged in, yielding
associated desirable properties.

Our results are most closely related to those of Dani et al. [DKMS12]: we strengthen these
results by a) dealing with RAM programs, b) achieving reusability (without incurring a multi-
plicative overhead in computation and communication) and c) achieving locality (and perhaps less
importantly, we also achieive the stronger “on-line” notion of load-balancing).

We additionally remark that even without considering reusability, communication locality, or
the communication/computation load balancing properties achieved by our protocol, our results
already yield the first protocol whose total communication and computation complexities for se-
curely evaluating a single RAM program II grow as poly(n) + O(Time(II)) while simultaneously
requiring only O(|z|+ Space(IT)/n) memory per party. Indeed, all existing solutions either require
converting the program into a circuit representation, or require parties to maintain storage Q(n|z|).
(Looking ahead, this will be achieved already by the first step of our approach.)

A note on the optimality of our parameters: To put our theorem in context, consider
the best parameters one could hope to achieve in our setting. For example, to prevent leaking

3For simplicity of exposition and analysis (in particular, when load balancing), we will assume all parties receive
the same output. However, our protocol can easily be modified to support different outputs for different parties.



information on parties’ inputs, any observable complexities of the protocol (such as runtime and
memory storage) must take the worst-case rather than input-specific specific values. To achieve
correctness, the parties necessarily must collectively store enough information to recover all inputs
x;, and to correctly evaluate each of the programs II;; thus the total storage capacity of all parties
combined must be Q(n|z| + max Space|ll;|). In order to obtain security, (in particular, in order
to hide whose inputs were used in the computation), all parties’ inputs must be touched at some
point during the protocol; this means the computation complexity must include an additive term
Q(n|z|).* An optimal load balancing would assign to each party 1/n fraction of each total resource
requirement at any given time in the protocol. And, to participate in the protocol, each party
must without exception speak with at least one other party. Our protocol hence attains optimal
computation, memory, load-balancing, and locality with polylogarithmic overhead, together with
the requirement of a single-use broadcast of polylog(n) bits per party.

A note on communication complexity: We have not focused on minimizing the communi-
cation complexity of our protocol: As with all generic multi-party computation protocols in the
information-theoretic setting, we can only (trivially) bound the communication complexity by the
computation complexity. In the computational setting, protocols whose communication complexity
is smaller than the complexity of the evaluated function have been constructed by relying on fully
homomorphic encryption (FHE) (e.g., [Gen09, AJLAT12, MSS13]). We leave as an interesting
open question whether FHE-style techniques can be applied also to our protocol to improve the
communication complexity based on computational assumptions.

1.2 Technical Overview

We reach our final result via three intermediate steps:

e First, we show how to achieve secure computation of RAM program functionalities II; in a
reusable, memory-balanced fashion. The resulting protocol achieves the desired total com-
munication and computation complexities O(n|z| + Z;V:1 Time(1l;) + nN|y|), and evenly
distributes the total best-case memory requirement (up to polylogarithmic factors) to O(|z| +
max; Space(Il;)/n) per party.

e Next, we show how to load balance the communication and computation requirements of this
protocol, while preserving the original complexities. Our techniques guarantee balancing of
resources not only at the conclusion of the protocol, but also at any given point in time during
the protocol execution (up to an additive polylog(n) term).

e Finally, we show how to achieve communication locality polylog(n) for our protocol (assuming
a one-time broadcast per party), while preserving the properties attained in the previous two
steps.

In the following three subsections, we expand upon each of these three steps.

4Note that we are only claiming that for general secure computation protocols, and even if we restrict to func-
tionalities that only access a few players’ inputs, and only a few bits of their data, essentially all players needs to
perform computation at least Q(]z|), thus a total computation complexity of Q(n|z|). To see this, consider secure
computation of a “multi-party PIR” functionality: each player ¢ > 1 has an input some “big data” x;, and player 1
has as input a player index ¢ and an index j into their data z;. The functionality returns z;[j] (i.e., the j’th bit of
player i’s data) to player 1 and nothing to everyone else. We claim that each player ¢ > 1 must access every bit of
x;; if not, it learns that that particular bit of its data was not requested, which it cannot learn in an ideal execution
of the functionality.



1.2.1 Step 1: Scalable Memory-Balanced, Reusable MPC for RAM Programs

Warmup. Before proceeding to describe our solution, let us first see briefly why a straightforward
extension of prior work does not suffice. Recall the framework described by Damgard et al. [DMN11]
for evaluating a RAM program on parties’ inputs: Everyone holds secret shares of all parties’ inputs,
and the parties jointly execute (using standard MPC) the trusted CPU instructions of the ORA M-
compiled® version of the program. The complexities of this protocol scale well with the RAM
complexity, and not circuit complexity, of the program. However, the complexities scale quite
poorly with the number of parties n: each party must communicate and maintain information of
size equivalent to all parties’ inputs, and everyone must talk to everyone else for every time step of
the RAM program evaluation.

Instead, suppose we modify the protocol by first electing a small polylog(n)-size representative
committee of parties, and then only performing the above steps within this committee. This
immediately drops the total communication and computation of the protocol to desired levels.
However, this approach does not save the subset of elected parties from carrying the huge burden
of the entire computation. In particular, each elected party must maintain enormous memory
storage, equal to the size of all parties’ inputs combined. It is not clear how to distribute this
memory burden among all parties without new techniques.

Our Approach. Our per-party memory requirement means that each party can only hold in-
formation the size of polylog(n) parties’ inputs. At the same time, our computation requirement
means that only polylog(n) parties can compute (or communicate) for each data access made in the
program II. It is clear that ORAM will serve as a useful tool for hiding access patterns to data;
however, to achieve our stringent complexity requirements, the way in which ORAM is used will
be different from previous works.

Distributed ORAM. At a high level, our protocol will emulate a distributed ORAM structure,
where the CPU and memory cells in the ORAM are each associated with parties. More specifically,
to bridge the gap between the “honest” setting of ORAM (where the CPU is trusted with secret
information, memory cells are assumed to obliviously store information, and all entities faithfully
follow the protocol), and the malicious setting of MPC (where all parties are symmetric, and
nearly one third are malicious), each role of the ORAM will be associated to a committee of
parties. The “CPU” committee will control the evaluation flow of the (ORAM-compiled) program,
communicating with the appropriate memory cell committee for each address to be accessed in
the (ORAM-compiled) database. To ensure honest behavior, committees will be elected so as
to guarantee 2/3 honest members; each operation will be performed via a (small-scale) secure
multiparty computation within the corresponding committee (or pair of committees); and secret

The distributed ORAM structure will enable us to evenly spread the memory burden across
parties, incurring only polylog(n) overhead in total memory and computation, and while guarantee-
ing that the communication patterns between committees (corresponding to data access patterns)
do not reveal information on the underlying secret values.

This framework shares a similar flavor to the protocols of [DKMS12, BGJK12], which assign
committees to each of the gates of a circuit being evaluated, and to [BGT13], which uses CPU

*Recall an Oblivious RAM (ORAM) compiler converts any RAM program and associated database to a modified
pair, such that data access patterns of the compiled program hide information about the underlying data.



and input committees to direct program execution and distributedly store parties’ inputs. The
distributed ORAM idea improves and conceptually simplifies the input storage handling of Boyle et
al. [BGT13], in which n committees holding the n parties’ inputs execute a distributed “oblivious
input shuffling” procedure to break the link between which committees are communicating and
which inputs are being accessed in the computation. Input shuffling provides only weak guarantees,
e.g. requiring that data items remain forever in local memory and cannot be reinserted once they
are accessed; further, the (somewhat expensive) shuffling procedure must be repeated for each
program to be evaluated. In contrast, we wish to provide efficient support for full-fledged RAM
computations in a reusable fashion.
However, several challenges arise along this path.

Electing Committees. We must first show how to efficiently generate a large collection of good
committees. To do so, we follow an approach similar to [KLST11]: we define committees C; by
the evaluations of an appropriately chosen function F' at the corresponding inputs ¢. We need that
each committee must be at least 2/3 honest, and no party can appear in significantly more than his
share of committees; looking ahead, our protocol will require this to hold even for superpolynomially
many committees C;. We show that if F' is randomly sampled from a polylog(n)-wise independent
function family, then these properties will hold with overwhelming probability, while only requiring
a description of size polylog(n). We achieve this sampling within the protocol by first electing a
stngle good committee, and then using this committee to sample and communicate a random seed
s that defines the remaining committees as C; := Fs(3).

Additionally, we must be careful to use for the first step a committee election protocol that scales
well with n. For example, the seemingly light Feige committee election protocol [Fei99] requires
memory §2(n) per party, which we cannot afford. We instead make use of the almost-everywhere
scalable committee election protocol of King et al. [KSSV06], which requires only polylog(n) mem-
ory per party in polylog(n) rounds of communication, together with the single per-party use of a
broadcast channel to reach full agreement.”

ORAM with Efficient Parallel Insertion. In order to make use of ORAM guarantees, the par-
ties’ inputs must first be inserted into the ORAM-compiled database structure. However, read and
write operations in existing constructions of secure ORAM compilers are inherently sequential: in
particular, to write n inputs into the data structure incurs a cost of Q(n) rounds of communication.
This unfortunate cost will likely dwarf the benefits the ORAM would provide in a non-asymptotic
(non-amortized) setting.

To fix this problem, we present a novel technique for securely and efficiently inserting several
items into an ORAM structure in parallel, within a multiprocessor setting. Our technique builds
upon the ORAM compiler presented by Chung and Pass [CP13], which in turn closely follows the
tree-based ORAM of Shi et al. [SCSL11]." The advantages of this procedure extend beyond the
scope of multi-party computation, providing an efficient means for converting preexisting databases
into one whose access patterns are hidden. We define and achieve this new property within the

SNote that while broadcast will enable all to receive a message, our protocol will only require a small portion of
parties to listen to and store information related to the message.

" Although we have not verified the details, it would seem that our techniques for this “parallel insertion step” will
apply also to other tree-based ORAMs, such as [SCSL11, SvDS113]; relying on [CP13] merely simplifies the analysis
at this point. However, to apply Steps 2 and 3 to the resulting protocol to achieve load balancing and communication
locality, it will actually be important for us to here rely on the specific [CP13] ORAM.



standard ORAM setting; then, with this new procedure in hand, we show how to emulate the
specified computation steps in the setting of MPC.

Distributed ORAM of Dynamic Size. The parties’ inputs are not the only values that must
be stored in memory: in addition, evaluating a program II has an associated space requirement.
During evaluation, IT may make random accesses to both the parties’ inputs and to this (potentially
large) work tape. In order to maintain efficient memory balancing of the protocol,® while still
ensuring that access patterns do not reveal unwanted information, we will also store this work tape
data in the ORAM structure.

However, this idea introduces another problem. Existing ORAM constructions assume an a
priori size bound on the desired database size. Thus, straightforward implementation of this idea
will support only RAM programs with a priori bounded space requirements.

To subvert this problem, we instead maintain two instantiations of ORAM data structures:
One will hold the parties’ inputs (and any state information to be maintained between program
executions), and will be of a priori fixed size. The second ORAM will consist solely of work
tape data, will be erased (“deallocated”) at the conclusion of each program II execution, and will
grow and shrink for each program II that comes along, to match the space requirement of II. We
show how to achieve such dynamic-size distributed ORAM, building again upon the ORAM of
Chung and Pass [CP13] together with techniques for implicitly electing superpolynomially many
good committees with short description. Intuitively, ORAM-compiled databases of different sizes
correspond to binary trees of memory cells of different depths. Thus, for any program II with space
requirement Space(II) that comes along, we will “activate” committees in the binary tree ORAM
structure up to the necessary depth to support database size Space(II). This process can support
any polynomial Space(II), as we have defined superpolynomially good committees; at the same
time, work tape storage will induce only polylog(n) memory overhead above the space requirement
of 11, since “deactivated” ORAM memory cell committees need not store data.

Further, we can also support evaluation of RAM programs for whom a size bound is unknown.
In such case, the protocol will proceed in the fashion described above, mimicking the scenario of
a superpolynomial-size ORAM database structure. Since the work tape begins empty, and only
undergoes a polynomial number of accesses, we show that the total memory (and communication)
requirements of the protocol will grow only by polylog(n) per time step of the program II.

The Combined Protocol 1. We now bring these new tools together into our desired Step 1
protocol, as given in Figure 1.

1.2.2 Step 2: Load Balancing the Protocol

The protocol achieved in Step 1 already achieves a lot of the properties we desire: a) it deals
with RAM programs, b) the total computation and memory overheads are small, ¢) the protocol
is reusable, and d) the memory used by each player is load-balanced. In this step we show how to
balance the computation requirements of the protocol (on the way, we will actually balance also
communication). Then finally, in Step 3 we will show how to additionally achieve locality without
sacrificing any of the other properties.

8Note that in [BGT13] a single committee is burdened with the entire work tape memory storage.



(Informal) Protocol 1: Scalable Memory-Balanced, Reusable MPC for RAM Programs
Inputs: Each party P; holds secret input x;
Outputs: Evaluates sequence of RAM programs II; on x1,...,2,

Committee Setup

1. Elect a polylog(n)-size “CPU” committee C, using a low-memory protocol (see Sec-
tion 2.3).

2. Parties in C collectively sample two random seeds s, sV to define several (slightly super-
polynomially many) committees as Cy := Fs(¢) where { F'} is a polylog(n)-wise independent
function family (similar for sVo¥). (See Section 3.1).

Each such committee will play the role of a single memory cell in one of two ORAM struc-
tures: one holding parties’ inputs (and remnant data), and one holding the computation
work tape.

Input Commitment and Initialization

1. In parallel, each party P; verifiably secret shares his input among a corresponding commit-
tee C; (For the case of large inputs, each input block is shared to a separate committee).

2. Parties’ inputs are “inserted” into the Input ORAM structure in parallel. This is done
by pairwise communications among the n input committees in log n sequential rounds, as
described in Section 3.2.

Computation (Repeated for each program II;)

For each RAM program II to be computed, “activate” memory cell committees in the work
tape ORAM up to depth log Space(IT) (or depth log® n, if Space(IT) =“unbounded”). Consider
the ORAM-compiled program II', composed of a sequence of triples (II;, Accesst, Access\tNork).
Progressing for t = 1,2, ..., Time(Il'), perform the following steps:

1. II;: The CPU committee C securely executes subprogram II; on the current secret CPU
state (which begins empty). The output of this computation is a pair of (public) memory
addresses (addr, addrV°™) corresponding to one committee each from the Input and Work
Tape ORAMs, and an updated secret CPU state (in particular, including read/write
instructions to be implemented at these addresses).

2. Access;: Committee C' communicates with the committee Cyqqr from the Input ORAM
and executes the secret read/write instruction via an MPC. As a result, C,gq, holds a
possibly new memory value, and C holds an updated secret CPU state.

3. Access¥V°'k: The previous step is mirrored for the Work Tape ORAM, via an MPC between
C and committee CVVork

aderork'
At the conclusion of Time(Il') steps, committee C learns the desired output y :=
M(z1,...,20).
Output Delivery: Disseminate output y to committees C1, ..., Cpx for K € w(logn) (to cover

all parties F;) via a binary tree structure. Le., C sends y to Cy, Ca; they each send y to two
distinct assigned committees; etc.

Figure 1: Informal description of combined Protocol 1, achieving scalable memory-balanced,
reusable MPC for RAM programs.




From a load-balancing perspective, the key problem with the protocol resulting from Step 1 is
that some parties (in particular, the parties in the CPU committee) are required to do significantly
more work than other parties (in fact, they need to perform the entire program computation). We
now address this issue and modify our protocol such that the total computational complexity is
preserved, while additionally achieving a strong load balancing property—with high probability, at
all times throughout the protocol execution, every party performs close to 1/n fraction of current
total work, up to an additive polylog(n) amount of work. This will hold simultaneously for both
communication and computational complexity.

Job Passing. Our main idea is a very natural one: Recall that in the protocol from Step 1, each
committee is responsible for some task or “job” (e.g., implementing a particular memory cell, or the
CPU). Whenever a committee has performed “enough work” for a particular job, it selects a new
committee and passes on the job to this new committee. Note that each committee of our protocol
has polylog(n) parties and only needs to hold a small polylog(n)-size (secret) state (either the CPU
state or the memory content). Thus, one committee Cy can pass its job to a new committee Cs
by simply “sending the state” to C'y using a generic MPC protocol that on input the shares of the
state from each party of C] output fresh shares of the state for each party of Co, in total incurring
a cost of polylog(n) in computational complexity.

More precisely, at an initial stage of the protocol, we elect a set of worker committees, and
randomly assign each job of the ORAM program to some worker committee (where the same
committee may receive multiple jobs). Then, during the course of the Step 1 protocol execution,
we will appropriately switch the worker committee for each job to a fresh random worker committee
after they have performed an appropriate amount of work for their job.

When to switch committees. At first sight, it may seem that this idea can be implemented
generically, no matter what the underlying protocol is. However, there is a major obstacle with
this approach: Every time we switch committees for a job, we introduce a “switching cost,” cor-
responding to work that must be performed in order to complete the switch itself. The danger
is that switching incurs a cost not only to the worker committee assigned to the job, but also to
other worker committees (in fact, this is the case for our protocol), which may in turn push these
committees past their work thresholds and trigger a switching cascade. This potential cascade
becomes non-trivial to bound (and also to implement in a distributed way the queue for storing
what jobs to switch committees for).

Rather, we here again rely on the particular ORAM implementation, which serves as the basis of
the Step 1 protocol execution. For each “job” (i.e., a memory cell node or the CPU in the ORAM),
we carefully choose a cost metric dictating when to switch (roughly, the number of times the CPU
accesses the node), and instruct committees to switch whenever the cost according to this metric
reaches a fixed constant threshold. Note that this cost metric does not at all consider the switching
cost, which intuitively avoids the above-mentioned cascading problem. But, we show that for the
particular pattern of memory cell accesses induced by the specific underlying ORAM construction,
this choice of metric successfully ensures the total computation and communication complexity of
each worker committee is balanced, including the associated costs of switching. Roughly speaking,
this is shown by first noting that we achieve balancing for our cost metric (we show this by abstract-
ing out some properties of “nice” cost metrics for which balancing is obtained by our construction)
and next, in a second step, we show that that any sufficiently “related” cost-metric (and both the



overall computation and communication costs—including the costs of switching—can be shown to
be “related” to our specific cost-metric) also are balanced, concluding that our protocol balances
both computation and communication.

But we are not done yet. So far, we have only argued that on a committee level, the work is
balanced. As the final step we note that, by a Chernoff bound, each party participates in roughly
same number of worker committees and thus the per-party work load is also balanced.

Keeping track of who does what. There is still one final point to be addressed. In the
protocol in Stage 1, everybody knew which committee was assigned to which job, and so knew
who to communicate with in order to execute a given command. Now, this assignment of worker
committees to jobs is dynamically changing. We thus need a way for parties to keep track of the
updated information. In particular, the CPU committee must be able to access any memory cell
in the ORAM database, but it cannot afford to store by itself an entire record of which committee
is currently serving the role of each cell.

We here again rely on the particular tree-based ORAM construction. We show that it suffices
for the CPU committee to keep track only of which committee is responsible for the root(s) of
the ORAM tree(s),” and for each committee assigned the job of a memory cell in the ORAM tree
to keep track only of which committees are currently responsible for their children memory cells.
We emphasize that for our load-balancing analysis to work it is crucial that only a “one-way” link
(from a node to its children, and not back) is stored—in particular, the cost of switching worker
committees for a node in the tree will induce an update cost to his parent, but not additionally
to his children. This introduces a danger of children nodes not knowing who to their parents are,
to update when jobs are passed; however, this problem can be overcome for our chosen switching
metric and the specific access patterns made by the [CP13] ORAM scheme, in which a child node
is only accessed (and thus will only ever job switch) directly proceeding an access to his parent.

1.2.3 Step 3: Achieving Communication Locality

Finally, we modify the protocol of Step 2 to achieve communication locality on top of the already-
attained protocol complexities. At a high level, this is done by considering a fixed network topology,
and dynamically assigning committees to these nodes at the start of the protocol. From this
point on, all communications travel only through this fixed network, via committee-to-committee
message passing. Namely, at each point when a party (or committee) is to send a message to
another arbitrary party (or committee), this message is routed along the network to its appropriate
destination. Then, as long as this communication network graph is low degree, we can guarantee
corresponding communication locality.

However, we must take care that by adding this additional level, we do not destroy the overall
complexities or load balancing of the original protocol. To do so, we introduce a new primitive,
which may be of independent interest:

Local load-balanced routing networks. Roughly speaking, we need to have a way to ensure
that information is passed through the fixed communication network in a load-balanced way; for
instance, we cannot route all messages through a particular node. Of course, we can never hope to

9For those familiar with existing tree-based ORAM constructions: Since the construction is recursive, recall there
will actually be logn roots.
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achieve this if the source and destinations are not (individually) uniform, so we here focus only on a
setting where this is the case. Indeed, in the protocol resulting from Step 2, where committees are
assigned at random to jobs within the protocol, this will hold (at least empirically). More precisely,
we want to ensure that if the source s and the destination ¢ are individually uniform (but may
be correlated), then the expected number of times a node is on the path between them should be
balanced.®

We next turn to designing such a low-degree load-balanced routing network. The general idea is
as follows. We use a regular expander graph G as our communication network. To route a message
from a source s to a destination ¢, taking inspiration from [VB81], we first take a random walk
(“walking into the woods from s”) of length w(log|G|) from s, reaching a node s’. Note that at this
point, the routing is load-balanced (in expectation, as required): we start at a random node—since
the graph is regular that means we are starting at the stationary distribution—and each time we
take single random step on this graph we remain at the stationary distribution.

Additionally, by the mixing property of the expander graph, this ensures that we end up in a
random node s’ in G, independent of s. We then take another random walk of length w(log|G|)
from &', this time conditioned on reaching ¢. Since as observed above, s’ is an (essentially) uniform
node, the distribution of the this second walk (“home from the woods”) is statistically close to
taking a length w(log|G|) random walk from ¢ (i.e., “walking into the woods from ¢”). It thus
follows exactly as before that also this second step is load-balanced in expectation.

Achieving computationally efficient routing. An issue with this approach, however, is that
it is not clear how to efficiently implement the “walk back from the woods to t.” In particular,
recall that this requires sampling a random walk conditioned on reaching ¢, which generically may be
expensive when the size of G is large (in particular, |G| € ©(n) in our setting). We resolve this final
issue by relying on a particular regular log n-degree expander—mnamely the boolean hybercube—for
which the conditional random walk can be efficiently found. In fact, for this specific expander we
can slightly simplify the routing (and the analysis): we can simply take a random shortest path
to t.

Ensuring that the complete protocol is load balanced. So far we have only argued that
the protocol from Step 2 is load balanced. However, now we have introduced additional “routing”
cost in the protocol (i.e., the cost for routing messages in the communication network). It is thus
no longer clear that the combined protocol is load balanced. We finally address this issue by noting
that the same cost metric balances also the routing cost, and thus we conclude that the total cost
is balanced as well.

2 Preliminaries

2.1 RAM and Oblivious RAM

A Random Access Machine (RAM) with database memory size d consists of a CPU with a small
number of registers that can each store a string of length logd, and an “external” memory of size

10This is a perhaps a seemingly weak load-balancing property in that we only balance the expectation, but it
actually suffices for our application, namely achieving “actual” load balancing of the protocol from Step 2. This
follows by appealing to standard concentration bounds and noting that due to the “job passing” scheduling used in
the protocol, we get access to multiple independent samples of source-destination pairs s, t
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d. The CPU executes a program II (given n and some input x) that can access the memory by a
Read(addr) and Write(addr, v) operations, where addr € [d] is an index to a memory location, and
v is a word (of size logd).

The CPU executes a program II (given d and some input z) that can access the memory by
Read(r) and Write(r, v) operations, where r € [d] is an index to a memory location, and v is a word
(of size logd). The sequence of memory cell access by such read and write operations is referred
to as the memory access pattern of II(d, z) and is denoted by II(d, ). (The CPU may also execute
“standard” operations on the registers, and may generate outputs).

Roughly speaking, an Oblivious RAM (ORAM) compiler enables executing a RAM program
while hiding the access pattern to the memory.

Definition 2.1 ([GO96]). A polynomial-time algorithm ORAM is an oblivious RAM (ORAM)
compiler with computational overhead ORAM-Comp(-) and memory overhead ORAM-Mem(-) if
ORAM, given d € N and a deterministic RAM program II with memory size d, outputs a program
IT" with memory size ORAM-Mem(d) - d such that for any input z, the running time of II'(d, x)
is bounded by ORAM-Comp(d, z) - T, where T is the running time of II(d,z), and there exists a
negligible function u(d) such that the following properties hold:

e Correctness: For any d € N, RAM program II, and any string = € {0, 1}*, with probability
at least 1 — u(d), it holds that II(d, z) = II'(d, z).

e Obliviousness: For any two programs 11, Il, any d € N, and any two inputs 1, x2 € {0,1}%,
if |TI4(d, z1)| = |Ha(d, z2)|, then IT}(d, z1) is p-close to II5(d, z2) in statistical distance, where
11 = ORAM (d,11;) and II, = ORAM (d,I15).

A Tree-based ORAM construction. In the present work, we build upon a specific ORAM
construction to achieve an additional advantageous functionality (namely, the ability to efficiently
initialize the ORAM structure with data from a database; see Section 3.2). Concretely, we rely on
the ORAM due to Chung and Pass [CP13], which in turn closely follows the tree-based ORAM
construction of Shi et al. [SCSL11]. (We believe that our techniques developed in Step 1 of our
protocol would also apply to the construction of Shi et al. [SCSL11] or the further optimized Path
ORAM construction of Stefanov et al. [SvDS*13]; for this step relying on [CP13] mainly simplifes
the analysis. However, when dealing with the locality and load-balancing issue (Steps 2 and 3),
our analysis quite crucially appeals to the [CP13] construction.)

We now present the [CP13] construction. The construction proceeds by first presenting an
intermediate solution achieving obliviousness, but in which the CPU must maintain a large number
of registers (specifically, providing a means for securely storing d data items requiring CPU state
size ©(d/a), where o > 1 is any constant). Then, this solution is recursively applied log,, d times
to store the resulting CPU state, until finally reaching a CPU state size polylog(d), while only
blowing up the computational overhead by a factor log, d. The overall compiler is fully specified
by describing one level of this recursion.

Step 1: Basic ORAM with O(d) registers. The compiler ORAM on input d € N and a program
IT with memory size d outputs a program I’ that is identical to IT but each Read(r) or Write(r, val)
is replaced by corresponding commands ORead(r), OWrite(r, val) to be specified shortly. II' has
the same registers as II and additionally has d/« registers used to store a position map Pos plus
a polylogarithmic number of additional work registers used by ORead and OWrite. In its external
memory, II' will maintain a complete binary tree I' of depth ¢ = log(d/a); we index nodes in the

12



tree by a binary string of length at most ¢, where the root is indexed by the empty string A, and
each node indexed by v has left and right children indexed 70 and ~1, respectively. Each memory
cell r will be associated with a random leaf pos in the tree, specified by the position map Pos; as
we shall see shortly, the memory cell r will be stored at one of the nodes on the path from the root
A to the leaf pos. To ensure that the position map is smaller than the memory size, we assign a
block of o consecutive memory cells to the same leaf; thus memory cell r corresponding to block
b= |r/a] will be associated with leaf pos = Pos(b).

Each node in the tree is associated with a bucket which stores (at most) K tuples (b, pos,v),
where v is the content of block b and pos is the leaf associated with the block b, and K € w(logd) N
polylog(d) is a parameter that will determine the security of the ORAM (thus each bucket stores
K(a + 2) words). We assume that all registers and memory cells are initialized with a special
symbol L.

The following is a specification of the ORead(r) procedure:

Fetch: Let b = |r/a] be the block containing memory cell r (in the original database), and let

i =r mod a be r’s component within the block b. We first look up the position of the block
b using the position map: pos = Pos(b); if Pos(b) =L, set pos < [n/a] to be a uniformly
random leaf.
Next, traverse the data tree from the root to the leaf pos, making exactly one read and one
write operation for the memory bucket associated with each of the nodes along the path.
More precisely, we read the content once, and then we either write it back (unchanged), or we
simply “erase it” (writing 1) so as to implement the following task: search for a tuple of the
form (b, pos,v) for the desired b, pos in any of the nodes during the traversal; if such a tuple
is found, remove it from its place in the tree and set v to the found value, and otherwise take
v =_1. Finally, return the ith component of v as the output of the ORead(r) operation.

Update Position Map: Pick a uniformly random leak pos’ «— [n/a] and let Pos(b) = pos’.

Put Back: Add the tuple (b, pos’, v) to the root A of the tree. If there is not enough space left in
the bucket, abort outputting overflow.

Flush: Pick a uniformly random leaf pos* <— [n/a] and traverse the tree from the roof to the
leaf pos*, making exactly one read and one write operation for every memory cell associated
with the nodes along the path so as to implement the following task: “push down” each
tuple (b”, pos”,v") read in the nodes traversed so far as possible along the path to pos* while
ensuring that the tuple is still on the path to its associated leaf pos” (that is, the tuple ends
up in the node v = longest common prefix of pos” and pos*.) Note that this operation can be
performed trivially as long as the CPU has sufficiently many work registers to load two whole
buckets into memory; since the bucket size is polylogarithmic, this is possible. If at any point
some bucket is about to overflow, abort outputting overflow.

OWrite(r, v) proceeds identically in the same steps as ORead(r), except that in the “Put Back”
steps, we add the tuple (b, pos’, v’), where v’ is the string v but the ith component is set to v (instead
of adding the tuple (b, pos’,v) as in ORead). (Note that, just as ORead, OWrite also outputs the
ordinal memory content of the memory cell r; this feature will be useful in the “full-fledged”
construction.)

Theorem 2.2 ([CP13]). The compiler ORAM described above is a secure Oblivious RAM compiler
with polylog(d) worst-case computation overhead and w(logd) memory overhead, where d is the
database memory size.
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2.2 t-Wise Independent Function Families

In our protocol, we make use of function families with good combinatorial properties in order
to elect a large number of small “good” committees of parties with short description size. More
specifically, a short seed s will implicitly define superpolynomially many committees of the form
C; := Fs(i). We require that the resulting committees are sufficiently “random,” so that each
committee will have an appropriate fraction of honest parties, and no individual party appears in
too many committees.

In this section, we include some useful definitions and theorems of t-wise and almost t-wise
function families, which will be used to achieve this goal in Section 3.1.

Definition 2.3. We say that a family of functions {Fs : D — R}cg is t-wise independent if for all
Y1,..., Y € R and distinct x1,...,x; € D it holds that

1
SEFSPT[Fs(l’l) =y1 N A Fs(xy) = )] = R
Lemma 2.4. For any D, R, there exists a t-wise independent function family {Fs : D — R} with
seed size |s| = t(log D + log R) bits.

Definition 2.5. Let Xi,..., Xy be random variables taking values in the interval [0,1]. We
say that Xi,..., Xy are t-wise independent if for any aj,...,a; € [0,1], and any distinct indices
1 <iq,...,4 < N, it is the case that

t
Pr[X;, =a1,....Xi, =a] = H Pr[X;; = aj].
j=1

Bellare and Rompel [BR94] proved the following Chernoff-like tail inequality for the sum of
t-wise independent random variables.

Theorem 2.6. ([BR94, Lemma 2.3]) Let ¢t > 4 be an even integer. Suppose X1, ..., Xy are t-wise
independent random variables taking values in [0, 1]. Let X = X; +--- Xy and p = E[X], and let
A > 0. Then

el - > 4] < 0 (1

where Cy = 2v/7t - e'/6 . (5/2¢)/? < 8 (for t > 4).

Looking ahead, we will use a function family {F : {0,1}°6°" — [n]X} to elect slightly super-
polynomially many committees C; := F,(i) of approximate size K € w(log?n) N polylog(n) from
[n] parties (approximately size K, as multiset repetitions are removed). To guarantee with over-
whelming probability that each committee has sufficiently many honest parties, and that no party
appears in too many committees, it will suffice that {F,} is K-wise independent. A succinct de-
scription of such a collection of committees can thus be generated using a random seed s of length
K (log?n + log |[n)%]) = O(K?log®n).
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2.3 Low-Memory Committee Election 4+ Coin Tossing Protocol

Our protocol uses as a subroutine an n-party protocol for electing a single “good” committee of
size polylog(n), and collectively generating a random string. For our purposes, we wish this to take
place within polylog(n) memory per party. This can be achieved by combining the memory-efficient
almost-everywhere scalable leader election protocol of King et al. [KSSV06], together with simple
techniques presented by Boyle et al. [BGT13] building atop the [KSSV06] protocol which can enable
almost-everywhere coin tossing, together with a polling step consisting of a single broadcast per
party to reach full agreement.

Namely, we make use of the following theorem. We defer the discussion and proof of this result
to Appendix A.

Theorem 2.7 (Almost-Everywhere Committee Election + Coin Tossing). Suppose there are n
processors, at least (2/3 + €) are honest for constant € > 0. Then for any k € polylog(n), and
K € polylog(n) Nw(logn), there exists an algorithm that, given access to a single broadcast of
polylog(n) bits per party, outputs with overwhelming probability (in n) a string s € {0,1}* and a
committee C C [n] of size |C| € O(K), satisfying the following properties:

1 —o(1) fraction of honest processors agree on s and C.

The distribution of s over the random coins of the honest parties is statistically close to uniform
over {0,1}* (i.e., statistical distance negligible in n).

|CNH|/IC| > (2/3+¢€/2), where H C [n] denotes honest processors.

Every honest processor sends and processes only polylog(n) bits.

The number of rounds of communication is polylog(n).

Proof. Builds upon [KSSV06]. See Appendix A. O

3 Protocol 1: Scalable Memory-Balanced, Reusable MPC for RAM
Programs

In this section, we present our first intermediate protocol, achieving scalable memory-balanced,
reusable MPC for RAM programs. In the two sections that follow this, we show how to adapt this
protocol to further achieve load balancing and communication locality.

Recall we consider a model where parties wish to evaluate a sequence of RAM programs II on
their inputs and additional maintained state from computation to computation. We assume an a
priori specified size on this maintained memory. For simplicity of notation, we assume this size is
O(n - |z|) (corresponding to the collective size of all parties inputs, which is anyway maintained
between computations), and thus absorb this cost within the analysis; however, this can be extended
to any desired polynomial in n. Each queried program II is paired with an optional space bound
space on the size of working memory required to evaluate II. This value may be selected as
“unbounded”, in which case the protocol must be able to support a growing work tape of unbounded
polynomial size (while maintaining memory balancing). In such case, we define the work tape size
to be the runtime |II| := Time(II) of the program II (as the required working memory may grow
with each step of computation).

See Figure 2 for a formal description of the ideal functionality Fpy, we wish to achieve.
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Ideal Functionality Fpy,

Fpyn Tunning with parties Pi,..., P, and an adversary, proceeds as follows. The functionality
maintains longterm storage of parties’ inputs {xi}ie[n] and state information state transferred from
computation to computation.

1. Initialize state « 0.

2. Input commitment: Upon receiving an input (commit, sid, input,x;) from party P;, record
the value x; as the input of F;.

3. Computation: Upon receiving a tuple (compute, sid, I1, space, time) consisting of a RAM pro-
gram II, a space bound space (which may be unbounded), and a time bound time, execute II
as (output,state) < II(zy,--- ,zy,state) with the current value of state, for time time steps,
and with work tape limited to size space. Output the resulting value output to all parties.

Figure 2: The ideal functionality Fpyn,, corresponding to secure computation of dynamic random-
access functionalities.

Theorem 3.1 (MPC for Dynamic Functionalities). For any constant € > 0, there exists an n-party
statistically secure (with error negligible in n) protocol that UC-realizes the functionality Fpyn for
securely computing a sequence of RAM programs 11;, as described in Figure 2, handling (1/3 — €)
static corruptions, and with the following complexities:

Per-party Memory O(|z| + maxspace/n + 3 [y;])
Rounds BC+ O(X; 1)
Per-party CC/comp | BC+ O (lz| + > (1] + |y;]))
Total CC/comp nBC+ O(n|z| + >, (L] + n|y;|))

Here, BC denotes one execution of a broadcast channel (or protocol) to send polylog(n) bits, |z|
denotes input size, ) | |II| denotes the combined (worst-case) runtime of the queried RAM programs
I, |y| denotes the output size of the corresponding programs II, and max space denotes the maxi-
mum value of space over queries (II, space). Asymptotic notation is with respect to the number of
parties n.

Overview of the section. As discussed in the introduction, the backbone of our protocol will be
to implement a distributed ORAM structure, where the CPU and memory nodes in the ORAM are
each associated with committees of parties. In the following subsections, we address the challenges
that arise along this path, and then combine the corresponding solutions into a complete protocol.

e In Section 3.1, we describe how to elect a large collection of “good” polylog(n)-size committees,
which will be assigned to the different roles of the distributed ORAM structure. More specifi-
cally, we show how in polylog(n) rounds, and polylog(n) bits of communication per party, plus
a one-time per-party broadcast (of polylog(n) bits), all parties will agree on slightly super-
polynomially many committees, such that, with overwhelming probability, each committee
has 2/3 honest majority, and no party appears in significantly more than his fair share of
committees.

e In Section 3.2, we present an ORAM compiler that supports efficient parallel initialization.
That is, for any m < d (where d is the supported database size), given L parallel processors,
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one can insert L data items into an empty ORAM database in polylog(d) sequential rounds
of computation (instead of requiring (L) rounds). The analysis in this section is within the
standard ORAM adversarial model, and has applications outside the realm of MPC.

e In Section 3.3, we shift focus back to the secure multi-party computation setting; we present
protocols Init and Compute that dictate how parties collectively generate the distributed
ORAM structure, efficiently insert their secret inputs into this structure, and then execute a
sequence of desired RAM program computations. In particular, in this section, we describe
how to implement a distributed ORAM of dynamic size, which is needed to efficiently support
RAM programs of varying memory size requirements.

e Then, in Section 3.4, we bring all the pieces together, and present the complete Part I protocol
(proving Theorem 3.1).

3.1 Committee Setup

In this section, we present a protocol for electing and reaching consensus on a collection of com-
mittees:

e (C: CPU committee
e {C;}: Input ORAM memory cells.
. {C}N"'k}: Work Tape ORAM memory cells.

We want the property that each committee is “good,” in the sense that the fraction of honest
parties is greater than % To ensure the memory requirements are sufficiently balanced, we do not
want any party to appear in too many committees. And, in order to use the committee structure
for communicating evaluation outputs to all parties, we will want that each party appears in at
least one committee.

We follow a similar general approach to that of King et al. [KLST11], in which different commit-
tees C; are defined by evaluations of a function with good combinatorial properties at corresponding
inputs . In our case, the function will be sampled from a polylog(n)-wise independent function
family. At a high level, our committee setup protocol proceeds as follows.

First, all parties execute an almost-everywhere coin tossing protocol to achieve almost-everywhere
agreement on a single “good” committee C, together with two random polylog(n)-bit strings
s,5Work This can be done, e.g., by building atop the Scalable Leader Election protocol of King
et al. [KSSV06], as shown in Section A.2 (Lemma A.4). Then, each party broadcasts his vote for
the values of (C,s,s’), and listens to the incoming votes of a random subset of polylog(n) parties
(ignoring the rest), taking the majority of these values as his final output (C, s, s’). The combina-
tion of these steps yields full agreement on a “good” committee C' together with random strings
s,sVork " as shown in Corollary A.5.

The random string s (similarly, s
pendent hash function family { F; : {0, 1}log2 " — [n)%} which maps (log® n)-bit strings (“committee
ids”) to multisets over [n] of polylogarithmic size.!’ See Section 2.2 for a discussion on t-wise in-
dependent function families. The seed s thus implicitly defines n'°6™ committees as C; := Fs(j),
where repetitions in the resulting multiset are removed. As shown in Section 2.2, such a function
family can be described with seed length |s| = K2log?n € polylog(n) bits. As we show in this sec-
tion, the K-wise independence of the function family guarantees that the resulting committees will

Werk) will be interpreted as a seed for an almost K-wise inde-

1 Considering multisets will aid in analysis; however, we will ultimately interpret these values as proper sets.
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be sufficiently random that they satisfy the desired “good” properties, but at the same time admit a
concise description by communicating only the seed s (as opposed to sampling and communicating
truly random committees).

Similarly, the second string s"Vork

implicitly defines committees C}Vo := F o (£).

s

We present the committee setup protocol ComSetup in its entirety in Figure 3. The complexities
of the different steps of ComSetup are given in the following table. Unless otherwise stated, listed
complexities are (worst case) per party. We denote by the symbol ‘~’ in the Total CC column that
it is simply a factor of n greater than the (per-party) CC value.

Memory | Rounds CC Total CC
(A.e.)-Elect C, s, s"Work 0(1) 0(1) O(1) -
Agreement on C, s, sV | O(1) O(1) | BC+0O(1) —
Total ComSetup o(1) O(1) | BC+O(1) | nBC+ O(n)

Table 1: Per-party memory and communication complexities of ComSetup. BC indicates one exe-
cution of the broadcast channel, and ‘—’ denotes n times the corresponding per-party complexity.

Committee Setup Protocol ComSetup

Fix a value K € w(log? n)Npolylog(n), and polynomial N = N(n). Let {F; : {0, 1}1°g2” — [n) %} ses
be a K-wise independent function family (with § = {0, 1}X 1"gzn).

Input: 0.

Output: All parties: committees C, {C}};c(n1, {CXV"rk}ge[nlogn].

Performed by each party F;:

1. Achieve full agreement on CPU committee C' (of approximate size K) and random strings
s, sWerk < {0, 1}K2 log” 1 yia the protocol Elect+CoinToss, as in Corollary A.5.
The following committees are implicitly defined:
e Input ORAM: C; = Fy(j) € [n]¥ (removing multiset repetitions).
e Work Tape ORAM: CVok = F weic(£) € [n]® (removing multiset repetitions).

S

Figure 3: Committee setup protocol. Executed once by all parties at the beginning of the MPC
protocol.

Lemma 3.2 (Committee Setup). Suppose access to broadcast channel and a perfectly secure MPC
protocol (e.g., [BGWS8]). Let K € w(logn?) N polylog(n) be fized. Then the n-party proto-
col ComSetup satisfies the following. For any constants €, > 0, any (% — €) fraction of static
malicious corruptions M C [n], and polynomial N = N(n) < nK, it holds with all but neg-
ligible probability e=*5) that at the conclusion of ComSetup, all parties agree on committees
C.ACj}jens {C’vak}ee[nlog n] such that:

1. It holds that
|C' N M| <

1
cr =3

DO ™
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2. For every j € [N] and { € [nlognL

€y N M| O 1 M|
[ ITe

<

DO ™

1
3

3. No party appears in an unfair share of committees. That is, for every N < T < nl°8"  and
constant ¢ > 0, no one appears in more than (1 + ) times or fewer than (1 — () times the
expected number from the first (N +T') committees {Cj}jcin) U {Cgvmk}gem. Explicitly, for
every party P; € [n],

(L-Qu<|{je[N: P eCi}|+[{te[l]: P e} < (1+n.

where 1= (1 — (1 —1/n)%) (N +T) is the expected (“fair share”) number of committees in
which each party occurs.

Proof. Property (1): Follows directly by the properties of the Elect committee election protocol
(Corollary A.2).

Property (2): At a high level, this holds since each committee is individually random. (Indeed,
outside of this the K-wise independence of {Fs} will not be used in this step.) By the correctness
of the underlying UC-secure information theoretic MPC protocol (e.g., [BGWS8S]), the output
distribution of the sampled seeds s, sV are each within statistical distance v(k) to the uniform

distribution U log? n- Thus, it suffices to analyze the properties of the corresponding committees

assuming s, sV are truly uniform. In particular, since {Fs} is a K-wise independent function

family, for any single input = the distribution of Fg(x) over s <— S is a uniform element of the
range, [n]X.

Consider one randomly selected committee £ < [n We first lower bound the number of
honest parties appearing in £, with repeats (i.e., as a multiset instead of set). For each index
t € [K], let X; be the indicator variable that the tth coordinate of £ € [n]X falls within the

.

subset of honest parties [n] \ M. Note that since £ «— [n]¥ is selected at random, X7, ..., X are
independent random variables, each with expected value n_AM‘ = (% + ¢€). Then by a Chernoff
bound,'? for § = %,

< o K(3+)8%/2.

K
Pr [ZXt < (1—6)-K<§+e>
t=1

That is, denoting by & the th component of £ € [n]¥, and plugging in &, we have

2
Pr [\{t (& ¢ MY < K(% +i€)} < o Kmpmrg ¢ oK)

Now, suppose it is the case that at least (3 + 2¢) fraction of components of £ (as a multiset)
are from the set of honest parties as above. We now argue that with high probability most of the
honest parties appearing will be distinct. In order for the number of distinct honest parties in £ to
be less than (% + §), it must be that {K of the components ¢ € K were parties in [n] that appeared

2Explicit Chernoff bound used: For X = X; + --- + X with mean p, and any § > 0, it holds that Pr[X <
(1-0)ul < eHe?/2,
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already in €. Since the total number of distinct parties appearing in £ (which we denote by [£]),
and in particular in g\ ; for any subset of indices I C [K], is no greater than K, the probability
of this event is bounded above by

[15\ <K - ZK] [HI C [K]s.t. |I| = fK and &1 C 5[1{]\1}

5(—[n]K €<—[n]K

Pr 5[ C E[K]\[, for fixed I]

<6K/4> g,g[n]dm
K/ e NEI /ey K
() (o) =) ()

eK/4
_ <4K . 6> < 67W(K).

€en

In particular, this means that with overwhelming probability, no more than {K honest parties
appearing in £ are repeated. Together, these two pieces yield

2 3e

Pr [\5\1\4} <K(§+;)} < Pr [\{t:5t¢M}| <K<f )] +Pr [15\ <K—7K

34
< UK | mwl(K) _ ~UK)

Finally, since |£| < K, this immediately implies that |€|\5]‘W| < % + § with probability bounded by

e K),

Now, this argument was for a single randomly chosen committee £ < [n]X. By a simple union
bound over the (N + 2!°2° ") total committees {Cj}iemvs {Cz\/ork}ge[nlogn] considered, we reach the
following upper bound on the probability that any committee does not satisfy the desired property.
Note here that we must be careful with our setting of parameter K, as we are taking a union bound
over a slightly superpolynomial number 2108”1 of total committees.
€\ M|

€]

2 € 2 _
Pr |3€ € {Cj}jeqr) U {CH™™ Y sepon o) 54 <(5+35)] 2oy 00

2
< e—Q(K)+log2n < e—Q(K)’

since K € w(log2 n), implying an overall probability of error negligible in n.

Property (3): We now bound the probability that any party appears in too many or too few
committees. This is where we will use the K-wise independence of the function F. Consider first the
collection of committees {C}};en]- An identical argument will hold for each {C’vak}gem, T>N.
(Note, in fact, our bound actually becomes better as the number of committees increases). Fix an
arbitrary party P; € [n], and define Y7, ..., Yy to be the indicator variables such that Y; = 1 when
party P; appears in committee C;. By the K-wise independence of the function family {F,}, it
holds that Y are K-wise independent random variables, each individually equal to 1 with the same
probability that P; appears in a set randomly generated as £ ¢ [n]X with multiset repetitions
removed; i.e., with probability p := (1 — (1 — 1/n)%).

Let Y = Y] +--- + Yy. Note that the mean of Y is y = pN = (1 — (1 — 1/n)X)N. Then from
a tail inequality for K-wise independent random variables (Theorem 2.6), for ¢ > 0,

Prly —u > cu] < o
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where C; < 8. Plugging in p = pN, and since N > nK and ¢ > 0 is a fixed constant, we have

W)K/Q : <<2§N * <<§>2>K/Q : < 1 1>K/2

Pr[[Y = pN| > (pN] < < Cpn " (Gpn)?

< 97 K/2 ¢ o~OUK)

for sufficiently large n.

This shows that for a single party P;, it is unlikely that P; appears in more than (1 + ()
times or fewer than (1 — () times the expected number of the N committees {C;}cn)- By a
straightforward union bound, the probability that this occurs for any party P; is bounded above
by n - e ) = = Q(K),

Now, consider the committees {C}Nmk}gem. Since we assumed 7' > N, then the exact calcula-
tions from above (with N replaced by T') imply that for any single party P,

pT * (T

and so a union bound implies the probability that any party P; appears in more than (14 () times
or fewer than (1 — ¢) times his fair share of the 7" committees {C}Nmk}gem is bounded above by
K) & e_Q(K)

K K2 K/2
Pr(|Y — pT| > (pT] s---§< )2> < e U,

n-e U . And finally, taking a union bound over the 2108”1 total possible values T', we
2
have a total error probability 208" 7e=(K) ¢ ¢=UK) a5 desired. (Recall that K € w(log®n)).
O]

3.2 ORAM with Efficient Parallel Insertion

In this section, we present a novel technique for inserting several data items into an Oblivious RAM
(ORAM) structure in parallel, within a multiprocessor setting. This feature is greatly advantageous
in converting a preexisting database into one whose access patterns are hidden. The challenge is
in doing this without leaking information about the resulting secret ORAM state.

Definition 3.3 (ORAM with Parallel Initialization). An Oblivious RAM compiler ORAM (as in
Definition 2.1) is said to additionally have parallel initialization complexity ORAM-Init(-) if for the
special initialization RAM program II;,s that simply writes L < d new data items to memory to an
empty data structure, it holds that the compiled program II} . - ORAM (Iliss) requires parallel
time complexity ORAM-Init(L) (given L distinct CPUs).

We present a construction of an ORAM compiler with O(1) parallel initialization complexity.
Namely, in a setting with L CPUs, we can simultaneously insert L data items into the ORAM
structure in O(1) rounds and O(L) computation. (In contrast, existing schemes require (L)
rounds). At the same time, our construction maintains O(1) worst-case memory overhead.

Theorem 3.4 (ORAM with Efficient Parallel Initialization). There exists an ORAM compiler with
the following properties:

e Memory overhead: ORAM-Mem(d) = O(1).

3Recall that p = (1 — (1 — 1/n)®), so that pn — oco. Indeed, the value pn corresponds to the expected number
out of n committees that a single party will appear, which corresponds to the size of each committee, roughly K.
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e Computation overhead: ORAM-Comp(d) = O(1).
e Parallel initialization complexity: ORAM-Init(d) = O(1).

For simplicity of analysis, we rely concretely on the ORAM construction given by Chung and
Pass [CP13]; this construction achieves near-optimal ORAM parameters (up to polylogarithmic
factors), and permits a particularly straightforward description.'* However, we believe that our
parallel insertion framework can be extended also to a variety of existing ORAM constructions that
follow a similar tree-based approach originally due to Shi, Chan, Stefanov, and Li [SCSL11].

ORAM Construction of [CP13]. We here recall a high-level description of the [CP13] ORAM
compiler; a more complete specification is given in Section 2.1. Recall that the [CP13] ORAM
construction follows a recursive structure, decreasing the CPU secret state size by a factor of a > 1
(a parameter taken here to be constant) in each iteration.

In each level of recursion, to securely store d secret database items, the data is split into blocks
of size «, which are stored at the nodes of a binary tree with d/« leaves (where each node can store
up to a polylogarithmic number of data blocks). Each block is associated with a random leaf in the
tree, and appears in some node along the path from the root to this leaf in the tree. The position
map Pos(i) from data blocks i to associated leaf nodes is of size d/«a, and is maintained as part of
the secret CPU state.

Secure read and write operations are constructed so as to maintain the following invariants,
which are shown in [CP13] to be sufficient conditions for security of the ORAM to hold:

1. Each data block ¢ appears in some node in the binary tree along the path from the root to
the leaf node Pos(i) (where Pos(i) is the currently stored value in the CPU state).

2. None of the nodes “overflow” their allotted space: i.e., with overwhelming probability, we do
not reach a state where more than K data blocks are assigned to any particular node of the
binary tree, where K € polylog(d) is an a priori fixed bucket size.

3. Given the sequence of all prior access patterns Access, the vector of values (Pos(1), ..., Pos(d/a))
is uniformly distributed.

See Section 2.1 for the description of how these invariants are maintained by [CP13]. Very roughly,
data is accessed in memory block i by looking up Pos(i), accessing all nodes along the path from
the root to leaf Pos(i), deleting the desired block i from its found location, writing it up at the root
node, and then resampling a fresh value Pos(i) < [d/a] at random. To ensure Property 2, after
each access a “flush” step is performed, in which a random path down the tree is selected, and all
data items along this path are pushed to the lowest point at which their associated Pos(i) values
agree with the selected random leaf node.'® All these steps preserve Property (1), and since Pos(3)
is freshly resampled after each process that depends on its value, Property (3) holds as well.

We remark, however, that their data access procedure (as with general secure ORAM construc-
tions) is inherently sequential: In particular, to write L data blocks into the ORAM data structure
will require Q(L) adaptive rounds of computation, at each stage adding the new item at the root
node and flushing items down. Indeed, such process is essential, as adding values anywhere lower
down the tree reveals information on which data items are read in future accesses.

14The specific structure of [CP13] will also become imperative later in the paper, where we also incorporate load
balancing and communication locality into our protocol.

15 This simplistic flushing step is the primary distinction between the [CP13] ORAM and other related tree-based
constructions.
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Our ORAM: An Overview. We now describe a parallel insertion procedure for initializing
a tree-based ORAM structure (as in [CP13]), while maintaining the three invariants above. For
simplicity of notation, we consider insertion of L data blocks, as opposed to L data items (which
would correspond to L/« blocks). Our construction takes the following high-level approach. Instead
of inserting data blocks at the root of the tree and flushing them down over time (which is important
for individual data inserts, in order to hide their eventual leaf node destinations), we insert all L
blocks directly into the level £ of the tree for which 2¢ € ©(L). To hide where the data is inserted,
it means all nodes on this level must be accessed, but this is acceptable as it entails only 2¢ = ©(L)
computation.

More explicitly, consider L CPUs C4,...,C}, each beginning with a block y; of data to be
written to distinct memory positions in the underlying database (whose access patterns we wish to
hide). Note that L may be smaller than the total database size d. Each C; samples a random leaf
node of the ORAM tree to be associated with the block y;: i.e., Pos(i) < [2¢]. At the conclusion
of the first phase of the Parallellnsert procedure, data block y; will be written to the node at level ¢
along the path to leaf node Pos(7) in the largest ORAM tree. Since L data blocks are being inserted,
and there are 2° € ©(L) distinct nodes at this level of the tree, with overwhelming probability no
node will be assigned too many data blocks (i.e., there will not be an “overflow”). This insertion
procedure will then continue recursively, storing the newly generated L/a-block position map data
(Pos(1),...,Pos(L/a)), and so on.

However, the challenge is how to reach this memory state without revealing information about
the resulting location of data items in the process. For example, if processor ¢ simply writes his
block y; to its target memory position at level ¢, then the first ¢ bits of Pos(i) are completely
revealed, rendering the ORAM structure useless.

We solve this problem by delivering memory blocks to their target locations via a fized-topology
routing network. Namely, the CPUs will first write the relevant data items (and their corresponding
destination addresses) to memory in fixed order, and then rearrange them in ¢ sequential rounds
to the proper locations via the routing network.

We next describe the routing network that will be utilized. However, before continuing, a brief
clarifying remark.

Remark 3.5 (CPU-to-CPU communication). The procedures described in this section yield appli-
cations both in the setting of standard ORAM, and (as we will later show) to the setting of secure
multi-party computation. In the former model, it is assumed that CPUs do not communicate
directly, but rather can “send” information from one to another via writes and reads to memory
in the shared database. In the latter, the “CPUs” will themselves be embodied by parties, who
communicate directly. We will use these notations interchangeably across sections of the paper,
and will leave it to the reader to translate them accordingly based on context.

Simple L-to-L Oblivious Routing Network. We use a routing subprotocol for delivering
messages msg; originating from L nodes (labeled i = 1,..., L), to associated destination addresses
addr; € [L]. At the conclusion of the protocol, each node j should hold all messages msg, for which
addr; = j.

For simplicity, assume L = 2¢ for some ¢ € N (otherwise, consider the smallest ¢ for which
2t > L). The routing network has depth ¢; in each level t = 1,...,¢, each node communicates
with the corresponding node whose id agrees in all bit locations except for the tth. These nodes
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Routing Network
L nodes, Py, ..., Pr. For simplicity, say L = 2¢ for ¢ € N.

Input: Each P; holds message msg; with target destination addr; € [L], and global threshold K.
Output: Each P; holds all messages msg; for which addr; = .

For each node i € [L] and level t € [¢], denote by M;; the set of messages held by node i at time
step t, starting at time ¢t = 0 with M; ¢ = {msg;} for each node i € [L].
Fort=1,...,4, do the following:
1. The nodes P; initiate communication in pairs as dictated by the bit representation of their
indices i, j. Namely, for all 21 values of a := {acteeg\gey €10, 1}¢71, the pair of nodes P,
and P ) speak together, where a® = ajag - a—1b az4q - - - ay.

2. Each pair (P, P,)) performs the following exchange of messages:

a

M) 411 + {msg; € My U M, , : (addrj), = b}.

3. If |M; 4+1]| > K, then node P; aborts.

Figure 4: Routing network for delivering L messages originally held by L nodes to their corre-
sponding destination addresses within [L].

exchange messages according to the tth bit of their destination addresses. This is formally described
in Figure 4. After the tth round, each message msg; is held by a party whose id agrees with the
destination address addr; in the first ¢ bits. Thus, at the conclusion of ¢ rounds, all messages are
properly delivered.

Note that this pairwise communication structure frequently appears within sorting networks.
In our setting, in contrast to sorting networks, data items are not simply maintained or swapped in
each step, but rather may also be both directed to one node or the other. This will be necessary for
us since (unlike sorting) the source-to-target mapping is not a one-to-one function. (Indeed, direct
use of a sorting network on target addresses actually does not seem to help toward our goal, as one
is left with a similar predicament of how to move sorted blocks of items to the correct destination
nodes without revealing information).

We now show that, if the destination addresses addr; are uniformly sampled, then with over-
whelming probability no node will ever need to hold too many messages at any point during the
routing network execution.

Lemma 3.6 (Routing Network). If L messages begin with target destination addresses addr; dis-
tributed independently and uniformly over [L] in the L-to-L node routing network in Figure ,
then with probability bounded by (Llog L)2~X, no intermediate node will ever hold greater than K
messages at any point during the course of the protocol execution.

Proof. Consider an arbitrary node a € {0, 1}¢, at some level ¢ of execution of the protocol. There
are precisely 2! possible messages m; that could be held by node a at this step, corresponding to
those originating in locations b € {0,1}* whose final £ — ¢ bits agree with those of a. Node a will
hold message m;, at the conclusion of round t precisely if the first ¢ bits of addr, agree with those
of a. For each such message my, the associated destination address addr, is a random element of
[L], which agrees with a on the first ¢ bits with probability 2¢.
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For each b € {0, 1} agreeing with a on the final £ —¢ bits, define X} to be the indicator variable
that is equal to 1 if addr; agrees with a on the first ¢ bits. Then the collection of 2! random variables
{Xy:bi=a; Vi=t+1,...,¢} are independent, and X = > X; has mean y = 2¢-27¢ = 1. Note
that X corresponds to the number of messages held by node a at level t. By a Chernoff bound,'®
it holds that

oK1 -
PriX > K| =Pr[X > (1+ (K —-1)yu] < <KK ) <9 K
Then, taking a union bound over the total number of nodes L and levels ¢ = log L, we have that
the probability of any node experiencing an overflow at any round is bounded by (Llog L)2~%. O

Note that in our n-party MPC application, the parameters L and K will correspond to L €
poly(n) and K € w(log®n) N polylog(n), so that this probability of overflow will be negligible in 7.

We remark that this routing network is parallelized, requiring no more than polylog(n) sequential
rounds, and access-oblivious, in that the communication pattern of who speaks to whom during
the protocol is independent of the list of addresses addry, ..., addry.

ORAM Compiler with Parallel Initialization. We now present a full description and analysis
of the new ORAM compiler. The compiler itself is precisely that of [CP13], with the modification
that each bucket size is doubled from K to 2K (recall the bucket size is the number of data blocks
that can be stored at each ORAM tree node without overflow), and with the additional parallel
data insertion procedure Parallellnsert, given in Figure 5. Note that the Parallellnsert procedure
begins with L processors, and concludes the recursion with a single CPU with polylog(d)-size secret
state, which then acts as the standard CPU for future data accesses, as dictated by the [CP13]
ORAM scheme.

Proof of Theorem 3.4. We analyze the complexity and security of the presented ORAM compiler.

Complexity. Consider the following complexity measures of the resulting compiler.

Memory overhead: The total amount of allocated memory is precisely twice that of the [CP13]
construction, since we maintain the same structure of memory nodes, but double each one’s
(“bucket”) storage size. Thus, our memory overhead, as with [CP13], is O(1).

Computation overhead: Our ORAM compiler induces identical computation overhead as in [CP13]
for each Read and Write data access, with a multiplicative factor of 2 due to the doubled
bucket size. In particular, this overhead is O(1). It thus remains to analyze the computation
requirements for the parallel insertion procedure.

Consider first a single instance of the recursive Parallellnsert procedure (i.e., insetting data
within a single binary tree), and suppose we are inserting L data items within this tree. The
entirety of the CPU computation work is expended in the execution of the L-to-L routing
network. In each level of this network, each of the L, CPUs communicates with one other CPU
and computes a polylog(d)-size computation (corresponding to combining their polylog(d)-
size buckets of memory, and then divvying the blocks according to the relevant bit of their
destination addresses). As there are precisely log L levels of the routing network, and L CPUs,

%Exact Chernoff bound used: Pr[X > (14 )y < (ﬁ)” for any 6 > 0.
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Parallellnsert: L data blocks and CPUs C}, into database size d (w.r.t. recursion parameter «):

Input: Each CPU holds data block (¢, ;). Al ORAM memory nodes begin empty (i.e., L).
Output: ORAM memory node contents consistent with each data block z; inserted at location 1.

Call Parallellnsert-Recurse with L CPUs (and data blocks to be inserted), into database size d.

Parallellnsert-Recurse( Le,y CPUs with data blocks, de,r size database)

1. (Check for base case). If L¢yr = 1, then terminate Parallellnsert, taking the single currently
held data block as the final output CPU secret state. Otherwise, continue.

2. (Sample target destinations for blocks). Each CPU C; (for i € [Lcyy]) performs the following
steps. Sample a random leaf node Pos(i) < [dcurr| to be associated with data block i. Write
Pos(i) to the secret CPU state. Let ey = logy Leurr, and let addr; denote the address of the
¢th level node in the current ORAM tree along the path to leaf Pos(7).

3. (Insert items to ORAM tree). All L, CPUs participate in an execution of the Leypr-t0-Leyr
routing network from Figure 4 to move each message block x; to destination address addr;
within the £ 'th level of the ORAM tree.

4. (Recursion setup). For each i € [Leyr|, CPU C; sends his value Pos(i) (sampled in Step
1) to CPU |i/a] 4+ 1 (in the ORAM setting, this communication is done through memory).
The [Leurr/a] CPUs C1, Cq41,Coa+1, - - - then initiate Parallellnsert-Recurse into database size
[deurr/], where each such CPU Cj holds data block [Pos(j), Pos(j + 1),...,Pos(j + a — 1)].

Figure 5: Parallel Insertion procedure, used to initialize an ORAM structure with several data
items in parallel.
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the total amount of computation expended will be O(L - polylog(d) -log L) € O(L), since L < d
(where the asymptotic O notation is with respect to the full database size d).

Now, the complete Parallellnsert procedure requires a logarithmic number log, d recursive in-
stances of this step. The single-instance Parallellnsert procedure is repeated log, d times in
sequence (where o € Q(1) is chosen as a fixed parameter), thus implying a total of O(L) com-
putation. Since the procedure achieves insertion of L data items, the computation overhead
is thus O(1).

Parallel complexity of initialization: Consider first a single instance of the ORAM recursion (i.e.,
populating a single binary tree with data). The insertion procedure Parallellnsert for L elements
within a single data tree takes place via a single execution of the L-to-L fixed-topology routing
network, which has logarithmic depth log L.

Finally, recall that the complete ORAM compiler induces a logarithmic number log, d of
recursive levels. Thus, the total parallel computation time is O(log L - log,, d) € O(1) (where
again asymptotics are with respect to database size d).

Security. By [CP13], it suffices to prove that this insertion procedure maintains the three invariants
(1)-(3) listed above. We address these one by one.

Invariant 1: Data block i is stored within a node along the path from the root to leaf Pos(i).
Holds directly. That is, in our insertion procedure data block ¢ is written to the th level node
along the path to its assigned leaf node Pos(i). This state is maintained for all future read
and write operations.

Invariant 2: No node will “overflow” its 2K -size allocated memory bucket (with overwhelming
probability).
The analysis of [CP13] shows that when beginning with an empty ORAM state, and imple-
menting the flushing step after each data access operation, then with overwhelming probability
there will never be a time at which any bucket must store greater than K data items. By
Lemma 3.6, with overwhelming probability no size-K node will overflow during the execution
of the routing procedure. This includes the final resulting assignment of data blocks to nodes
within the data tree. Now, recall that the parallel initialization procedure populates only
nodes within a single level of the tree. Thus, it holds in particular that our procedure will not
assign more than K data blocks along any path in the data tree (from the root to any leaf
node). Since we set the bucket size in our ORAM protocol to be 2K, the desired property
follows.

Invariant 3: Given the sequence of access patterns Access up to any given time, the corresponding
vector (Pos(i))ieq is distributed uniformly over [d/a]?.
Recall the original values Pos(i) are each sampled uniformly and independently. Now, con-
sider the access patterns induced by the parallel initialization procedure. This consists only of
recursive implementation of the fixed-topology message-routing protocol. Because the com-
munication access patterns have a fixed topology, this means they are completely independent
of the values of Pos(i). Thus, conditioned uniformity of Pos(i) follows. This is maintained for
all future accesses by the security of the underlying [CP13] ORAM compiler.

O]
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3.3 Securely Initializing and Computing: Distriblnit and Compute Protocols

We now shift back to the setting of secure multiparty computation. In this section, we present two
distributed protocols: Distriblnit and Compute.

Distriblnit: The Distriblnit protocol enables secure distributed execution of a parallel ORAM ini-
tialization algorithm (e.g., the one given in the previous section) on parties’ committed secret
inputs, assuming a structure of “good” committees (e.g., as generated by the Committee
Setup procedure detailed in Section 3.1), and assuming parties’ inputs are properly secret
shared amongst corresponding input committees. At the conclusion of Distriblnit, the com-
mittees C, {C}}j¢n) corresponding to the CPU and Input ORAM memory nodes hold secret
sharings of the state and data information consistent with having inserted the specified inputs
securely into the ORAM structure.

Compute: The Compute protocol is used to execute a given RAM program II on data stored within
a distributed ORAM structure. As above, it assumes a structure of “good” committees serving
the role of nodes (CPU and memory nodes) of an ORAM data structure. At the conclusion
of Compute, all parties receive the output of II evaluated on the ORAM-stored data, and
committees hold secret sharings of the new ORAM CPU and memory node states. Note that
our protocol will similarly support the case where different parties receive different outputs;
however, we address the simpler case for the sake of clarity (especially when considering a
load-balanced solution in Section 4).

Syntax of ORAM-Compiled Programs. Before proceeding, it will be useful to introduce
formal notation for the structure of ORAM-compiled RAM programs.

Consider the standard ORAM setting, where nodes are honest, and memory content and CPU
computations are hidden, for a single data structure. Here, an ORAM-compiled program II' <«
ORAM (II) can be thought of itself as a generic RAM program, consisting of an arbitrary sequence
of local CPU computations and data accesses. The guaranteed security is that, assuming the
activity of the CPU is kept secret, then the distribution of data access patterns made by the CPU
to memory nodes is simulatable, independent of the contents of the memory nodes.

In our setting, we require slightly stronger guarantees.

First, we may no longer assume all information regarding local CPU computations is hidden.
Rather, the CPU instructions will be emulated via a committee MPC, which will succeed in hiding
the content of the computation, but will reveal its length: Namely, if the CPU must perform
different computations whose complexities differ as a function of the data, then this information
will be revealed. We address this issue by assuming that ORAM-compiled programs maintain a
regular pattern of computation and data accesses. That is, we assume that an ORAM-compiled
program makes precisely one data access after every fixed-size computation step. (Alternatively,
this can be forced with only a polylog(n) multiplicative blowup in complexity, since each data access
incurs polylog(n) complexity cost).

Second, recall that in our protocol we will actually maintain two ORAM-compiled data struc-
tures: one to hold parties’ inputs and remnant state information maintained between computa-
tions, and a second to hold temporary computation-specific working memory (see discussion on
Distributed ORAM of Dynamic Size in the introduction). While the ORAM guarantees that access
patterns within each data structure do not reveal information about the corresponding stored data,
no guarantees are provided for cross-structure access patterns. For example, different values of a
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particular data item in ORAM 1 may result in CPU commands that make different numbers of
accesses to ORAM 2. We battle this by taking such an ORAM-compiled program to necessarily
make a single data access to both ORAMs after every fixed-size computation step (once more in-
troducing only a constant-factor blowup in its complexity). This can be viewed as a rudimentary
implementation of an ORAM over two data entities (which are each individually protected), in
which one simply touches both entities in each access.

Combining these observations, we have the syntax in Remark 3.7. We consider two types of
ORAM-compiled programs: First, those with a single ORAM data structure, running with multiple
processors in parallel (to be used for the parallel input insertion); Second, those executed via a single
CPU, within a dual-ORAM data structure (to be used for evaluating programs II using the Input
and Work Tape ORAM data structures).

Remark 3.7 (Syntax of ORAM-Compiled Programs.). We assume the following syntax of ORAM-
compiled programs:

(Single-ORAM) Parallel m-Processor Data Insertion Program:

((Hgl), Accessgl)), (Hgl), Accessgl)), e )
ins — : ’
((Hgm), Accessgm)), (H;m)7 Accessgm)), e )
(1)

where each (possibly random) subcomputation II;” has equal and input-independent running

time, all Hgi) (respectively, Accessgi)) are executed simultaneously in parallel during time step

t, and Hgi) and Accessgl) have the following form:

e (state, op,addr) « ng) (state, v).
On input a CPU state and data value v (from the previous data access), Hgl) outputs: an
updated state, a data-access operation instruction op, and a corresponding data address
addr. Note that for our application, state,op, and v will be maintained as secret values,
and addr will be public.

o (v1,v2) « Access\” (op, v).
On input a data-access operation instruction (from the CPU), and a data value v (from

the memory node), /-\ccess,gi) outputs two updated memory values vq,ve (which will be

given to the CPU and memory node, respectively). An explicit definition of Accessgi) is

given in Figure 6.

Note that the data insertion program has no public outputs.

(Dual-ORAM) Computation Program:

I = ((H’l,Accessl,Access\lek), e (H;,,Accessq/,AccessZyw)),

where Access;, Access}"*™ are both as Accessgi) above, and II; has the following form:

o (state, (op, addr), (op*ork, addr*¥o™), output) « IT)(state, v, v'Vork).
On input a CPU state and two data values (corresponding to the previous Input and Work
Tape data accesses), IT; outputs: an updated state, two sets ((op, addr), op™Werk, addr'Vork))
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Function Access(op,v): Performed by two entities (CPU C and memory node Cj4qr)
Input: C': data-access instruction op. Chqqr: data value v
Output: C': data value v;. Chiddr: updated data value vs.
1. Parse op as containing a read or write command:
e For op = Read: Set v; < v. Keep vy = v.
e For op = (Write,v): Set v1 < () and vy < v'.
2. Output v to C' and vy to Cygqy-

Figure 6: The function Access, used to implement a Read or Write command held within the CPU
as op.

of data-access instruction and data address values, and additionally an output value and
party identifier. Note that op,op™V°™ will correspond to one data access in each of the
Input and Work Tape ORAM structures. At the final time step ¢/, the computation will
also yield the final output value, output (before this step, output = 1).

The Comm Hybrid Model. We present our protocols within a UC hybrid model, in which
the parties have access to a collection of ideal communication-related functionalities, as listed
in Figure 7. This provides us with a cleaner interface for communication, without needing to
repeatedly specify the underlying details of implementation. We refer to this as the “Comm hybrid
model.” The Enc, Dec, etc notation refers to the intuition that secret sharing a value among a
committee serves as a form of information theoretic “encryption.” Note that each functionality
involves at most two committees of parties.

We may securely realize each such functionality via a direct use of any information theoretic,
UC secure MPC protocol, such as [BGW88|. The associated communication complexity overheads
for n’ parties, implemented with [BGW88], are given as follows (where each given cost is per party):

Functionality Memory Rounds | Computation CC

Fen () O(n' - |a) O(1) | poly(jz]) O(la| - (n')?)
FEE ana(0pv) | O - (lop] + [v])) | O(lopl) | OCopl) | O((Jop| + |v]) - (n')?)
Feompute(f) O(|f]) O(|f]) O(|f]) O(|f]- (n')?)
Foe(@) o' - |x]) o) | poly(z|) O(jz] - (n)?)

In particular, note that if executed by committees of size n’ = polylog(n), and with inputs and
function description sizes |z|, |op|, | f| € polylog(n), then all the above metrics will be polylog(n).

3.3.1 Distributed Initialization Protocol: Distriblnit

We now construct the Distriblnit protocol.

Recall in Section 3.2 we presented an ORAM compiler with an efficient parallel insertion mech-
anism. Our analysis in that section was within the typical ORAM setting, in which computation is
conducted by honest CPU entities, who may read and write data to honest external memory nodes.
We now discuss the analogous goal within a modified setting of MPC. Here, all parties begin as
symmetric entities, and a constant fraction of them are malicious. To mimic the actions of honest
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Ideal Functionalities in Comm Hybrid Model:

Party-to-Committee “Encrypt” fé’fc
Input: Party P;: input .
Compute: Generate secret shares [z]g < Share(z, £).
Output: Parties in committee £: secret shares [z]¢

. . « » EE
Committee-to-Committee “Command FCommand

Input: Parties in committee & and £’: secret shares [op|s and [v]g (respectively).

Compute: Reconstruct op + Reconst([op]¢), v < Reconst([v]g/). Evaluate (y1,vy2, Yout)
U(op,v).

Secret share [y1]e < Share(y1, &) and [ya]er + Share(ys, &).

Output: Parties in committee &: shares [yi]s. Parties in committee £’: shares [yo]er. All
parties: Yout-

Committee-to-Self “Compute” Féomp

Input: Parties in committee &: secret shares [v]g, (possibly randomized) function f.
Compute: Reconstruct v < Reconst([v]g). Evaluate (y,yout) < f(v). Secret share [yle <
Share(y, £).

Output: Parties in committee £: yout, secret shares [y]e.

Committee-to-Party “Decrypt” fg;fc
Input: Parties in committee &: secret shares [v]¢.
Compute: Reconstruct value v <— Reconst([v]g).

Output: Party i: value v.

Figure 7: Ideal functionalities assumed within the “Comm hybrid model.”
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agents (i.e., to emulate the ORAM security setting), in our MPC protocol every role of the ORAM
(both CPU and memory nodes) will be undertaken by a committee of parties, who may perform
computations and communicate with other committees.

More explicitly, suppose all parties agree on a collection of N committees {C}}e[y—one for
each memory node in the Input ORAM database—such that each committee is at least 2/3 honest.
Suppose the first n of these committees each begin with (honestly generated) secret shares of a
corresponding input value z;.'7 These committees C1, ..., C, will serve the role of the n CPUs in
the multi-processor ORAM insertion procedure Parallellnsert.

The protocol Distriblnit:
Denote the sequence of n parallel CPU instructions as dictated by Parallellnsert as

<(H§1), Accessgl)), (Hgl), Accessgl)), e )
1_[i,ns = )
((Hﬁ”’, Accessgn)), (Hén),Accessgn)), - )

as in Remark 3.7. Then each of the committees Cj, i € [n] executes the corresponding ith sequence
of dictated steps, as follows:

e Initialization: At the beginning of the Parallellnsert execution, each committee C; initializes
empty secret shares [state®]o, = @ and [v]¢, = 0.

e Each II;: In parallel, each committee C; initiates an execution of the ideal functionality
fg;mpute on his instruction f = Hgi), and with input secret shares [state]¢, and [v]c,. Re-
call the output of the ideal functionality is composed of secret shares of the output value
Hgi) (state, v), evaluated on the reconstructed values state, v (see Figure 7), and that this Hgi)

output consists of a triple (state, op, addr) of updated state information, a data-access opera-

tion instruction, and a (public) data address (see Remark 3.7). That is,

(state]c,, [oplc,, addr?) « F&i . (TY) ([state] ., [v].c, ).

Compute

e Each Access;: In parallel, each committee C; initiates an execution of the ideal functionality
.FCCZ Cgar ()

ommand

C,4qr0» Where addr¥) is the public data address output in the previous step by CPU i. More

a
formally, C; initiates interaction by having each of its parties send a public “start of command”

message to all parties in C,,, ). Then, the committees submit their respective inputs to the

to evaluate the procedure Access (as defined in Figure 6) together with committee

ideal functionality: C; inputs shares [op]c,, and C, ) inputs shares [U]Caddr(i); the output
Ci,C .G . .
of ‘FCom;dadr:(c;) consists of secret shares [v1]¢, to committee C;, and secret shares [vg]caddr(i)

committee C,,, . That is,

);

7For simplicity of exposition, we describe the protocol for the case when parties’ inputs are of short size polylog(n),
so that a single committee can be assigned to each input. In the case of large input size, the same process will take
place, except that parties will first break their inputs into size € polylog(n)-size pieces, secret share each of these
|| := |x|/size pieces amongst a different committee (in parallel), and then execute the parallel ORAM input insertion
procedure collectively on n - |z’| data items (instead of just n).

C (i)
([vl]ciﬂ [UQ]Caddr(i)) — fcomr;d:;d ([OP]CN [,U]Caddr(i)
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where op is executed as dictated by the procedure Access, described in Figure 6. Recall that
op encodes a Read or (Write, v') command, the input value v corresponds to the data stored
at address addr(i), and the output values vy, vs are the appropriate data values given to Cj
and C, . (respectively) at the conclusion of the Read or Write command.

We first analyze the (per-party) communication and space complexities of Distriblnit. Overall,

the protocol corresponds to one execution of ]:gompute or fé’)i:mand per computation step of the
ORAM parallel insertion program Parallellnsert. Each ideal functionality execution will take place
between polylog(n) many parties (corresponding to at most two committees) on input size polylog(n)
(since we w.l.o.g. may consider each input as split into polylog(n)-size blocks). By implementing
the ideal functionality via a UC secure protocol such as [BGWS8S], each execution will take mem-
ory, round complexity, and communication complexity polylog(n). Now, from the previous section,
we have that Parallellnsert runs in parallel time complexity polylog(n) and has polylog(n) memory
overhead. (Note that the database size d = n|z| is polynomial in n, thus polylog(d) € polylog(n)).
Further, the computation overhead per CPU is polylog(n), implying that each CPU need only per-
form polylog(n) ideal functionality accesses. Since communications take place at each computation
step, parties’ computation are in all cases within polylog(n) factor of their communication.

This means each party maintains polylog(n) bits of memory and communicates O(|z|) bits
for each committee role he takes part in. By the properties of the ORAM compiler, which pro-
vides polylog(n) overhead in memory requirements, the total number of committees will only be
a polylog(n) multiplicative factor greater than the size of the required underlying (non-compiled)
databases. This means the total collective memory requirement of the protocols (combining all
parties) is O(n - |z|). Finally, by Lemma 3.2, with overwhelming probability no party appears in
more than polylog(n) times more than “his share” of committees. That is, no party need to have
memory greater than O(|z|), or communicate more than O(|z|) bits. Hence, the final per-party
memory, round, and CC/computation requirements of Distriblnit are as given in Table 2.

Memory | Rounds | CC/comp | Total CC/comp
Distriblnit | O(|z]) 0(1) O(|x|) -

Table 2: Per-party memory and communication complexities of Distriblnit. The symbol ‘" in the
totals column denotes n times the corresponding per-party complexity.

We now proceed to prove the security of Distriblnit. We prove that the protocol Distriblnit
securely realizes an ideal functionality .Ei‘id' described in Figure 8. The functionality .E?]‘:dr accepts
secret shares from all parties (for each committee they are participating) and outputs secret shares
consistent with all parties’ inputs being inserted into the Input ORAM structure (i.e., held as
secret shares among the appropriate ORAM committees, and with corresponding updated CPU
state secret shared among the CPU committee C'), and which leaks no information beyond the
output secret shares and the data access patterns made to the ORAM structure during the insertion
process. (This access pattern information will later be removed when using Distriblnit within our
final protocol, appealing to the security of the parallel initalization procedure of the ORAM).

More specifically, we prove that Distriblnit securely UC-realizes ﬁ?fs'dr for a limited class of
environments, that is restricted to selecting parties’ inputs consistent with valid sets of secret
shares (note, of course, adversarially controlled parties can always ignore these values and use
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Ideal Functionality F2ddr.

Ins
Input: For j € [n], each committee Cj: shares [z}]c;.
Compute: Perform the following steps.

1. Reconstruct the values x; < Reconst([z;]c;)-
2. Evaluate the ORAM parallel insertion procedure on these inputs:

((addrgl)7 .. .,addrgn))te[q], (state7 {Uj}je[N})> + Parallellnsert(z1, ..., xy,).

Let AccessPatterns := (addrgl), .. .,addrgn))te[q] denote the sequence of memory access
patterns induced by this multiprocessor procedure.

3. Generate secret shares of secret output values: [state]c <— Share(state, C); for each j € [N],
[vilc; < Share(v;, Cj).
Output: The committees receive the following values:
e CPU committee C: shares [state]c.
e Each Input ORAM committee C; (j € [N]): shares [vj]c;.
e All parties: AccessPatterns.

Figure 8: The ideal functionality F249" to be realized by Distriblnit.

Ins

arbitrary inputs of their choice). When we put the separate pieces of our MPC protocol together,
we will be guaranteed that the inputs to Distriblnit (corresponding to the outputs of the Committee
Setup phase) will indeed be of this form.!®

Lemma 3.8 (Input Initialization for MPC). Suppose all parties agree on committees C,{C;} c[p]
as in Lemma 8.2. Then the protocol Distriblnit securely UC-realizes the ideal functionality ]-'iiidr
given in Figure 8, within the Comm hybrid model, when restricting to environments who select

parties’ inputs with valid sets of secret shares.

Proof. At a high level, the security (including correctness) of the protocol Distriblnit follows directly
from the UC security of the underlying ideal functionalities in the Comm hybrid model (see Fig-
ure 7), together with the secrecy and correctness/robustness of the secret sharing scheme. Indeed,
the entire Distriblnit protocol consists of a parallel sequence of public communications and calls to
the underlying ideal functionalities made by the CPU committees amongst themselves (to execute
each HEZ)), and between CPU committee plus memory node committee pairs (to execute each data
access). We need only argue that the outputs of these ideal functionalities (in particular, the secret
shares given to malicious parties) do not reveal too much information, and that the process of con-
tinually reconstructing shares, computing, and resharing maintains correctness of the underlying
secret computed value.

8 An alternative approach to this situation would be to prepend to the Distriblnit protocol an additional VSS phase
in which parties commit to their input secret shares (by sharing these shares among the parties in the corresponding
committees), in which case DistribInit will securely UC-realize F2* in the standard sense. However, for simplicity
of protocol construction, we elect to skip this step (which is redundant in the fully composed protocol), and simply
analyze with respect to restricted environments.
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To formally prove security, we construct an ideal-world simulator & who simulates the entire

output of the real-world execution of Distriblnit given only access to the ideal functionality .Ei‘idr.

The simulator Sjps. Denote by M C [n] the subset of malicious parties corrupted by the adver-
sary.

1. Pre-computation. Let

((Hgl), Accessi)), - (I, Accessy ), - )
I = :

Ins

((Hg"), Accessgm)), (H((In),Accessg")), . )

denote the n parallel sequences of processor instructions dictated by the n-item parallel data
item ORAM insertion procedure Parallellnsert, as in Remark 3.7. In particular, let ¢ denote
the number of (parallel) computation steps.

2. The simulator S executes the ideal functionality Fi";‘gdr using arbitrary inputs on behalf of
corrupted parties (recall that these correspond to a minority of secret shares, and we are
guaranteed that the honest parties’ shares will be consistent and reconstructable). In response,
S receives output secret shares [state]cny and [vj]c;nn (for each j € [N]) given to corrupted
parties in the corresponding committees, and a description AccessPatterns of the sequence of
communication access patterns made during the protocol.

3. Fort=1,...,q, the simulator S proceeds as follows.

(a) Simulate parallel computation of Hgl) Y ,Hgn) by committees C1,...,Chp:

This constitutes simulating the outputs of each ideal functionality fg;mpute(ﬂgi) ) on the

corresponding collection of secret shares ([state]c., [v®]¢.) (including shares held by

honest parties). Recall the output of Fgﬁmpute(ﬂgz)) consists of new sets of secret shares

[state®]c,, [op®]¢, for the committee Cj, corresponding to updated state, data-access
operation instruction, and output value, and public data address addrgz), corresponding
to the next-step memory access location.

To simulate this output, S does the following:
e S samples random secret shares for each malicious party in C; for [state(i)]ci and
[Op(i)]ci'
e Output the value addrgi) given by the ideal functionality (as part of AccessPatterns).
(b) Simulate parallel computation of Accessgl), . ,Accessi”) (among C; and C, drgi)):

This constitutes simulating the output of the ideal functionality fgfr;and (Accessgi)) for

Cl = C, 4rt@)> O input the collection of secret shares ([op(i)]ci, MCQ) (including shares

held by honest parties). Recall the output of Fgﬁ%and (Accessl(f)) consists of new sets of

secret shares [v1]c;, [v2]cr to C and O (corresponding to the outputs of the Read or Write
command specified by op(i)).

To simulate this output, S samples random secret shares of [v1]¢, for each malicious party
in C, and of [va]¢y for each malicious party in Cj.
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This concludes the description of the simulator S.

To prove the indistinguishability of the output of the ideal-world simulator & and the output of
the real-world experiment, we consider a sequence of hybrids. The output of each hybrid experiment
¢ run with adversary A and environment Z is given by the output of the environment, denoted by

Hyb, (1%, A, Z).

Hybrid 0. The real world: i.e., the adversary interacts with honest parties in the real-world ex-
periment running the protocol Distriblnit.

Hybrid 1. (Secret Share robustness).

In this hybrid, the sequence of committee communications and ideal functionality executions
is replaced by a single ideal functionality ]:ii‘i’addr which accepts secret shares from all parties,
ignores the shares of corrupted parties, reconstructs the corresponding secret values using
honest parties’ shares, and then computes on these values directly, as dictated by the protocol
Distriblnit. The ideal functionality outputs precisely the values dictated by the stages of the
real-world protocol (e.g., it outputs the computed values {addrgz)}ie[n] at each time step ¢
of the computation, in addition to honestly generated secret shares of the current values
[state®]c,, [op(]¢, at each time step (for each i € [n]).

The only differences are that (1) corrupted parties’ shares are ignored in the first step (which
will not affect anything when considering these restricted environments), and (2) in the process
of computing, ]-"i‘ffs’addr continues to use the reconstructed values, instead of accepting secret
shares of these values as input from parties, reconstructing the values from the secret shares,

and computing on these values.

Claim 3.9. For every adversary Ao in Hybrid 0, there exists an adversary Ay in Hybrid 1
such that for any environment Z restricted to selecting parties’ inputs as consistent valid secret
shares, Hyb, (lk,A07Z) = Hyb, (1’“,/11,2) )

Proof. The claim holds directly by the robust reconstruction property of the secret sharing
scheme, together with the restricted environment guarantee (i.e., that honest parties’ initial
inputs to the protocol are consistent sets of secret shares). The secret share robustness guar-
antees that secret shares of malicious parties (who form a < % minority of each committee)
are irrelevant to the secret share reconstruction process, since honest parties will all hold con-
sistent shares of the correct value. Thus, since honest parties faithfully follow the protocol as
instructed, the “true” reconstructed values at each stage of computation will be equal to the
values used within this hybrid.

Namely, for any adversary Ag in Hybrid 0, the claim holds for the corresponding adversary 4;
in Hybrid 1 who simply submits bogus secret shares to the new ideal functionality on behalf
of corrupted parties (say, all 0s), and simulates the actions of A( consistent with the resulting
ideal functionality outputs. O

Hybrid 2. (Secret Share secrecy).
ss,addr

Same as the previous hybrid, except that the ideal functionality F; . is replaced by a
addr

more restricted functionality F2°" which accepts the same inputs, and performs the same

computation, but no longer outputs intermediate secret shares to malicious parties. That is,

F2ddr takes the same inputs and performs the same computation steps as ]:-SS’addr, but only

ins ins
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outputs the values {addrgi)}te[q],sharesq, where shares, denotes shares of the final state of the
computation.

Claim 3.10. For every adversary Ay in Hybrid 1, there exists an adversary Ag in Hybrid 2
such that for any environment Z, Hyb, (lk,Al, Z) = Hyb, (1k,A2, Z) .

Proof. The holds by the secrecy property of the secret sharing scheme. That is, since malicious
parties only ever see a < % minority of shares of any secret value, the distribution of these

shares will simply be uniform, independent of the corresponding secret values.

Formally, fix an adversary 4; in Hybrid 1. Consider the adversary As in Hybrid 2 who
simulates the output of F; 5s,addr by providing the output of his own ideal functionality ]’ﬁ‘?dr
(which outputs everything except intermediate secret shares), and simulates the additional

sets of secret shares (sharest)te[q/_l] by sampling uniform shares.

By the perfect secrecy of the secret sharing scheme, the simulated output of .Eii’addr by Ay in

Hybrid 2 is the ezact same distribution as the true output of Fisaddr i) Hybrid 1. Thus, the

Ins
outputs of the two experiments are identical. ]

Note that Hybrid 2 corresponds to the ideal-world experiment as according to ideal functionality
JF24dr - Security of the DistribInit protocol follows.

Ins

O]

3.3.2 Distributed RAM-Program Evaluation Protocol: Compute

We now show how the parties can securely evaluate a RAM program II on the current (dynamic)
system state. This is done via a protocol Compute, which we now describe.

At a high level, Compute will follow a very similar structure to the protocol Distriblnit from
the previous section. Namely, given a RAM program II, we consider its ORAM-compiled version
IT" + ORAM(II), and evaluate II' by assigning committees of parties to play the roles of the ORAM
CPU and memory nodes. However, there are two major departures from the Distriblnit protocol:

1. In Distriblnit, we worked with a single ORAM structure (the Input ORAM). Here, in Compute,
we use two ORAM structures: an Input ORAM, which is first populated by parties’ inputs
and then maintains cross-computation state information; and a Work Tape ORAM, which
stores the current working memory of a single computation II. As discussed in Remark 3.7,
we assume (without loss of generality or efficiency) that after each sub-computation step made
by the CPU, precisely one data access is made to both the Input ORAM and to the Work
Tape ORAM (in this order).

2. The second Work Tape ORAM does not have a fixed bounded size. Rather, along with each
queried RAM program II is supplied an (optional) bound space on the associated working
memory (see Figure 2 for the final ideal functionality we wish to realize).

e If space is an explicit polynomial p(n), then the protocol will maintain a Work Tape
ORAM of size ORAM-Mem(p(n)) (corresponding to a database of size p(n)). That is,
only the firss ORAM-Mem(p(n)) committees C}V°™ will be “activated” in their role during
the execution of II.

e If space = “unbounded,” then the protocol will (implicitly) maintain an ORAM structure
of super-polynomial size. That is, any of the (implicitly defined) committees C’}N“k for 0 €
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(D)

can be “activated” as instructed by the ORAM protocol. However, only polylog(n)
many committees will every be activated per time step of the RAM program, by the
polylog(d) worst-case computation and memory overhead of the ORAM protocol, even for
databases of super polynomial size say d = 2l°¢’n ¢ pw(1) (as polylog(d) = poly(log®n) €
polylog(n)).
At the conclusion of each computation phase, completing the evaluation of some program
II, the memory allocated in the Work Tape ORAM can be released. At any such time, if
wished, the CPU can issue a global message “release current Work Tape,” and the members
of committees C'Xvork will each deallocate all associated memory. However, sending such a
command to all will incur a O(n) communication cost. In cases where this cost is prohibitive
(e.g., if computing low-complexity programs II, where O(n) overhead is undesirably large), the
protocol can instead support a “lazy” memory cleanup process. This is done by maintaining a
global session id, which increments (by the CPU) for each new queried RAM program II. Then
each command issued by the CPU committee to other committees is tagged by the current
session id, and the receiving committee will be free to deallocate all memory associated with
past session id’s.
To maintain clean exposition of the protocol, in what follows we omit explicit reference to
the memory cleanup process. However, when analyzing the communication and memory
requirements of the protocol, we will provide a discussion of both cases.

The protocol Compute(II, space):
Denote the sequence of CPU instructions as dictated by II' + ORAM(II) executing time
timesteps and with work tape size bound space as

I = ((H'l, Accessy, Access) ™), . .., (IT,,, Access,/, Accessg\,/"'k)),

as in Remark 3.7. Then the CPU committee C' executes the sequence of dictated steps, as follows:

e Initialization: At the beginning of the Compute execution, the CPU committee C' increments
Sessionld <— Sessionld + 1 and initializes empty secret shares [state]c = 0 and [v]c = @) and
[,UWork]C — @

e Each II}: The CPU committee C initiates an execution of the ideal functionality f&mpute
on his instruction f = II}, and with input secret shares [state]c and [v]c and [vWVoX|c.

Recall the output of the ideal functionality is composed of secret shares of the output re-

sulting from evaluating IIj(state,v), where state <+ Reconst([state|c), v < Reconst([v]¢),

and vWerk « Reconst([v"Wo|o) (see Figure 7), and that this II, output consists of a tuple

(state, (op, addr), (op™Vo¥, addrVek) output of updated state information, two pairs of data-

access instruction and (public) data addresses, and output value if the computation has con-

cluded (see Remark 3.7). Explicitly,

(Istatelc:, ([oplc addr), ([op™*™|c:, addr™*™), output ) + Flompure(IT;) (Istatelc, [o]e, [0V¥]c )

e Each Access;: The CPU committee C' initiates an execution of the ideal functionality f&iﬁgn p
to evaluate the function Access (as defined in Figure 6) together with committee Cyqqr, where
addr is the public data address output in the previous step. More formally, C' initiates inter-

action by having each of its parties send a public “start of command” message to all parties
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Final Output Delivery Procedure DeliverOutput
Input: Parties in C' hold value output.
Output: All parties learn output.

Consider the first nK elected committees C;, where K € w(logn) N polylog(n) is a fixed parameter,
and temporarily relabel the committees (in order) with binary strings 0,0, 1, 00,01, 10,11, 000, . ..
of length from 0 to logy(nK), beginning with the CPU committee receiving label ().
1. Initialize outputy := output.
2. For ¢ =1 to logy(nK):
(a) In parallel, for each string v € {0, 1}~
Committee v communicates its value output, to the two committees v||0 and v||1 via two
executions of the ideal functionality Fo' (0, output,).
(b) Each committee v’ on the receiving end of an Fcommand interaction sets output,, to value
received as the result of the interaction.

3. Each party P; outputs the value output, for the lexicographically first committee v in which
he appears.

Figure 9: Procedure for efficiently disseminating the evaluation output from the CPU committee
C to all parties.

in Cyqdr- Then, the committees submit their respective inputs to the ideal functionality: C’s
inputs are shares [op]c, and C,qq,’s inputs are shares [v]c,,, ; the output of F, CCaddr  consists

Command
of secret shares [v1]c to committee C', and secret shares [vg]c,,, to committee Cyqqr. That is,

C,Caddr
([1les [va] o) < }-Comr?\ind([Op]C’v (V] Craar )+
where op is executed as dictated by the Access procedure, described in Figure 6. Recall that
op encodes a Read or (Write, v') command, the input value v corresponds to the data stored
at address addr, and the output values vy, vy are the appropriate data values given to C' and
Caddr (respectively) at the conclusion of the Read or Write command.

e Each Access!V°*: The CPU committee C' initiates an execution of the ideal functionality
k

CVCWor . . ) .
Comﬁ"a'zvg “ to evaluate the function Access together with committee C;’gg:\'jmk,

[opVok] o and [U]CWorbv _» directly analogous to the Access; step above.
addrVvvor

with inputs

e Final Output Delivery: At the conclusion of the final ¢’th step of the program execution,
the CPU committee C' will have learned the desired program output y = I(x1,...,2,). It
communicates this output to all parties via a simple tree-structure communication network,
as described in Figure 9. Note that this takes place in polylog(n) rounds.

The Output Delivery Procedure will be used in other parts of the paper, and as such it will be
convenient to include a separate lemma stating its correctness and complexity properties.

Lemma 3.11 (Output Delivery Procedure). Suppose all parties agree on committees C,{C;};en
satisfying the properties of Lemma 3.2, for N = nK .9 Then with overwhelming probability, if the

19Recall (loosely) Lemma 3.2 guarantees each committee is 2/3 honest, and no party occurs in too many or too
few committees.
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honest parties in C initiate protocol DeliverOutput (Figure 9) with the same value output, then at
the conclusion all honest parties will agree on output, and will use the following per-party resources:

Memory | Rounds | CC/comp | Total CC/comp
DeliverOutput | O(Joutput|) | O(1) | O(Joutput]|) -

Further, the exact computation (and communication) requirements for each party are tightly bound
to the average: namely, for every party P;, for any constant § > 0, with overwhelming probability
mn,
(1= 6% < cost(P) < (1+6)S,
n n

Proof. By Lemma 3.2, we have that the committees C, {C;} are each of size € ©(K) € polylog(n)
and each consist of at least 2/3 honest majority. Further, it guarantees that for constant § > 0, no
party appears in more than (1 + J) times or fewer than (1 — ¢) times his fair share of committees
{Cj }je[N]- In particular, each party occurs in at least one committee, and no one appears in more
than £N € O(polylog(n)) (since the size of each committee is bounded by K).

The 2/3 honest majority implies that the correct value output will be disseminated at each step,
by the correctness of Fcommand- The protocol consists of a sequence of calls to the ideal functionality
Fcommand among polylog(n)-size collections of parties. Each call requires memory and computation
resources costr = O(|output|). A party participates in two such calls for each committee in which
he appears. In particular, each party will incur cost O(|output]). Further, by the guarantees of
Lemma 3.2, each party appears in nearly the same number of committees; thus, explicitly, each
party’s resource requirements will be no greater than (140) times the average value, and no smaller
than (1 — §) times the average value.

The fact that each party appears in at least one committee guarantees that at the conclusion
all parties will learn the correct value output. And, by construction, the protocol terminates in
logy(nK) € polylog(n) rounds. O

Remark 3.12 (Output Delivery for Large Outputs). In the protocol DeliverOutput, committees
each hold and communicate state information corresponding to the total output size |output|.
Later in the paper, when we wish to add load balancing to the protocol, it will be important that
committees hold only a polylog(n)-size state and any snapshot in time. (Jumping ahead, this is
because a committee who has worked too much at a particular job will pass this job, together
with all associated state information, to another committee to balance the workload; thus large
state implies high cost of job switching). If one wishes to execute a program II with large output
size, output dissemination can be achieved while maintaining polylog(n) committee state size by
evaluating a version of the program II that reveals the output in polylog(n)-size pieces, and then
executing DeliverOutput in sequence for each of these pieces. Since the output size is bounded by
the runtime of the program II, this change will only inflict additive round complexity overhead
O(|1]), which we can afford.

We first analyze the (per-party) communication and space complexities of Compute, for a given
RAM program II and memory bound space.

Overall, the protocol corresponds to a constant number of executions of ]:gompute or ]-'g c’)‘zman 4 ber
computation step of the ORAM-compiled program II’, in addition to the output delivery procedure.

Each ideal functionality execution will take place between polylog(n) many parties (corresponding to
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at most two committees) on input size polylog(n) (since we w.l.o.g. may consider each input as split
into polylog(n)-size blocks). By implementing the ideal functionality via a UC secure protocol such
as [BGW8S|, each execution will take memory, round complexity, and computational complexity
polylog(n). We thus have total round and computation complexity O(|II|). Note, however, that
not all parties take part in the executions of Fcompute a0d Fcommand- Rather, each execution takes
place only between polylog(n) parties. (In contrast, in Distriblnit, there were n simultaneous parallel
executions of these commands). Thus, the total communication complexity suffers only a blowup of
polylog(n) of the per-party CC / computation, and not a factor of n. Further, by the good spread of
the elected committees C; (Lemma 3.2), the output delivery stage will incur only polylog(n)-|output]|
bits of communication per party, where |output| is the size of the computation output (since each
party occurs in only polylog(n) of the output delivery committees). Thus, altogether, the total
communication complexity of the protocol is O(|II]).

Each party maintains polylog(n) bits of memory for each committee role he takes part in.
(Note, in particular, the CPU committee does not need to maintain the entire working memory of
the computation II, as in [BGT13], but rather outsources this memory storage to the Work Tape
ORAM committees). By the properties of the ORAM compiler, which provides polylog(n) overhead
in memory requirements, the total number of committees will only be a polylog(n) multiplicative
factor greater than the size of the required underlying (non-compiled) databases. This means
the total collective memory requirement of the computation protocols (combining all parties) is
O(n - |x| + space), corresponding to the memory required by the Input ORAM (contributing n - ||)
and the single-execution Work Tape ORAM (contributing O(space)). Finallyl, by Lemma 3.2, with
overwhelming probability no party appears in more than polylog(n) times more than “his share”
of committees. That is, no party need to have memory greater than O(|z| + space/n). In addition,
the output delivery portion requires polylog(n) - |output| memory per party.

We now address the memory requirements for repeated execution of Compute(Il, space). For a
single execution, we have space complexity as described above. However, after each computation II,
the parties no longer need to maintain the working memory from this computation. As discussed
above, this can either be handled by issuing a massive remove-memory request, or by “lazy” memory
release, maintaining a session id tag and, upon receiving a message tagged with a new session id,
deallocating any memory from previous sessions. In this fashion, we have that at any given time, the
total memory requirement of parties for this purpose is bounded by the mazimum space max space
required by any one program II (with polylog(n) overhead). We thus have the complexities for the
repeated-execution case as given in Table 3.

Memory Rounds | CC/comp | Total CC/comp
Compute(II, space) | O(]z| + maxspace/n) | O(|U|) | O(|II] +|y|) | O(|] + nly|)

Table 3: Memory and communication complexities of repeated execution of Compute(IL, space).
The notation max space indicates the maximum value of space encountered during the course of a
sequence of Compute calls (where a call Compute(II, unbounded) defaults to size space = |II}).

We now address the security of the protocol Compute. We prove that Compute securely UC-
realizes an ideal functionality fﬁdd', described in Figure 10, when the environment is restricted to
selecting parties’ inputs consistent with a valid set of secret shares (note, of course, the corrupted
parties can always choose to modify their received inputs). As in the case of Distriblnit, we will
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The ideal functionality ]-"ﬁddr:
Input: The committees hold secret shares:

e CPU committee C: shares [state|c.
e Each Input ORAM committee C;: shares [vj]c;.
e Each Work Tape ORAM committee C)V: shares [v}Vo¥] Cork

Compute:

1. Reconstruct all sets of secret shares: state <— Reconst([state]c), v; <= Reconst([v;]c;), for

each j, and v)Verk « Reconst([v}’v‘”k]cxvmk) for each /.

2. Denote by II' «+~ ORAM (II) the ORAM-compiled version of the program II. Execute

((addrt,addr¥V°rk,output)t€[q,], (state, {v;}, {v}’vmk})) 1 (state, {v}, {v}’vmk}) :

corresponding to the evaluation of the ORAM-compiled program II’ on the preexisting val-
ues, where (addry, addryVer, output)c(y denote the sequence of partial-evaluation output

values at each time step t of the execution of II'.

3. Generate secret shares of each resulting secret value: [state]c < Share(state, C), [v;]c;
Share(v;, C;) for each j, and ['UzNork]CzNork < Share(v}¥ork, CVerk) for each .

Output: The parties receive the following outputs:

e Parties in C: shares [state]c.

e Parties in each Cj: shares [vj]c;. Parties in each CYVerk: shares [v)Verk]

e All parties: output, (addrt,addry\/"'k)te[q/].

Work «
CZ

Figure 10: The ideal functionality Fﬁddr to be realized by Compute.

be guaranteed when composing Compute in the final protocol that the inputs to Compute in every
execution (i.e., the outputs of Distriblnit or a prior execution of Compute) will indeed have this
format. The functionality }'ﬁddr executes the ORAM-compiled program I’ on the values currently
held in the emulated ORAM database (held in secret shared form by the corresponding ORAM
memory node committees), outputs new secret shares of the updated ORAM memory nodes and
CPU secret state to the appropriate committees, together with the public output to all parties, and
leaks only the sequence of access patterns made to the ORAM database during the computation.
(We will prove later, in the combined protocol, that these access patterns do not reveal any useful
information, by relying on the security of the ORAM compiler).

Lemma 3.13. Suppose that all parties agree on committees C,{C;},{C)V°*}, satisfying the prop-
erties in Lemma 3.2. Then the protocol Compute securely UC-realizes the ideal functionality Fﬁddr
given in Figure 10, within the Comm hybrid model, when restricted to environments Z who select
parties’ inputs corresponding to consistent sets of secret shares.

Proof. At a high level, the security (including correctness) of the protocol follows directly from the
security of the underlying ideal functionalities, together with the secrecy and correctness/robustness
of the secret sharing scheme. Indeed, the entire Compute consists of a sequence of calls to the
underlying ideal functionalities in the Comm hybrid model. We need only argue that the outputs of
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these ideal functionalities (in particular, the secret shares given to malicious parties) do not reveal
too much information, and that the process of continually reconstructing shares, computing, and
resharing maintains correctness of the underlying secret value.

To formally prove security, we construct an ideal-world simulator & who simulates the entire
output of the real-world execution of the Compute protocol given only access to the ideal function-
ality Ji.

The simulator Scompute- Denote by M C [n] the subset of malicious parties corrupted by the
adversary.

1. Pre-computation. Let space(n) be an upper bound on the working memory required by II’, and
define p(n) = space(n) - ORAM-Mem(space(n)). The simulator evaluates the ORAM compiler
IT" + ORAM(II). Express

Ir = (( |, Access;, Access|o™), ..., (H;,,Accessq/,AccessZymk)),

as in Remark 3.7. In particular, let ¢’ be the number of data access queries to the Input and
Work Tape ORAM memory structures.

2. The simulator executes the ideal functionality Fﬁddr using arbitrary inputs on behalf of cor-
rupted parties. (Recall these inputs correspond to a minority of secret shares, and that we are
guaranteed honest parties hold a consistent set of shares). In return, the simulator receives sets

of secret shares of corrupted parties [state]cnar, {[vjlo;nar}, {[v}’vmk]oxvorkm u te, the output

XVork)

of the evaluation output, and the set of access patterns (addr;, addr telq]-

3. Fort=1,...,q, S simulates as follows.

(a) Simulate computation of IT) by C:
This constitutes simulating the output of the ideal functionality f&mpute(ﬂg) on the collec-
tion of secret shares ([state]c, [v]c, [v"°*]¢) (including shares held by honest parties). Re-
call the output of f&mpute(ﬂg) consists of new sets of secret shares [state]c, [op]c, [opVo™] ¢
for the committee C' (corresponding to updated state, data-access operation instructions),
and public values addr,, addr¥V°rk, output (corresponding to the next-step memory accesses
and public output).
To simulate this output, S does the following:
e S samples random secret shares for each malicious party P; € C, for each of [state]c,
[OP]C, [opW°rk]c.
e QOutput the values addr;, addr
functionality (in AccessPatterns).

Work " and output (when necessary) given by the ideal

(b) Simulate computation of Access; (among C' and Caydr, ):

. . . . . . . C,Ciaddr
This constitutes simulating the output of the ideal functionality omrida; 4(Access;) on the

collection of secret shares ([op]c, [v]c,u, ) (including shares held by honest parties). Recall

C,Claddr .
the output of Fc, ¢ (Access;) consists of new sets of secret shares [v1]c, [va]c, o, 0 C
and Chqdr, (corresponding to the outputs of the Read or Write command specified by op).
To simulate this output, S samples random secret shares of [v1]¢ for each malicious party

in C, and of [v2]c,, «, for each malicious party in Caddr, -
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Work (among C' and CWerk, ):

addrVerk
Analogous to simulation of Access; above. Namely, S simulates the output of the ideal
070Work

' i addr)Vork
functionality F, Command

(c) Simulate computation of Access

(Access}'°™) by sampling random secret shares [v1]c and [va] swor

addr\t/\/ork

ork

for each malicious party in C' and C’;’Z drWork
t

4. Output delivery. Simulate honestly with public output value output.

This concludes the description of the simulator S.

Proof of indistinguishability. To prove the indistinguishability of the output of the ideal-world
simulator § and the output of the real-world experiment, we consider a sequence of hybrids. The
output of each hybrid experiment ¢ run with adversary A and environment Z is given by the output
of the environment, denoted by Hyb, (lk, A, Z).

Hybrid 0. The real world: i.e., the adversary interacts with honest parties in the real-world ex-
periment running the protocol Compute.

Hybrid 1. (Output Delivery Success).
The same as the real world, except that the experiment ends in fail if the output delivery
procedure fails: i.e., if the procedure begins with value output held by committee C, and at
the conclusion there exists a party who outputs a value # output.

Claim 3.14. For every adversary Ao in Hybrid 0, there exists an adversary Ay in Hybrid 1
such that for any environment Z, Hyby (1k,A0, Z) = Hyb, (lk,Al, Z) )

Proof. Follows by Lemma 3.11. d

Hybrid 2. (Secret Share robustness).

In this hybrid, the sequence of committee communications and ideal functionality executions
is replaced by a single ideal functionality J; ss2ddr hich accepts secret shares from all parties,
reconstructs the corresponding secret values, and then computes on these values directly, as
dictated by the protocol. The ideal functionality outputs precisely the values dictated by the
stages of the real-world protocol (e.g., it outputs the computed values (addr, addr)Nork, party,)
at each time step t of the computation, in addition to honestly generated secret shares
[state]c, [op]c, [op*Vo™] ¢, etc.)

The only difference is that, in the process of computing, .Fl‘fls,’addr continues to use the re-
constructed values, instead of accepting secret shares of these values as input from parties,
reconstructing the values from the secret shares, and computing on these values.

f—ss,addr

More explicitly, F7}, is defined as follows:

Input: F552997 accepts secret shares of currently held values from all parties: i.c., [state]c, {lvile, Yierms
{[0F"°™ ] cyen Y eefpny)-
Compute:

1. Reconstruct (once and for all) the CPU secret state and the value of each Input ORAM
and Work Tape ORAM memory node from the set of secret shares received:

(a) Take state <+ Reconst([state]¢).
(b) For each j € [N], take v; +— Reconst([v;]c;, ).
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(c) For each £ € [p(n)], take v)Vork +— Reconst([v}Nork]C}Nork).

Work __ Q)

2. Evaluate II' on this collection of values. That is, initialize viemp = ) and viemp =

Foreacht=1,...,¢":

(a) Compute (state, (op,addr), (op™Wek addr™Vo) output) « Hg(state,vtemp,vygﬁ{;‘)
Generate shares: [state]c < Share(state,C); [op]c ¢ Share(op, C); [op™Vok]o <
Share(op*Verk, C).

(b) Compute (Vtemp, Vaddr) <— Access(op, Vaddr)-

Generate shares: [vtemp|c <= Share(viemp, C); [Vaddr]Cug, <— Share(vaddr, Caddr)-

(¢c) Compute (vé’é’%‘,v;’gjrrk) < Access(op*Vork, v;/g‘;'r‘\‘,\,ork).
Work

. [,yWork Work . [,,Work
Generate shares: [vgemp]c <= Share(vgemp s O); [Vadar JC, won = Share(vagars Coggpwert ).
Denote the collection of all generated secret shares by

shares; := ([state]c, [op]c, [op™Vo¥] Work Work

C, [Utemp]07 [%ddr]CaddH [Utemp]07 [vader”"]CaderOrk )
Output: The collection of all intermediate output values and secret shares: i.e.,

(addrt,addr¥V°rk,outputt,sharest) a1’
telq’

where the secret shares are received by the corresponding committee parties, and each
output, is received by party Pparty, (and all parties learn addry, addr)Ve party,).

Claim 3.15. For every adversary Ay in Hybrid 1, there exists an adversary As in Hybrid 2
such that for any environment Z restricted to selecting parties’ inputs as consistent sets of
secret shares, Hyb, (1k,A1, Z) = Hyb, (1k,A2, Z) .

Proof. The claim holds directly by the robust reconstruction property of the secret sharing
scheme: namely, secret shares of malicious parties (who form a < % minority of each commit-
tee) are irrelevant to the secret share reconstruction process, since honest parties will all hold
consistent shares of the correct value. Thus, since honest parties faithfully follow the protocol
as instructed, the “true” reconstructed values at each stage of computation will be equal to
the values used within this hybrid.

Namely, for any adversary A; in Hybrid 1, the claim holds for the corresponding adversary As
in Hybrid 2 who simply submits bogus secret shares to the new ideal functionality on behalf
of malicious parties (say, all 0s), and simulates the actions of A; consistent with the resulting
ideal functionality outputs.

O]

Hybrid 3. (Secret Share secrecy). Same as the previous hybrid, except that the ideal functionality
.Flf[s,’addr is replaced by a more restricted functionality ]:ﬁ‘,’d' which accepts the same inputs, and
performs the same computation, but no longer outputs intermediate secret shares to malicious

parties. That is, fﬁ‘,’dr takes the same inputs and performs the same computation steps

as Fio29 but only outputs the values (addrt,addr¥V°rk,outputt)te[q/],sharesq/ where shares,
denotes shares of the final state of the computation.

Claim 3.16. For every adversary As in Hybrid 2, there exists an adversary As in Hybrid 8
such that for any environment Z, Hyby (1k,A2, Z) = Hyb;, (lk,Ag, Z) .

45



Proof. The holds by the secrecy property of the secret sharing scheme. That is, since malicious
parties only ever see a < % minority of shares of any secret value, the distribution of these

shares will simply be uniform, independent of the corresponding secret values.

Formally, fix an adversary Az in Hybrid 2. Consider the adversary .As in Hybrid 3 who
simulates the output of F252%" by providing the output of his own ideal functionality F2ddr
(which outputs everything except intermediate secret shares), and simulates the additional

sets of secret shares (shares;),c(y—1) by sampling uniform shares.

By the perfect secrecy of the secret sharing scheme, the simulated output of F; 55,addr by Az in

Hybrid 3 is the ezact same distribution as the true output of F; ss,addr 3 Hybrid 2. Thus, the
outputs of the two experiments are identical. O

Note that Hybrid 3 corresponds to the ideal-world experiment as according to ]-"ﬁddr. Security

of Compute follows.
O

3.4 Putting the Pieces Together: Secure MPC for Dynamic Functionalities

The final desired secure computation protocol is now simply formed by combining the three pro-
tocols developed in the previous sections: (1) Committee Setup, (2) Distributed Initialization, and
(3) Compute, for each desired RAM program instance II. Formally, our complete MPC protocol is
given in Figure 11.

Remark 3.17 (Handling Large Inputs). For simplicity of exposition, in Figure 11 we describe
the protocol when parties’ inputs are of size below a fixed parameter size € polylog(n), so that
we may assign a single committee to each input. In the more general case, where parties’ inputs
may be large, each party will first split his input into |2/| := |z|/size blocks of appropriate size,
and then commit in parallel to each block among a separate committee during Step 1 of the Input
Commitment and Initialization phase. For a given choice of input size capability, the committee
setup procedure can be straightforwardly modified so as to elect the corresponding number n|z’| of
required good input committees. Security of the protocol will follow in an identical fashion.

Security of the constructed protocol follows by the UC security of the underlying pieces, together
with the secrecy and robustness properties of the secret sharing scheme.

Proof of Theorem 8.1. We first analyze the complexity measures of the combined protocol. Table 4
combines the complexity measures of the individual sub-protocols from the previous sections, with
the exception of a one-time broadcast of polylog(n) bits made by each party in the ComSetup phase.

We now prove security of protocol MPC-Dyn via a sequence of intermediate hyrids. The output
of each hybrid experiment ¢ run with adversary A and environment Z is given by the output of
the environment, denoted by Hyb, (1’“, Ay, Z).

Hybrid 0. The real-world execution of protocol MPC-Dyn.

Hybrid 1. (ComSetup protocol correctness).

Same as Hybrid 0, except that the experiment terminates in abort at the conclusion of
ComSetup if it is not the case that all honest parties agree on “good” committees C, {C} }jE[N}’
{CV™} ek, as specified in Lemma 3.2.
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MPC Protocol for Dynamic Functionalities MPC-Dyn
Securely realizing the functionality Fpyn

Committee Setup
1. All parties execute the Committee Setup procedure, as described in Figure 3. Denote the
resulting committees by C,{C;};e(n], {C }rentosn-
Input commitment and initialization

1. In parallel, each party Pj, j € [n], commits his input z; to committee C; (elected during
the committee setup), via an execution of the ideal functionality féﬁj (x) (as described
in Figure 7).20
2. All parties execute the ORAM initialization procedure Distriblnit to commit their inputs
to the ORAM structure, as described in Section 3.3.1. Denote the resulting secret shared
information as [state|c, [vj]c;, for j € M, and [v}’vmk}@mrk.
Computation
1. For each queried RAM program II with specified memory bound space, evaluate Il by

executing the protocol Compute(Il, space), as described in Section 3.3.2.

Figure 11: MPC for dynamic functionalities: securely realizing the ideal functionality Fpy, given
in Figure 2.

Memory Rounds CC/comp Total CC/comp
ComSetup O(1) O(1) 0(1) -
Input Commit O(|z|) O(1) O(|z|) —
Distriblnit Oz ~0(1) ~O(|=)) ) -
Compute O(maxspace/n) | O [M]) | O (1] + [y]) OQ_ (1] + nlyl))
Total MPC-Dyn | O(|z| + maxspace/n) | O3 |I1]) | O] + > (1] + [yl)) | O(nlz| + > (] + nfyl))

Table 4: Per-party complexities of overall protocol MPC-Dyn, assuming an additional one-time
broadcast of O(1) bits per party. Here, max space denotes the maximum value of space over queries
(I1, space); |II| denotes (worst-case) runtime of IT; and ‘—” denotes n times the per-party complexity.

Claim 3.18. For every adversary Ag in Hybrid 0, there exists an adversary Ay in Hybrid 1
such that for any environment Z, Hyb, (1k,A0, Z) = Hyb, (1k,A1, Z) .

Proof. By Lemma 3.2, the probability of terminating in abort in Hybrid 1 is negl(n), as desired.
O

Hybrid 2. (Security of Distriblnit protocol).

Same as Hybrid 1, except that the execution of protocol Distriblnit is replaced by the ideal
functionality .Ei‘id', as defined in Lemma 3.8. Recall that this functionality accepts secret
shares from the first n Input ORAM committees C1,...,C,, which were generated via an

execution of the ideal functionality Fgnc (and thus are guaranteed to be consistent). The

20For simplicity, we describe the case where parties’ inputs are of small size polylog(n). See Remark 3.17 for the
case of large inputs.
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functionality reconstructs the corresponding values x; from the shares, evaluates the ORAM
parallel insertion procedure Parallellnsert on the values and ORAM structure, and outputs all
the intermediate outputs of this computation (including the data access patterns), together
with freshly generated secret shares of the final resulting states of the CPU and Input ORAM
memory nodes. See Lemma 3.8 for a formal description of .Efgd'.

Claim 3.19. For every adversary Ay in Hybrid 1, there exists an adversary Ag in Hybrid 2
such that for any environment Z, Hyb, (lk,Al, Z) = Hyb, (1k,A2, Z) .

Proof. Note that the inputs to the protocol Distriblnit in Hybrid 1, corresponding to secret
shares of parties’ inputs, come directly from the ideal functionality Fgnc, which is guaranteed
to output consistent sets of secret shares. This means that we are safely within the case of
restricted environments required by Lemma 3.8 in order to ensure UC security. The claim
thus follows by the UC security of Distriblnit. O

Hybrid 3. (Security of Compute protocol).

Same as Hybrid 2, except that each execution of protocol Compute is replaced by the ideal
functionality F; ss,’addr, as defined in Lemma 3.13. Recall that this functionality accepts secret
shares from all parties, reconstructs their values, evaluates the ORAM-compiled program II’
on the values, and outputs all the intermediate outputs of this computation (including the
data access patterns), together with freshly generated secret shares of the final resulting state

values (see Lemma 3.13 for a formal definition of 725299,

Claim 3.20. For every adversary Ao in Hybrid 2, there exists an adversary As in Hybrid 3
such that for any environment Z, Hyb, (1’“,.,42, Z) = Hyb, (lk,Ag, Z) )

Proof. We consider replacing each single execution of Compute with ]-"ﬁdd' one a time, begin-
ning with the first. Note that the inputs to the first execution of Compute in Hybrid 2 come
directly from the ideal functionality }"ii‘idr (which replaced Distriblnit), which is guaranteed
to output consistent sets of secret shares. This means that we are safely within the case of
restricted environments required by Lemma 3.13 in order to ensure UC security. The first step
thus follows by the UC security of Compute.

For each following execution of Compute, the inputs to the protocol come directly from the
ideal functionality fﬁdd' (which replaced the previous Compute execution), which is guaranteed
to output consistent sets of secret shares. This means we are again safely within the case of
the required restricted environments, and can appeal to Lemma 3.13. The claim hence follows
by the UC security of Compute, together with a standard hybrid argument.

O]

Hybrid 4. (Robustness of secret sharing).

In this hybrid, the sequence of all committee communications and ideal functionality execu-
tions is replaced by a single ideal functionality Fg‘zl’r?ddr which accepts inputs z; from each
party P;, and then computes on these values directly, as dictated by the protocol. The ideal
functionality outputs precisely the values dictated by the previous hybrid. The only difference
is that, in the process of computing, ngy’: ddr continues to use the “true” reconstructed values,
instead of accepting secret shares of these values as inputs from parties, reconstructing the

values from the secret shares, and computing on these values in each step.
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Note that .7-",‘;?’: ddr performs the same functionality as the final desired Fpy,, but also “leaks”
intermediate secret share values and data access patterns.

Claim 3.21. For every adversary As in Hybrid 3, there exists an adversary Ay in Hybrid 4
such that for any environment Z, Hybg (1k,A3, Z) = Hyb, (lk,A4, Z) i

Proof. The claim holds directly by the robust reconstruction property of the secret sharing
scheme: namely, secret shares of malicious parties (who form a < % minority of each commit-
tee) are irrelevant to the secret share reconstruction process, since honest parties will all hold
consistent shares of the correct value. Thus, since honest parties faithfully follow the protocol
as instructed, the “true” reconstructed values at each stage of computation will be equal to
the values used within this hybrid.

Namely, for any adversary Az in Hybrid 3, the claim holds for the corresponding adversary A4
in Hybrid 4 who simply submits bogus secret shares to the new ideal functionality on behalf
of malicious parties (say, all 0s), and simulates the actions of A3 consistent with the resulting
ideal functionality outputs.

O

Hybrid 5. (Secrecy of secret sharing).

f—ss,addr

Same as the previous hybrid, except that the ideal functionality Dyn is replaced by a

more restricted functionality _7-'5‘;‘/?1“

which accepts the same inputs, and performs the same
computation, but no longer outputs intermediate secret shares. That is, ]-"S‘;ﬁ' outputs the
same values as the desired functionality Fpy, together with the corresponding data access

patterns during computation (i.e., (addrs, addr}¥°™®, party,) for each computation step 7).

Claim 3.22. For every adversary Ay in Hybrid 4, there exists an adversary As in Hybrid 5
such that for any environment Z, Hyb, (1k,A4, Z) = Hyb;y (lk’,Ag), Z) .

Proof. The lemma claim by the secrecy property of the secret sharing scheme. That is, since
malicious parties only ever see a < % minority of shares of any secret value, the distribution
of these shares will simply be uniform, independent of the corresponding secret values.

Formally, fix an adversary A4 in Hybrid 4. Consider the adversary As in Hybrid 5 who
simulates the output of ]:Ssy’r? ddr by providing the output of his own ideal functionality ]-'g‘;ﬂr
(which outputs everything except intermediate secret shares), and simulates the additional
sets of secret shares by sampling uniform shares. By the perfect secrecy of the secret sharing

scheme, the simulated output of F; os,addr by As in Hybrid 5 is the ezact same distribution

Dyn
as the true output of }"S‘;’:ddr in Hybrid 4. Thus, the outputs of the two experiments are

identical. n

Hybrid 6. (ORAM Security).
The ideal-world experiment. That is, the ideal functionality .7-"5‘;?]' from the previous hybrid
is replaced by the desired functionality Fpy, which performs the same computation but no

longer reveals the data access patterns.

Claim 3.23. For every adversary As in Hybrid 5, there exists an adversary Ag in Hybrid 6
such that for any environment Z, Hybs (1k,./45, Z) = Hybyg (1k,./46, Z) .
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Proof. The claim holds by the security of the ORAM compiler.

Recall that (without loss of generality) the input RAM program IT makes an equal number of
memory accesses to each of its two memory databases (Input / Permanent memory, and its
Temporal Work Tape), one access from each per computation step. Indeed, this corresponds to
first compiling an arbitrary II via an intermediate naive ORAM complier on two data blocks,
which simply accesses both blocks each step of computation. It thus remains to simulate the
data access patterns of each of these two individual blocks of memory (corresponding to the
two ORAM structures) independently.

But, by the statistical obliviousness property of the ORAM, it holds that the distribution of
data accesses (addrq,...,addry) to the Input (respectively, Work Tape) ORAM data struc-
ture as dictated by the ORAM-compiled program II' is statistically close to the corresponding
distribution (addry,...,addr;) formed by running the ORAM-compiled program II' with re-
spect to a dummy database, populated by all 0s. We refer to the process of simulating this
execution on dummy inputs and retrieving the corresponding vector of data access addresses
(addri, ..., addr;) as “sampling” from the distribution D’. Thus, for any adversary As in Hy-
brid 5, we construct a corresponding adversary Ag in Hybrid 6, who simulates the output of
,7:5‘;,? by combining the output of his own ideal functionality Fpy,, with simulated data access
pattern information sampled from D’. Since the simulated distribution is statistically close to
the corresponding real output of Fg‘;‘rj‘r, the claim follows.

O

O]

4 Load-Balanced Secure Evaluation of Dynamic RAM Function-
alities

Observe that while our protocol in the previous section achieves memory balancing, both communi-
cation and computational complexity of the parties are highly unbalanced. In particular, the parties
in the CPU committee as well as the ORAM root node committees are constantly active through-
out the protocol execution and perform significantly more work than other parties. In this section,
we address this issue and modify our protocol such that the total communication and computa-
tional complexity is preserved, while additionally achieving a strong load balancing property—with
high probability, throughout the protocol execution, each party performs close to 1/n fraction of
current total work, up to an additive polylog(n) amount of work, for both communication and
computational complexity. Formally, we prove the following theorem.

Theorem 4.1 (Load-Balanced MPC for Dynamic RAM Functionalities). For any constant e, § > 0,
there exists an n-party statistically secure (with error negligible in n) protocol that UC realizes the
functionality Fpyn for securely computing a sequence of RAM programs I1;, as described in Figure 2,
handling (1/3 — €) static corruptions, and with the same per-party memory, total computation
and communication complexity, and round complexity as specified in Theorem 3.1 and additionally
satisfying the following strong on-line load balancing property for per-party communication and
computation complexity.

o With all but negligible probability in n, the following holds at all times during the protocol: Let
cc and cc(P;) denote the total communication complexity and communication complezity of
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party i, and time and time(P;) denote the total time complexity and time complexity of party
i, we have

(1+9)

(1 ; ) e + polylog(n)
1—6) (1+9)

time — polylog(n) < time(F;) <
n

cc — polylog(n) < cc(P;) <

time + polylog(n).

In particular, the per-party communication and computation complexities are each improved from

O(J| + [yl + 32; T51) to O(l| + Iyl + 32, 11 /n).

It can be shown that our protocol from Section 3 is already load balanced in both the committee
election and input insertion phases. We thus focus on the Computation phase. Recall that our
protocol is committee-based, where each committee is elected to perform one specific role of an
ORAM program and the committees jointly emulate the underlying ORAM program and perform
output delivery. Note that the output delivery in the Computation Phase is load balanced up to
a constant factor. We can achieve (1 4 §) factor load balancing by properly padding. Therefore,
it remains to focus on achieving load balancing for the ORAM-compiled program execution, which
consists of sequences of invocations to the féﬁ:mand and ]-"gomp ideal functionalities to execute the
corresponding sequence of computation steps and data accesses.

Our main idea is a very natural one—we simply let each committee pass its job to a new
committee when it performs “enough work” for this job, which we call job-passing scheduling
algorithm. Note that crucially, each committee of our protocol has polylog(n) parties and only
needs to hold a small polylog(n)-size (secret) state (either the CPU state or the memory content).
Thus, one committee C; can pass its job to a new committee Co by simply “sending the state”
to Oy, using a generic MPC protocol that on input shares of the state from each party of C
output fresh shares of the state for each party of Co, while only incurring polylog(n) cost in both
communication and computational complexity. By the UC security of the MPC protocol and the
secrecy property of secret sharing schemes, as long as there are less than one-third adversaries
for both committees, the adversary learns no information about the underlying state information
theoretically, and hence the protocol remains secure. Additionally, note that for this reason there
is no security issue for a committee to take multiple roles at the same time.

This leads us to the following natural framework: We instead elect a fixed set of worker com-
mittees, assign each job/role of the ORAM program to some worker (where one worker can take
multiple roles at the same), and switch the workers for each job throughout the protocol to achieve
load balancing. The goal is to design a scheduling algorithm for assigning jobs to workers so that
the load is balanced for both communication and computational complexity simultaneously.

However, there are two issues need to be addressed. First, note that the above framework
considers load balancing on the committee level, instead of for each party. Nevertheless, note that
the workload of each party is balanced inside each committee, and if there are sufficiently many
worker committees (e.g., N > n - polylog(n) worker committees), each of which consisting of a
random set of polylog(n) parties, then each party will participate in roughly the same number of
worker committees (as proved in Section 3.1), and hence load balancing on the committee level
implies load balancing over parties as well.

Secondly, recall that in our previous protocol, the assignment of committees to “jobs” was
public, static information, so the CPU committee knew which parties to talk to for each ORAM
tree node. In our framework, each role of the ORAM program is dynamically assigned to a different
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worker committee over time. We thus need a (distributed) mechanism for the CPU worker to find
right workers to talk to, without blowing up the memory complexity of parties. For example, the
CPU worker cannot afford to store all this information itself. We address this issue by taking
the advantage of the access pattern of the tree-based ORAM we use. Specifically, note that in
the ORAM-compiled program, the CPU always traverses the ORAM data tree from the root to
a random leaf. To enable this sequence of accesses within the protocol, we simply let the CPU
worker keep track of the workers for each ORAM tree root (i.e., one root per recursion level in the
ORAM structure; see Section 2.1), each ORAM tree node worker keep track of the workers of its
two children nodes, and update the link dynamically. It is not hard to see that the update can
be done efficiently (as a simple data structure exercise) and each ORAM role only need to keep
polylog(n) bits of information. Note that maintaining the link incurs extra cost for passing the jobs,
which creates subtleties in achieving load balancing. It turns out to be crucial for us to exploit
the specific access pattern of the tree-based ORAM and store only “one-way link” to achieve load
balancing with a simple job-passing algorithm. We discuss further details in Section 4.2.

Therefore, the question reduces to the above scheduling problem for load balancing both commu-
nication and computational complexity simultaneously. We study this problem in a clean abstract
model in the next section, where we first focus on load balancing a single “nice” base cost metric,
and show that our job-passing scheduling algorithm is robust in that it also achieves load balancing
for any “related” cost metric. We then show in Section 4.3 that by properly choosing the base
cost metric, we can achieve load balancing for both communication and computational complexity
simultaneously.

4.1 An Abstract Load Balancing Model

In this section, we consider a load-balancing problem for assigning jobs in the following abstract
model. We focus on analyzing a natural job-passing scheduling algorithm S in this model, defined
with respect to a certain “nice” base cost metric CP. We show that S not only achieves load
balancing for CP, but also for a class of cost metrics that satisfy certain relations with CP. We will
use the job-passing scheduling algorithm S with a properly chosen base cost metric to achieve load
balancing for both communication and computational complexity simultaneously.

Consider that there are M jobs Ji, ..., JJyr and N workers Wy, ..., Wy in the following process.
The process proceeds in rounds for 7" = poly(/N) rounds. At each round, some jobs are activated,
which is specified by Act(-,-). Namely, Act(¢,7) = 1 iff job J; is activated at round ¢, and otherwise,
Act(t,i) = 0. When a job is activated, it may incur some activation cost (specified later). Through-
out the process, we need to assign each job to a worker, which is specified by Ass|-]. Namely, job J;
is assigned to worker W iff Ass[i] = j. We assume that the job activation pattern is independent of
the job assignment. There is no restriction on the number of jobs assigned to the same worker. A
scheduling algorithm can initially assign jobs arbitrarily without any cost, and in between rounds,
update the job assignment arbitrarily, but which may incur some switch cost (specified below).

There may be multiple cost metrics associated with the process. A cost metric is specified by
a cost profile CP = (¢, s¢;, B, ;) described as follows.

e ¢(-) is a cost vector that specifies the cost of each job when it is activated. Namely, at each
round ¢, job ¢ incurs a cost of Act(t,7) - ¢(i) charged to the assigned worker Ass|[i].

e For each i € [M], s¢;(+) and f; € [0, 1] together specify the switch cost of job i. More precisely,
switching the assigned worker for job ¢ may incur cost not only for job ¢ itself, but also for other
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jobs (e.g., those jobs that help the job-switch), and s¢;(i’) is the cost of job i’ incurred by the
job-switch of J; (again, charged to the assigned worker Ass[i']) for every i’ # i. Additionally,
for job i itself, when J; is switched from worker W; with j = Ass[i] to worker Wj, the switching
cost incurred by job J; is split between W; and W) with ratio specified by 8;. Namely, 3;-sc;()
and (1 — 3;) - sci(i) cost are charged to W; and Wj, respectively.

e In most of cost metrics we consider, the activation cost incurred by job J; is charged to the
assigned worker Wg;) at the time. We call such cost metrics typical. However, as required in
the application from the next section (where we further achieve communication locality), we
consider a more general scenario that when some job J; assigned to worker W (i.e., Ass[i] = j)
incurs some cost x, the cost is not charged to W} directly, but may further be distributed to all
workers in a certain randomized way (for example, W; may ask its nearby workers to help with
the job) depending on the worker ;. We specify this information by a random variable ~;(-)
that satisfies > Vi (/) = 1 with probability 1, where each time when some x cost is incurred
with assigned worker W;, an independent sample of ~;(-) is drawn, and each worker Wj is
charged v;(j') - « cost. The case of typical cost metric corresponds to ;’s being deterministic
vectors with ~;(j') = 1 iff j = j'.

Intuitively, the ideal goal is to schedule the jobs in the way so that for all cost metrics, the cost
is (i) load-balanced in the sense that every worker is charged close to 1/N-fraction of total cost
throughout the process, and (ii) with small overhead in the sense that the switch cost is small
relative to the activation cost.

We here focus on analyzing a natural randomized job-passing scheduling algorithm S defined
with respect to certain nice cost metric CP and a threshold parameter 7. Roughly, S initially assigns
each job to an independent uniformly random worker, and whenever the incurred activation cost of
a job to its assigned work exceeds the threshold 7, S reassigns the job to a new random worker. We
show that if CP satisfies certain nice properties, then S achieves load balancing for CP with small
overhead (formalized properly). We further show that while S is defined with respect to CP, it
also achieves load balancing for a large class of cost metrics related to CP simultaneously. Looking
forward, this allows us to load balance multiple cost metrics simultaneously by using S with respect
to a properly chosen cost metric.

We proceed to the formal treatment. We focus on nice cost metric CP = (¢, s¢;, 55, ;) defined
as follows.

Definition 4.2. A cost metric CP = (¢, s¢;, 54, 7;) is a nice cost metric if it satisfies the following
properties. (i) CP is typical, as defined above, (ii) ¢(i) = 1 for all i € [M], (iii) for every i € [M],
Bi-sci(i) = (1—=3;)-sc;(i) = 1 and s¢;(i') € {0, 1} for ¢ # i (that is, switch cost for both old and new
workers of the switched job is 1, and for other jobs is either 0 or 1), and (iv) activation-dominance
property: for every i € [M], in between any two activations of J; there is at most one activation of
some job Jy with sc; (i) = 1, and there is no activation of such J; before the first activation of J;.

Focusing on nice cost metrics (in particular, one with the activation-dominance property), and
identifying such a cost metric in our protocol is the key for us to achieve load balancing with the
following simple job-passing algorithm.

Let 7 € N be a threshold. We define a randomized job-passing scheduling algorithm S with
respect to CP and 7 as follows.

e Initially, S assigns each job J; to a random worker W;. Namely, Ass[i| <—r [N] for every
i€ [M].
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e For each i € [M], S keeps track of the accumulated activation cost of J; for the currently
assigned worker W;, denoted by ali]. That is, at each round ali] < a[i] + Act(t, i) - (i) for
every i € [M].

e Whenever an a[i] reaches 7, S switches the job J; to a uniformly random worker and resets
afi]. That is, S updates Ass[i] <—r [IV] and sets a[i] = 0.

We call CP the base cost metric for S. We now show that S achieves load balancing for the cost
metric CP. At a high level, the key observation here is that since CP is typical (i.e., cost of a job
is charged directly to the assigned worker) and the activation pattern is independent of the worker
assignments, the time for switching workers of each job is in fact independent of the assignment of
the worker for each job. Therefore, we can re-interpret the process as that (i) first, S determines
the time to switch jobs without assigning the workers, which partitions each job into multiple “job-
chunks” where each job-chunk is supposed to be assigned to one (random) worker, and then (ii)
assigns each job-chunk to an i.i.d. uniformly random worker. Now, each job-chunk consists of at
most 7 activation cost by construction, and one can show by the activation-dominance property of
CP that each job-chunk consists of at most 7 + 3 switch cost (see proof of Lemma 4.3 for a formal
argument). We can thus view the process as throwing balls with weight at most O(7) into random
bins, and by standard concentration bounds, each bin receives balls with roughly the same amount
of total weight, which implies load balancing. This also shows that the overhead is small.

In order to state a formal lemma, we introduce the following notation to describe the (accumu-
lated) individual/total cost throughout the process. Let (i) cost(t, J;) = Act(t,)-c(3), (ii) cost(t, W})
and (iii) cost(t) denote the activation cost (i) incurred by job J;, (ii) charged to worker W;, and
(iii) total activation cost at round ¢, respectively. Analogously, we use tcost(-) to denote the corre-
sponding total cost that sums up both activation and switch cost. Namely, tcost(t, J;), tcost(t, W),
and tcost(t, W;) denote the total cost of J;, W; and all jobs at round ¢, respectively. Finally, we let
Cost, tCost denote “accumulated” cost. Namely, Cost(t,-) = > ./ ]cost( -) and tCost is defined
analogously. Thus, for example, tCost(T") is the total cost of the whole process, and tCost(t, W) is
the total cost of W, up to round ¢t. We are ready to state our lemma.

Lemma 4.3. Let CP = (c, sc;, Bi,7;) be a nice cost metric defined above. Let T > 4 € N be a
threshold, and § > 0 a constant. Then the job-passing scheduling algorithm S with respect to CP
and T defined above satisfies the following property with respect to CP:

e Load Balancing: With all but negligible probability in N, throughout the process for every
round t € [T] and every worker W,

tCost(t)
N

tCost(t)

(1-4): =

— 47 -log? N < tCost(t,W;) < (1 +6) - +47-1og? N. (1)

e Small Overhead: The total cost can be upper bounded by three times total activation cost,
1.€.,

tCost(T) < 3Cost(T).

Proof. For the load balancing property, it suffices to prove Eq. (1) for fixed ¢t and W;, and the
property follows by a union bound over t and j. Fix a round ¢ € [T] and a worker W;. Note that
by the independence assumption between job activation pattern and job assignment and the fact
that CP is typical, we can view the process as following. (i) First the job activation pattern Act(-,-)
throughout the process up to round ¢ is determined, which in turn determines the switch pattern
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and switch cost. The switch pattern partitions the jobs into “job-chunks” Bj,..., Bs, where each
job-chunk is assigned to a single worker by S. (ii) Then each job-chuck is assigned to an i.i.d
uniform worker. Let cost(Bj) and tcost(By) denote the activation and total cost of job-chunk By,
respectively, for every k € [s].

We claim that tcost(By) < 27+ 3 < 47 for every k. By construction, we have cost(By) = 7. Let
Ji be the underlying job of By. Note that the switch of J; incurs at most (1—05;)-sc;(i)+5;-sci(i) = 2
switch cost in By (starting and end of By). Additionally, by the activation-dominance property of
CP, the switch cost from switching other jobs J; is at most 7 4 1, since there can be at most one
switch cost incurred to J; in between two activations of J;.

Now, for every k € [s]|, define random variable X}, = tcost(By)/47 € [0, 1] if the job-chunk By
is assigned to the fixed worker W;, and 0 otherwise. Let X = >, X and p = E[X]. Clearly, we
have p = tCost(t)/(47N), since each job-chunk is assigned to one of N workers at random. By a
standard Chernoff bound, we have that for ¢’ = § + log® N/pu,

66/ © 66 log? N
2

which implies tCost(t, W;) < (1+9) - % + 47 -1log? N. The other inequality follows analogously.
A union bound over ¢t and j then completes the proof of the load balancing property.

For the small overhead property, note again that for each job J;, the switch cost of J; incurred
by the switch of J; itself is at most 2/7 fraction of the activation cost of J;, and the switch cost of
J; incurred by the switch of other jobs is at most the activation cost by the activation-dominance
property of CP. It follows that the total switch cost of J; is at most (2/7)-Cost(T', J;)+ Cost(T, J;) <
2Cost (T, J;), which implies that tCost(7") < Cost(T") + 2Cost(T") = 3Cost(T).

O

We now state some sufficient properties of a cost metric CP” such that the job-passing scheduling
algorithm S with respect to the above base cost metric CP also achieves load balancing for cost
metric CP’ as well. Let CP’ = (¢, sc}, 1,7;) be a cost metric. We say that CP’ is a-bounded by
CP if (i) for every i € [M], ¢ (i) < a - ¢(i), and (ii) for every i € [M], scj(i') < a - s¢; (i) for i # i,
Blsci(i') < a- Bisci(i') and (1 — Bl)sci(i') < a- (1 — B;)sci(i'). Namely, all the cost incurred in CP’
is bounded by « times the corresponding cost incurred in CP. It is not hard to prove that if CP’ is
typical and a-bounded by CP for small o, then CP’ is also load balanced by S as well.

We further consider non-typical cost metrics. Recall this means that the cost charged to an
assigned worker W; for a particular job is further distributed to other workers in a randomized way
specified by 7;’s. We say that a cost metric CP' is fair if E;_x [vi(j")] = 1/N for every j' € [N].
This means that the fraction of cost distributed from a random worker W; to all workers W are
the same. Note that a typical cost metric is also fair. We show in the following lemma that S
achieves load balancing for any cost metric CP’ that is fair and a-bounded by CP. Here, we extend
the notation cost, tcost, Cost, tCost to cost’, tcost’, Cost’, tCost’ to describe the corresponding cost
quantities with respect to CP’.

Lemma 4.4 (Robust Load Balancing). Let CP,7,S be specified as in Lemma 4.3. Let CP’ be a
cost metric that is fair and a-bounded by CP for some a > 0. Let § > 0 be a constant. We have
with all but negligible probability in N, throughout the process for every round t € [T| and every
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worker W,

tCost/(t)
N

~tCost/(?)

(1-9) =

— 4art -log? N < tCost/(t, W;) < (1 +6) +4at-log? N.  (2)
Proof. As before, it suffices to prove the lemma for fixed ¢ € [T] and worker W; and apply a
union bound. Recall in the proof of Lemma 4.3, we argue that the process can be viewed as
first partitioning the jobs into job-chunks By, ..., B, and then assigning each job-chuck to an i.i.d
uniform worker. For every k € [s], let tcost’(By) (resp., tcost’(By, W;)) denote the total cost of job-
chunk By, (resp., total cost of By, charged to W;). By the a-bounded property, we have tcost’(By,) <
atcost(By). Note that for non-typical CP’, tcost’(By, W;) is a random variable depending on the
assigned worker Wj: of the job-chunk Bj, and the corresponding random variable 7;,. Nevertheless,
since By, is assigned to a random worker, we know that E[tcost’(By, W;)] = tcost’(By)/N.

Define X}, = tcost’(By, W;)/(4at) € [0,1]. Let X = >, X} and p = E[X]. By the fair property,
we have y = tCost'(t)/(4arN). By a standard Chernoff bound, we have that let §' = ¢ +log? N/pu,

65/ K 65 log? N
Pr[X > (1 4+ 6)u +log? N] < <)1+5,> < <((1+5)> < negl(N),

(140 1+9)
which implies tCost' (¢, W;) < (1+4)- % +4a7-log? N. The other inequality follows analogously.

O

4.2 Protocol Construction

In this section, we discuss how to modify our protocol MPC-Dyn from the previous section to achieve
load balancing. We first provide an outline of the modification and then present further details.
We choose to keep our presentation high level and slightly informal for clarity of exposition.

Following the aforementioned framework, we elect worker committees to perform the jobs/roles
of the dual ORAM program, and let the worker committees implement the job-passing scheduling
algorithm (in a distributed fashion) described above to achieve load balancing. (We will use the
terms jobs and roles of ORAM interchangeably in this section.) The crux here is to carefully
implement the job-passing mechanism so that the worker committees can execute the job-passing
scheduling algorithm with respect to a mice base cost metric specified in the previous section. We
denote the modified protocol LB-MPC-Dyn.

1. In the Committee Setup Phase, we additionally set up a set of Worker committees W;’s of
size N = n - polylog(n).

2. At the end of the Input Initialization Phase, we assign each initialized role of the dual ORAM
program II' to a random worker committee—this includes the CPU and the nodes in the
ORAM trees of the Input tape. On the other hand, for the nodes of the Work tape ORAM,

we initialize them on-the-fly since there are super-polynomially many nodes. Instead, we will
initialize each Work tape ORAM node when it is accessed by the CPU.

3. The worker committees executes the roles of the dual ORAM program assigned to them. To
enable the worker committees to find the right worker committee to talk to (for the roles
they are assigned to), we let each role stores additional (public) communication links to the
workers assigned to their “neighbours.” Specifically, the CPU stores links to the roots of all
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ORAM trees (including all recursion levels) for both Input and Work tape ORAM, and each
node stores links to its both children. Such one-way link information suffices since the access
pattern of dual ORAM program only consists of the CPU traversing each of the ORAM trees
from the root to a (random) leaf, and as we shall see, the access pattern and the fact that we
only maintain one-way links is the key for us to obtain a nice cost metric for the job-passing
scheduling algorithm.

. The worker committees jointly implement the job-passing scheduling algorithm with respect
to a properly chosen nice base cost metric CP and threshold 7 specified in the next bullet.
For a worker committee W to pass a job (a role in the dual ORAM) J to another worker
committee W, we need to (1) let W “send” the internal state of J to W’ and (2) update
the relevant communication links. We perform both steps through (properly extended) ideal
functionalities.

The crucial point here is to make sure that the job switch incurs switch cost to fewer jobs so
that the activation-dominance property of a nice cost metric can be satisfied. For part (1), we
simply let W send the state of J to W' using the Command ideal functionality ]-"éﬁ:p. For
part (2), since we only store one-way links, we only need to update the link of J’s “parent.”
Specifically, for a non-root node of a ORAM tree, we only need to update its parent node,
for the root node, we need to update CPU’s link to the root, and for the CPU, no update is
needed. One question here is that if we only store one-way links, how can J find its “parent”
job? Here we (again) rely on the special access pattern of the dual ORAM program that only
consists of the CPU traversing each of the ORAM trees from the root to a (random) leaf.
Thus, when a node role J is activated by the CPU, the CPU knows J’s parent and can pass
the information to J. Now if job J needs to be switched, J (or its assigned worker) can tell to
its parent to update the link directly. By doing so, switching a job J only incurs switch cost
to J itself and its “parent.”

. We now define a typical base cost metric CP = (¢, s¢;, 8;,7;) and argue that it satisfies the nice

properties we need. We count each invocation of ideal functionalities fé)i;mand or ]-"gomp as one
unit activation cost (note that these are the only two ideal functionality invoked for ORAM
program execution). In other words, each invocation of an ideal functionality is counted as
one round of the scheduling process, which activates at most two jobs, one of which is the
CPU. For a job J;, let Jy be its “parent” job (that is, for a non-root node, J; is its parent, for
a root node, Jy is the CPU, and for the CPU, it has no parent). We set 3; = 0.5, s¢;(i) = 2
(that is, switch of job J; takes on unit cost to both original and new worker), s¢;(i') =1 (one
unit cost for its “parent” job), and sc;(i”") = 0 for all other ¢”. Finally, the typical property
determines ;’s.

We now check that CP is a nice cost metric. Clearly, the first three nice properties follows
by definition. For the activation-dominance property, first note that the CPU is activated in
every round, so the property holds for the CPU. For each ORAM node role J;, note that only
its two child nodes J;; with sc;/ (i) = 1. Recall that the access pattern of dual ORAM program
only consists of the CPU traversing each of the ORAM trees from the root to a (random) leaf.
Thus, at most one child of J; is activated once in between any two activations of J;, and the
activation-dominance property is satisfied.

. Finally, for output delivery, note that although the CPU role is executed by some worker W
as opposed to a fixed CPU committee C, we can still use the same output delivery procedure
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as defined in Figure 9, starting by W; sending the output value to 0 and 1 committees. By
inspection, the output delivery procedure is already load-balanced up to a constant factor.
We simply use a proper padding to make output-delivery load balanced.

‘We now elaborate on further details of our modification.

Committee Setup Phase. The protocol is identical as in Figure 3, except that C additionally
choose Worker committees W; for j € [N] with N = nKpolylog(n) = n - polylog(n) in the same way
as choosing the ORAM memory node committees. Namely, C' executes a coin tossing (or generic
MPC) protocol to sample a seed s™Verker [0, 1}K2 log?n for the K-wise independent function
family {Fs}. Each committee W; is implicitly defined by W; = Fywene (j) (where repetitions are
removed). Then each P; € C broadcasts the seed sVo" to all parties. The follow lemma analogous
to Lemma 3.2 for the Worker committees follows by an identical analysis.

Lemma 4.5. Suppose access to broadcast channel, and coin tossing protocol CoinToss. For any
constant €,6 > 0, (% —¢€) fraction of static malicious corruptions M C [n]. Then with overwhelming
probability in n, at the conclusion of ComSetup, all parties agree on Worker committees {W;}icn
such that:

1. For every j € [N],
w;nM| _ 1
Wil — 3

DN

2. (Load Balancing) For every party P; € [n],
A< |eN:PeW) <(1+8) u

where pi:= (1 — (1 —1/n)%) - N is the expected (“fair share”) number of committees in which
each party occurs.

Input Initialization Phase. The Input Initialization Phase protocol is identical to the previous
section, but appended with the following Initial Worker Assignment procedure.

e The CPU committee C' and each of the Input ORAM committee C; sample a random (public)
worker index in [N] to be its initial assigned worker committee (via a committee-wise coin
tossing protocol).

e Each of the above committees sends the sampled index to its parent committee, where the
root node committee sends the sampled index to the CPU committee (via the Command ideal

E,E!

functionality Fc. ), and stores the received value as a link vector, denoted by link (namely,

the CPU committee C stores link and each of the Input ORAM committee C; stores link;).

e The CPU committee C' additionally samples random indices in [/V] for each root node of the
ORAM Work tape, and append the samples to its link vector link.

e Define content = ([state|c, link) to be the content of the CPU committee C, where [state]c is
the internal state of the CPU, and content; = ([v;]c;, link;) be the content of the Input ORAM
committee Cj, where [vj]c; is the memory content of Cj.

e Each of the above committees sends its content to its sampled Worker committee via fggﬁ:man dq-
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Note that at the end of the protocol, the whole dual ORAM structure is assigned to the Worker
committees, where each role is assigned to a random worker. Both the CPU committee C' and
Input ORAM committees C’s will not participate in the protocol execution in the Computation
Phase and thus can release their memory.

Computation Phase. We modify the protocol in the Computation Phase so that the Worker
committees take over the Compute execution completely. Namely, the worker for each role of the
ORAM takers over the job of the corresponding CPU and Input committees. Recall that in our
ORAM program, the CPU always traverses all ORAM trees from the root to a random leaf, the
CPU worker traces which workers to talk to through the link information stored in the content of
each role.

Recall that the nodes of ORAM Work tape is not initialized before the Computation Phase, but
the worker for each root of ORAM tree for the Work tape is chosen and stored in the link vector of
the CPU content. Each node will be initiated when the CPU worker first talk to it. More precisely,
when the CPU worker initiates an Access Command to an uninitiated ORAM Work tape node u

by FEL

ommand t0 @ Worker committee W, W initiates the node with content content, = ([0], link,)
where link,, consists of two random worker indices in [N] that assign the workers of its two children
(note that this is incorporated in the operation/instruction op of the Command ideal functionality).

For output delivery, note that although the CPU role is executed by some worker W; as opposed
to a fixed CPU committee C'; we can still use the same output delivery procedure as defined in
Figure 9, starting by W; sending the output value to 0 and 1 committees. By inspection, the
output delivery procedure is already load-balanced up to a constant factor. We simply use a proper
padding to make output-delivery load balanced.

To achieve load balancing for ORAM program execution, the worker committees implements
the job-passing scheduling algorithm with respect to the base cost metric CP defined above and
threshold 7 = 4 (an arbitrary constant). Specifically, the workers keeps track of the number of

invocations of ideal functionalities Fg‘fr:mand and ]—"gomp for each of their assigned roles. When the

number of a role J; reach 7, the assigned worker W; samples a random worker Wj  (via a coin-
tossing protocol) and send the state of J; to W, using fé‘imand functionality (recall that the state
is of polylog(n) size). If J; is a non-CPU role, W} also updates the worker W~ of J;’s “parent” role
Jir the link information about J; for Jy. In order for W; to know which worker W;» to talk to, we
let the CPU worker to keep track of this information and send the information to W; when talk

to W; in the invocation of }—géi:man 4 (which is the reason for the activation cost of J; to reach 7).
Note that only the activation cost is counted for job-passing (but not the switch cost). Also note

!
that each invocation of fgfnmand and ]-"gomp involves at most two worker committees, and one of

which is the CPU worker. We extend the functionality so that both committees knows whether
the threshold is reached for one or both of them. If both are reached, we let the non-CPU one to
perform the job switch first and then the CPU one.

4.3 Analysis

We now prove Theorem 4.1 by analysing the protocol LB-MPC-Dyn constructed in the previous
section.

Proof. First note that the security of LB-MPC-Dyn follows in an identical way to the security proof
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of Theorem 3.1, since by Lemma 4.5, all Worker committees consist of more than two-third of
honest party with overwhelming probability, and our modification only invokes ideal functionalities
with secret information operated under ideal functionalities that produce fresh secret shares, which
preserves the secrecy information theoretically.

Observe that LB-MPC-Dyn and MPC-Dyn carry the same computation with the difference that
(i) the computation in LB-MPC-Dyn is carried by the Worker committees, as opposed to the CPU,
Input and Work tape committees, (ii) LB-MPC-Dyn has additional Initial Worker Assignment pro-
cedure, and (iii) the worker committees of LB-MPC-Dyn additional implements the job-passing
scheduling algorithm with respect to the base cost metric CP defined in the previous section and
threshold 7 = 4.

We first argue that the round complexity and total communication and computation complexity
are preserved. Note that for this, it suffices to show that the job-passing scheduling algorithm does
not incur too much switch cost in terms of these complexities. By Lemma 4.3, the switch cost is
at most 2 times the activation cost when measured in the base cost metric CP. Note that in CP,
we count both activation and switch costs by one unit cost, but the actual protocol execution of
]:gomp and Fg(fr:mand takes some polylog(n) round, communication, and computation complexity.
Nevertheless, since all are upper bounded by polylog(n), we can conclude that the round complexity
and total communication and computational complexity are preserved up to an additive polylog(n)
factor.

We next consider the memory complexity. The preservance total memory complexity follows by
noting that the extra memory used in LB-MPC-Dyn is only that for storing the Worker committees
and the additional links associated with each role of the ORAM program, and the preservance
of per-party memory complexity follows by a similar argument to that in Theorem 3.1 that with
overwhelming probability, each party participates in a number of committees that is (1 £ J) factor
in its expectation, and that each worker is assigned to a number of jobs that is (1 4 0) factor in its
expectation.

We proceed to prove the load balance property of the per-party communication and computation
complexity. We focus on the ORAM program execution in the Computational Phase since by
inspection, this is achieved in both Committee Setup Phase and Input Initialization Phase, as well
as the output-delivery in the Computation Phase (by padding). We first show that the load is
balanced on the worker committee level and argue that this implies that the load is balanced also
on the per-party level. Note that in the Computation Phase, the protocol consists of sequence
of invocations of Fgomp, Fg&imand, and fg’eic, where the invocation of FSZC is for output delivery,
which we do not consider for load balancing. The main observation is that both communication
and computation complexity of ]-"gomp and ]-"é’)i:mand ideal functionalities are typical cost metrics
that are polylog(n)-bounded by the base cost metric CP. Indeed, both ideal functionalities have
polylog(n) communication and computation complexity. Therefore, by the robust load balancing
property from Lemma 4.4, both communication and computation complexity are load balanced
on the committee level in the sense that with overwhelming probability throughout the protocol
execution, each worker committee shares (1+6)/N faction of total work up to an additive polylog(n)
term.

Now, we have that both complexities are load balanced on the committee level in the sense that
with overwhelming probability throughout the protocol execution, each worker committee shares
(1£6)/N faction of total work up to an additive polylog(n) term, and by Lemma 4.5, each party
participate in (1 4+ §) N number of worker committees. Therefore, with overwhelming probability,

60



throughout the protocol execution, each party shares (1 + 2§)/n fraction of total communication
and computational complexity, up to an additive polylog(n) term, which completes the analysis. [

5 Load-Balanced Secure Evaluation of Dynamic RAM Function-
alities with polylog(n) Locality

In this section, we show how to further modify our protocol to achieve polylog(n)-locality, where
each party only need to talk to at most polylog(n) parties throughout the protocol execution, with
an additional help of a single broadcast per party in the Committee Setup Phase. Formally, we
prove the following theorem.

Theorem 5.1 (Load-Balanced MPC for Dynamic Functionalities with polylog(n)-locality). For
any constant €,8 > 0, there exists an n-party statistically secure (with error negligible in n) protocol
that UC realizes the functionality Fpyn for securely computing dynamic functionalities 11 handling
(1/3—¢€) static corruptions, with identical properties as stated in Theorem 4.1. Additionally, except
for the per-party single-use of a broadcast with polylog(n)-bits messages, the protocol has polylog(n)
communication locality.

By inspection, there are two issues where our load-balanced protocol LB-MPC-Dyn from previous
section does not have small communication locality:

e In the Input Initialization Phase, if the per-party input size is |z| = polylog(n), then the proto-
col has polylog(n) communication locality, since per-party complexity is polylog(n). However,
if the input size is large, the locality becomes poor.

e In the Computation Phase, all N = n - polylog(n) worker committees may communicate with
each other since they play different roles over time.

For clarity of exposition, we first focus on addressing the second issue, assuming the input size
is |z| = polylog(n). That is, we first focus on achieving both load balancing and locality for the
dual ORAM program execution. We discuss how to handle large inputs in Section 5.2.

5.1 Making Computation Phase Local

Recall that the execution of the dual ORAM program in the Computation Phase consists of a se-
quence of invocation to the .7-"5 cf'r:man 4 and ]-"gom ideal functionalities, where the worker committees
jointly execute the assigned roles/jobs in the dual ORAM structure, and implement the job-passing
scheduling algorithm to achieve load balancing. Since the ]:éomp ideal functionality only involves
a single committee, it clearly preserves the communication locality. On the other hand, the main

!
issue comes from the ]:gcfnmand 1

deal functionality. In particular, note that the CPU worker com-
mittee needs to use the fg l

ommand 1deal functionality to talk to all node roles in the dual ORAM
structure, which breaks the communication locality. For convenience, let us call the CPU worker
the source committee W, and the other the destination committee W; of fgéi:mand‘

Relying on the fact that the committees are in fact “honest agents,” we can achieve communi-
cation locality readily by the following natural idea. We create a polylog(n)-degree routing network
G on the worker committees, and instead of having any two committees W, and W; talk to each
other (using fgéi:mand)v we let them communicate through the routing network G by, say, “pass
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the command” using a sequence of .Fgéi:mand calls of neighboring committees in G along a path
from s to t. Indeed, it is not hard to formalize this idea (we discuss further details later), and by
doing so, we achieve polylog(n) communication locality throughout the protocol.

However, the main issue is that the protocol may no longer be load balanced. For example,
it is conceivable that some committees may perform significantly larger amount of routing work
than other committees. At a high level, achieving both communication locality and load balancing
simultaneously via such routing network approach is significantly more challenging, since routing
incurs “non-local” cost for multiple committees along a path that depends on both the source and
destination committees.

Local load-balanced routing networks. To deal with the issue, we introduce a primitive
called local load-balanced routing networks. Roughly speaking, we need to have a way to ensure
that the routing network we use ensures that the message-passing in done in a load-balanced way.
Of course, we can never hope to achieve this if the source and destination are not (individually)
uniform, so we here focus only on a setting where this is the case. This suffices since our job-
passing scheduling algorithm from the previous section implies that the source and destination are
from uniformly random worker committees. More precisely, we want to ensure that if the source s
and the destination ¢ are individually uniform (but may be correlated), then the ezpected number
of times a node is on the path we take between them should be balanced. This is a perhaps a
seemingly weak load-balancing property in that we only balance the expectation, but allows us to
define a fair cost metric that is polylog(n)-bounded by the base cost metric used in the job-passing
algorithm in the previous section, which implies load balancing by Lemma 4.4.

We next provide some intuition about how to design such a local load-balanced routing network.
The general idea is as follows. We use a regular expander graph G as our communication network.
To route a message from a source s to a destination ¢, we first take a random walk (“walking into
the woods from s”) of length w(log |G|) from s, reaching a node s’. Note that at this point, the
routing is load-balanced (in expectation, as required): we start at a random node—since the graph
is regular that means we are starting at the stationary distribution—and each time we take single
random step on this graph we remain at the stationary distribution.

Additionally, by the mixing property of the expander graph, this ensures that we end up in a
random node in G (independent of s). We then take another random walk of length w(log|G|),
from s’ this time conditioned on reaching ¢. Since as observed above, s’ is an (essentially) uniform
node, the distribution of the this second walk (“home from the woods”) is statistically close to
taking a length w(log|G|) random walk from ¢ (i.e., “walking into the woods from t”). It thus
follows exactly as before that also this second step is load-balanced in expectation.

A final issue with this approach, however, is that it is not clear how to implement the “walk back
from the woods to t”. In particular, recall that this requires picking a random walk conditioned
on reaching ¢ which may not be efficiently computable. We resolve this final issue by relying on
a particular regular expander—namely the boolean hybercube—for which the conditional random
walk can be efficiently found. In fact, for this specific expander we can simply take a random shortest
path from s to s’ and from s’ to ¢t which somewhat simplifies the analysis. This is reminiscent to
the work of Valiant and Brebner [VB81], which performs a similar hybercube routing in a different
context (that we will use in Section 5.2).
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Implementing fgéi:mand through routing. We here briefly discuss further details on how to
implement Foe by “passing commands” through a routing network G. Note that Foe

Command Command
involves a source committee W, and a destination committee W; with the semantic that Wy sends
a (secret) operation [op] to Wy, who “performs” the operation and returns a value [v;] back to W.
Thus, we can implement fgc’,i:mand by having W choose a path ps; = (vo = s,v1,...,vp = t) in
G, send [op] to W through ps;, who sends back the returned value [v;] back to W, through the
reverse path. This in turn can be implemented by invoking ‘Fgégm/mand for each pair W,,, W,, , of
neighboring committees along the path ps; (with properly extended “operation set”). For clarity,
E,E!

we use o o denote the command passing functionality, and sa at eac
FEL (com to denote th d g functionality, and say that each F&f

ocalCom 18

implemented by a sequence of ‘FEC’)‘E;ICom invocations (along the path chosen by W;). Note that now

the .Fgcﬁ:mand functionality is only invoked for neighbouring committees for the constant degree
expander, and thus locality is achieved.

We introduce the notion of local load balanced communication network and present a simple
construction in the next section, and prove Theorem 5.1 assuming input size |x| = polylog(n) in

Section 5.1.2.

5.1.1 Local Load-Balanced Communication Network

In the next section, we introduce the notion of local load-balanced communication network that
formally captures the load-balancing property and additional properties we need, and present a
very simple construction based on Boolean hypercube graphs. Our construction is reminiscent to
the work of Valiant and Brebner [VB81], which performs a very similar hybercube routing, but in
a different context with a different analysis.

Definition 5.2. Let G = {G,, = ([n], Ey) }nen be a graph family and A be a (uniform) routing
algorithm A for G such that on input n € N and a pair of nodes s,t € [n] outputs a path from s
to t. We say that (G, A) form a d(n)-local load-balanced communication network if it satisfies the
following properties.

Locality: For every n € N, the degree of Gy, is d(n).

Efficiency: For every input n € N and s,t € [n], A(n,s,t) has runtime polylog(n) and outputs a
path of length O(logn).

Load Balancing: For every n € N and u,v € [n],
Egimlu € A(n, s,t)] = Eg i mylv € A(n, 5,1)].

We show that the family of Boolean hypercube graphs form a log(n)-local load-balanced com-
munication network. Specifically, for every n = 2%, let H, = ([n], E) be the hypercube graph of
dimension d. Namely, the vertex set [n] is identified with {0,1}% and (u,v) € E,, iff the Hamming
distance between w and v is 1. Let H = {H,},_5¢ and consider the following natural routing
algorithm A that routes s to ¢ by taking a random path from s towards t as follows. On input
n =24 s,t¢e{0, l}d,

e Let vyp = s and let £ be the Hamming distance between s and ¢.

e Fori=1,...,¢, let j € [d] be a random coordinate such that v;_; and ¢ differs on the j-th
bit, and set v; to be v;_; with j-th bit flipped. Namely, v; = v;—1 @ e;, where ¢; € {0, 1}d is
the string with j-th bit 1 and the remaining bits 0.
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e Output ps; = (vo, ..., ve).
Lemma 5.3. (H, A) defined above is a log(n)-local load-balanced communication network.

Proof. Both locality and efficiency follow by inspection. Clearly, for every n = 2¢, H,, has degree
d = logn, and A has runtime O(polylogn) and outputs a path of length at most logn. The
load balancing property follows by observing that A satisfy a “shift-invariant” property that when
both inputs s, ¢ are shifted by some w, (the distribution of) A’s output is simply shifted by w as
well. Formally, for every shift w € {0, l}d, inputs s,t € {0, l}d and output ps; = (vo,...,ve) of
A(n,s,t),let & =s@w, ! =t@w, v, =v;®w for i € [{] and pyy = (v{,...,v}). It holds that
Prlpst < A(n, s, t)] = Prlpy y < A(n,s’,t')]. Therefore, for every u,v € {0, 1}d, let w =u @® v, the
shift-invariant property implies that

Es,t<—[n] [u € A(n, s, t)] = Es,t<—[n] [(u Sw) € An,sOw, td w)] = Es,t(—[n] [U € A(n, s, t)]

5.1.2 Proof of Theorem 5.1 with polylog(n) Input Size

We now prove Theorem 5.1 assuming that per-party input size is |z| = polylog(n).

Proof (of Theorem 5.1 with |x| = polylog(n)). We construct the desired protocol, called LLB-MPC-Dyn,
by appropriately modifying the LB-MPC-Dyn protocol from Section 4 as follows.

e By inspection, the Committee Setup Phase already achieves polylog(n) communication locality
with the help of a single per-party broadcast, since the per-party communication complexity
(excluding broadcast) is polylog(n). Therefore, no modification is needed for the Committee
Setup Phase.

e For the Input Initialization Phase, note that the per-party complexity is O(]x\) Since we
assume |x| = polylog(n), it has polylog(n) communication locality as well and no modification
is needed.

e For the dual ORAM program execution in the Computation Phase, we modify the implemen-
tation of the ]:é’)i:mand ideal functionality in the way we discussed above using the log(/N)-local
load-balanced communication network (H, A) constructed in Section 5.1.1. Namely, the sender
committee Wy of ]-"g(’)i;man 4 computes a path from W to the recipient committee W; by first
sample a random u < [N], invoke the routing algorithm A to obtain ps, < A(N,s,u) and
Put < A(N,u,t), and let pst = psy © put. Then W “sends” [op] through the path pg; of
length O(log N) to W;, who performs the operation and “sends” back a value [v;] back to
W, through the same path, implemented using ffc;f;l(:om ideal functionality. We note that for
load balancing and job-passing scheduling algorithm, we still use the number of invocations to

(now virtual) ]:g(ﬁ:mand and ]:gomp as our base cost metric for the scheduling algorithm, but

ignoring the ff(;f;lcom.

e Finally, for output delivery, instead of relying on the output delivery procedure in Figure 9,
we simply let the CPU worker disseminate the output through the hypercube underlying the
local load-balanced communication network (H, A). More precisely, the output is delivered by
a breadth-first search over the hypercube. Since we route the output through the hypercube,

it clearly has polylog(n) communication locality. Additional, note that there is some fixed
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polylog(n) upper bound on the work of the committee. Thus, we can preserve load balancing
property by appropriated padding.

As argued above, by inspection, LLB-MPC-Dyn has polylog(n) locality (assuming the input
has size upper-bounded by polylog(n)). Also note that the total communication and computation
complexity of LLB-MPC-Dyn is preserved, since the above implementation only blows up both
complexities of fgéfrlnmand by a polylog(n) factor. The per-party memory is preserved since each
committee only need polylog(n) extra temporary memory for handling with routing.

It remains to show that load balancing is preserved. Note that we only need to show that the
routing cost incurred by the the fli;f;lcom ideal functionality is load balanced, since both the job-
passing scheduling algorithm and the cost of the remaining part of the protocol remains unchanged.
Let us focus on the computation complexity, and the same argument applies to the communication
complexity. To see that the computation complexity of ]:Ii;f;ICom is load balanced, we define two
non-typical cost metrics CP; and CP; that jointly capture the computational complexity exactly.
At a high-level, we do not charge the cost of fféf;lcom to the worker committee that performs the
computation. Instead, we charge the cost to the jobs of the sender committee Wy and destination
committee Wy of féﬁmand that cause the invocation of ]-'li;f;lcom, where we split the cost into
two halves, where the first half is the cost for routing between s and the middle random point
u, which is charged to the job of W, and captured by CP,, and the second half is the cost for
routing between u and ¢, which is charged to the job of W, and captured by CP;. Specifically, we
define CP4 = (¢°, scf,ﬁf,*yj) as follows. We let ¢*(i) be the total computation cost of J;, when J;
is the job of the sender committee Wy, for routing between s and w (note that the cost is in fact
independent of the worker Wy by the symmetric of the hypercube routing network). The switch
cost is defined in an analogous way that measures the first half routing cost of switching for the
sender. The crucial point here is that we define +7 (") to be the random variable of the fraction
of computation cost incurred by the worker W; being the sender to the worker W/, and the load
balancing property of (H, A) implies that CP; is a fair cost metric. Note that the above definition
indeed charges computation complexity of each worker committee accurately (for the routing cost
they participate in the first half of the routing between s and u). It is not hard to check that CPg
is polylog(n)-bounded by the base cost metric CP.

We can define CP; in an analogous way to capture the second half of the routing cost, and by
the same reason, CP; is a fair cost metric polylog(n)-bounded by CP. Note that now CPs and CP;

jointly captures exactly the computation complexity incurred by ]-"li;f;lcom. We can now appeal to
the robust load balancing property from Lemma 4.4 and conclude that the computation complexity

of ]:f(;‘cg;lcom is load balanced (on the committee level). Finally, the same argument shows that the

communication complexity of of FEC;(S;ICom is load balanced as well.
O

5.2 Handling Large Inputs

We now discuss how to further modify the Input Initialization Phase of LLB-MPC-Dyn to achieve
polylog(n) communication locality even with large inputs, while preserving the load-balancing prop-
erty and the protocol complexities. Let us first recall the high-level structure of the Input Initial-
ization Phase.

Recall that in the Input Initialization Phase, each party P; initially holds his input x; of length
|z|, and at the conclusion of the protocol, the inputs are entered into the Input tape ORAM
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structure, shared among the input tape ORAM memory node committees.
Let size € polylog(n) denote the memory block size of the ORAM. When the input size is
large, P; first splits his input into |x|/size blocks, and commits in parallel to each block to separate

“parallel CPU” committees C} via }"é’nccj/ ideal functionality (see Remark 3.17). Then the L =
n - |z|/size € O(n - |z|) committees jointly execute the Distriblnit protocol, which in turn emulates
the Parallellnsert procedure that initializes an ORAM structure with L blocks inserted in parallel.

In more detail, the Parallellnsert procedure starts with L parallel CPUs Cj, each holding one
memory block, and an empty ORAM structure. Each C; first samples a random position Pos(i) of
its block, and then the L CPUs insert the L blocks directly to the £ = log L level?! of the ORAM
tree according to Pos(i) in parallel through an L-to-L oblivious routing network. The routing
network consists of log L rounds with deterministic communication pattern, where in each round,
the CPUs group into L/2 pairs and perform L/2 pairwise communication in each pair to route the
blocks. Then the CPUs merge the position map Pos into L/« blocks, and recursively enters the
L/a blocks to the ORAM tree in the next recursive level (with L/ow CPUs). At the conclusion
of Parallellnsert, a single CPU with polylog(L)-size state and an ORAM structure with L inserted
blocks are initialized.

Finally, for the purpose of load balancing, we append an Initial Worker Assignment protocol
after Distriblnit, which assigns each job/role of CPU and ORAM memory node committee to a
random worker.

When the input size is large, there are three reasons for poor communication locality:

e Input-committing: Each party P; needs to commit to |z[/size input blocks to the same number
of committees, which results in (|z|/size) - polylog(n) = O(|z|) communication locality.

e Distriblnit: Note that the CPUs in the Parallellnsert procedure have polylog(L) communication
locality (since each performs only polylog(L) amount of work), which translates to polylog(L)
communication locality in the Distriblnit protocols on the commitiee level. However, note
that there are L committees, each of which consists of a random set of polylog(n) parties.
Therefore, each party participates in O(]z|) committees on average, resulting in poor O(|z|)
communication locality.

e The final Initial Worker Assignment protocol involves O(L) committees sending out their state
to worker committees, which also results in poor communication locality.

We use the same ideas as in the previous case to achieve good communication locality. Namely,
we elect a set of Worker committees, each of which plays multiple jobs/roles of parallel CPUs and
ORAM memory nodes. Additionally, the pairwise communications between committees are routed
through a low-degree network associated with the Worker committees.

As before, we need to be careful to maintain the load-balancing property. Here, the correspond-
ing load-balancing problem is simpler, since we know an a priori O(|z|) bound on the per-party
complexity. Thus, it suffices to ensure that no party performs more than some fixed O(|z|) amount
of work, and apply appropriate padding to achieve load-balancing.

We rely on the following structure of the Input Initialization Phase summarized above, and a
hypercube routing algorithm of Valiant and Brebner [VB81] to ensure load balancing.

e There are O(L) jobs/roles of parallel CPUs and ORAM memory nodes.

2IFor simplicity, we assume L is a power of 2. The assumption can be made without loss of generality by padding
dummy input blocks.
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e The Distriblnit protocol consists of polylog(L) parallel rounds with deterministic pairwise com-
munication pattern per round.

Recall that we elect N = n - polylog(n) worker committees. At a high level, we assign the O(L)
jobs to the workers (somewhat) evenly in a deterministic way so that each worker is assigned at
most O(|z|) jobs. This trivially implies that in each round of the Distriblnit protocol, each worker
participated in at most O(|z|) number of pairwise communication. We then use the hypercube
routing algorithm of [VB81] to route the communication, which has the property that no edge need
to route more that O(|z|) messages, except with negligible probability. This implies that the work
performed by each worker for each round of the Distriblnit protocol can be upper bounded by O(|z|),
which in turn implies that the overall complexity of each worker committee (and hence each party)
is at most O(|z|) in the Distriblnit protocol. For the final Initial Worker Assignment protocol, we
simply let each worker send each of his jobs to a random worker, and route the communication via
the algorithm of [VB81], which again yields at most O(|z|) per-party complexity.

Let H, denote dimension-d Boolean hybercube graph with D = 2¢ nodes. The hypercube
routing algorithm of [VB81] is a randomized oblivious routing algorithm R that on input d € N
and s,t € [D], outputs a path of length O(d) from s to t in H; with the following property.?2

Theorem 5.4 ([VB81]). For every d € N, and every set of routing request {(s;,t;)}i such that each
node v € Hy appears in at most m pairs, it holds that for every edge e € Hy,

Pr[|{i:e € R(d,s;t;)}| > m-d’] < negl(D),
where the probability is over the randomness of the routing algorithm.

We proceed to prove Theorem 5.1 in its full generality.

Proof. (Proof of Theorem 5.1) We further modify the Input Initialization Phase of LLB-MPC-Dyn
as follows.

1. We no longer use the CPU and ORAM memory node committees, but instead assign these
jobs/roles to the worker committees (specified below).

2. (Input-committing:) Recall that we elect N = n-polylog(n) worker committees in the Commit-
tee Setup Phase. For simplicity, we assume N is a power of 2 and associate it with a Boolean
hybercube H. For each j € [n], let party P; commit his whole input z; to the corresponding
Worker committee W; (the remaining N — n workers do not receive inputs).

3. For j € [n], each W internally splits x; into |z|/size blocks, and plays the roles of corresponding
parallel CPU in the Distriblnit protocol. As such, each worker plays at most |z|/size € O(|z|)
parallel CPU roles (the remaining N — n workers play no roles), and there are L = n - |z|/size
roles in total.

4. Note that the Input tape ORAM structure has M = O(L) memory nodes in total (summing
over all recursion levels). We assign the memory nodes to the workers evenly as follows. We
label each memory node by an index in [M], and assign nodes with index aN 4 j to worker
W; for every j € [N]. Note that each worker is assigned O(|z|) nodes.

22[VB81] in fact proved a stronger property in the context of parallel communication schemes with tighter param-
eters, which implies Theorem 5.4.

67



5. (Distriblnit:) The worker committees jointly execute the Distriblnit protocol with assigned roles.
Recall that at each round, the roles group into pairs and perform pairwise communication with
deterministic pattern. Thus, a worker Wy playing a role knows which worker W; playing the
corresponding role to talk to. W and W; route the communication through H using the
routing algorithm R(log N, s,t) of [VB81].

6. (Initial Worker Assignment:) Each role is assigned to a new random worker as follows.

e For each role J; played by a worker W), W; samples a random new worker j’ < [N] for J;.

e Recall that each role must maintain some link information for the CPU to traverse the
ORAM trees. Each W; sends the link information j to the worker of the “parent” role
of J; (either the CPU for the root nodes, or the parent for internal ORAM tree nodes).
The link information of each role is updated accordingly.

e Then each worker sends the whole content of each role J; (including the state and the link
information) to its new worker Wj.

e Communication for both of the above two steps are again routed by the routing algorithm
R of [VB81].

e We initialize the Work tape ORAM structure in the same way as before. That is, the
CPU worker samples random indices in [/V] for each root node of the ORAM Work tape,
and appends the samples to its link vector link.

It is not hard to see by inspection that the modified protocol achieves polylog(n) communication
locality and implements the same functionality. That is, at the conclusion of the protocol, a dual
ORAM structure with all parties’ input inserted is initialized, and each job/role of the ORAM
structure is assigned to a random worker. The security of the modified protocol follows in an
identical fashion. We proceed to show that the per-party computation complexity is upper bounded
by a fixed O(]z|) in the modified Input Initialization Phase protocol above, which implies load
balancing with desired complexity by appropriately padding along the protocol.

As argued before, since there are N = n - polylog(n) worker committees, each party participates
in roughly the same number of polylog(n) committees (up to a (1+4) factor) except with negligible
probability. Thus, it suffices to upper bound the complexity by O(|:c\) on the committee level. We
analyze each step of the protocol as follows.

Both Step 1. and 4. are conceptual steps with no cost.

In Step 2., for j € [n], the input committing costs each party P; and worker W; complexity
O(lz))-
In Step 3., for j € [n], each worker W, performs O(|z|) amount of work to split the input z;.

In Step 5., recall that in the original protocol, each pairwise communication via execution of
the ideal functionality Fg&iman 4 has polylog(n) complexity. Thus, the messages that must be
routed in the modified protocol have size at most polylog(n). At each round of Distriblnit,
since each worker W, only plays O(|z|) roles, W; participates in at most O(|z|) pairwise
communications. By Theorem 5.4, each edge of the hypercube only needs to route at most
O(|z|) messages, except with negligible probability. Together with the fact that the hypercube
has log N degree, and that the Distriblnit protocol has only polylog(n) parallel rounds, the total
complexity of each worker in the Distriblnit protocol is upper bounded by O(|z|), except with

negligible probability.
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e In Step 6., recall that we randomly assign O(L) jobs/roles to new workers. By a standard
Chernoff bound, each worker is assigned O(|z|) jobs except with negligible probability. Note

that the protocol consists of only O(1) parallel rounds, where in each round, all pairwise com-
munication exchange polylog(n) size messages. By the same argument as above, the complexity
of each worker in this step is upper bounded by O(|z|) except with negligible probability.

O
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A Proof of Theorem 2.7

This section describes the underlying committee election and coin tossing protocol that is used as
a tool within the setup phase of our MPC protocol, culminating in a proof of Theorem 2.7.

A.1 Memory-Efficient Committee Election

First, consider the task of reaching full agreement on a single “good” polylog(n)-size committee,
while maintaining only polylog(n) memory per party. We build upon the almost-everywhere com-
mittee election protocol of King et al. [KSSV06]. The main theorem of [KSSV06] focuses on electing
a single party as leader, and guarantees almost-everywhere agreement on an honest leader with con-
stant probability of success. We present a slightly modified variant of this theorem statement, in
which their protocol is truncated to elect a committee of size polylog(n), and guarantees that this
committee is 2/3 honest with overwhelming probability (assuming an original (2/3 + €) majority
of honest parties).

Theorem A.1 ([KSSV06] Almost-Everywhere Committee Election Protocol). Suppose there are
n processors, at least (2/3 4 €) are honest for constant € > 0. Then for K € polylog(n) Nw(logn),
there exists an algorithm that elects, with overwhelming probability, a committee C C [n] of size
|C| € O(K) satisfying the following properties:

1 —o(1) fraction of honest processors agree on C.
|ICNH|/|IC| > (2/3+¢€¢/2), where H C [n] denotes honest processors.

Every honest processor sends and processes only polylog(n) bits.

The number of rounds of communication is polylog(n).

From almost-everywhere to everywhere. Now, given any protocol achieving almost-everywhere
agreement on a good committee C, we may append a simple polling protocol to achieve full agree-
ment on C, with the following per-party complexities, where m denotes the input message size (in
our case, the description size of C', which is polylog(n)), BC(m) denotes an execution of a broadcast
channel with message m, and asymptotic notation is with respect to the number of parties n:

Per-Party Memory | Rounds | Per-Party CC
Poll(m) : O(|m]) O(1) BC(m)

See Figure 12 for a complete description of the protocol Poll.

Indeed, with overwhelming probability in 7, every honest party P; will select a subset Q; C [n]
such that at least 2/3 of the parties in (); are honest parties that begin with the same (correct)
value m (this holds by a straightforward Chernoff bound). Thus, each honest party P; will receive
a majority of correct responses, and will output in agreement. The memory requirement of each
honest party consists of exactly |Q;] - |[m| € O(jm]).

Combining Poll atop the protocol of [KSSV06], we thus have the following corollary. Note
that a description of a polylog(n)-size committee C' requires polylog(n) bits; i.e., we may plug in
Im| = polylog(n).

Corollary A.2. Suppose there are n processors, at least (2/3 4 €) fraction are honest for constant
e > 0. Then for K € polylog(n)Nw(logn), there exists an protocol Elect such that with overwhelming
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Polling protocol Poll: Going from almost-everywhere to full agreement
Input: Each party P;: m;. There exists m s.t. m; = m for (1 — o(1))n honest parties P;.
Output: Each party P;: m!, such that m] = m for all honest P;.

Each party P; performs the following steps:
1. Sample a random query set Q; C [n] of size |Q;| = log?n.
2. Broadcast message m;.

3. Ignore all incoming messages from parties Py ¢ ;. Output m) defined to be the most
frequently occurring response m; from P; € Q;.

Figure 12: Protocol Poll to achieve full agreement on message m when starting with almost-
everywhere agreement.

probability all honest parties agree on a committee C' C [n] of size |C| € O(K), for which |C' N
H|/IC| > (2/34¢€/2) (for H C [n] honest parties), with the following per-party complezities (where
BC is a broadcast of polylog(n) bits):

Per-Party Memory | Rounds | Per-Party CC
Elect: 0(1) 0(1) BC+0O(1)

A.2 Memory-Efficient Committee Election + Coin Tossing

Our MPC protocol will ultimately require electing a large number of good committees. As we show
in Section 3.1, to generate such committees it suffices to sample a random polylog(n)-size seed s to
a polylog(n)-wise independent function family {Fs}, taking the ith committee to be C; := Fy(i).
One approach for generating and communicating such a seed is to start by electing a single good
committee via Corollary A.2 as described above (reaching full agreement), and then have this
committee collectively sample the string s and broadcast it to all parties. Indeed, this procedure
follows in a black-box way from the almost-everywhere committee election protocol of [KSSV06]
(Theorem A.1). However, this approach unfortunately requires two sequential implementations of
broadcast: one per party to achieve full agreement on the identity of the first committee C' (as
in the Corollary A.2 protocol), and then a second broadcast per party in C' to communicate the
sampled seed s to all parties. Indeed, it is crucial for the remainder of the MPC protocol that all
parties agree both on C' and on the seed s.

Alternatively, we can combine these two sequential broadcasts into one, by “opening up the
box” of the underlying almost-everywhere committee election protocol, and taking advantage of its
specific structure. Loosely speaking, the [KSSV06] protocol achieves almost-everywhere agreement
on a good committee C' by constructing a tournament-style communication tree, where each node
of the tree is populated dynamically during the course of the protocol. The final elected committee
C corresponds to the parties elected to the root node of the tree. In their protocol, it holds that
all honest parties in C' are among the 1 — o(1) fraction of honest parties who agree on the correct
committee composition, thus allowing them to run a protocol together amongst themselves (e.g., a
small-scale standard MPC or coin tossing protocol). And most importantly, the communication tree
structure allows the root node committee to “pass messages down the tree” in such a way that almost
everyone will receive the message correctly. This structure was formalized and used in [BGT13].
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Namely, in the notation of [BGT13]: (1) Protocol BuildTree corresponds to the [KSSV06] protocol,
corresponding to Theorem A.1 in the present work, which yields the described communication tree
structure; (2) Protocol SendDownTree (constructed in [BGT13]) provides a means for passing a
message from the root node committee to (almost all) other parties (while incurring polylog(n)
communication per party and polylog(n) sequential communication rounds).

Lemma A.3 ([BGT13]). With overwhelming probability in n over the execution of BuildTree, the
following properties hold, in addition to the properties listed in Theorem A.1.

o All parties assigned to the elected committee C' agree on the correct composition of C'.

o [f all honest parties assigned to the elected committee C' initiate protocol SendDownTree with
the same input s, then at its conclusion, 1 — o(1) fraction of all n honest parties agree on s.

Proof. Follows from Theorem 3.2 and Lemma 3.3 of [BGT13] (corresponding to the cited theorem
statement of the [KSSV06] result, and the SendDownTree protocol lemma). O

In particular, this can be directly utilized to achieve a stronger notion of almost-everywhere coin
tossing, where at the conclusion of the protocol 1 — o(1) fraction of honest parties agree on a
(statistically close to) uniform string s.23 Namely, the parties assigned to the elected committee C
can communicate amongst themselves (since they all agree on the correct committee assignment) to
perform a standard coin-tossing (or generic MPC, e.g. [BGW88]) protocol to collectively generate a
uniform random string s, and then all honest parties in C' will initiate the protocol SendDownTree
to communicate s to almost all of the n total parties.

Note that we must be careful to ensure that the lack of full agreement on C does not unwit-
tingly open the protocol to large unnecessary computation when generating the seed s. Indeed, in
principle, parties in the o(1) fraction of the misinformed may mistakenly believe they are part of
the elected committee C. Such a mistake would incur additional wasted computation and memory
on their behalf, while attempting to execute the coin tossing protocol together with a collection of
other parties he believes to be elected to C. However, even in the worst case (e.g., if the party is
tricked into believing that C' consists of himself and a collection of other corrupted parties), the
total of any such wasted computation and memory will be bounded by polylog(n) bits per party.
This is because any party will only attempt to listen or speak to those parties he believes to be
elected to C, which will necessarily be bounded in size by the parameter K € polylog(n) (otherwise
the party can be sure that he does not hold the correct value of C, and so must not be in the
correct elected committee, in which case he can refrain from participating in this step).

We now put these pieces together.

Lemma A.4 (Almost-Everywhere Committee Election + Coin Tossing). Suppose there are n pro-
cessors, at least (2/3 + €) are honest for constant € > 0. Then for any k € polylog(n), and
K € polylog(n) Nw(logn), there exists an algorithm that outputs, with overwhelming probability
(in n), a string s € {0,1}* and a committee C' C [n] of size |C| € O(K), satisfying the following
properties:

e 1 —0(1) fraction of honest processors agree on s and C.

o The distribution of s over the random coins of the honest parties is statistically close to uniform
over {0,1}* (i.e., statistical distance negligible in n).

23Note that a.e. agreement on a random string suffices to achieve a.e. agreement on a good committee.
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o |(CNH|/C|>(2/3+¢€/2), where H C [n] denotes honest processors.
e Fvery honest processor sends and processes only polylog(n) bits.

e The number of rounds of communication is polylog(n).
Proof. Follows from Theorem A.1 and Lemma A.3. O

Now, given this almost-everywhere committee election + coin tossing protocol, we can combine
two earlier broadcasts from our MPC protocol into one: Namely, the parties will first reach almost-
everywhere agreement on both the committee C' and on a random string s; Then, as before, each
party will make a single broadcast as described in the Poll protocol (Figure 12) to communicate
their vote on the pair of values together, enabling full agreement to be reached on both.

Corollary A.5. Suppose there are n processors, at least (2/3 4 €) are honest, for constant € > 0.
Then, with the addition of a single broadcast of polylog(n) bits per party, there exists a protocol
achieving the properties listed in Lemma A.4, for which, with overwhelming probability in n, all
parties agree on s and C.

This is precisely the desired guarantee, proving Theorem 2.7.
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