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Abstract

Motivated by theoretical and practical interest, the challenging task of designing crypto-
graphic protocols having only black-box access to primitives has generated various breakthroughs
in the last decade. Despite such positive results, even though nowadays we know black-box con-
structions for secure two-party and multi-party computation even in constant rounds, there still
are in Cryptography several constructions that critically require non-black-box use of primitives
in order to securely realize some fundamental tasks. As such, the study of the gap between
black-box and non-black-box constructions still includes major open questions.

In this work we make progress towards filling the above gap. We consider the case of black-
box constructions for computations requiring that even the size of the input of a player remains
hidden. We show how to commit to a string of arbitrary size and to prove statements over the
bits of the string. Both the commitment and the proof are succinct, hide the input size and
use standard primitives in a black-box way. We achieve such a result by giving a black-box
construction of an extendable Merkle tree that relies on a novel use of the “MPC in the head”
paradigm of Ishai et al. [STOC 2007].

We show the power of our new techniques by giving the first black-box constant-round
public-coin zero knowledge argument for NP.

To achieve this result we use the non-black-box simulation technique introduced by Barak
[FOCS 2001], the PCP of Proximity introduced by Ben-Sasson et al. [STOC 2004], together
with a black-box public-coin witness indistinguishable universal argument that we construct
along the way.

Additionally we show the first black-box construction of a generalization of zero-knowledge
sets introduced by Micali et al. [FOCS 2003]. The generalization that we propose is a strength-
ening that requires both the size of the set and the size of the elements of the set to remain
private.

1 Introduction

A fundamental question in Cryptography of both theoretical and practical interest is whether a
task can be securely realized by using primitives only in a black-box (BB) way. The question is
of interest for theoreticians because, despite recent advances, there still are several fundamental
tasks (e.g., CCA encryption, non-interactive zero-knowledge) that so far have been realized only
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by critically using in a non-black-box (NBB) fashion some underlying primitives. For such tasks
it is still unknown whether BB constructions are possible at all. Moreover, recently proposed BB
constructions include ingenious and elegant techniques that make the study of the above gap fasci-
nating and challenging. The question is also of practical interest since BB constructions avoid NP
reductions involving circuits of primitives. Such reductions are often very expensive and categorize
the NBB constructions as mere feasibility results. Another advantage of BB constructions is that
one can instantiate the underlying primitive with an arbitrary implementation, for example even
with a physical implementation (i.e., hardware tokens). As we shall see later, one can also replace
a collision-resistant (CR) hash function with a random oracle.

Related work. The seminal work of Impagliazzo and Rudich [IR89] studied relations amongst
cryptographic primitives with respect to BB constructions. While for secure signature schemes and
commitment schemes, BB constructions based on any one-way function (OWF) were already known
long time ago [Rom90, Nao91], the case of interactive protocols remained obscure until some recent
breakthroughs.

In [IKLP06], Ishai et al. showed the first BB construction for oblivious transfer (OT) and then
for multi-party computation (MPC), by pairing their result with the one of Kilian [Kil88]. Later on
in [Hai08], Haitner showed how to get oblivious transfer through BB calls to semi-honest oblivious
transfer, therefore improving on the generality of the underlying primitives.

Even though the existence of BB constructions for MPC might look like the end of the story,
the state of affairs is instead much more complicated. Indeed, things change completely when
fundamental properties of cryptographic protocols (e.g., round complexity, security in a concurrent
setting, complexity of the players, underlying assumptions) are taken into account. Constant-round
constructions were considered in [PW09], where Pass and Wee showed BB constructions based on
OWFs for various building blocks such as trapdoor commitments, coin tossing and zero-knowledge
(ZK) arguments of knowledge. The above building blocks combined with previous work produced
the first constant-round constructions for two-party computation starting from any constant-round
semi-honest OT protocol. In [CDSMW09], Choi et al. showed how to obtain similar results w.r.t.
adaptive adversaries. In [Wee10], Wee showed the first BB constructions with sub-linear round
complexity for MPC, and later on Goyal in [Goy11] obtained constant-round constructions based
on the BB use of any OWF. In [GLOV12] the BB use of OWFs has been shown to be sufficient
to construct constant-round concurrent non-malleable commitments. Other BB constructions for
commitment schemes have been considered w.r.t. selective opening attacks in [Xia11, ORSV13].
In [LP12] Lin and Pass showed the first BB construction for MPC in the standard model that
satisfies a non-trivial form of concurrent security and requires a non-constant number of rounds.
Very recently, Kiyoshima et al. in [KMO14] improved on the round complexity providing a constant-
round construction for the same result.

The tough case of hiding the input size. While the above results are encouraging towards
avoiding NBB constructions, all the known techniques fail spectacularly when a cryptographic task
aims at hiding the size of the input used during the computation. Such a requirement is for instance
critical in constructions of witness indistinguishable universal arguments [BG02, BG08] (WIUARGs)
and in turn in the breakthrough of Barak [Bar01] that shows how to get constant-round public-coin
ZK, by means of new NBB simulation technique.
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Input-size hiding constructions typically rely on the use of Merkle trees1 to succinctly commit
to an a priori unbounded number of elements, and to later reveal only selected elements. The key
requirement is that in order to protect the size of the input, the length of a path between the
root and a leaf of the tree must remain hidden. This requirement invalidates any straightforward
black-box solution based on combining a CR hash function and a black-box commitment scheme,
as it would require to unfold a path and therefore reveal the size of the tree.

Difficulties on achieving BB input-size hiding protocols become more evident when even more
sophisticated known techniques fail. The reason is again that they crucially reveal the size of the
input. Consider for instance one of the most powerful techniques developed so far, namely: the
“MPC in the head” paradigm of Ishai et al. [IKOS07], subsequently extended in [GLOV12]. The use
of this technique would require the virtual execution of an n-party protocol where players perform a
computation over the committed input. It can be trivially observed by using information-theoretic
arguments that since when implementing this paradigm some views of those virtual players are
shown to the verifier, the size of the views of those player would reveal the size of the input.

In a concurrent and independent work, Ishai and Weiss [IW14] show a commit-and-prove scheme
based on the MPC-in-the head technique that is succinct and makes only BB use of a hash function.
Their construction is not size-hiding: their techniques crucially rely on the fact that the size of the
input is known to all players.

This leads us to the first question.: “Is it possible to have black-box constructions of input-size
hiding proofs”?

The Black-box non-black-box question. The NBB simulation paradigm of Barak has signifi-
cantly influenced the landscape of cryptographic protocols as it yields results that are impossible via
BB simulation (e.g., constant-round public-coin ZK). Despite being very influential, the downside
is the established folklore that protocols proved secure through NBB simulation must be inefficient.
This is in part due to the heavy NBB usage of cryptographic primitives. Does this mean that the
constructions of Barak along with all other subsequent similar constructions would forever remain
only in papers and can not move towards being realized in practice? If indeed this is true, it would
be quite unfortunate. Getting a BB construction of a cryptographic protocol is generally considered
to be the “first step” towards understanding how efficiently it can be implemented in practice.

This leads us to the second question. “Is it possible to have NBB simulation even without the
protocol making NBB use of cryptographic primitives?”, and therefore, “is there a BB construction
for constant-round public-coin ZK?”

We remark that recent results based on non-black-box simulation techniques [BP12b, BP12a,
BP13, CPS13, COPV13, COP+14] managed to obtain some important results on security under
reset attacks without relying on Barak’s approach, but their constructions are not public coin.

1.1 Our Results and Techniques

In this work we solve the above open problems by introducing new techniques to obtain BB input-
size hiding proofs. Such proofs do not reveal anything about the size of the witnesses and use
cryptographic primitives in a BB manner. We construct a BB size-hiding commit-and-prove protocol

1Since this work focuses on standard security notions, we will not consider the so called knowledge of expo-
nent assumption [Dam91] and its generalizations as they are non-falsifiable [Nao03] (and therefore non-standard)
assumptions.
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that we use to implement the first BB construction of a WIUARG and of a constant-round public-
coin ZK argument. Moreover, we provide a BB implementations of a generalized version of ZK
sets.

More details on our techniques and applications follow below.

Black-Box input-size hiding commit-and-prove. We put forth the notion of a black-box input-
size hiding commit-and-prove protocol, in which there is a prover P that commits to an arbitrarily
long string, and later proves a predicate about this string so that: (1) both the commitment and
the proof are succinct and hide the input size (note that a proof can be succinct but not size-hiding,
e.g., UARG of [Kil92]); (2) the primitives are accessed in a BB manner.

Constructing a succinct BB commitment can be easily done via a Merkle tree. A Merkle tree is
built by arranging the bits of the string on the leaves of a binary tree, and computing each internal
node as the hash of the children. The root of such tree is of fixed size, independent of the size of
the tree. The commitment then is simply a BB commitment of the root.

Achieving succinct and size-hiding BB proofs is instead much more problematic. The crucial
problem is to use the hash function in a BB manner while guaranteeing input-size hiding. To see
why, consider a prover who wants to prove a predicate about a bit of the committed string (hence,
about a leaf of the Merkle tree). Soundness demands that first the prover proves that the leaf is
consistent with the committed root. Consistency means that there exists a path from the leaf to the
committed root, and each node along the path corresponds to the hash of its children. How to prove
to the verifier that a path is consistent, without using the code of the hash function? The only way
we can think of doing this, is by exhibiting a path and letting the verifier check the hash consistency
of each node in such path. Neglecting for a moment how to reveal a path while keeping the values
of the nodes along the path secret (which is only slightly less challenging), the main problem here
is that the length of the path itself reveals the size of the string! Using an upper-bound on the size
of the tree is not a solution, as in order to enable the prover to commit to any polynomially long
string, such upper bound should be super-polynomial.

We solve the problem by introducing extendable Merkle trees, in which the prover can extend
any real path to an arbitrary long imaginary path, on-the-fly. The main idea behind our extendable
Merkle tree is a new representation of the nodes and their connection. A node is split in two parts:
the usual label, that similarly to the standard Merkle tree, is computed as the hash of the children;
and a redundant representation of the label, which is used to generate the next level of the tree. The
consistency between the two parts of a node (namely, the label and its representation) is proved
via a BB witness indistinguishable (WI) proof. This proof introduces a soft link between the nodes
that can be broken with the right witness. The main gain from this new representation is twofold:
(1) the redundant representation of the label allows the prover to reveal only parts of a node and
let the verifier check the hash consistency of such parts on its own; (2) it allows the honest prover
to arbitrary extend a path by cheating in the BB WI proof (when some conditions are satistied).

Concretely, we implement this idea using VSS (Verifiable Secret Sharing [BOGW88]) and MPC-
in-the-head [IKOS07]. Namely, the redundant representation of the label is implemented using VSS:
each label is represented as a vector of n imaginary VSS shares. The tree is built so that a label is
the hash of the VSS shares of the children (instead of the hash of the labels of the children).

The BB WI proof is implemented using MPC-in-the-head on top of the VSS shares [GLOV12].
Due to the privacy of VSS the prover can reveal parts of the label, and the verifier can compute the
hash on such shares on its own. Due to the correctness of MPC-in-the-head, the verifier is convinced
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of the soundness of the BB WI proof, again by only looking at few views.
For convenience, in the rest of the paper we shall write size-hiding instead of input-size hiding.

Black-box WIUARGs. Witness Indistinguishable Universal Arguments (for short, WIUARGs)
[BG08] are interactive arguments that allow to prove statements for languages in NTIME(t) (the
tuple (M,x, t) ∈ NTIME(t) if M(x) outputs 1 in at most t steps) with the verification time which
is polylogarithmic in t. Because the verification must be polylogarithmic in t, the proof itself must
be succinct, namely, polylogarithmic in the size of the witness of maximum length. We follow the
implementation of Barak and Goldreich [BG08] where a prover commits to a PCP oracle, and after
receiving the queries from the verifier, it proves that, had it opened the bits of the oracle selected
by the PCP queries, the PCP Verifier would have accepted.

Our BB commit-and-prove protocol directly yields a BB constant-round public-coin WIUARG:
in the commitment phase, the prover commits to the PCP π; in the proof phase, the verifier provides
the positions of π to be checked, and then the prover proves the predicate: “the PCP verifier would
have accepted the bits of π selected by the verifier’s queries”. This result is presented in App. D.

Black-box constant-round public-coin ZK. As a main result of our work, we show a black-box
construction for constant-round public-coin ZK, following the ideas proposed by Barak in [Bar01].
Barak’s ZK protocol for an NP language L consists of two phases. In the first phase, called the
trapdoor generation phase, the prover commits to a trapdoor. The trapdoor is a string which is
supposed to be the code of a machine predicting the next message function of the verifier. This
trapdoor is used by the non-black-box simulator who knows the code of the malicious verifier. The
verifier replies to the commitment with a random string r.

In the second phase, called proof phase, P must prove that: (Theorem 1) either the value
committed in the first phase is a Turing MachineM that predicts r in less then |r|log2 n steps (which
happens only with negligible probability without knowledge of the code of V ), or (Theorem 2)
x ∈ L. There are two observations about Theorem 1.

First, Theorem 1 is not an NP statement, and as such must be proved using a WIUARG. Second,
the theorem itself uses the code of the commitment scheme and of the hash function. The latter
observation implies that even the improved implementations of Barak’s protocol given in [PR08]2

still require both prover and verifier to access the code of the hash function.
As mentioned above, we know how to construct the black-box WIUARG that we can use to prove

Theorem 1. Also, we know how to get a BB version of Theorem 1, by computing the commitment
of M using our BB size-hiding commitment stage (via extendable Merkle trees). However, the two
tools together are not enough to obtain a size-hiding proof for Theorem 1, for the following reason.

The machine M is the theorem on which a PCP proof π is computed. Although it is true that
the PCP verifier can decide to accept a proof by reading only few bits of π, it still needs to read
the entire theorem M in order to compute this decision. Therefore the view of a PCP verifier -
which will be run in the head of the prover - depends on the size of the theorem being proved, and
this immediately invalidates the zero-knowledge property. To solve this problem we use PCPs of
Proximity instead of standard PCPs. In a PCP of Proximity the verifier has only oracle access to

2In such implementation, the honest prover is not required to compute a PCP since it can just use the witness
corresponding to x in order to prove that either x ∈ L or he sent a committed transcript of an accepting UA. Still both
prover and verifier use the code of the hash function in their computations. We remark that also in our construction
the prover is not required to actually compute a PCP proof.
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the theorem, and thus is able to make its decision by looking at few bits of the theorem and few
bits of the proof. This result is presented in Sec. 4.2.

Black-box public-coin protocols and the Random Oracle Model. Our black-box use of a
CR hash function allows us to instantiate the hash function with a random oracle (our constructions
also use statistically-hiding commitments, but they can be constructed in a BB manner from any
CR hash function [NY89]). Therefore, in the random oracle model (ROM) [BR93] we obtain the first
information-theoretically secure WIUARG. Applying the Fiat-Shamir heuristic [FS86], we obtain the
first non-interactive information-theoretically secure WIUARG in the ROM. Note that CS proofs
of [Mic94] are non-interactive UARGs but they are not witness indistinguishable. Similarly, our
public-coin ZK protocol can be made non-interactive and information-theoretically secure in the
ROM. Interestingly, this seems to be the first example of an information-theoretically secure protocol
in the ROM for which the Fiat-Shamir heuristic would fail.

We remark that the soundness of such information-theoretic succinct proofs is still “computa-
tional” in the sense that a false proof can exist and can be found by a prover that has unbounded
access to the random oracle.

1.1.1 Generalized BB Input-Size Hiding Proofs of Set Membership

We use some ideas from the extendable Merkle tree to construct generalized BB input-size hiding
proofs of set membership. In such proofs there is a prover that commits to a sparse dataset, and
a verifier that is allowed to make set membership queries. The commitment and the proofs must
not reveal any information about the set except the membership of the element. In particular, the
proof should not even leak the size of elements that the dataset supports. Namely, suppose that the
largest element contained in the dataset is k-bit long. Our definition requires that even k is hidden
to the verifier. This is a natural generalization of ZK sets introduced by Micali et el. [MRK03],
where the prover instead has to declare the upper bound k in advance.

Since in generalized proofs of set membership a verifier can query an element i ∈ 2poly(n) for any
polynomial poly chosen by the verifier, with the extendable Merkle tree in hands, one can think that
this problem is easily solved for any element described by a k′-bit string with k′ > k. Indeed, for
such elements the prover can just extend the path on the fly, and provide a proof of non-membership
in the set. Unfortunately, this is not true for elements of size i which are shorter than k. The reason
is that in the standard way of building Merkle’s trees, all the elements are arranged in the leaves,
therefore at level k. Thus, providing any proof about an index of size i < k requires to open a path
of at least k nodes. Consequently, the size of the path depends on the upperbounded size of an
element of the set of the prover. We solve this problem by building the Merkle tree in a new way.
Namely, we arrange the elements so that, an element of size i lies on the i-th level of the tree. In
this way, the length of a proof depends only on the size of the element queried and not on a fixed
upperbound. We give our definition and construction of generalized BB input-size hiding proofs of
set membership in App. F.

2 Definitions

In this section we provide informal definitions of some of the tools that we use in our constructions.
We give more details and other definitions in App. A.
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Probabilistically Checkable Proofs. Informally, a PCP system for a language L consists of a
proof π written in a redundant form for a statement “x ∈ L”, and a PPT verifier, which is able to
decide the truthfulness of the statement by reading only few bits of the proof.

A PCP verifier V can be decomposed into a pair of algorithms: the query algorithm Qpcp and the
decision algorithm Dpcp. Qpcp on input x and random tape r, outputs positions q1 = Qpcp(x, r, 1),
. . ., qp(|x|) = Qpcp(x, r, p(|x|)) for some polynomial p. V accepts if Dpcp(x, r, π[q1], . . . , π[qp(|x|)])
outputs 1. The formal definition of a PCP is provided in App. A.5.

For later, it is useful to see algorithm Dpcp(·) as a predicate defined over a string π which is
tested on few positions.

Probabilistically Checkable Proofs of Proximity. The standard PCP verifier decides whether
to accept the statement “x ∈ L” by probing few bits of the proof π and reading the entire statement
x.

A “PCP of proximity” (PCPP) [BSGH+06] is a relaxation of PCP in which the verifier is able to
make a decision without even reading the entire statement, but only few bits of it. More specifically,
in a PCPP the theorem is divided in two parts (a, y). A public string a, which is read entirely by
the verifier, a private string y, of which the verifier has only oracle access. Consequently, PCPP is
defined for pair languages L ⊆ {0, 1}∗×{0, 1}∗. For every a ∈ {0, 1}∗ we denote La = {y ∈ {0, 1}∗ :
(a, y) ∈ L}.

The soundness requirement of PCPP is relaxed in the sense that V can only verify that the
input is close to an element of the language. The PCP Verifier can be seen as a pair of algorithms
(Qpcpx,Dpcpx), where Qpcpx(a, r, i) outputs a pair of positions (qi, pi): qi denotes a position in the
theorem y, pi denotes a position in the proof π. Dpcpx decides whether to accept (a, y) by looking at
the public theorem a, and at positions y[qi], π[pi]. More details on PCPP are provided in App. A.5.1.

For later, it is useful to see algorithm Dpcpx(·) as a predicate defined over two strings y, π, testing
few positions of each string.

Definition 1 (PCPP verifier). For functions s, δ : N → [0, 1], a verifier V is a probabilistically
checkable proof of proximity (PCPP) system for a pair language L with proximity parameter δ and
soundness error s, if the following two conditions hold for every pair of strings (a, y):

• Completeness: If (a, y) ∈ L then there exists π such that V (a) accepts oracle y ◦ π with
probability 1.

• Soundness: If y is δ(|a|)-far from La, then for every π, the verifier V (a) accepts oracle y ◦ π
with probability strictly less than s(|a|). Formally:

∀π Prob(Qpcpx,Dpcpx)←V (a)[Dpcpx((y ◦ π)|Qpcpx)] = 1 < s(|a|).

The query complexity of the verifier depends only on the public input a.

Secure Multiparty Computation. A secure multi-party computation (MPC) [BOGW88, AL11]
scheme allows n players to jointly, privately and correctly compute an n-ary function based on their
private inputs, even in the presence of t corrupted players. [BOGW88] shows that for every n-ary
function F : ({0, 1}∗)n → ({0, 1}∗)n, there exists a t-secure MPC protocol MPC-F that securely
computes F in the semi-honest model for any t < n/2, and in the malicious model for any t < n/3,
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with perfect completeness and security. That is, given the private input wi of player Pi, after
running the protocol MPC-F , an honest Pi receives in output the i-th component of the result of
the function F applied to the inputs of the players, as long as the adversary corrupts less than t
players. In addition, nothing is learnt by the adversary from the execution of MPC-F other than
the outputs of corrupted players.

In an MPC protocol, the view of a player includes all messages received by that player during
the execution of the protocol, and the private inputs and the randomness used by the player. The
views of two players are consistent if they satisfy the following definition.

Definition 2 (View Consistency). The view of an honest player during an MPC computation
contains input and randomness used in the computation, and all messages received/sent from/to
the communication tapes. We have that two views (viewi, viewj) are consistent with each other if,
(a) both the players Pi and Pj individually computed each outgoing message honestly by using the
random tapes, inputs and incoming messages specified in viewi and viewj respectively, and, (b) all
output messages of Pi to Pj appearing in viewi are consistent with incoming messages of Pj received
from Pi appearing in viewj, and vice versa.

Verifiable Secret Sharing (VSS). A verifiable secret sharing (VSS) [CGMA85] scheme is a
two-stage secret sharing protocol for implementing the following functionality. In the first stage,
denoted by Share(s), a special player referred to as dealer, shares a secret s among n players, in the
presence of at most t corrupted players. In the second stage, denoted by Recon, players exchange
their views of the share stage, and reconstruct the value s. We use notation Recon(P VSS

i , . . . , P VSS
n )

to refer to this procedure. The functionality ensures that when the dealer is honest, before the
second stage begins, the t corrupted players have no information about the secret. Moreover, when
the dealer is dishonest, at the end of the share phase the honest players would have realized it
through an accusation mechanism that disqualifies the dealer.

A VSS scheme can tolerate errors on malicious dealer and players on distributing inconsistent
or incorrect shares, indeed the critical property is that even in case the dealer is dishonest but
has not been disqualified, still the second stage always reconstructs the same string among the
honest players. In this paper, we use a (n, t)-perfectly secure VSS scheme with a deterministic
reconstruction procedure [GIKR01]. The formal definition of VSS and MPC are provided in A.6.

MPC-in-the-head. MPC-in-the-head is a breakthrough technique introduced by Ishai at al.
in [IKOS07] to construct a BB zero-knowledge protocol. Let FZK be the zero-knowledge function-
ality for an NP language L, that takes as public input x and one share from each player Pi, and
outputs 1 iff the secret reconstructed from the shares is a valid witness. Let MPC-ZK be a perfect
t-secure MPC protocol implementing FZK .

Very roughly, the “MPC-in-the-head” idea is the following. The prover runs in his head an
execution of MPC-ZK among n imaginary players, each one participating in the protocol with a
share of the witness. Then it commits to the view of each player separately. The verifier obtains t
randomly chosen views, and checks that such views are consistent (according to Def. 2) and accepts
if the output of every player is 1. Clearly P ∗ decides the randomness and the input of each player
so it can cheat at any point and make players output 1. However, the crucial observation is that
in order to do so, it must be the case that a constant fraction of the views committed are not
consistent. Thus by selecting the t views at random, V will catch inconsistent views whp.
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One can extend this technique further (as in [GLOV12]), to prove a general predicate φ about
arbitrary values. Namely, one can consider the functionality Fφ in which every player i partic-
ipates with input a VSS share P VSS

i . Fφ collects all such shares, and outputs 1 if and only if
φ(Recon(P VSS

1 , . . . , P VSS
n )) = 1. We crucially use this idea in our constructions.

3 Size-Hiding Commit-and-Prove

We now define the primitive size-hiding BB commit-and-prove. This is a two-stage functionality
parameterized by an upper bound d = nlogn on the string size, which captures any polynomially
long string. In the first stage, the prover P commits to a string s. In the second stage, called proof
stage, the verifier V challenges P with a set of positions I in the range [d] and P proves that a
predicate φ is satisfied in those positions. Because the real size of the string is unknown to V , V
will choose one set of positions for each possible size: I1, . . . , I`d , with `d = log d.

The soundness requirement is that V accepts the proof iff φ is satisfied in the set of position
Ilog |s| where s is the unique string committed in the first stage. The privacy requirement is defined
via the witness indistinguishability property: for every predicate φ, for every pair of strings w0,
w1 of possibly different sizes which satisfy φ, at the end of the proof phase, any malicious verifier
cannot distinguish which of the two strings was committed. The formal definition is provided in
App. A.1.

For simplicity of explanation, in the following we assume that V queries a single position qj ,
instead of a set of positions Ij , for each j ∈ {1, . . . , `d}.

3.1 Warm-Up: A Non-Black-Box Approach

Achieving a black-box construction for the above primitive requires several ideas and techniques.
We start by showing a non-black-box construction which explains the rationale behind the final
protocol. Then we show how to make this protocol black-box.

Merkle tree. Merkle trees are used to succinctly commit to an arbitrarily long string and to later
selectively open single bits of the string. Given a string s and a CR hash function h : {0, 1}2n →
{0, 1}n, let `s = log(|s|). The Merkle tree is a binary tree constructed as follows.

• A leaf lγ is set as the γ-th bit of s, where γ ∈ {0, 1}`s .

• An internal node lγ is set as h(lγ0|lγ1), where γ ∈ ∪i=0
i=`s−1{0, 1}i. We denote by lλ the root of

the tree.

We shall refer to lγ as the label of the node.
Commitment. The commitment of s is the root of the tree. Opening. To reveal a bit in position

γ ∈ {0, 1}`s , the prover sends sγ together with an authentication path consisting of the nodes from
the leaf γ to the root, and their siblings. Formally, for a leaf γ ∈ {0, 1}`s , the authentication path
consists of the labels pathγ = ((l0, l1), (lγ10, lγ11), . . . , (lγ`s−10, lγ`s−11)); where γ1, . . . , γ`s is the bit
expansion of index γ. Verification. V accepts sγ if for any i ∈ [`s], lγi = h(lγi0|lγi1).

We start by showing a straightforward commit-and-prove protocol based on Merkle trees which
is succinct, but is not size-hiding and uses commitment scheme and hash function in a non-black-box
manner.
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• Commitment. P constructs the Merkle tree for a string s ∈ {0, 1}∗. P sends the root lλ and
the depth of the tree `s to V .

• V sends predicate φ to be proved, and the index q ∈ {0, 1}`s .

• Proof. On input (φ, q), P sends commitment of the authentication path for sq, namely
cp = com(pathq). Then it proves in zero-knowledge that: 1) (path consistency) the path
committed in cp is consistent with lλ and opens to a value sq. Namely, there exists a valid
opening of the commitment cp to a path pathq for a leaf lq that is consistent with the root lλ

under the hash function h. This proof uses the code com and h. 2) (predicate) φ(lq) = 1.

Size-hiding NBB commit-and-prove. In the above construction P reveals the size `s of the
committed string. `s is used by V to compute the index q on which the predicate should be evaluated.
We now show a construction that is also size-hiding. Recall that the size-hiding construction works
with the upper bound d = nlogn, and that `d = log d.

The first change is that now the verifier will query an index q for each possible level of the tree
representing the string: q1, . . . , q`d . Consequently, the prover is expected to provide a path for each
query qj . However, the prover has built a real tree of depth `s, and does not know how to open
consistent paths which are longer than `s (note that P cannot build a tree of depth `d as it would
be of exponential size). Additionally, for any j 6= `s, the prover cannot prove that the predicate φ
is true.

The observation here is that the prover is not really required to do so. The only thing we require
from the prover is to provide a consistent path for the query q`s (the only query that hits the real
depth) and that φ(sq`s ) = 1. For any other query qj , with j 6= `s, the prover should not give any
proof.

This turns out to be very easy to achieve using the code of the commitment scheme and of the
hash function in the proof. The idea is to use the depth of the real tree as a trapdoor, and allow
the prover to cheat when answering to any query outside the real depth.

Thus, we require P to commit to the depth `s of the real tree (the trapdoor) already in the
commitment phase. This binds P to a tree of depth `s and enables P to prove only predicates about
leaves lying at level `s. In the proof phase, P answers to each query that does not hit the real tree
by computing a fake path and then computing the ZK proof using as witness the trapdoor, that is,
the depth of the tree. More in details, the size-hiding NBB commit-and-prove is the following.

• Commitment. P constructs the Merkle tree for a string s ∈ {0, 1}∗. P sends cr = lλ and
cd = com(`s) to V .

• Challenge. V sends predicate φ to be proved, and indexes q1, . . . , q`d with qj ∈ {0, 1}j and
j = 1, . . . , `d.

• Proof. (Commitment of paths) For j 6= `s, P set pathqj to be all zeros and cpqj =
com(pathqj). For q`s , P sets pathq`s to be the real path from a leaf labelled as lq`s to the root
committed in cr. (Proof of consistency) For any j, P proves in ZK that either 1) cpqj is
the commitment of a path from leaf lqj consistent to the root committed in cr, under hash
function h and j = `s and φ(lqj ) = 1, or 2) j 6= `s.

The NBB use of the primitives allows to cheat straightforwardly: for the queries that are not
hitting the real tree, the prover can just make up fake paths and use the trapdoor condition to
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compute the ZK proof. In fact, the prover is doing all the checks in his head, using the code of the
primitives. The verifier only sees commitments and ZK proofs therefore cannot distinguish which
is the real path.

The difficulty comes when the prover cannot prove statements about committed values and
hashed values using the code of such primitives. In particular, how can P prove the consistency of
the path with the root without using the code of the hash function?

3.2 Our Black-Box Protocol

The main difficulty when moving to a BB construction is how to prove consistency of a path without
revealing any information about the real tree, and without using the code of the hash function and
the commitment scheme.

In order to use the hash function in a BB manner, the prover should unfold each path and let
the verifier check its consistency by directly applying the hash function. This is clearly problematic
for two reasons: (1) for any query lying beyond the real tree, the prover has not constructed any
path, hence for such queries the consistency check always fails, thus revealing the size of the real
tree; (2) the prover should reveal a path without revealing the values of the nodes. This might
require the prover to work with committed values, therefore requiring the ZK proof to use the code
of the commitment.

3.2.1 The High-Level Idea

Before going into the details of the construction, we describe the main idea that allows us to finally
implement a size-hiding commit-and-prove protocol in a fully black-box manner. Our idea is to
construct the tree differently.

A standard Merkle tree is a chain of hash values. Any node is directly connected with its children
and directly connected with its parent via hash.

Our idea is to break this chain by splitting the node in two parts, one part is connected with
the children only, we call this label part, one part is connected with the parent only, let us call
this meta-label part. The meta-label is just a redundant representation of the label, namely, given
the meta-label one can uniquely reconstruct the label. Obviously a node is consistent if the two
parts are connected, namely, if it holds that the meta-label and the label express exactly the same
information. The consistency of a node can be proved by revealing both the label and the meta-
label, and let the verifier compute and verify the reconstruction. However, looking ahead we do not
want to reveal any information about the labels. Therefore, we let the prover prove this consistency
via black-box ZK proof3. In order to allow BB ZK proof, we have to choose the format of the
meta-label appropriately.

Thus every triple (label, left child, right child) can be seen as a LEGO (see Fig. 1). Inside a
LEGO there is an hard connection between the label and the children, as the label is the hash of
the (meta-label of the) children. However, between two LEGOs there is only a virtual connection,
namely two LEGOs are connected iff the meta-label is consistent with the label.

Now, to make the path extendable it is sufficient to break the virtual connection between label
and meta-label when necessary. In such cases, the prover/simulator will possess a witness that
allows him to cheat in the proof of consistency.

3Actually a witness indistinguishable proof.
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Figure 1: High-level idea behind an extendable Merkle Tree.

The final ingredient that allows to provide a BB proof of consistency, is to represent any value
that will be involved in the proof using the same representation used for the meta-label.

3.2.2 The implementation

We now provide an implementation of the above high-level idea.
In a nutshell, the representation that we use for the meta-label is VSS. The BB ZK proof to

prove consistency of a node (i.e., to prove that a label is uniquely reconstructed from its meta-label),
is implemented using MPC-in-the-head on top of VSS [GLOV12].

Meta-label representation. We represent any value s involved in the proof in a redundant
manner, namely, as a vector of views of VSS players. More specifically, let s be any string that P
will use in the proof. Instead of working directly with s, P will execute (in his head) a VSS protocol
among n + 1 players in which the dealer shares the string s. The result of this process is a vector
of n views of VSS players, with the property that (n− t) views allow the reconstruction of value s,
but any subset of only t views does not reveal anything about s. We call this vector of views as the
VSS representation of s.

Definition 3 (VSS representation). The VSS representation of a string s ∈ {0, 1}∗, is the vector
VSS = [P VSS

1 , . . ., P VSS
n ], where P VSS

i is the view of player i, participating in the protocol Share(s).
In the paper we use VSSγ to denote the VSS representation of the label lγ, where γ is the index the
node, or simply VSSstring to denote the VSS representation of the string string.

Following this approach, the prover computes the Merkle tree by “extending” each label with its
VSS representation.

In our tree, a node in position γ is split in the pair [lγ ,VSSγ ], where lγ is the label and VSSγ is
the vector of n views of VSS players which are secret sharing lγ . We shall refer to lγ as the label
part of a node, and to VSSγ as the VSS part. Each node [lγ ,VSSγ ] satisfies the condition that that
Recon(VSSγ) = lγ . We call this constraint the “ innode property”.

Similarly, the value representing the depth of the real tree is replaced with its VSS representation,
that we denote by VSSdepth.

The VSS representation allows us to prove the consistency of a path and the validity of the
predicate using hash and commitment in a BB manner, for the following reasons. First, the t-
privacy of VSS allows P to partially reveal a node and let the verifier check the hash consistency
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with the parent. Indeed, P can reveal up to t views of the VSS part of each node, while still
preserving the hiding of the label, and the verifier can compute the hash of such values (we explain
this more formally later). Second, the VSS representation allows us to prove any predicate about
the value reconstructed by the VSS views, in a BB manner using MPC-in-the-head: due to the
t-correctness of VSS and the MPC protocol used, the verifier is convinced about the validity of the
proof by looking at only t views of the VSS and the MPC.

More specifically, assume P wants to prove a predicate φ about a value s, and let VSS =
[PVSS

1 , . . . , PVSS
n ] be the VSS representation of s. P can run an MPC-in-the-head for a functionality

Fφ played among n players. A player Pi gives in input a view PVSS
i , Fφ reconstructs the value s

from such views, and outputs 1 to all players iff φ(s) = 1. The output of this process is again a
vector of n views. Later, V will probe t views of the MPC and VSS, and is convinced if the views
are consistent and the output in every revealed view is 1.

Remark 1. [On the need of VSS.] One might ask why we use the VSS representation instead of
a simpler secret sharing algorithm, e.g., just xor of n string, or Shamir’s secret sharing. Indeed, in
both cases, revealing t views will not reveal any information about the secret. The reason is that
such secret sharing schemes are not t robust: in the case of the xor, it is sufficient for P ∗ to cheat
in only one view to change the secret shared, Shamir’s secret sharing instead is not robust against
a malicious dealer.

Node connection. In a standard Merkle tree, the label of a node is computed as the hash of the
labels of the children. We connect the nodes differently. In our tree, the label of a parent node is
computed as the hash of only the VSS part of the children, discarding the label part. The innode
property guarantees that the label of the parent is still virtually connected to the label part of the
children (see Fig. 2). This virtual connection introduces a soft link between labels, that can be
broken when necessary.

Definition 4 (Node Connection). Let VSSγ0 = [P VSSγ0

i ]i∈[n] and VSSγ1 = [P VSSγ1

i ]i∈[n] then the label
for the parent node γ is the vector: lγ = [h(P VSSγ0

1 ) | · · · | h(P VSSγ0

n )| h(P VSSγ1

1 ) | · · · |h(P VSSγ1

n )]. Note
that each VSS view is hashed separately.

As there is no direct connection between labels lγ , lγ0, lγ1, the consistency of a link in a tree is
conditioned on the fact that a node is consistent, that is, [lγb , VSSγb] satisfies the innode property,
for b = 0, 1.

Two key observations follow. First, the innode condition is crucial for the tree to be binding. If
the innode condition is not enforced, then P can replace the label of a node with a string which is
the root of some freshly generated path. Second, the innode condition cannot be checked directly by
V , as it would require V to see more than t views and reconstruct the value of each node. Instead,
it is proved by P via MPC-in-the-head. Looking ahead, in this MPC, P will prove that either the
innode condition holds, or the node is on a path of a query which is outside the real depth. For this
proof P will need the VSS part of a node and the VSS representation of the depth of the real tree.

As we shall see later, these two facts together enable the prover to compute fake paths for the
queries outside the real tree.

Summing up, for each level of our Merkle tree we have a two-tier connection. A hard connection
between a parent label and the children: each label lγ is the concatenation of the hash values
of VSSγ0,VSSγ1. This connection is checked directly by V applying hash function upon t views
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(b) A node in the Extendable Merkle Tree.

Figure 2: Standard Merkle Tree Vs. Extendable Merkle Tree

revealed (hash consistency). A soft connection, within a node [lγ ,VSSγ ] (node consistency).
This is checked indirectly by the prover using MPC-in-the-head on top of VSSγ and VSSdepth. P
runs an MPC protocol for the functionality Finnode that takes as input from each player i, the i-th
view of VSSγ , and VSSdepth and the i-th and (i+ n)-th hash values from lγ , and outputs 1 to every
player iff, either Recon(VSSγ) = lγ or γ > Recon(VSSdepth). We denote this protocol by MPC-in.

Fig. 3 illustrates how our new Merkle tree is built, and the commitment stage of our protocol.

Black-box proof. We now have all the ingredients to describe how we obtain a proof phase which
is size-hiding and completely black-box.

Recall that in the proof phase, V sends queries q1, . . . , q`d , one for each possible depth of the
real tree. The prover is expected to prepare paths for each query, even for those that are outside
the real tree, and prove that paths are consistent and that predicate φ is true for the query hitting
the committed depth. For queries outside the real tree P computes fake paths for which it is
not required to honestly prove consistency. In the non-black-box protocol, fake paths were just a
sequence of zeros. This was enough because paths were never opened.

In our case, we will need the prover to partially open each node of the path, so that the verifier
can directly check the hash consistency of each node. Therefore here the prover has to compute fake
paths that still look consistent with the real tree. We are able to prepare such paths by exploiting
the soft connection in our extendable Merkle tree.

Our black-box proof phase proceeds as follows. P prepares paths. For each query qj , P
retrieves the nodes along the path between qj and the root. If qj is below the real tree, P will
just add fake nodes from a virtual leaf in position qj up to the first node hitting the real tree, in a
way that hash consistency is preserved. P commits to the paths so constructed. Proof. For the
path for query qj , P prepares the following proofs: path consistency, for each node of the path,
P computes MPC-in using the trapdoor condition iff j > `s; predicate: for the leaf qj , P runs an
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Commitment Stage: BBCom(·)
Input to P : String s ∈ {0, 1}∗. Let `s = log |s|

V sends h to P .

P builds the extendable Merkle tree for s.

• Leaf: the leaf in position γ ∈ {0, 1}`s is the pair: [lγ , VSSγ ]. Where lγ = sγ and VSSγ =
[P VSS

γ

1 | . . . |P VSS
γ

n ] = Share(lγ).

• Internal Node: for γ ∈ ∪i=0
i=`s−1{0, 1}i, lγ = [hγ01 | . . . |hγ1n ] = [h(P VSS

γ0

1 )| . . . |h(P VSS
γ1

n )] and
VSSγ= Share(lγ).

• Root: the label of the root is lλ = [h01| . . . |h1n].

P runs Share(`s) and obtains [P depth
1 , . . . , P depth

n ].

P commits to the root and to the depth of the real tree sending: C̄λ =[SHCom(h01) | . . . |SHCom(h1n)] and
Ci = SHCom(P depth

i ), for i = 1, . . . , n.

P sends C̄λ, C1, . . . , Cn to V .

Figure 3: Commitment via Extendable Merkle Tree

MPC-in-the-head on top of VSSqj and VSSdepth, to prove that: either φ(Recon(VSSqj )) = 1 and
j = Recon(VSSdepth), or the trapdoor condition holds: j 6= Recon(VSSdepth). We denote this MPC
as MPC-φ.

Now, observe that this approach can be generalized further. Namely, we can test more than one
trapdoor condition on different strings, just by representing such strings as VSS. Looking ahead, in
our ZK protocol, we allow the prover to cheat if he knows the witness. We ask the prover to commit
to VSSw, where w is the witness, and then in the MPC-in-the-head MPC-in and MPC-φ, we add a
second trapdoor condition which is satisfied iff RL(Recon(VSSw), x) = 1.

Verification. In order to verify the proof, V sends t positions p1, . . . , pt to P . For each node,
P reveals the views in such positions. V is then able to verify hash consistency, node consistency
and the predicate condition. The details of the proof phase are illustrated in Fig. 4.

Our size-hiding black-box commit-and-prove protocol is shown in Fig. 3 (Commitment) and
Fig. 4 (Proof). For simplicity of exposition we have shown a construction that works with a single
query qj for each level of the virtual tree. The same protocol can be easily adapted to work with a
set Ij = {qj1, . . . , qjk} of positions.

The commitment scheme SHCom used in the protocol must be statistically-hiding, as it is also
secure under selective opening attacks (under the indistinguishability definition [Hof11]).

Observations. In the commitment stage of our protocol, P commits to the string s by com-
mitting to the root of the extendable Merkle tree, and to the depth `s, by committing to the VSS
representation of `s. The depth is used as trapdoor condition. In the proof phase P is actually
proving a predicate about both s and `s.

This approach can be generalized further. P can commit to several strings, committing either
to their VSS representation (in case the size can be revealed) or to the root of an extendable Merkle
tree. Then it can prove arbitrary relations among such strings just by setting the condition to be
checked in protocols MPC-in and MPC-φ accordingly. We use this ability of proving statements
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Proof Stage: BBProve(φ, (q1, . . . , qd))

P computes a path for each query qj.

Case j > `s: queries lying below the real depth. Compute a fake path from position j to
position `s. Denote by qij the first i bits of the string qj . Leaf. Compute VSSq

(j−1)b
j =

Share(0), for b = 0, 1. Nodes. For i = j − 1, . . . , `s. If both children qi0j , q
i1
j exist,

compute label lq
i
j= [h(P VSS

qi0j

1 ),· · · , h(P VSS
qi1j

n )]. Else, first compute the VSS of the missing
child VSSq

ib
= Share(0) and proceed as above. For the remaining nodes, use the ones of the

real tree.

For each fake node [lq
i
j ,VSSq

i
j ] run MPC-in using trapdoor condition i ≥ Recon(VSSdepth).

Obtain views MPC-inq
i
j = [P inq

i
l

1 , . . ., P inq
i
l

n ]. For the leaf qj , run MPC-φ using as witness the
condition Recon(VSSdepth) 6= j. Obtain views MPC-φqj= [P φqi

1 , . . ., P φqi

n ].

Case j = `s: queries hitting the real depth. Retrieve the real path from the root to leaf q`s .
For each node, compute MPC-in proving that innode property is satisfied. For the leaf q`s ,
compute MPC-φ to prove that φ(Recon(VSSq`s ) = 1) and Recon(VSSdepth) = j.

Case j < `s: queries lying on the real depth. Retrieve the path from the real tree, from the
root to leaf ql. Compute proof of consistency and proof of predicate using the trapdoor
condition Recon(VSSdepth) 6= j.

Commitment of the paths. For γ = q1, . . . , q`d , P has obtained paths: pathγ =

[l0,VSS0,MPC-in0], [l1,VSS1,MPC-in1], . . . , [lγ ,VSSγ ,MPC-inγ ] and MPC-φγ . P commits to
each node by committing to each view separately and hash value separately via SHCom.

Verification.

V sends to P randomly selected positions p1, . . . , pt.

P opens views corresponding to players in position p1, . . . , pt for all the commitments above.

V performs the following checks:
Hash consistency. For each node i, check that li[pj ] = h(P VSSi0

pj ) and li[pj + n] = h(P VSSi1

pj )
(for j = 1, . . . , t).
Nodes consistency: innode property. For each node i, check that view P ini

pj of MPC-in
contains li[pj ], li[pj + n], P VSSi

pj , P depth
pj as input, that it is consistent with the other views

and the output is 1.
Predicate. Check the views P φ

qj

pj , for j = 1, . . . , `d and pj = p1, . . . , pt, as in the previous
step. If any of these checks fails, abort.

Figure 4: Proof Stage
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over multiple strings committed using either VSS or extendable merkle tree in our public-coin ZK
protocol.

4 Applications

In this section we show how our size-hiding commit-and-prove protocol can be used to obtain a
WIUARG, and a public-coin BB ZK argument.

4.1 Black-Box WIUARG

A WIUARG for a language LU can be seen as a commit-and-prove protocol: the prover P commits
to a PCP proof π, the PCP verifier V challenges P with the positions computed via Qpcp, and P
proves the predicate: “Dpcp outputs 1 on the selected positions”.

More formally, the predicate proved by P is denoted by φ-Dpcp(y, ·) and is defined over instances
y ∈ LU and a set of indexes I, and it is true iff Dpcp(y, {πi}i∈I) = 1. The details of the construction
are shown in Prot. 5. The commitment scheme used in Prot. 5 is an extractable SH commitment
scheme (instead of just SH). This is required to obtain the weak-proof-of-knowledge property.

Protocol 1. Black-Box Witness Indistinguishable Universal Argument.
Common Input: y = (M,x, t) ∈ LU . Let d = poly(t).
Auxiliary Input to P : w such that (y, w) ∈ RU .

Commitment of the PCP.

1. P runs M on input (w, x). Let t′ = TM (x,w). Let w′ = (w, t′) such that (y, w′) ∈ R′U .
P invokes Ppcp on input (y, w′) and obtains the proof π.

2. P runs BBCom(π) (Fig. 3) to commit to π.

Queries. V sends random tapes r1, . . . , r`d to P . P and V run Ij ← {Qpcp(y, rj , i)}i∈[k] for
j ∈ [`d]. They obtain queries {I1, . . . , I`d}.

Proof. P runs BBProve(φ-Dpcp, {I1, . . . , I`d}) (Fig. 4). V accepts iff the verifier of BBProve
accepts.

4.2 Black-box Constant-Round Public-Coin Zero Knowledge

We provide a black-box implementation of Barak’s zero-knowledge protocol by extending our commit-
and-prove protocol to several strings.

In the first stage of Barak’s protocol, P starts by sending a commitment z, that is supposed
to be a commitment of a machine M predicting the next message function of the verifier. The
size of M cannot be upper bounded by any fixed polynomial, as one has to include any possible
polynomial time machine. Therefore commitment z is computed using our size-hiding commitment
of Fig. 3. The honest prover simply commit to the string 0n. Next, V sends a random string r.
This concludes the trapdoor generation phase, and defines the trapdoor theorem (M, r): “M is a
TM that predicts r in at most t steps”, which will be proved using PCP of Proximity. Here M is
the private theorem, and (r, t) is the public theorem.
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In the second phase, P has to prove that either the trapdoor theorem is true or x ∈ L. It sends
two commitments: a commitment to a string which is supposed to be a PCPP proof π for the
trapdoor theorem, and a commitment to the witness for theorem “x ∈ L”. The PCPP proof π is
committed again via our size-hiding commitment stage (Fig. 3). For the witness w, P commits to
its VSS representation. We denote this commitment by VSSCom. This concludes the commitment
stage of the commit-and-prove protocol.

The verifier then generates the queries for the oracles M,π by running algorithm Qpcpx on input
the public theorem (r, t). Qpcpx outputs indexes qi for private theorem M and indexes pi for the
proof π.

We now use the full power of our novel black-box size-hiding commit-and-prove protocol. We
define the predicate φ-ZK to be checked over the strings M,π,w, as follows: φ-ZK is true iff the
decision algorithm Dpcpx, executed on the selected positions of M and π outputs 1, or if w is a valid
witness for x ∈ L. Needless to say, P will not commit to a valid PCPP proof, and will cheat in
every proof using the trapdoor theorem x ∈ L.

Additionally, in protocol MPC-in, we introduce another trapdoor condition that allows the prover
to cheat in proving the consistency of the tree. The trapdoor condition is the knowledge of the
witness for x ∈ L.

The formal specification of the protocol follows. We use PCP of Proximity with proximity
parameter δ, for the following pair language: LP = {(a = (r, t), (Y )), ∃M ∈ {0, 1}∗ s.t. Y ←
ECC(M), M(z) = r within t steps} (where ECC(·) is a binary error correcting code tolerating a
constant fraction δ > 0 of errors).

Protocol 2. Black-Box Constant-Round Public-coin ZK
Common Input: x.
Auxiliary Input to P : w such that (x,w) ∈ RL.

Trapdoor-generation phase.

• P runs BBCom(0n) with V . Let z be the commitment so obtained.
• V sends a random value r ∈ {0, 1}n to P . The public theorem a is defined as: a = (r, t).

Proof phase.

• Commitment of the PCPP. P runs BBCom(0n) and VSSCom(w) and sends the commit-
ments to V .
• PCPP Queries. V sends random tapes r1, . . . , r`d to P . P and V compute (qji , p

j
i ) =

Qpcpx(a, rj , i) with i ∈ [k], where k is the security parameter for the PCPP. Let IMj =

{qj1, . . . , q
j
k} and I

π
j = {pj1, . . . , p

j
k}.

• Proof. P runs BBProve(φ-ZK,IM , Iπ). V accepts iff the verifier of BBProve accepts.
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A Definitions

We assume familiarity with interactive arguments and argument of knowledge.
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Notation. We denote the security parameter by n. A negligible function ν(n) is a non-negative
function such that for any constant c < 0 and for all sufficiently large n, ν(n) < nc. We call a
positive function overwhelming if it can be described as 1− ν(n) for some negligible function ν. We
denote by [n] the sequence {1, . . . , n} and by poly(·) a generic polynomial.

A.1 Input-Size Hiding Black-Box Proofs

Here we provide a formal definition of our size-hiding black-box proof systems.

Definition 5 (Input-Size hiding black-box commit-and-prove system4). A pair of PPT algorithm
〈P, V 〉 is a size-hiding black-box commitment and prove system, with parameters d = nlog(n), if
it consists of two stages, commitment and proof stage. In the commitment stage, P interacts with V
to commit to a string s of size |s| ≤ d. In the proof phase, V probes a set of indexes I ⊂

(
{0, 1}i

)κ
with i = 1, . . . , `d (with `d = log d). P then proves that for any subset of indexes I ∈ I∩{0, 1}log(|s|),
φ({si}i∈I) is true, for a predicate φ. 〈P, V 〉 must satisfy the following conditions.

Completeness. If P and V are honest, than V accepts the proof with probability 1.

Black-box. Both P and V make only oracle calls to cryptographic primitives.

Efficient Verification. The time spent by V to verify the proof is poly(|d|, κ).

Witness Indistinguishability. For any malicious verifier V ∗, for any pair of strings w0, w1 (of
possibly different size), for any pair of (possibly identical) sets I0, I1 ∈ I such that φ({w0

i }i∈I0)
= φ({w1

i }i∈I1), where |I0| = |I1| = κ, for any auxiliary input z, the probability ensembles
{〈P (w0), V ∗(z)〉} and {〈P (w1), V ∗(z)〉} are indistinguishable, where {〈P (s), V ∗(z)} is the view
of V ∗ at the end of the protocol.

Soundness. For any PPT malicious prover P ∗, for a commitment transcript τ , except with negli-
gible probability, two conditions must hold: 1) (binding) there exists at most one string s that
P ∗ can use in the proof; 2) (soundness) for any set I ∈ I chosen by V , P ∗ convinces the
verifier iff φ({si}i∈I) is true for I ∈ I ∩ {0, 1}log(|s|).

In the following definition we use the word index in place of element. Namely, we say that the
verifier sends index i, to mean that the verifier wants to check if the element i is not empty in
the database. This nomenclature is helpful for us when describing the implementation of BB input
size-hiding proofs of membership using extendable Merkle Trees.

Definition 6 (Generalized Input-Size hiding black-box proof of set membership system). A database
D is a map: {0, 1}∗ → {0, 1}∗ ∪ ⊥ such that D[i] 6= ⊥ for finitely many values. The domain of D
is called indexes and the codomain is called values. We say that an index i is a YES-instance if
D[i] 6= ⊥. Otherwise we say that i is a NO-instance.

A pair of PPT algorithm 〈P, V 〉 is a generalized size-hiding black-box proof of set member-
ship system if it consists of two stages, commitment and proof phase. In the commitment stage, P
interacts with V to commit to a set D which domain is {0, 1}maxIndSize. Let cmDb be the transcript of

4Note that our commit and prove primitive differs from the commit and prove functionality of [CLOS02] in the
fact that our security definition is not based on the ideal/real world paradigm, and does not require a simulator.
Furthermore in our definition black-box and size hiding property are explicit requirements that are not needed
in [CLOS02].
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this commitment. In the proof phase, the verifier probes indexes i ∈ {0, 1}|poly(n)| for a polynomial
poly chosen by V , and for each i, P provides a possibly interactive proof (π, v) for the predicate
D[i] = v.

It satisfies the following conditions.

Completeness. If P and V are honest, than V accepts the proof with probability 1.

Black-box. Both P and V make only oracle calls to cryptographic primitives.

Efficient Verification. For a proof associated to index i, the time spent by V to verify the proof
is poly(i, n).

Soundness. For every index i, and for every PPT malicious prover P ∗, let cmDb∗ be the commit-
ment computed by P ∗ in the commitment stage. Probability that P ∗ computes accepting proofs
(π1
i , v

1
i ) and (π2

i , v
2
i ) for index i and v1

i 6= v2
i , is negligible.

Zero-Knowledge. There exists a PPT simulator Sim, such that for any V ∗, any auxiliary informa-
tion z, the following two probability ensembles are computational indistinguishable: {〈P (D), V ∗(z)〉}
and {〈SimD(·)(1|d|), V ∗(z)〉}.
Where {〈SimD(·)(1|d|), V ∗(z)〉} corresponds to the following experiment. In the commitment
phase Sim generate a “commitment” without receiving any information about the database. In
the proof phase, Sim has oracle access to D and it is allowed to query it only for indexes
requested by V ∗.

A.2 Commitments Secure under Selective Opening Attacks

Commitment scheme. A commitment scheme is a two-phase protocol between a sender C and a
receiver R. In the former phase, called the commitment phase, C commits to a secret bit b to R. Let
c be the transcript of the interaction. In the later phase, called the decommitment phase, C reveals
a bit b′ and proves that it is the same as b that was hidden in the transcript c of the commitment
phase. Typically, there are two security properties w.r.t. a commitment scheme. The binding
property requires that after the commitment phase, a malicious sender cannot decommitment c to
two different values in the decommitment phase. The hiding property guarantees that a malicious
receiver learns nothing about b in the commitment phase. A commitment scheme can be either
Statistically Binding (but Computationally Hiding) or Statistically Hiding (but Computationally
Binding).

Definition 7 (Commitment Scheme). A (bit) commitment scheme Com = (C,R) is a two-phase
protocol consists of a pair of ppt Turing machines C and R. In the commit phase, C runs on a
private input b ∈ {0, 1} and a transcript c = 〈C(b),R〉 is obtained after interacting with R. In the
decommitment phase, C reveals a bit b′ and R accepts the value committed to be b′ if and only if C
can convince R that b′ = b. In a commitment scheme, the following security properties hold for any
ppt adversary A.

Correctness: if sender and receiver both follow the protocol, then for all b ∈ {0, 1}, when the
sender commits and opens to b, R outputs b.

Hiding: for every ppt adversary A and auxiliary input z, the probability ensembles {〈C(0), A(z)〉}
and {〈C(1), A(z)〉} are indistinguishable, where {〈C(b), A(z)〉} denote the random variable de-
scribing the output of A running on auxiliary input z, with a honest sender committing to a
bit b by running Com.
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Binding: for every ppt adversary A, and for all but a negligible probability over the coins of
R, after the commitment phase, the probability that A can successfully open the commitment
both as 0 and 1 is negligible.

A commitment scheme is statistically biding (resp. statistically hiding) if its binding (resp.
hiding) property is secure against any unbounded adversary A. In our protocol we use statistically
hiding commitments. It is known how to construct a two-round statistically hiding commitment
scheme from any family of collision-resistant hash functions [HM96] or an O(n/ log n)-round statis-
tically hiding commitment from any one-way function [HR07, HNO+09].

Selective Opening Security. In our constructions we have a prover that commits to a bunch of
views, and then reveals only some of them, and the security of our constructions relies on the fact
that the hiding of the remaining unopened commitments holds. This security requirement is defined
as hiding in presence of selective openings attack. Similarly to Witness Indistinguishability and
Zero Knowledge, there exist two definitions of Selective Opening security. The Indistinguishability
based definition, due to [Hof11], guarantees indistinguishability of the unrevealed messages. The
simulation based definition, introduced in [DNRS03], guarantees the existence of a simulator which
is able to commit to random messages and later equivocate some of the messages in the opening
phase. In the following we provide the formal definitions.

Definition 8 (Indistinguishability under Selective Openings [Hof11]). Let N = N(n) > 0 be poly-
nomially bounded, and let I = (IN )N be a family of sets such that each IN is a set of subsets
of [N ]. A commitment scheme Com = (C,R) is indistinguishable under selective openings (short
IND-SO-COM secure) iff for every PPT n-message distribution M and every PPT adversary A,
and any auxiliary input z to A andM, we have that Advind-so

Com,M,A is negligible. Here:

Advind-so
Com,M,A =

∣∣Prob[Expind-so-real
Com,M,A (N) = 1]− Prob[Expind-so-ideal

Com,M,A (N) = 1]
∣∣ ≤ ν(N)

The probability is taken over the choice of the random coins of the sampling algorithm M, and
the adversary A. Experiments Expind-so-real

Com,M,A and Expind-so-real
Com,M,A are defined below.

Experiment Expind-so-real
Com,M,A (z,N): Experiment Expind-so-ideal

Com,M,A : (z,N)
M←M(z) M←M(z)
I ← 〈Ci(com,Mi)i∈[n], A(recv, z)〉 I ← 〈Ci(com,Mi)i∈[n], A(recv, z)〉
〈Ci(open)i∈I , A(open)〉 〈Ci(open)i∈I , A(open)〉

M’ ←M|MI(z)
return A(guess,M) return A(guess,M′)

Where by 〈Ci(com,Mi)i∈[n], A(recv)〉 we denote the interaction between the adversary A and a
sender for the commitment phase, and by 〈Ci(open)i∈I , A(open)〉 we denote such interaction in the
opening phase. M|MI denotes the message distributionM conditioned on the revealed values MI .

Definition 9 (Simulation under Selective Opening Attacks [BHY09, Hof11]). A commitment scheme
Com = (C,R) is secure against selective opening attacks if for all N , all sets I ∈ I, all N -bit message
distributionsM, all PPT relations R, there exists an expected PPT machine Sim such that for any
PPT malicious receiver R∗ there exists a negl. function ε such that:
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Advsim-soa
Com,M,A =

∣∣Prob[Expsim-soa-real
Com,M,A (N) = 1]− Prob[Expsim-soa-ideal

Com,M,A (N) = 1]
∣∣ ≤ ν(N)

The probability is taken over the choice of the random coins of the parties.

Experiment Expreal
Com,C,R∗(n): Experiment Expideal

Com,Sim,R∗(n):
pk

$← R∗(1n); pk
$← R∗(1n);

b
$←M; b

$←M;
I

$← 〈Ci(pk, com,b[i])i∈[N ],R
∗(pk, recv)〉; I

$← SimR∗(pk);
(·, τ)

$← 〈Ci(open)i∈I ,R
∗(open)〉; τ

$← SimR∗(b[i])i∈I ;
output R(I,b, τ). output R(I,b, τ).

A.3 Zero Knowledge

Definition 10 (Zero Knowledge). An interactive protocol (P, V ) for a language L is zero knowledge
if for every PPT adversary V ∗, there exists a PPT simulator S such that the probability ensembles
{〈P, V ∗(z)〉(x)}x∈L,z∈{0,1}∗ and
{S(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable, where 〈P, V ∗(z)〉(x) denotes the output
of V ∗ when interacting with P on common input x and auxiliary input z.

A.4 Universal Arguments

We recall the definition provided in [BG08]. Let LU = {(M,x, t): ∃w s.t. ((M,x, t), w) ∈ RU},
where ((M,x, t), w) ∈ RU if M accepts (x,w) within t steps. Let TM (x,w) denote the number of
steps made by M on input (x,w). Recall that |(M,x, t)| = O(|M |+ |x|+ log t); that is, t is given
in binary.

Definition 11 (Universal argument [BG08]). A universal argument system is an interactive protocol
(P, V ) that satisfies the following properties:

• Efficient Verification. There exists a polynomial p such that for any y = (M,x, t), the total
time spent by the (probabilistic) verifier strategy V , on the common input y, is at most p(|y|).
In particular, all messages exchanged in the protocol have a length smaller than p(|y|).

• Completeness via a relatively efficient prover. For every ((M,x, t), w) ∈ RU , Pr[〈P (w), V 〉(M,x, t) =
1] = 1. Furthermore, there exists a polynomial p such that for every ((M,x, t), w) ∈ RU the to-
tal time spent by P (w), on input (M,x, t) is upper bounded by p(|M |+TM (x,w)) ≤ p(|M |+t).

• Computational Soundness. For every polynomial-size circuit family {P ∗n}n∈N and (M,x, t) ∈
{0, 1}n\LU :

Pr [〈P ∗, V 〉(M,x, t)] = 1 ≤ ν(n)

where ν : N→ [0, 1] is a negligible function.

• A weak proof-of-knowledge property. For every positive polynomial p there exists a posi-
tive polynomial p′ and a probabilistic polynomial-time oracle machine E such that the follow-
ing holds: for every polynomial-size circuit family {P ∗n}n∈N and every sufficiently long y =
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(M,x, t) ∈ {0, 1}∗, if Pr[〈P ∗n , V 〉(y) = 1] > 1/p(|y|), then:

Prr[∃w = w1, · · · , wt ∈ RU (y),∀i ∈ [t]
EPnr (y, i) = wi] >

1
p′(|y|)

where RU (y) = {w : (y, w) ∈ RU} and E
P ∗n
r (., .) denotes the function defined by fixing the

random tape of E to equal r and providing the resulting Er with oracle access to P ∗n . The
oracle machine E is called a (knowledge) extractor.

Definition 12 (Witness Indistinguishable UARG). A universal argument [BG08] (P, V ) is called
witness indistinguishable (WI) if, for every polynomial p, every polynomial size circuit family {V ∗n }n ∈
N, and every three sequences 〈yn = (Mn, xn, tn) : n ∈ N〉, 〈w1

n : n ∈ N〉 and 〈w2
n : n ∈ N〉 such that

|yn| = n and tn ≤ p(|xn|) and (yn, w
1
n), (yn, w

1
n) ∈ RU , the ensembles {〈P (w1

n), V ∗〉(yn)}n∈N and
{〈P (w2

n), V ∗〉(yn)}n∈N are computationally indistinguishable.

A.5 Probabilistically Checkable Proof (PCP)

Here we provide a more formal definition of PCP.

Definition 13 (PCP - basic definition.). A probabilistically checkable proof (PCP) system with error
bound ε : N → [0, 1] for a set S is a probabilistic polynomial-time oracle machine (called verifier),
denoted by V satisfying the following:

Completeness. For every x ∈ S there exists an oracle πx such that V , on input x and access to
oracle πx, always accepts x.

Soundness. For every x /∈ S and every oracle π, machine V , on input x and access to oracle π,
rejects x with probability at least 1− ε(|x|).

Let r and q be integer functions. The complexity class PCPε[r(·), q(·)] consists of sets having a
PCP system with error bound ε in which the verifier, on any input of length n, makes at most r(n)
coin tosses and at most q(n) oracle queries.

Definition 14 (PCP – auxiliary properties).). Let V be a PCP verifier with error ε : N→ [0, 1] for
a set S ∈ NEXP , and let R be a corresponding witness relation. That is, if S ∈ Ntime(t(·)), then
we refer to a polynomial-time decidable relation R satisfying x ∈ S if and only if there exists w of
length at most t(|x|) such that (x,w) ∈ R. We consider the following auxiliary properties:

Relatively efficient oracle construction. This property holds if there exists a polynomial-time al-
gorithm P such that, given any (x,w) ∈ R, algorithm P outputs an oracle 1

2x
that makes V

always accept (i.e., as in the completeness condition).

Nonadaptive verifier. This property holds if the verifier’s queries are determined based only on the
input and its internal coin tosses, independently of the answers given to previous queries. That
is, V can be decomposed into a pair of algorithms Qpcp and Dpcp that on input x and random
tape r, the verifier makes the query sequence Qpcp(x, r, 1),Qpcp(x, r, 2), . . . ,Qpcp(x, r, p(|x|)),
obtains the answers b1, . . . , bp(|x|), and decides according to Dpcp(x, r, b1, . . . , bp(|x|)), where p
is some fixed polynomial.
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Efficient reverse sampling. This property holds if there exists a probabilistic polynomial-time algo-
rithm S such that, given any string x and integers i and j, algorithm S outputs a uniformly
distributed r that satisfies Qpcp(x, r, i) = j, where Qpcp is as defined in the previous item.

A proof-of-knowledge property. This property holds if there exists a probabilistic polynomial-time
oracle machine E such that the following holds: for every x and π, if Pr[V π(x) = 1] > ε(|x|),
then there exists w = w1, · · · , wt such that (x,w) ∈ R and Pr[Eπ(x, i) = wi] > 2/3 holds for
every i ∈ [t].

It can be verified that any S ∈ NEXP has a PCP system that satisfies all of the above
properties [BG08].

A.5.1 Probabilistically Checkable Proofs of Proximity

A “PCP of proximity” (PCPP, for short) proof [BSGH+06] is a relaxation of a standard PCP, that
only verifies that the input is close to an element of the language. The advantage of such relaxation
is that the verifier can check the validity of a proof without having to read the entire theorem, but
just poking few bits. More specifically, in PCPP the theorem is divided in two parts. A public part,
which is read entirely by the verifier, and a private part, for which the verifier has only oracle access
to. Therefore, PCPP is defined for pair languages, where the theorem is in the form (a, y) and the
verifier knows a and has only oracle access to y.

Definition 15 (Pair language [DSK12].). A pair language L is simply a subset of the set of string
pairs L ⊆ {0, 1}∗ × {0, 1}∗. For every a ∈ {0, 1}∗ we denote La = {y ∈ {0, 1}∗ : (a, y) ∈ L}.

Definition 16 (Relative Hamming distance). Let y, y′ ∈ {0, 1}K be two strings. The relative
Hamming distance between y and y′ is defined as ∆(y, y′) = |{i ∈ [K] : yi 6= y′i}|/K. We say that
y is δ-far from y′ if ∆(y, y′) > δ. More generally, let S ⊆ {0, 1}K ; we say y is δ-far from S if
∆(y, y′) > δ for every y′ ∈ S.

Definition 17 (PCPP verifier for a pair language). For functions s, δ : N → [0, 1], a verifier V is
a probabilistically checkable proof of proximity (PCPP) system for a pair language L with proximity
parameter δ and soundness error s, if the following two conditions hold for every pair of strings
(a, y):

• Completeness: If (a, z) ∈ L then there exists π such that V (a) accepts oracle y ◦ π with
probability 1. Formally:

∃πProb(Q,D)←V (a)[D((y ◦ π)|Q) = 1] = 1.

• Soundness: If y is δ(|a|)-far from L(a), then for every π, the verifier V (a) accepts oracle y ◦π
with probability strictly less than s(|a|). Formally:

∀πProb(Q,D)←V (a)[D((y ◦ π)|Q)] = 1 < s(|a|).

It is important to note that the query complexity of the verifier depends only on the public
input a.
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Theorem 1 ((Theorem 1 of [DSK12])). Let T : N → N be a non-decreasing function, and let L
be a pair language. If L can be decided in time T then for every constant ρ ∈ (0, 1) there exists a
PCP of proximity for L with randomness complexity O(log T ), query complexity q = O(1/ρ), perfect
completeness, soundness error 1/2, and proximity parameter ρ.

We note that the soundness error 1
2 can be reduced to 1

2u by running V with independent coins u
times. This blows up the randomness, query, and time complexity of V by a (multiplicative) factor
of u (but does not increase the proof length).

We also assume that our PCP of Proximity satisfies the efficient-resampling property [BSCGT12].

A.6 Perfectly secure multi-party computation underline the MPC-in-the-head

Under the assumption that there exists a synchronous network over secure point-to-point chan-
nels, [BOGW88] shows that for every n-ary function f : ({0, 1}∗)n → ({0, 1}∗)n, there exists a
t-secure MPC protocol MPC-F that securely computes f in the semi-honest model for any t < n/2,
and in the malicious model for any t < n/3, with perfect completeness and security.

More formally, we denote by A the real-world adversary running on auxiliary input z, and
by SimMpc the ideal-world adversary. We then denote by REALπ,A(z),I(x̄) the random variable
consisting of the output of A controlling the corrupted parties in I and the outputs of the honest
parties. Following a real execution of π where for any i ∈ [n], party Pi has input xi and x̄ =
(x1, . . . , xn). We denote by IDEALf,S(z),I(x̄) the analogous output of S and honest parties after
an ideal execution with a trusted party computing f .

Definition 18. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality and let Π be a protocol. We
say that Π (n, t)-perfectly securely computes f if for every probabilistic adversary A in the real model,
there exists a probabilistic adversary SimMpc of comparable complexity5 in the ideal model, such that
for every I ⊂ [n] of cardinality at most t, every x̄ = (x1, . . . , xn) ∈ ({0, 1}∗)n where |x1| = . . . = |xn|,
and every z ∈ {0, 1}∗, it holds that: {IDEALf,SimMpc(z),I(x̄)} ≡s {REALπ,A(z),I(x̄)}.

Theorem 2 (BGW88). Consider a synchronous network with pairwise private channels. Then,
for every n-ary functionality f, there exists a protocol πf that (n, t)-perfectly securely computes f
in the presence of a static semi-honest adversary for any t < n/2, and there exists a protocol that
(n, t)-perfectly securely computes f in the presence of a static malicious adversary for any t < n/3.

Notice that all the above communication requirements to run the MPC protocol will not result
in communication requirements for our commitment scheme, since we will use virtual executions of
MPC that will be run only locally by players.

In our protocols, we need the following definition of correctness in presence of malicious parties,
called robustness in [IKOS07].

Definition 19 (t-correctness). We say that protocol Π realizes a deterministic n party function-
ality f(v1, . . . , vn) with perfect t-correctness if for all inputs v1, . . . , vn and for all randomness to
P1, . . . , Pn, the probability that the output of one players is different from the output of f is 0.

Definition 20 (t-robustness). Let T ⊂ {P1, . . . , Pn}. We say that protocol Π realizes f with perfect
t-robustness if it is perfectly correct in the presence of a semi-honest adversary, and for every
malicious adversary corrupting parties in T the following holds. Fix a tuple vT̄ of inputs of the

5Comparable complexity means that S runs in time that is polynomial in the running time of A.
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honest parties. If f evaluates to 0 to all choices of the input v consistent with vT̄ , then all honest
parties are guaranteed to output 0.

Remark 2. We remark that this definition of robustness differs from the one provided in [IKOS07].
The difference is the following. In [IKOS07] the functionality f is tailored to verify the truthfulness
of a statement. Namely f takes as public input a theorem “x ∈ L”, and private inputs w1, . . . , wn
and outputs 1 iff w =

⊕
iwi is a valid witness for x ∈ L. Now, if x /∈ L, then there exists no

witness, therefore it holds that for all w1, . . . , wn the function f on input x must output 0.
In our setting we need functionalities that check if the secret inputs of the players satisfy some

predicate. As such, there might always exist a tuple of inputs such that the predicate is satisfied.
For example, consider the functionality that takes in input VSS views and check if they reconstruct
to a specific value v: clearly it is always true that there exists a set of VSS views v1, . . . , vn that
reconstruct to v. Therefore, the question makes sense only if one fixes a set of views v∗1, . . . , v∗n and
ask whether such set correctly reconstructs to the value v. (Contrast this with the function f that
checks that x ∈ L, if x /∈ L then there exist no inputs that make f output 1).

Therefore, our definition of robustness says the following. Fix inputs vT̄ for the honest parties,
then if for all possible inputs of the malicious parties vT it holds that f(vT , vT̄ ) = 0 then at the end
of the protocol the honest parties will output 0.

Use of perfect t-private MPC Protocols in our Security Proofs. We use MPC protocols with perfect
completeness and security. For our proofs it will be sufficient to have perfect t-privacy wrt to a
semi-honest adversary. The reason is that, in all our constructions a malicious verifier can only
observe t views of the MPC-in-the-head played by P . We will denote by SimMpc the simulator
associated to the MPC protocol. SimMpc takes t inputs from the corrupted parties, say xp1 , . . . , xpt
and the output out from the ideal functionality and gives in output the views of players Pp1 , . . . , Ppt
consistent with an honest execution of the protocol Π with input xp1 , . . . , xpt and outputs out.

Verifiable Secret Sharing (VSS) functionality. The formal definition of VSS follows.

Definition 21 (VSS Scheme). An (n + 1, t)-perfectly secure VSS scheme consists of a pair of
protocols VSS = 〈Share, Recon〉 that implement respectively the sharing and reconstruction phases
as follows.

Share. Player Pn+1 referred to as dealer runs on input a secret s and randomness rn+1, while
any other player Pi, 1 ≤ i ≤ n, runs on input a randomness ri. During this phase players can send
(both private and broadcast) messages in multiple rounds.

Recon. Each shareholder sends its view vi of the sharing phase to each other player, and on input
the views of all players (that can include bad or empty views) each player outputs a reconstruction
of the secret s.

All computations performed by honest players are efficient. The computationally unbounded
adversary can corrupt up to t players that can deviate from the above procedures. The following
security properties hold.

Commitment: if the dealer is dishonest then one of the following two cases happen: 1) during
the sharing phase honest players disqualify the dealer, therefore they output a special value ⊥
and will refuse to play the reconstruction phase; 2) during the sharing phase honest players
do not disqualify the dealer, therefore such a phase determines a unique value s∗ that belongs
to the set of possible legal values that does not include ⊥, which will be reconstructed by the
honest players during the reconstruction phase.
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Secrecy: if the dealer is honest then the adversary obtains no information about the shared
secret before running the protocol Recon.

Correctness: if the dealer is honest throughout the protocols then each honest player will output
the shared secret s at the end of protocol Recon.

Direct implementations of (n+1, bn/3c)-perfectly secure VSS schemes can be found in [BOGW88,
CDD+99]. In this paper we use VSS with a deterministic reconstruction procedure, as provided
in [GIKR01] that implements an (n+ 1, bn/4c)-perfectly secure VSS scheme.

A.7 Other Definitions

In this section we provide the definition of other tools used in our constructions.

Collision Resilient Hash Function (CRHFs) A collection of (uniformly polynomial-time com-
putable) functions {H : {0, 1}∗ → {0, 1}θ} such that for every (nonuniform) family of polynomial-
size circuits {Cn}n∈N is a collision-resistant hashing if:

Prh←H[Cn(h) = (x, y) s.t. x 6= y and h(x) = h(y)] = ν(n)

where ν is a negligible function, and the probability is taken over the uniform choice of h.

Extractable commitment schemes. Informally, a commitment scheme is said to be extractable
if there exists an efficient extractor that having black-box access to any efficient malicious sender
ExCom∗ that successfully performs the commitment phase, is able to efficiently extract the commit-
ted string. We first recall the formal definition from [PW09] in the following.

Definition 22 (Extractable Commitment Scheme). A commitment scheme ExCom = (ExCom,ExRec)
is an extractable commitment scheme if given an oracle access to any ppt malicious sender ExCom∗,
committing to a string, there exists an expected ppt extractor Ext that outputs a pair (τ, σ∗), where
τ is the transcript of the commitment phase, and σ∗ is the value extracted, such that the following
properties hold:

Simulatability: the simulated view τ is identically distributed to the view of ExCom∗ (when
interacting with an honest ExRec) in the commitment phase.

Extractability: the probability that τ is accepting and σ∗ correspond to ⊥ is negligible. More-
over the probability that ExCom∗ opens τ to a value different than σ∗ is negligible.

One can construct an extractable commitment scheme ExCom = (ExCom,ExRec) with non-
interactive opening from any commitment scheme Com = (C,R) in a black-box manner as follows.
Let ExCom be the sender, ExRec be the receiver, and C(σ;ω) denote the commitment to a message
σ computed using randomness ω. We will now show the steps of a statistically-hiding extractable
commitment scheme by assuming that if at any time the received message is inconsistent with the
protocol specification then the honest player aborts (e.g., the receiver would output ⊥).

Commitment Phase:
1. ExCom on input a message σ, generates k random strings {r0

i }i∈[k] of the same length as σ, and
computes {r1

i = σ ⊕ r0
i }i∈[k], therefore {σ = r0

i ⊕ r1
i }i∈[k]. Then ExCom uses Com to commit

to the k pairs {(r0
i , r

1
i )}i∈[k]. That is, ExCom and ExRec produce {c0

i =
〈
C(r0

i , ω
0
i ),R

〉
, c1
i =〈

C(r1
i , ω

1
i ),R

〉
}i∈[k].
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2. ExRec responses to ExCom by sending a random k-bit challenge string r′ = (r′1, . . . , r
′
k).

3. ExCom decommits {cr
′
i
i }i∈[k] (i.e., non-interactively opens k of previous commitments, one per

pair).
4. ExRec verifies that commitments have been opened correctly.

Decommitment Phase:
1. ExCom sends σ and non-interactively decommits the other k commitments {cr̄

′
i
i }i∈[k], where

r̄′i = 1− r′i.
2. ExRec checks that all k pairs of random strings {r0

i , r
1
i }i∈[k] satisfy {σ = r0

i ⊕ r1
i }i∈[k]. If so,

ExRec takes the value committed to be σ and ⊥ otherwise.
The extractor can simply run as a receiver, and if any of the k commitments is not accepting,

it outputs σ∗ = ⊥. Otherwise, it rewinds (Step 2) and changes the challenge until another k well
formed decommitments are obtained. Then it verifies that for each decommitment, the XOR of all
pairs corresponds to the same string. Then the extractor can extract a value from the responses of
these two distinct challenges. Due to the binding of the underlying commitment, the value extracted
by the extractor will correspond to the value opened later by the malicious committer. The extractor
by playing random challenges in each execution of Step 2 is perfectly simulating the behavior of the
receiver. The running time of the extractor is polynomial (as can be argued following arguments
similar to [PW09])

Error-correcting codes. A pair (ECC,DEC) is an error-correcting code with polynomial expan-
sion if ECC and DEC are polynomial-time computable functions that satisfy the following three
properties.

Correctness: DEC(ECC(x), r) = x where r is a sufficiently long random string.

Polynomial expansion: there exists some function `(·) such that `(k) < kc for some constant
c > 0, and for every string x ∈ {0, 1}∗, |ECC(x)| = `(|x|). Constant distance: there exists
some constant δ > 0 such that for every x 6= x′ ∈ {0, 1}k, |{i|ECC(x)i 6= ECC(x′)i}| ≥ δ`(k).

B Details on BB Commit-and-prove Protocol via Extendable Merkle
Tree

In this section we provide the specification of our implementation of BB input-size hiding commit-
and-prove protocol via extendable Merkle Tree.

Notation and Parameters. The size of the string shared by the players in the VSS is m bits. The
size of the view of each player is v = poly(m,n). We use a family of hash functions H : {0, 1}v →
{0, 1}

m
2n .

B.1 Building an Extendable Merkle Tree

We formally describe the procedure used by P to construct an extendable Merkle Tree. We denote
such procedure by BuildRealTree. BuildRealTree takes as input a string s and a CRHF h.

Procedure BuildRealTree.
On input a string s, let `s = log |s|, and the hash function h. The tree is built as follows.
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• (Leaves). Level `s. For each γ ∈ {0, 1}`s do:

– (Label) lγ = sγ .

– (VSS) Run VSS in-the-head among n + 1 players where player Pn+1 is the dealer and
secret shares the string lγ . Namely, obtain {P VSSγ

1 | · · · |P VSSγ

n+1 } ← Share(lγ). Note that
the view of the dealer Pn+1 is not included in the views committed.
The node at position γ is the pair: [lγ , (P VSSγ

1 |· · · | P VSSγ

n )]. For short, we denote it by:
[lγ , VSSγ ].

• (Internal Node) For j = `s − 1 to 1. For each γ ∈ {0, 1}j

– (Label) The label here is the hash of the VSS of the children. Namely:

lγ = h(P VSSγ0

1 )|, . . . , h(P VSSγ0

n )|h(P VSSγ1

1 )|, . . . , h(P VSSγ1

n )

– (VSS) Compute [P VSSγ

1 | · · · |P VSSγ

n+1 ] ← Share(lγ).

• (Root). The root is the last label lλ.

• (Level). Run VSS in-the-head to secret share the depth `s. Obtain views [P depth
1 , . . . , P depth

n ]
← Share(`s). For short, we denote the concatenation of such views by VSSdepth.

Return the root lλ and the VSS-representation of the length of the real tree: P depth
1 , . . . , P depth

n .

B.2 Size-hiding Black-box Commit-and-Prove Protocol

Here we provide the details of the commit and prove protocol outlined in Section 3.2.2. The protocol
consists in 3 stages. In the first stage, the prover commits to a string s by constructing the extendable
Merkle tree, using procedure BuildRealTree. The commitment consists in the commitment of the
root, and of the VSS of the depth of the tree. We denote this stage by BBCom(s).

In the second stage, the verifier selects indexes to be checked. V selects a subset of indexes I`
for each possible depth ` = 1, . . . , `d. Namely, V selects I = I1, . . . , I`d .

In the third stage, called proof phase, P proves that the bits lying on position I`s satisfy property
φ. Such proof goes as follows. First, P commits to one path for each query in I. The length of
each path depends on the query. Namely, a path for a query in I` has depth `. For queries in I`
with ` < `s, P will just retrieve the real paths computed above. For queries in I` with ` > `s, P
will extend the real path with fake nodes. Such node are computed so that the hash consistency
is always verified, while the node consistency (i.e., the innode property) is not. For each path so
obtained, P computes: 1) one MPC-in for each node of the path (to prove node consistency); 2)
one MPC-φ for the leaves (for a set I`, MPC-φ is computed only for the nodes at level `). Then, V
sends positions p1, . . . , pt of players to be opened.

P then opens the views of players Pp1 , . . . , Ppt for all MPC-in-the-head protocols: VSS, MPC-in,
MPC-φ. Additionally P opens the substrings of the label part l corresponding to positions p1, . . . , pt.
Finally, V is convinced if all the opened views are consistent.

We denote the third stage as BBProve(·). BBProve takes as input the queries I1, . . . , I`d and the
property φ to be tested.

Protocol 3. Commit-and-prove protocol via extendable Merkle tree.
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Commitment. BBCom(s)

− (V → P ) V sends h ∈ H to P
− P runs BuildRealTree(s, h) and obtains the root lλ and the views [P depth

1 , . . . , P depth
n ] . Com-

pute commitments Cλ = SHCom(lλ) and Ci = SHCom(P depth
i ).

− (P → V ). Send Cλ, C1, . . . , Cn to V .

Queries

− V computes sets I = {I1, . . . , I`d} of queries for each possible size of s using an arbitrary
(possibly randomized) algorithm that we denote as GetIndex. Namely, for j = 1 to `d V
computes Ij ← GetIndex(j).

− (V → P ) V sends I1, . . . , I`d to P .
For easiness of explanation we now assume that each set Ij contains one query qj only.
Hence, we consider I = {q1, . . . , q`d}.

Proof: BBProve(q1, . . . , q`d) for property φ.

1. P computes a path for each query. For a query qj, P constructs a path of length j
as follows. Let `s = Recon(VSSdepth).

Case j > `s: queries hitting a depth greater than the depth of the real tree.
For each j ∈ {`d, `d − 1, . . . , `s}, compute a path of length j as follows.
(a) Compute fake leaves:

Set lqj to a random m-bit string. Run Share(lqj ) to obtain views VSSqj = [P VSS
qj

1 ,
· · · , P VSSql

n ].
(b) Compute fake nodes.

Let qij be the i-bit prefix of query qj, for i = `d−1 to `s + 1. If qij has two

children qi0l , q
i1
j , compute label lq

i
j= h(P VSS

qi0j

1 ),· · · , h(P VSS
qi1j

n ). Note that labels

are computed only for nodes having children. Run Share(lq
i
j ) to obtain views

VSSq
i
j =[P VSS

qij

1 , . . ., P VSS
qij

n ].
(c) Compute proof of consistency.

For each fake node [lq
i
j ,[P VSS

qij

1 | · · · |P VSS
qij

n ]] run MPC-in using trapdoor condition
j > `s.

(d) Add Real Nodes/Labels.
Let qij be the i-bit prefix of query qj, for i = `s, . . . , 1. Retrieve node [lq

i
j , VSSq

i
j ]

from the real tree and compute MPC-in proving that the innode property is satis-
fied.

(e) Compute proof of predicate (proving trapdoor condition j 6= `s), for the leaf
qj. Consider the node in position qj, namely the VSS: [P VSS

qj

1 | · · · |P VSS
qj

n ]. Run
MPC-φ using as witness the condition j 6= `s (namely, the query does not lie
on the leaf level of the real tree). The proof of predicate is computed using the
witness j 6= Recon(P depth

1 , . . . , P depth
n ).
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Case j = `s: queries hitting the real depth. Retrieve the path from the real tree,
from the root to leaf q`s. Then, for i = `s to 1, let qi`s be the i-bit prefix of the
position q`s.

(a) Compute proof of consistency. Consider each node [lq
i
j , [P VSS

qij

1 | · · · |P VSS
qij

n ]] and
run MPC-in to prove that the innode property is satisfied.

(b) Compute proof of predicate. Consider the node in position q`s, namely the
VSS [P VSS

q`s

1 | · · · |P VSS
q`s

n ]. Run MPC-φ using to prove that φ(v) is true and
j = Recon(P depth

1 , . . . , P depth
n ), where v = Recon(P VSS

q`s

1 , | · · · |, P VSS
q`s

n ).
Case j < `s: queries lying on the real tree. Retrieve the path from the real tree, from

the root to leaf qj. Then, for i = `s − 1 to 1, let qij be the i-bit prefix of the position
qj.

(a) Compute proof of consistency. Consider each node [lq
i
j , [P VSS

qij

1 | · · · |P VSS
qij

n ]] and
run MPC-in to prove the consistency between the VSS and the label.

(b) Compute proof of predicate. Consider the node in position qj, namely the VSS
[P VSS

qj

1 | · · · |P VSS
qj

n+1 ]. Run MPC-φ using the trapdoor condition j 6= Recon( P depth
1 ,

. . ., P depth
n ).

Commitment of the paths. Commit to each node, label, MPC-in and MPC-φ com-
puted above, by committing separately to each view of MPC players, and to each
hash of the label. Send commitments to the verifier.

2. Verification.
(V → P). Pick randomly players p1, . . . , pt and send them to P .
(P → V). P opens views corresponding to players in position p1, . . . , pt for all the
commitments above.

(Verification Steps)
(a) Check Hash Consistency (parent property). For each node γ, check that

lγ [pj ] = h(P VSSγ0

pj ) and lγ [pj + n] = h(P VSSγ1

pj ) (for j = 1, . . . , t).
(b) Check Consistency of Nodes (innode property). This property is checked

for every node γ opened (except for the leaves). For each player P inγ
pj of the

MPC-in-the-head MPC-in check:
i. Input consistency: check that player P inγ

pj plays with inputs PVSSγ
pj , and P depth

pj ,
namely the pj-th VSS views for node γ and for the VSS of the depth. Addi-
tionally with inputs lγ [pj ], lγ [pj +n], namely the hash values of the VSS views
of the children. Namely, the input of P inγ

pj is the tuple: lγ [pj ], lγ [pj +n], P VSSγ

pj ,
P depth
pj .

ii. Views consistency. Check that the opened views are consistent with the honest
execution of the protocol and with each other.

iii. Output correctness. Check that the output of all the revealed views is 1.
(c) Check Proof of Predicate. This property is checked only for the nodes that

lie on the leaf level. Namely, only for the nodes at position q1, . . . , q`d .
Check view of player P φql

j , for l = 1, . . . , `d and j = p1, . . . , pt, as in the previous
step.
If any of this check fails, abort.
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In the above protocol, SHCom is a statistically-hiding commitment scheme, which is also IND-
SO-secure under the indistinguishability definition of [Hof11] (see Def. 8). Protocols MPC-in,MPC-φ
are perfectly t-private and t-correct MPC protocols [BOGW88].
Extractability. Protocol 3 can be made extractable by replacing the SH commitment SHCom with a
SH extractable commitment ExCom. We denote by BBExtCom, BBExtProve the modified version.
Extractability here means that one can extract the bits for which V asks the property to be tested,
in time polynomial in |d|. Note that this does not mean that the entire string can be extracted
in polynomial time. We use extractable version BBExtCom, BBExtProve in our WIUA protocol in
order to achieve the weak-proof-of-knowledge property.

Security properties. The formal proof of the following properties is provided in Sec. C. In the
following we just provide intuitions behind the proof. Witness Indistinguishability. Throughout
the protocol, V sees only t views of many instances of MPC protocols. The remaining (n − t)
views remain committed. Due to the perfect t-privacy of the MPC protocols used, t views do not
reveal any information about the inputs of the remaining players. Due to the SOA-security of the
commitment scheme, the hiding of the remaining (n − t) views is preserved. Soundness. Due to
the t-correctness of protocols VSS, MPC-in, MPC-φ, the only way for a malicious prover to provide
a false proof, is to cheat in the opening of the views asked by the verifier. Due to the collision
resistance of the hash function, and to the binding of the commitment scheme, once the root of the
tree has been fixed, there exists only one accepting opening for each node.

B.2.1 Protocol MPC-in

Protocol MPC-in is executed by P in order to prove consistency of a node [l,VSS]. MPC-in is a
(n, t)-perfect MPC protocol implementing the functionality Finnode depicted in Fig. 5.
Finnode takes as public input the index γ of the node that is being tested. Finnode takes as private

input the VSS part and the label of the node γ from the players.
The secret input of a player Pi is :

(
P VSSγ

i , P depth
i , lγ [i], lγ [i+ n]

)
. The functionality is the

following. Finnode first reconstructs the value from views VSSγ sent in input by each player, let v be
the string obtained. Then it computes the value of the label lγ by concatenating values lγ [i], lγ [i+n]
received from each Pi. If v = lγ then it outputs 1 to all players. Otherwise, Finnode reconstructs
the depth of the tree `s from views {P depth

i }i∈[n]. If the level of node γ is below the real tree (i.e.,
|γ| > `s), then γ is a fake node. As such the innode property can be violated. Thus Finnode outputs
1 to all players. If both checks fail, Finnode outputs 0 to all players.

Properties of Protocol MPC-in. Here we state the properties that we require for MPC-in im-
plementing functionality Finnode.

Definition 23 (t-robustness). . We say that protocol MPC-in realizes f with perfect t-robustness if
it is perfectly correct in the presence of a semi-honest adversary, and furthermore for any computa-
tionally unbounded malicious adversary corrupting a set T of at most t players, and for any inputs
(v1, . . . , vn), the following robustness property holds. If Finnode(v1, . . . , vn) = 0 then the probability
that some uncorrupted player outputs 1 in an execution of Finnode in which the inputs of the honest
players are consistent with (v1, . . . , vn) is 0.
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Functionality Finnode.
Public Input: Index of the node: γ.

• for i = 1 to n: obtain the secret input P VSSγ

i , P depth
i , lγ [i], lγ [i+ n] from player P innode

i .

• run v ← Recon(P VSSγ

1 , | · · · |, P VSSγ

n ). If the reconstruction fails output 0 to all players and
halt.

• `′s = Recon(P depth
1 , | · · · |, P depth

n )

• set lγ = lγ [1]|| . . . ||lγ [2n].

• if v = lγ and |γ| ≤ `′s output 1 to all players and halt.

• else if |γ| > `′s, output 1 to all players and halt.

• Else output 0 and halt.

Figure 5: The Finnode functionality.

B.2.2 Protocol MPC-φ

Protocol MPC-φ is executed by P in order to prove that a leaf (or a set of leaves) satisfies a certain
predicate φ. MPC-φ is a (n, t)-perfect MPC protocol implementing the functionality Fφ depicted in
Fig. 6.
Fφ takes as public input the index γ of the node that is being tested, and the property φ that

must be tested. Fφ takes as private input the VSS part and the label of the leaf γ from the players.
The secret input of a player Pi is :

(
P VSSγ

i , P depth
i

)
. The functionality is the following. Fφ

reconstructs the value from views VSSγ sent in input by each player, let v be the string obtained,
and the value from views VSSdepth, let this value be `s. First, it computes φ(v) and output 1 if
φ(v) = 1 and the `s = |γ|. Otherwise, it outputs 1, iff γ 6= `s. This means that the leaf being tested
is not a leaf of the real tree (but of a shorter/longer tree).

Otherwise, if both checks fail, Fφ outputs 0 to all players.
Fφ over multiple leaves. When φ must be checked over multiple leaves, the only change in Finnode

is the fact that each players participates with a VSS’s view for each leaf, and that φ is computed
on multiple values. For completeness we write Fφ for multiple values in Fig 7.

Functionality Fφ for property φ-Dpcp In Fig. 8 we describe in details how Fφ is instantiated
for property φ-Dpcp. This functionality is used in our WIUA protocol shown in Sec. D.

Functionality Fφ for property φ-ZK. In the public-coin ZK protocol shown in 4.2 the property
to be tested is whether the PCPP verifier would accept the proof. Such property must be tested over
two oracles, the theorem and the PCPP proof, which are committed using two distinct extendable
merkle trees. We describe how the Fφ is adapted to the φ-ZK in Fig. 9
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Functionality Fφ. Public Input: Index of the leaf: γ, property to be tested φ.

• for i = 1 to n: obtain the secret input P VSSγ

i , P depth
i , from player P φ

i .

• run v ← Recon(P VSSγ

1 , | · · · |, P VSSγ

n ). If the reconstruction fails output 0 to all players and
halt.

• `′s = Recon(P depth
1 , | · · · |, P depth

n )

• if φ(v) is true and `′s = |γ|, output 1 to all players and halt.

• Else if |γ| 6= `′s, output 1 to all players and halt.

• Else output 0 and halt.

Figure 6: The Fφ functionality.

Functionality Fφ computed over multiple leaves.
Public Input: Index of the leaves: γ1, . . . , γk (having same bit length), property to be tested φ.

• for i = 1 to n: obtain the secret input P VSSγ1

i , . . . , P VSSγk

i , P depth
i , from player P φ

i .

• run bj ← Recon(P VSS
γj

1 , | · · · |, P VSS
γj

n ), for j = 1, . . . , k. If the reconstruction fails output 0
to all players and halt.

• `′s = Recon(P depth
1 , | · · · |, P depth

n )

• if φ(b1, . . . , bk) is true and `′s = |γ1| output 1 to all players and halt.

• Else if |γ1| 6= `′s, output 1 to all players and halt.

• Else output 0 and halt.

Figure 7: The Fφ functionality over multiple leaves.
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Functionality Fφ for property φ-Dpcp.
Public Input: Index of the leaves: γ1, . . . , γk (having same bit length); theorem X, property to
be tested Dpcp(x, b1, . . . , bk) = 1.

• for i = 1 to n: obtain the secret input P VSSγ1

i , . . . , P VSSγk

i , P depth
i , from player P φ

i .

• run bj ← Recon(P VSS
γj

1 , | · · · |, P VSS
γj

n ), for j = 1, . . . , k. If the reconstruction fails output 0
to all players and halt.

• `′s = Recon(P depth
1 , | · · · |, P depth

n )

• if Dpcp(X, b1, . . . , bk) and `′s = |γ1| is true, output 1 to all players and halt.

• Else if |γ1| 6= `′s, output 1 to all players and halt.

• Else output 0 and halt.

Figure 8: The Fφ functionality for property φ-Dpcp

Functionality Fφ-ZK.
Public Input:

1. Indexes for leaves of the first tree: γ1, . . . , γk.
2. Indexes for leaves of the second tree : δ1, . . . , δk.
3. Public theorem a for PCP of Proximity.
4. Property to be satisfied Dpcpx(a, α1, . . . , αk, β1, . . . , βk) = 1.

• for i = 1 to n: obtain from player player P φ

i . the secret inputs:

1. views from the nodes of the first tree: P VSSγ1

i , . . . , P VSSγk

i , P depth1
i .

2. views from the nodes of the first tree: P VSSδ1

i , . . . , P VSSδk

i , P depth2
i .

• run αj ← Recon(P VSS
γj

1 , | · · · |, P VSS
γj

n ), for j = 1, . . . , k. If the reconstruction fails output 0
to all players and halt.

• run βj ← Recon(P VSS
δj

1 , | · · · |, P VSS
δj

n ), for j = 1, . . . , k. If the reconstruction fails output 0
to all players and halt.

• `′s1 = Recon(P depth1
1 , | · · · |, P depth1

n )

• `′s2 = Recon(P depth2
1 , | · · · |, P depth2

n )

• if Dpcpx(a, α1, . . . , αk, β1, . . . , βk) = 1 and `′s1 = |γ1| output 1 to all players and halt.

• Else if |γ1| > `′s, output 1 to all players and halt.

• Else output 0 and halt.

Figure 9: The Fφ-ZK functionality.
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B.3 Extensions

In this section we show how Protocol 3 can be extended to allow proofs over multiple strings.
Assume a prover wants to commit to several strings using BBCom (if size hiding must be ensured)

or VSSCom (if the size can be revealed) and prove a property φ over all such strings. For instance,
this case can happen when the prover cannot commit to all the strings at once because some of
the strings are generated during the protocol execution (this is precisely the scenario of Barak’s ZK
protocol, in which the PCPP proof can be committed only after the trapdoor theorem has been
generated). In this kind of scenarios, the prover might run BBCom(A) and then BBCom(B) and
VSSCom(C), and later prove that a property φ(A,B,C) is satisfied. More specifically, φ is defined
over (AIA , BIB , C) where (IA, IB) are jointly computed by GetIndex(size). Note that, GetIndex is
computed on a value size which can depend on the application or the property that we are trying to
prove. The value size can depend on the size of A and B. For greater clarity then we introduce and
additional BB commitment of the value size. Thus, after string A,B,C are committed, P additional
sends VSSCom of size.

To enable the prover to compute such φ over multiple committed strings we have to slightly
modify procedure BBProve shown in Protocol 3. Recall that BBProve takes as input a set of
queries q1, . . . , q`d and performs the followings steps: 1) computes the commitments for the paths
corresponding to the queries received, 2) prepares and commit to one instance of MPC-φ for the
leaves of each path (belonging to the single tree) committed in Step 1; 3) after receiving p1, . . . , pt
it opens t views for each node/MPC-in, MPC-φ sent before.

Very roughly, in the multiple strings setting, the main change is only in the computation of Step
2. Namely, now BBProve is invoked on multiple queries ((q1

1, q
2
1), . . . , (q1

`d
, q2
`d

)) and protocol MPC-φ
is computed over the leaves belonging to multiple trees (instead of a single tree), and possibly on
the views of some string committed using VSSCom.

In the following we show how to modify procedure BBProve of Protocol 3 to work with multiple
strings.

Protocol 4. Commit-and-prove Protocol via Extendable Merkle Tree over Multiple Strings.

Commitment

− P runs BBCom(A), BBCom(B) with V . Additionally sends: VSSCom(C) = P VSSC
1 , . . . , P VSSC

n

and VSSCom(size) = P VSSsize
1 , . . . , P VSSsize

n to V .

Queries

− V computes sets IA = {IA1 , . . . , IA`d}; IB = {IB1 , . . . , IB`d}; For κ = 1 to `d V computes
(IAj , I

B
j )← GetIndex(κ).

− (V → P ) V sends I1, . . . , I`d to P .
For easiness of explanation we now assume that each set IAl , I

B
l contains one query qAl ,

qBl only. Hence, we consider I = {qA1 , qB1 , . . . , qA`d , q
B
`d
}.

Proof: BBProve(IA, IB) for property φ.

1. P computes a path for each query in IA. (Follow steps described in Protocol 3
without computing views MPC-φ).

2. P computes a path for each query in IB. (Follow steps described in Protocol 3
without computing views MPC-φ).
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3. P compute proof of property φ over leaves in position qAsize, q
B
size. Run MPC-φ to

prove that φ(vA, vB, C) is true, where vA = Recon([P VSS
qAsize

1 , | · · · |, P VSS
qAsize

n ]pathA); vB=

Recon([P VSS
qBsize

1 , | · · · |, P VSS
qBsize

n ]pathB), and C =Recon(P VSSC
1 , . . . , P VSSC

n ).
4. P compute proof of property φ over leaves in position qAl , q

B
l with l 6= size.

Compute proof of property (proving trapdoor condition l 6= `s). Consider the node in po-
sition ql, namely the VSS: [P VSSql

1 | · · · |P VSSql
n ]. Run MPC-φ using as witness the condition

l 6= `s (namely, the query does not lie on the leaf level of the real tree). Note: the proof
of property is computed only using the VSS part of the node.

Verification. Follow Protocol 3 with the difference that V has to check the views of two paths
pathA, pathB for each query (instead of just one), and additionally has to check views for VSS
of the size and VSS of C.

C Security Proof our Size-Hiding Black-Box Commit-and-Prove
Protocol

In this section we formally prove that Protocol 3 satisfies properties of Definition 5.

C.1 Soundness

Proof Overview. The soundness of Protocol 3 relies on the binding of the extendable merkle tree.
Indeed, if it holds that once a commitment transcript is fixed, there exists at most one string that
any PPT P ∗ can successfully open, then soundness follows directly from the t-robustness of the
MPC protocols being used: V SS,MPC-in,MPC-φ.

The proof is structured in four hybrids. In hybrid 1 the verifier can see everything in the clear,
namely, the node of each path is sent without commitment. In this hybrid the binding of the tree
relies only on the collision resistance property of the family H, and because all nodes of the tree
are revealed, the verifier can verify φ on its own, thus soundness follows directly from the collision
resistance property as well. Once we established that when everything is sent in the clear P ∗ cannot
cheat by opening nodes (VSS views) that are not consistent to the root of the real tree, we move to
argue that P ∗ cannot cheat even if the verifier V obtains only t views and the consistency is proved
via MPC-in-the-head. Thus, in hybrid 2 we consider a verifier that obtains only t views for each
node of the real tree, and checks the consistency of such nodes by looking at the views of MPC-in
players (for simplicity, at this point we still assume that the verifier knows the real depth of the
tree `s and obtains all the views for the nodes at level `s, in order to check that Φ, on such nodes,
is satisfied). In this hybrid P ∗ can cheat in the consistency proof by cheating in the execution of
MPC-in. Due to the t-robustness of MPC-in, this happens with negligible probability. In hybrid 3,
we consider a verifier V that does not know the real depth of the tree (i.e., `s), and therefore it
checks the consistency of `d paths. In this hybrid the prover will add fake nodes, and for these it
can cheat. However, it follows from the exact same argument as hybrid 3, that the probability that
P ∗ successfully cheat in this hybrid, is negligible.

Hybrid 4 corresponds to the actual protocol where the paths are committed, and thus binding
and soundness rely on the binding of the commitment scheme. The invariant is that in each hybrid,
any P ∗ able to open two accepting but conflicting paths can be reduced to a collision forming
algorithm working in hybrid 1.
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Recall that a node is connected to its parent via two tiers. First, the node is connected to the
label of the parent via hash function (here we use the collision resistance property of H). Then,
the label of the parent node is connected to the VSS part of the node, via the innode property
(see Fig. 2 to visualize this connection). Such property is checked using MPC-in-the-head MPC-in,
which is run on top of the VSS part of the node and the VSS of the depth. Finally, the property φ
is tested on the VSS part of the leaf in position q via MPC-φ.

For simplicity in the proof we consider a verifier asking for one query per level, namely q1, . . . , q`d
(instead of a set I1, . . . , I`d).

In the following we outline the four hybrids used in the proof.

Hybrid 1. (Breaking the Collision Resistance Property of the hash function (Sec. C.1.1)). In
Hybrid 1 we consider a protocol where P sends everything in the clear. In this hybrid the size of the
string, represented in VSSdepth, can be reconstructed by V . Hence, we assume that V only computes
queries for level `s = Recon(VSSdepth). Let q be the node queried. In the proof phase, V obtains
the path from the root to node q. For each node γ along the path, it checks the innode property by
itself: given [lγ ,VSSγ ] it checks that Recon(VSSγ) = lγ . Furthermore, V tests property φ by itself,
by checking φ(Recon(VSSq)) = 1. Hence, protocols MPC-in and MPC-φ are not executed by P .

In this hybrid we show that, for any query q, if a PPT adversarial prover P ∗ provides two
accepting paths path0, path1 that open to conflicting values (i.e, path0 opens to v0 and path1 opens
to v1 and v0 6= v1) with non-negligible probability, then we can transform P ∗ in a collision forming
circuit, thus breaking the collision resistance property of H.

Hybrid 2. (Based on t-robustness of MPC-in-the-head protocols (Sec. C.1.2)). In the second
hybrid we consider an oblivious verifier that for every node γ only looks at t views among n views
of VSSγ (except for the leaf, i.e., the node in position q). However, for simplicity at this point we
still assume that for VSSdepth, the verifier obtains all n views, and thus it can reconstruct the size
of the tree by running `s ← Recon(P depth

1 , . . . , P depth
n ).

In this hybrid V is able to check only t hash values for each label l. Only t views are not sufficient
to run the VSS reconstruction phase and to check the innode property. Therefore in this hybrid
P additionally sends the views of MPC-in’s players, and the verifier checks the innode property by
looking at both the t views of VSSγ , VSSdepth and of MPC-inγ ’s players. For the leaf at position q,
V still observes all n views of VSSq. It reconstructs the value sq and check that φ(sq) is true.

In this hybrid we use the perfect t-correctness and t-robustness of MPC-in and VSS. Perfect t-
correctness guarantees that, for any possible randomness and any possible inputs used by the honest
players, the protocol outputs the correct value. Perfect t-robustness guarantees that in order to yield
honest players to output a wrong value, the number of corrupted players must be strictly greater
than t. Because t is a constant fraction of n, it follows that V will open one of the inconsistent
views whp.

Hybrid 3. (Based on t-robustness of MPC-in-the-head protocols (Sec. C.1.3)). In the third hybrid
we further restrict the knowledge of the verifier: V does not reconstruct the actual depth `s of the
tree and it is not able to check property φ by itself. Consequently, in hybrid 3, V selects queries
q1, . . . , q`d , one for each possible depth, and obtains `d paths from P . The prover P computes the
paths that are outside the depth `s by adding fakes nodes. The MPC-in-the-head for such nodes
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is successfully computed using the trapdoor condition: Recon(VSSdepth 6= l), for any depth l such
that l 6= `s. In this hybrid, binding follows from the t-robustness of MPC-in and MPC-φ.

Hybrid 4. (Breaking binding of the underlying commitment scheme (Sec. C.1.4)). In the last
hybrid the prover commits to all the views and opens only t views requested by the verifier. Due to
the binding of the commitment scheme used, this hybrid is indistinguishable from the previous one.

We now provide the formal proof of the following theorem.

Theorem 3. If H is a family of collision-resistant hash functions, if protocols MPC-in,MPC-φ are
perfect t-robust for functionalities Finnode,Fφ respectively, if VSS has perfect t-robustness, where t =
Ω(n) and n = ct for some constant c > 1, and if SHCom is a computationally binding commitment
scheme, then Protocol 3 is sound.

Proof. The proof is organized in four hybrids.

C.1.1 Hybrid 1. (Breaking Collision Resistance).

In Hybrid 1 the prover sends all the messages in the clear. Fix h ∈ H chosen uniformly at random by
V . In the BBCom(·) phase P ∗ sends the root lλ and [P depth

1 , . . . , P depth
n ] to V . From V reconstructs

`s = Recon(P depth
1 , . . . , P depth

n ) (if any view is inconsistent, V aborts). V then computes query
q

$← GetIndex(`s) and P ∗ answers with a `s-long authentication path in the clear, for value sq. (As
everything is in the clear, in this hybrid the prover and the verifier work only with paths of length
`s.)

In this hybrid an authentication path consists of the sequence of nodes on the path from the
leaf q to the root.

Definition 24. A path is an accepting in this experiment if, for every node γ:

1. Hash consistency. For each label lγ, for j = 1, . . . , n it holds that lγ [j] = h(P VSSγ0

j ) and
lγ [j + n] = h(P VSSγ1

j+n ).

2. Node consistency (innode property). For each label lγ, it holds that lγ = Recon(P VSSγ

1 , | · · · |,
P VSSγ

n ).

3. Leaf Consistency. It holds that sq corresponds to the value Recon(P VSSq

1 , | · · · |, P VSSq

n ).

Towards a contradiction, assume that, for query q, P ∗ is able to provide two accepting paths
path0 and path1 which opens to different bits, with some non-negligible probability p. We say
that such query q is conflicting (following terminology of [BG08]). We show that such P ∗ can be
transformed in a collision forming circuit for h.

From the definition of accepting path, this means that v0 = Recon(VSSqpath0) and v1 = Recon(VSSqpath1)
and v0 6= v1.

Due to Lemma 1, if the reconstructed values are different, then there exist at least t + 1 views
in which VSSqpath0 and VSSqpath1 differ. Consequently, the label at parent position lq

′ (where q′

corresponds to the first |q| − 1 bits of q), should differ in the same positions. Due to the correctness
of the VSS protocol a different value of a label lq′ induces a different value of VSSq

′
, and so on and

so forth.
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Because, both path0 and path1 start from the same root, but end with different leaves VSSqpath0

and VSSqpath1 sharing values s0 and s1 respectively, there must be a label on the two paths, such
that, different VSS children are hashed into the same parent label. Therefore we extract a collision.
This contradicts the collision resistance property of h.

Lemma 1. Let v0 and v1 be two strings such that v0 6= v1. For b = 0, 1 let VSSb = (P b1 , . . . , P
b
n) be

the vector of VSS players sharing the value vb, i.e., such that Recon(P b1 , . . . , P
b
n) = vb. If v0 6= v1

then VSS0 and VSS1 differ in at least t+ 1 views.

Proof. For a VSS with threshold t, any subset of n − t players is able to uniquely reconstruct the
secret. Assume that VSS0 and VSS1 differ in less then t + 1 views and v0 6= v1. This implies that
they have at least n − t views in common. Due to the perfect correctness of the VSS that we use,
any n− t set of views must reconstruct to the same secret, thus Recon(VSS0) = Recon(VSS1), thus
contradicting the assumption that v0 6= v1.

Remark 3. In this hybrid we show how to break collision resistance of H, assuming that two
accepting paths for the same queries q have been provided with some non-negligible probability by a
PPT P ∗. When using our tool to implement WIUARG and ZK protocol, we will need to show how
to relate the probability of P ∗ proving a false theorem to the probability of providing two accepting
paths.

Hybrid 1.1. This hybrid is exactly as before except that now the check for hash consistency is
performed over t randomly chosen views instead on n views. Namely, for a label lγ in position γ,
the verifier checks only 2t hash values (t for the left child, and t for the right child), in positions
p1, . . . , pt, which are chosen uniformly at random.

It follows from Lemma 1 that the VSS of different values must differ in at least (n − t) views.
Hence, because t views are randomly selected by V , with probability at least 1− 1

tt , a collision will
be detected in this hybrid as well, with overwhelming probability.

C.1.2 Hybrid 2. (Breaking t-robustness of MPC).

In this hybrid we consider an oblivious verifier who refrains from looking at all views opened by
P ∗, instead it looks only to t (randomly chosen) views. (Except for the leaf in position q for which
V will check the property φ by looking at all the views.) In this hybrid V is not able to verify the
innode property by itself. Therefore, P ∗ additionally computes and sends views of MPC-in’s players,
and V checks that such views are correct and consistent.

Let p1, . . . , pt be the randomly chosen positions that V picks. (Note that, at this stage, we
are still assuming that the prover reveals the path in the clear, thus P ∗ is not aware of positions
p1, . . . , pt which are actually checked by V ). In this hybrid a path is accepting if:

1. Hash consistency. For each label lγ , where γ is a position along the path between the root
and leaf q, it holds that lγ [pj ] = h(P VSSγ0

pj ) and lγ [pj + n] = h(P VSSγ1

pj ), with j = 1, . . . , t.

2. Node consistency (innode property). For each node γ in the path between position q and the
root, the verifier consider player P inγ

pj of MPC-in checks that: 1) input consistency: check that
player P inγ

pj plays with input: lγ [pj ], lγ [pj + n], P VSSγ

pj , P depthγ
pj . 2) Views consistency. Check

that the opened views are consistent with the honest execution of the protocol and with each
other. 3) Output correctness. Check that the output of all the revealed views is 1.
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3. Value consistency (proof of predicate). V runs the VSS-reconstruction for leaf VSSq, and
obtains value sq such that φ(sq) is true.

The difference between this hybrid and the previous one, is only in the fact that the consistency
checks are performed indirectly, via checking protocol MPC-in.

Assume that, in this hybrid P ∗ opens path0 and path1 for bits s0 6= s1. As discussed before, for
s0 6= s1 it must hold that [VSSq]path0 and [VSSq]path1 must differ in at least n− t views, which, due
to the innode property, propagates up to the tree leading to a collision. However, now P ∗ can cheat
in the proof of consistency by cheating in the VSS and protocol MPC-in, and possibly replace the
values of a label lγ along the path without having to change the corresponding VSSγ (or viceversa).
We argue that, due to the t-robustness of the MPC protocols being used, if P ∗ cheats in any of
the MPC-protocols, it will be caught with overwhelming probability over the choice of the players
p1, . . . , pt.

Fix a node γ, the values sent by P ∗ for such node are:

• label lγ = [hγ0
1 , . . . , hγ0

n , h
γ1
1 , . . . , hγ1

n ].

• VSS views sharing the label. VSSγ = [P VSSγ

1 , . . ., P VSSγ

n ].

• VSS views sharing the depth of the tree. VSSdepth = [P depth
1 , . . . , P depth

n ].

• MPC views. [P inγ
1 , . . . , P inγ

n ].

Observe that, due to the collision-resistance property of H we have established that fixed a root,
the views of all nodes of the real tree are fixed.
Recall that functionality Finnode outputs 1 iff one of this conditions is true.

1. Recon(P VSSγ

1 , . . ., P VSSγ

n ) = [hγ0
1 , . . . , hγ0

n , h
γ1
1 , . . . , hγ1

n ].

2. Recon(P depth
1 , . . . , P depth

n ) ≥ |γ|.
V will look at t positions and must perform the following checks: (1) The input of players P inγ

i

should be P VSSγ

i , Pdepth
i , hγ0

i , h
γ1
i ; (2) The output of players P inγ

i should be 1.

Assume that node γ is not consistent, namely it holds that: Recon(P VSSγ

1 , . . ., P VSSγ

n ) 6= [hγ0
1 , . . . , hγ1

n ]

AND Recon(P depth
1 , . . . , P depth

n ) ≤ |γ|, and hence an honest execution of MPC-in of input (VSSγ ,
VSSdepth, hγ0

1 , . . . , hγ1
n ) should output 0 to all players P inγ

i . Toward a contradiction, assume that V
instead accepts the views P inγ

pj for j ∈ [t] for protocol MPC-in.
It follows that one the following two cases has happened.

Case 1. P ∗ runs a possibly honest execution of protocol MPC-in but players of MPC-inγ have as
secret input VSS views that are different from the views of VSSγ , and on such views the output of
Finnode is 1.

Namely, P ∗ runs MPC-in on input the VSS views P VSS∗γ
1 , . . ., P VSS∗γ

n and h∗γ0
1 , . . . , h∗γ1

n which do
not all correspond to the VSS views P VSSγ

1 , . . ., P VSSγ

n of the node, but such that Finnode outputs 1
to all players.

We argue that, in order for players of MPC-in’s to output 1 instead, it should be that the number
of views P VSS∗γ

i used as input in MPC-in that differ from the once used to compute the tree P VSSγ

i ,
are (n − t). Since V randomly choose t views, with high probability V will choose a player P in

j

which has in input a view P VSS∗γ
j that does not correspond to P VSSγ

j .
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Case 2. P ∗ cheats in the execution of the MPC-in-the-head. In this case, we assume that P ∗

cheats in the execution of the MPC-in-the-head protocols VSS,MPC-in and lead the players to an
incorrect output.

If P ∗ cheats in the execution of MPC-in, then there must be views which are inconsistent (see
Def. 2) with an honest execution of MPC-in.

Informally, there are two cases: (1) P ∗ corrupts ≤ t players. Let the set of corrupted players
be T . Now, fixed the input of the uncorrupted players {P VSS∗γ

i }i∈T̄ , for any tuple of inputs of
the corrupted players {z∗j }j∈T , it holds that Recon({P VSS∗γ

i }i∈T̄ , {z∗j }j∈T ) 6= [hγ0
1 , . . . , hγ1

n ], and the
output of Finnode is therefore 0. (Note that, the same argument holds for views P depth

i , but we
omit it for simplicity). Due to the t-robustness of MPC-in, by only corrupting t-players, P ∗ cannot
influence the output of the honest player, who will still output 0. However, the verifier misses an
honest player with probability ∼

(
t
n

)t, which is negligible. (2) P ∗ corrupts > t players. In this case,
many corruptions will generate many inconsistent views, and thus the verifier will pick at least one
of this views whp (this follows from the fact that n = ct).

The formal argument follows precisely the one shown in [IKOS07].
Corrupted players do not follow the protocol, therefore they cause inconsistent views. Two views

Vi and Vj are inconsistent if some incoming message from Pj registered in view Vi is different from
the outgoing message for Pi implicit in the view Vj .

Given views P inγ
1 , . . ., P inγ

n , consider the inconsistency graph where there is one vertex for each
view, and there exists a edge between node i and node j if views P inγ

i and P inγ
j are inconsistent.

There are two cases.

Case ≤ t. There exists in G a vertex cover 6 B of size t. This means that there are t nodes that
cover all the inconsistencies. Due to the t-robustness of MPC-in and VSS, it holds that with
only t inconsistencies the uncorrupted players will still output the correct output of Finnode,
which is 0. Now the probability that V accepts is equal to the probability that V misses any
uncorrupted players, which corresponds to the probability of picking only views of the set B,
which is at most (t/n)t.

Case > t. There exists a in G a vertex cover B of size > t. This means that G has a matching7

In this case, instead of looking at the vertices of B, we look at the edges of M . Now, if the
verifier picks at least one edge of M , it will reject (the reason is that an edge (i, j) in G exists
iff Vi and Vj are inconsistent).

The probability that the t vertices that the verifier picks miss all the edges of G is smaller
than the probability that they miss all vertices in the matching, which is 2Ω(t). (To see why,
supposes that the first t/2 vertices chosen by V are ij1 , . . . , ijt/2 and they are all not in M ,
then the t/2 matching neighbours have probability Ω(t/n) = Ω(t/ct) = Ω(1) of being hit by
each subsequent vertex ij).

C.1.3 Hybrid 3. (Adding Fake Nodes)

In this hybrid V does not know the actual depth `s of the Merkle tree. Therefore, here V sends
a sequence of queries q1, . . . , q`d , one for each possible depth. The difference with the previous

6For a graph G, a vertex cover is a set of vertices that cover all edges. Namely, a vertex cover is a set B of vertices
such that, each edge of the graph is incident to at least one vertex of B.

7For a graph G, a matching is a set of edges that have no vertices in common.
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hybrid is in the number of nodes/MPC-in-the-head computed by the prover. Additionally, V checks
property φ by looking at the views of players MPC-φ, as the leaf level of the real tree is unknown
in this hybrid. More in detail, the differences with the previous hybrid are:

1. Here the prover sends one path for each query, namely it opens `d paths. We only require
that the path for query q`s is consistent (where `s is committed in VSSdepth).

2. The prover must open paths which are longer than the real tree. Crucially, for all nodes lying
on level ` > `s, no property must be satisfied (except the hash consistency with the parents).

In this hybrid soundness depends on the robustness of the MPC protocols MPC-in,MPC-φ,VSS,
and therefore it follows the same arguments of hybrid 2.

Assume that P ∗, for the same root lλ, [P depth
1 , . . . , P depth

n ] is able to open to two sets {path0i}i∈[`d]

and {path1i}i∈[`d], which are accepting. In this hybrid a set of paths is accepting if all paths of the
set are accepting (according to the same checks performed above). Now note that, path0 and path1
could have many paths in which they differs (indeed, P ∗ has the freedom of creating fake nodes
arbitrarily). But, because the root lλ is fixed, and the size of the tree is committed in VSSdepth,
then it follows from the same argument of hybrid 2, that if path0 and path1 are both accepting,
then the path for query q`s is the same in both path0 and path1.

Therefore, hybrid 3 is indistinguishable from hybrid 2.

C.1.4 Hybrid 4. (Breaking Binding)

In this hybrid all the paths and auxiliary MPC protocols are committed. Thus V explicitly asks for
positions p1, . . . , pt and P decommits the corresponding views.

Precisely, P ∗ sends τ = Cλ, Clevel in the first step. Then, after seeing queries q1, . . . , q`d it sends
commitment to each path and MPC-in,MPC-φ protocols. Finally, after receiving positions p1, . . . , pt
from the verifier, it opens the corresponding views for each commitment.

The only difference with the previous hybrid is in the fact that now P ∗ knows the positions
checked by the verifier and it could open the commitments to the corresponding views adaptively
(in which case the argument using the t-robustness of the MPC protocols does not hold). It follows
from the computationally binding property of the underlying commitment scheme that hybrid 4 is
indistinguishable from hybrid 3.

This hybrid corresponds to the real protocol execution. This completes the proof.

C.2 Witness Indistinguishability

Witness indistinguishability basically follows from the perfect t-privacy of the MPC-in-the-head
protocols in use, and from the statistically hiding property of the commitment scheme. However, to
prove the claim, we additionally need the fact that statistically-hiding commitments imply security
in presence of Selective Opening Attacks under the indistinguishability definition of [Hof11].

We first explain why statistically hiding and perfect t-privacy alone are not sufficient to argue
about WI, but we need a commitment scheme scheme that is IND-SO-COM secure (Def. 8). In-
tuitively, we would like to argue the following. A malicious verifier sees only t views of the MPC
protocols. Due to the perfect t-privacy of the MPC protocols, given t views, any vector of inputs
(which can explain the output of the t views revealed) for the remaining n − t players is equally
likely.

47



However, in our case, our verifier see t views and (n − t) commitments of views. Now we
would like to argue that, since commitments are statistically hiding, the verifier should not get any
advantage from having such commitments it her view. Namely, we need to argue that the hiding of
the unopened commitment is still preserved given that some commitments have been opened. For
such argument the definition of hiding is not sufficient, when the messages committed are related
(in our case the messages committed are views of an MCP protocol, and therefore are related).

This is precisely the setting of selective opening attack. Therefore, we employ the definition of
hiding in presence of Selective opening Attacks (IND-SO-COM) introduced in [Hof11] (see Def. 8).
Such indistinguishability definition is sufficient for us since we are only interested in proving that
our construction is witness indistinguishable.

Summing up, to argue witness indistinguishability, we show that, for any malicious verifier V ∗

that distinguishes the witness used by the prover with some non-negligible advantage ε, there exists
an adversary Asoa that distinguishes the real and ideal experiment with related probability.

Theorem 4. If SHCom is a statistically-hiding commitment scheme, and VSS, depth are perfect
t-private VSS scheme, MPC-in t-perfectly realizes Finnode, and MPC-φ t-perfectly realizes Fφ, then
Protocol 3 is statistically witness indistinguishable.

Proof. Assume not, then for a property φ, there exist a V ∗, witnesses w0, w1, auxiliary input z, a
distinguisher D such that:

AdvWI = Prob[D(φ, z, 〈P (w0), V ∗(z)〉 = 1]− Prob[D(φ, z, 〈P (w1), V ∗(z)〉 = 1] ≥ ε

We first use the following Lemma from [Hof11], to assume that SHCom is IND-SO-COM secure.

Lemma 2 (Statistically hiding schemes are IND-SO-COM secure. [Hof11]). Fix arbitrary n and
I as in Definition 8, and let (C,R) be a statistically hiding commitment scheme. Then (C,R) is
indistinguishable under selective openings in the sense of Definition 8.

Then, following the proof technique of [Hof11], we show how to reduce a WI adversary V ∗ to
an adversary of the IND-SO-COM experiment (Def. 8). Adversary Asoa is running in the IND-SO-
COM experiment, and has to distinguish whether it corresponds to the real or the ideal game. For
convenience we recall the IND-SO-COM experiment. First, a sampling algorithm M is invoked,
on input an arbitrary auxiliary input. M samples the vector of messages M according to some
distribution, and outputs M to the experiment. The experiment commits to each message of such
vector, using the commitment scheme that is claimed to be IND-SO-COM secure. The commitments
are sent to Asoa. Upon receiving the commitments, Asoa selects a set of of indexes I, and sends I
to the experiment. The experiment answers by opening the commitments in positions I. The
remaining messages instead are sent directly without decommitment information. In the real game,
the experiment sends the messages M obtained from theM in the first step. In the ideal game, the
experiments resamples the vector conditioned on the messages opened before. Namely, it picks M′

←M|MI , and sends M′ to Asoa. The adversary Asoa wins if it is able to tell a part the real from
the ideal experiment with non-negligible probability.

To show a reduction, we have to define the sampling algorithmM and the resampling strategy
M|MI . We first provide an informal discussion of both algorithms, and of the strategy of Asoa.
Then we provide the formal specification, and analysis.
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Recall that by assumption we have a verifier V ∗, witnesses w0, w1 of possibly different size, such
that for a property φ, an execution between P and V ∗ where prover uses witness w0 is distinguishable
from an execution in which the prover uses witness w1.

For this proof we set d = max(|w0|, |w1|) = poly(n). Thus, d is a fixed polynomial instead of
being a super-polynomial nlogn. Note that this is without loss of generality, and allows a cleaner
proof. At the end of the proof we explain of to extend it to the case in which d is super-polynomial.

Sampling Algorithm M. Let d be the size of the longest string between w0 and w1. The
sampling algorithm takes as input z′ = (w0, w1, d, h) and N = poly(d), and essentially follows the
procedure of the honest prover P on input (wb), for a randomly chosen b. It compute the real tree,
running BuildRealTree(wb, h). Then it extends the real tree so that it reaches the length `d (unless
|wb| = d). This is done by running the same procedure of prover P except that, while the prover
does it only for few paths (requested by V ), here the extension is computed for each node lying on
level `d. Because d is polynomial, the extension takes also polynomial time. For each node, the
sampling algorithm prepares views of MPC-in and MPC-φ.

Note that, the extension of the tree is needed to make the message vector M of the same length,
regardless of the witness used. Indeed, if this was not that case, Asoa can immediately distinguish
which bit is used by theM algorithm, just looking at the numbers of commitment that she receives.
Finally, M outputs M, which consists of all nodes and labels of the real tree, fake nodes (in case
the witness chosen was shorter). Additionally it contains executions of MPC-in and MPC-φ for each
node. Finally it runs VSS for the size of the real tree. The last message of M is the bit b chosen
above. The vector M is sent to the IND-SO-COM experiment.

Re-sampling AlgorithmM|MI. As it is already clear, the commitments obtained by Asoa will be
parsed as commitments of nodes (and the corresponding instance of MPC-in) of the tree representing
wb. In the reduction, Asoa (following the malicious V ∗) will ask for the opening of t views, for each
node of some of the paths. The openings that Asoa will receive are in the setMI . Due to the perfect
t-privacy of such MPC-protocols, it holds that given to the adversary the views of t players (and
therefore their inputs/outputs), any vector of inputs to the other players that is consistent with the
t outputs observed by the adversary, is equally likely. Namely, fixed t views, if there exist two input
vectors (and therefore views) for the remaining n− t players that are consistent with the output of
the t opened views, then both vectors are equally likely. Given that such views exist, in exponential
time 8, one can compute them.

This is precisely what the re-sampling algorithm does. M|MI works as follows. It picks a
random bit σ, and then reconstructs the tree, conditioned on the views contained in MI and wσ.
Just as an example, consider a sequence of t views ∈ MI that represent the VSS part of a node of
level `|wσ | (the leaf of the real tree for wσ). Such t views must be justified as views of players that
secret share a bit of wσ. Let δ be such bit. The algorithm will take the t views and computes the
remaining (n−t) views that are consistent with one already opened, and such that the reconstruction
algorithm applied on any of the n views, outputs the string δ.

Summing up, the re-sampling algorithm just computes the values M∗|MI so that they are
consistent with an honest execution of the prover on input the witness wσ.

8Note that we are proving statistically WI, so the adversary, and therefore the experiment can be unbounded.
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The adversary Asoa. The adversary Asoa essentially simulates the honest prover to V ∗, using
the commitments (and later the openings) received from the experiment. Specifically, Asoa first
receives the commitments C for the entire (possibly extended) real tree, and it forwards only the
commitment of the root and of VSSdepth to V ∗.

When V ∗ sends queries q1, . . . q`d , Asoa proceeds as follows. From C it selects the committed
paths corresponding to the queries, along with the commitment of the executions of MPC-in, MPC-φ.

Then, when V ∗ picks the t positions p1, . . . , pt to be opened for each node and MPC, Asoa

computes the set of indexes I accordingly. Namely, such that it obtains the openings for t views for
each node (and MPC-in,MPC-φ) on the paths previously forwarded to V ∗. Asoa obtains from the
experiment the openings for the selected views.

Additionally, Asoa receives the vector M containing the views of all the nodes in the clear, but
without decommitment information.

By looking at M Asoa obtains the witness that is claimed to be used to compute the real path,
let us denote it by wb∗ .

When V ∗ terminates, Asoa runs the distinguisher D. Let b the output of D. Asoa then outputs
b∗ ⊕ b.

When Asoa is running in the real world, then Asoa is simulating the prover identically, thus the
output of Asoa relates to the advantage of AdvWI + 1/2. (See formal arguments below). When Asoa

is running in the ideal world, the bit b∗ is randomly chosen, thus the output of Asoa is also a random
bit.

Thus we conclude that the difference between the output of Asoa in the real and ideal game,
relates to the distinguishing capacity of V ∗.

In the following we give the details of sampling algorithmM, the adversary Asoa, the resampling
algorithmM||MI . We finally analyze the advantage of Asoa.

Sampling Algorithm. AlgorithmM(z′, N).
On input z′ = (w0, w1, d, h) and N = poly(d).

1. Toss a coin b ∈ {0, 1}.

2. Run BuildRealTree(wb, h) and obtain the real tree. Run Share(`wb).

3. Extend the tree with fake nodes till level `d.

4. Compute MPC-in (using the trapdoor condition for the fake nodes) and MPC-φ for each node
of the tree.

5. define (Mi)i∈N as a concatenation of messages, where a message is either a view of an MPC
player (either of VSS or MPC-in, MPC-φ), or an hash of a view (if it is part of the label).

6. define MN+1 = b.

7. output M← {Mi}i∈N+1

50



SOA Adversary. Next we show the reduction. Adversary Asoa is running the IND-SO-COM
experiment. The reduction proceeds as follows. We assume that IND-SO-COM experiment and
Asoa non uniformly obtain h as auxiliary input.

1. Run V ∗ on input z′ = w0, w1, d. V ∗ plays h in the first round.

2. Obtain N+1 commitmentsC= C1, . . . ,CN+1 from the IND-SO-COM experiment. C1, . . . ,CN+1

are interpreted as commitments for the tree and for executions of VSSdepth, MPC-in, MPC-φ.

3. Forward to V ∗ the commitment of the root, and the commitment of VSSdepth’s players.

4. Receive q1, . . . q`d from the V ∗.

5. For each i = 1, . . . , `d, compute pathqi taking appropriates commitments from C.

6. Upon receiving the set of t indexes from V ∗, translate this set into the appropriate set I
that allows to obtain t views for each VSS and 2t parts of the label, and t views for each
MPC-in,MPC-φ and for VSSdepth. Send I to the experiment IND-SO-COM.

7. Obtain the openings MI from the experiment.

8. Obtain the full vector of plaintextM= {Mj}j /∈I from the experiment (without decommitment).

9. when the interaction with V ∗ finishes, let T be the transcript of the interaction between V ∗

and the simulated prover. Run bV ∗ ← D(z, T ).

10. Let b′ = M′N+1.

11. output b′ + bV ∗ .

Re-sampling algorithm. AlgorithmM|MI(z
′, N).

• pick a random bit b, compute wb and let `wb the depth of the tree associated to wb.

• interpret the opened messages MI as the opening of `d (partial) paths of the tree computed
by M. The goal of the sampling algorithm is to compute the remaining views consistently
with a tree for wb.

Recall that, the sampling algorithm has computed tree of depth `d where d is the sizeof the
longest string between w0 and w1. The vector of opened messages MI contains the opening
of only some of the paths. Specifically, for each node along a path, t views of VSS part and
2t string of the label part have been reveled.

The main goal ofM|MI here is to fill the gap, and to reconstruct the remaining (n− t) values
for each node, consistently with a tree for wb.

M|MI starts from level `D.

For ` = `d to 1. For any γ ∈ {0, 1}`.

– (Leaf) if ` = `wb [Compute the nodes at level `d as real leaves].

1. Let c the bit of the wb at position γ.
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2. (Label) From MI take the 2t values belonging to the “label part” of node lγ . Fill the
remaining 2(n− t) part of lγ by picking random values.

3. (VSS) FromMI take the t views belonging to the “VSS part” of node VSSγ . Compute
(n − t) views, so that the complete VSSγ corresponds to the VSS of the value c
computed above.

4. (in) From MI take the t views belonging to the MPC-in execution for node γ. Com-
pute the remaining (n− t) views, consistently with the opened views and the views
computed above.

5. (MPC-φ) From MI take the t views belonging to the MPC-φ execution for node γ.
Compute the remaining (n − t) views, consistently with the opened views and the
views computed above, to prove that φ(w[γ]) is true.

– (Node) if ` < `wb [Computes parent nodes according to nodes computed so far]

1. (Parent Node Label) From MI take the 2t values belonging to the “label part” of
node lγ . Compute the remaining 2(n− t) part of lγ by hashing the views of the VSS
part of the children.

2. (VSS) FromMI take the t views belonging to the “VSS part” of node VSSγ . Compute
(n − t) views, so that the complete VSSγ corresponds to the VSS of the string lγ

computed above.
3. (MPC-in). From MI take the t views belonging to the MPC-in execution for node γ.

Compute the remaining (n − t) views, consistently with the opened views and the
views computed above.

4. (MPC-φ) From MI take the t views belonging to the MPC-φ execution for node γ.
Compute the remaining (n − t) views, consistently with the opened views and the
views computed above, to prove that ` 6= `wb (trapdoor condition).

– (Fake Node) if ` > `wb [Computes fake nodes]. For γ′ ∈ {0, 1}`−1.s

1. (VSS children) FromMI take the t views belonging to the “VSS part” of node VSSγ
′0.

Compute (n− t) views, so that the complete VSSγ
′0 corresponds to the correct VSS

of some random string. Do the same for node VSSγ
′1

2. (Label) From MI take the 2t values belonging to the “label part” of node lγ . Fill the
remaining 2(n − t) part of lγ by computing the hash of the views of nodes γ′0, γ′1
computed above.

3. (MPC-in). From MI take the t views belonging to the “VSS part” of node VSSγ .
With the above views, compute the remaining n− t views of MPC-in for node γ, by
proving the trapdoor condition ` > `wb .

4. (MPC-φ) From MI take the t views belonging to the MPC-φ execution for node γ.
Compute the remaining (n − t) views, consistently with the opened views and the
views computed above, to prove that ` 6= `wb (trapdoor condition).

– Compute views of VSSdepth. From MI take the t views belonging to VSS protocol.
Compute (n − t) views so that the final n views are an honest execution of the VSS of
`wib .

• Output: all the messages computed above, and output M′N+1 = σ
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Analysis of Asoa advantage. By hypothesis assumptions, there exists a circuit V ∗ and a
distinguisher D such that,

AdvWI = Prob[D(z, 〈P (w0), V ∗(z)〉 = 1]− Prob[D(z, 〈P (w1), V ∗(z)〉 = 1] ≥ ε

We analyze how the adversary Asoa can exploit the distinguishing capacity of D.

Advantage in the real experiment When Asoa is playing in the real experiment, then the fol-
lowing happens. IfM chose b = 0, then the real tree is computed for w0 and the Asoa correctly
simulates an interaction between P (w0) and V ∗. Since M′N+1 = 0, consequently Asoa outputs
D(z, 〈P (w0), V ∗(z)〉. Conversely, if b = 1, then Asoa is simulating an interaction between
P (w1) and V ∗. Hence, since M′N+1, Asoa outputs 1−D(z, 〈P (w1), V ∗(z)〉.
Thus, probability that Asoa outputs 1 in the real experiment is

∣∣Prob[Expind-so-real
Com,M,A(n) = 1] =

1

2
(Prob[D(z, 〈P (w0) = 1 +

= 1− Prob[D(z, 〈P (w1) = 1]

≤ 1

2
· AdvWI +

1

2
. (1)

Advantage in the ideal experiment In the ideal experiment, the resampling algorithm com-
putes the bit M′N+1 by sampling uniformly at random. This is possible due to the t-privacy
of the MPC protocols run by the prover. Indeed, since t views can be used to explain both
witness w0, w1. Namely, messages MI seen by Asoa are equally likely to appear, regardless of
the witness used. Since M′N+1 is a freshly tossed coin, we get:

Prob[Expind-so-ideal
Com,M,A (n) = 1] =

1

2

It follows that,

Advind-so
Com,M,A =

∣∣Prob[Expind-so-real
ExCom,M,A(n) = 1]− Prob[Expind-so-ideal

ExCom,M,A(n) = 1]
∣∣ =

1

2
· AdvWI

which contradicts the assumption that ExCom is IND-SO-COM secure.

Case d is super poly. If d = nlogn then the sampling algorithm cannot compute a full tree of length
`d as it would have exponentially many leaves. So, the sampling algorithm will compute a tree of
length D, with D = max(|w0|, |w1|). Thus, Asoa receives commitments only for paths of length `D.

To answer to the queries of length `d that will be asked by V ∗, Asoa simply extends the tree
received from the experiment with commitment of zeros. Later Asoa opens such commitments adap-
tively on the revealed messages MI received from the experiment, by breaking the computational
hiding of its own commitments.
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D Black-Box Witness Indistinguishable Universal Argument

A WI UARG protocol can be seen as a commit-and-prove protocol in which P commits to a PCP
oracle π, V computes the positions of the oracle that must be checked by running algorithm Qpcp,
and P proves that, had it opened such positions, the decision algorithm associated to the PCP
Verifier, denoted by Dpcp, would have accepted.

Hence, Black-box WIUARG are straightforwardly implemented by properly instantiating the
construction outlined in Sec. 3.2 (formally described in Prot. 3) as follows. Algorithm GetIndex is
instantiated with algorithm Qpcp used by the PCP verifier to select the queries. The property φ
here is defined over multiple leaves, and it satisfied iff algorithm Dpcp executed over the values of
the leaves output 1. More formally, such property is denote by φ-Dpcp(y, ·), and is defined over
instances y ∈ LU and a set of indexes I, and it is true iff Dpcp(y, {πi}i∈I) = 1. Finally, here we
use extractable SH commitment scheme (instead of just SH), in order to obtain the weak-proof-of-
knowledge property. To highlight this fact we use notation BBExtCom and BBExtProve.

Protocol 5. Black-Box Witness Indistinguishable Universal Argument.

Common Input: y = (M,x, t) ∈ LU , and d = poly(t). Auxiliary Input to P : w such that
(y, w) ∈ RU .

P → V : Commitment of the PCP.

1. RunM on input (w, x) and obtain t′ = TM (x,w). Let w′ = (w, t′) such that (y, w′) ∈ R′U .
2. Invoke Ppcp on input (y, w′) and obtain the proof π.
3. Run BBExtCom(h, π) to obtain ExCπ0, ExClevπ

1, . . . , ExClevπ
n and send it to V .

V → P : Queries.

Uniformly select random tapes r1, . . . , r`d and send them to P . P and V run Il ←{Qpcp(y, rl, i)}i∈[k]

for l ∈ [`d]. Obtain queries I = {I1, . . . , I`d}.

P ↔ V : Proof. P and V run BBExtProve(I1, . . . , I`d) for property φ-Dpcp. V accepts iff the
verifier of BBExtProve accepts.

D.1 Security of Our Black-box WI Universal Argument

In this section we formally prove the following theorem:

Theorem 5. If Protocol 3 is a Size-Hiding BB commit-and-prove protocol with parameter d =
poly(t), wrt property φ-Dpcp, then Protocol 5 is a Black-Box Witness Indistinguishable Universal
Argument system.

Soundness. Soundness follows almost directly from the soundness of the commit-and-prove pro-
tocol, except that – as stated in Remark 3 – here we have to related the probability of proving a
false theorem with the probability of finding a collision in Hybrid 1. Additionally we have to show
a oracle-recovery-procedure for the weak proof of knowledge property.

In the following we show how to relate the non-negligible probability of success of P ∗ in proving
a false theorem to the probability of finding a collision in polynomial time, by using the analysis
provided [BG08].
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Assume, toward a contradiction, that there exists a P ∗ and a string y = (M,x, t) /∈ LU , and a
polynomial p = p(|y|) such that P ∗ convinces V with probability > 1/p. Because y /∈ LU , from the
soundness of the PCP in use (which is 2−n), it holds that with overwhelming probability over the
coin tossed by V when running Qpcp, there exists no proof π which will be accepted by the decision
algorithm Dpcp.

Now, recall Hybrid 1 in Sec. C.1. In such hybrid we show that, fixed a commitment transcript
τ , if a query q is conflicting, i.e., P ∗ was able to open two accepting paths, path0 and path1 for
conflicting values v0, v1, then we can transform such P ∗ in a collision forming circuit (thus breaking
the collision resistance of h). In this proof we show how to relate the probability of success of
P ∗ proving a false theorem to the probability of finding a conflicting query q. We prove this by
following the analysis [BG08] for the computational soundness of their universal argument.

D.1.1 Extending Hybrid 1 presented in C.1.1

As we are hybrid 1, here we consider a version of Protocol 5 in which the prover sends everything
in the clear. Thus, in this hybrid the size `s is know to V and in the query phase only r = r`s will
be sent.

Fix any polynomial p. Fix an arbitrary family, {P ∗n}n∈N , of (deterministic) polynomial-size
circuits, a generic n and y ∈ {0, 1}n, such that Pr[(P ∗n , V )(y) = 1] > ε

def
= 1/p(n).

First, we establish some key notions regarding the interaction between P ∗n and V that are used
in the proof.

• The i-th qi is the value qi = Qpcp(y, r, i).

• The i-th answer is the bit reconstructed from the node in position qi. Namely, aqi = Recon(P VSSqi

1 ,
. . ., P VSSqi

n ).

• The authentication of this answer is the corresponding path path.

• The i-th answer is proper if the corresponding path is accepting (as per Definition 24).

Next, consider the probability distribution induced by verifier’s choice of h and r. Fix any h ∈ H,
consider the conditional probability ph,y that V accepts y when choosing h. Given the hypothesis
that P ∗n convinces V with probability ε, it follows that for at least ε/2 of the possible h are such
that ph,y ≥ ε/2. We fix any such h for the rest of the proof.

Now we consider the residual probability induced by the choice of r.

• for a query q, a query index i ∈ [n], a possible answer σ ∈ {0, 1}, and a parameter δ ∈ [0, 1],
we say that σ is δ-strong for (i, q) if, conditioning on the i-th query being q, the probability
that P ∗n properly answers the i-th query with σ is at least δ. Namely,

Pr[Recon(P VSSqi

1 , . . . , P VSSqi

n )) = σ|qi = Qpcp(y, r, i)] ≥ δ

• A query q has δ-conflicting answers if there exists i and j (possibly i = j) such that 0 is
δ-strong for (i, q) and 1 is δ-strong for (j, q).

We first show that, for the prover to be convincing with non-negligible probability, it should be
the case that many of the queries are δ-strong (Claim 1).
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Claim 1. The probability that the verifier accepts while receiving only δ-strong answers is at least
py,h − kδ

The proof of this claim follows similar arguments provided in [BG08] (see pag. 1674).
Then we show that, among the δ-strong queries, it is rare to find δ-conflicting queries. Indeed,

if this was not the case, a noticeable fraction of δ-strong queries are also δ-conflicting, then one can
use such queries to find a collision in h (Claim 2)

Hence, fix δ = py,h/2m, and assume that all prover’s answers are δ-strong.

Claim 2. There exist a PPT oracle machine that, for any δ, given h ∈ H and oracle access to P ∗n ,
finds collisions with respect to h with success probability that is polynomially related to δ/k and to
the probability that the verifier make a query that has δ-conflicting answers. By denoting as µh the
probability that the verifier (after choosing h), makes a query that has δ-conflicting answers. Then,
probability of finding a collision is at least µhδ2/k3.

Proof. For a uniformly selected r ∈ {0, 1}poly(n) and i ∈ [k], it follows that probability that qi =
Qpcp(y, r, i) is δ-conflicting is at least (µh/k).

Thus one can, uniformly select i0, i1 ∈ [k], invoke the reverse-sampling algorithm Spcp on input
(y, i0, qi) and (y, i1, qi) and obtain uniformly distributed r0, r1, satisfying qi = Qpcp(y, r0, i0) and
qi = Qpcp(y, r1, i1). Running P ∗n as subroutine twice feeding h, r0 the first time and h, r1 the
second time, one obtain path0 and path1. Assuming that qi is δ-conflicting with probability at least
(δ/m)2, both path0 and path1 are accepting for qi but opens to conflicting values v0 and v1. Thus
with probability at least (µh/k) · (δ/m)2 obtain two different proper answers to the same query qi.
At this point one can apply the same arguments of Hybrid 1 C.1.1, to show a collision.

Thus, on a typical h and for δ > 1/poly(n), the quantity µh must be negligible, otherwise one
can derive a contradiction to the collision resistance of {h}.

Consequently, for δ = py,h/2m > poly(n) we will focus on the case that the prover’s answer are
not δ-conflicting.

Establishing Weak Proof of knowledge in Hybrid 1 Claim 1 and Claim 2 establish that,
that prover’s answers are δ-strong but not δ/2-conflicting. Thus, we can use the such prover to
construct an oracle for the PCP system which makes Vpcp accept with probability at least pyh/2.
Next, following [BG08] we show that, if the queries are not conflicting, then we can build an oracle-
recovery procedure that recovers the bit of the PCP oracle. Such oracle is then used by the extractor
Epcp associated to the PCP in use.

Note that, it is not the case that all the prover’s answers are δ strong and not δ/2-conflicting.
Some queries may have no strong answers or be conflicting. Such cases happen with negligible
probability, and when happen the oracle-recovery procedure may fail to recover the entry of the
PCP oracle. This is not a problem since we are trying to convince a PCP verifier, and with
sufficiently high probability, such verifier will not make those queries.
Oracle-Recovery Procedure: On input (y, h) and a query q, and with oracle access to P ∗n , recover
the q-th bit of the PCP as follows. Let T def

= poly(n/δ) and δ = ε/4k.

1. For i = 1, . . . , k and j = 1, . . . , T , invoke Spcp on input (y, i, q) ad obtain ri,j .
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2. For i = 1, . . . , k and j = 1, . . . , T invoke P ∗n feeding it with h and ri,j . If the i-th answer
ai is proper, reconstruct the bit supported by (i, j) by running Recon(ai). Record (i, j) as
supporting the reconstructed bit.

3. If for some i ∈ [k], there are (2δ/3)·T records for the form (i, ·) supporting the value σ ∈ {0, 1},
then identify σ as a candidate.

4. If a single value of σ is defined as candidate, then set the q-th bit of the PCP oracle accordingly.
(Otherwise, do nothing).

The above oracle-recovery procedure, is almost identical to the procedure shown in [BG08],
except for Step 2. The difference being that in the UA shown in [BG08] the verifier obtains the
q-th bit of the PCP directly from the prover, while our verifier obtains only the VSS of such value.
Thus, our verifier (and therefore the recovery procedure) obtains the actual bit by running the
reconstruction procedure. Due to perfect correctness of the VSS, this step has the same effect of
receiving the bit directly from the prover. Therefore, the same analysis of [BG08] holds for our
oracle-recovery procedure as well.

Hence, using Claim 3.5.3 of [BG08] (see pag. 1676) we conclude that, if P ∗ makes the verifier V
accept with non-negligible probability, then with similar probability we can reconstruct an oracle
that convinces an external PCP verifier with polynomially related probability.

Having such oracle-recovery procedure, [BG08] shows how this procedure can be run as subrou-
tine by the extractor Epcp to extract bits of the witness used by P ∗. In this way the weak-proof
of knowledge is established. Since the extractor will be identical in our case, with refer the reader
to [BG08] (pag 1676) for details.

The remaining of the proof follow identically the proof provided in Section C.1.

D.1.2 Oracle-recovery-procedure in Hybrid 4

As final step we notice that the oracle-recovery-procedure shown previously work in Hybrid 1, were
everything is sent in the clear. In hybrid 4, which corresponds to the final protocol, the prover
sends the (extractable) commitments of the paths. Therefore we modify the previous procedure as
follows. The idea is to modify any P ∗ for hybrid 4 in a P ∗ for hybrid 1.

Oracle-Recovery Procedure: On input (y, h), the extractor preliminary extracts the size of
the PCP oracle as follows (this is crucial to detect the size of query q). Obtain C0, C1, . . . , Cn
running the commitment phase with P ∗ on input h. Run the extractor associated to ExCom and
obtains value l′0 and views [P depth

1 , . . . , P depth
n ]. If the extractor fails, abort. Else, run Recon(P depth

1 ,
. . ., P depth

n ) to obtain `s. Output `s.
Then, on input q ∈ {0, 1}`s , and with oracle access to P ∗n , recover the q-th bit of the PCP as

follows. Let T def
= poly(n/δ) and δ = ε/4k. Pick randomness r1, . . . , r`s−1, r`s+1, . . . r`d to play in

the second verifier’s step.

1. For i = 1, . . . , k and j = 1, . . . , T , invoke Spcp on input (y, i, q) ad obtain ri,j .

2. For i = 1, . . . , k and j = 1, . . . , T invoke residual prover P ∗n with input r1, . . . , r`s−1, ri,j ,
r`s+1, . . . , r`d . If the i-th answer ai is proper, reconstruct the bit supported by first extracting
views (P VSSq

1 | · · · | P VSSq

n ) from the respective extractable commitments, and then running
(i, j)← Recon(P VSSq

1 | · · · | P VSSq

n ). Record (i, j) as supporting the reconstructed bit.
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3. If for some i ∈ [k], there are (2δ/3)·T records for the form (i, ·) supporting the value σ ∈ {0, 1},
then identify σ as a candidate.

4. If a single value of σ is defined as candidate, then set the q-th bit of the PCP oracle accordingly.
(Otherwise, do nothing).

Witness Indistinguishability. WI follows straight-forwardly from the WI property of the un-
derlying commit-and-prove Prot. 3.

E Security of Our Public-Coin ZK Argument

In this section we formally prove that Protocol 2 is a Zero Knowledge Argument System.

E.1 Soundness

Lemma 3. If Protocol 3 is a Size-Hiding BB commit-and-prove protocol wrt φ-ZK and with param-
eter d = nlogn, then Protocol 2 is computationally sound.

Assume that x /∈ L. For a polynomial p = poly(n), assume that there exists a PPT P ∗ which
convinces the verifier with non negligible 1/p.

Because x /∈ L, we have 3 possible cases. Case 1. P ∗ commits to an encoding of a program Π
which actually predicts the value r sent by the verifier in the trapdoor generation phase. Because r
is randomly chosen in {0, 1}n, this event happens with probability 2−n, and thus is negligible. Thus
this case can be ignored.

Case 2. z = BBProve(Ψ) is a commitment of a string Ψ which is not the encoding of a program
predicting r. Thus x /∈ L and ((z, r, t), (Ψ)) /∈ LP . In this case, due to the δ-soundness of the
PCPP in use, and the use of ECC with distance δ, there exists no accepting PCPP oracle for
theorem ((z, r, t), (Ψ)). Thus, one can show how to relate the probability that P ∗ convinces V ,
to the probability of finding conflicting queries for the paths of the extractable merkle tree of the
PCPP oracle. This case follows similar arguments shown for soundness of our UAWI and is therefore
omitted.

Case 3. z = BBProve(Y ) is a commitment of a string Y which is not the encoding of a program
predicting r. Thus x /∈ L and ((z, r, t), (Y )) /∈ LP . However, after receiving r, P ∗ computes a valid
PCP of Proximity oracle for theorem ((z, r, t), (Y ′)) /∈ LP , where Y ′ = ECC(Π) and Π is a program
predicting r. However, Y ′ 6= Y . In this case, due to the δ-soundness of the underlying PCP of
Proximity, and the use of ECC with distance δ, one can show how to relate the probability that P ∗

convinces V , to the probability of finding conflicting queries for the paths of the extractable merkle
tree of Y .

In the following we focus on Case 3. As done before, to re-use the soundness proof shown for
the underlying commit-and-prove protocol, we need to show how to relate the probability of success
of P ∗ in Case 3, to the probability of detecting a collision in Hybrid 1 C.1.1.

Extending Hybrid 1 (Sec. C.1.1). One can use P ∗ to create a collision-forming circuit C as
follows. C runs P ∗ as subroutine, on input x, t (where x /∈ L by assumption), and a randomly
chosen h ∈ H. P ∗ answers with z = (rootY ,VSS-LevY) where rootY is the root of the extendable
merkle tree computed on Y , and VSS-LevY is the vector of views of the depth players sharing the
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size `Y of Y . Then, C sends a randomly chosen r. At this point the public theorem a = (z, r, t) is
computed. P ∗ then commits to the PCPP oracle, and C obtains the pair (rootπ,VSS-LevP) where
rootπ is the root of the extendable merkle tree computed for the PCPP oracle π and VSS-LevP is
the VSS of the size of π. Additionally, C receives PVSS-Witn

1 , · · · , PVSS-Witn
n from P ∗.

Next, C sends a random ϑ, serving to compute the PCPP queries (q1, p1), . . . , (qk, pk) from
Qpcpx(a, ϑ, k). With some non-negligible probability p, over the random choice of (h, r, ϑ) P ∗ has
sent an accepting proof which consists in the corresponding paths for the (indeed, by assumption,
P ∗ convince a verifier with non-negligible probability). Now, C picks i ∈ {1, . . . , n}, hoping that
query (qi, pi) is conflicting. It considers the complete paths pathYqi , and pathπpi open by P ∗ to
answer to such a query. It reconstructs bit Yqi by running Recon([P VSSqi

1 , | · · · |, P VSSqi

n ]pathY ).
Next, to obtain a collision, C rewinds P ∗, up to the point in which P ∗ has committed to rootY and

VSS-LevY, and plays with r′ (with probability 1− 1/2n r 6= r′). Set a′ = (z, r′, t). Note that z has
not changed. Then it obtains a commitment to a new PCP oracle, and using the efficient sampling
algorithm associated to the PCP of Proximity, it compute ϑ′ so that (qi, pi) = Qpcpx(a, ϑ

′, i). It then
obtains again the completes paths pathY′qi , pathπ′pi for such a query. If the answer is accepting,
then C reconstructs the bit of Y ′qi as before.

Now since r 6= r′, it must be the case that Π 6= Π′. Consequently, codewords Y = ECC(Π)
should differ from Y ′ = ECC(Π′) in a constant number of position (given that |Y | = |Y ′|). Since i
was randomly chosen, then with non-negligible probability i is one of the positions in which Y and
Y ′ differ.

The remaining part of the proof follows the same arguments shown in Sec. C.1.

E.2 Zero Knowledge

We show a PPT straight-line ZK simulator Sim for Protocol 2. Sim works as follows. In the trapdoor
generation phase it commits to the code of V ∗. Namely it computes z = BBCom(ECC(V ∗)). This is
in contrast with the prover who commits to 0n. When receiving r from V ∗, set the public theorem
to be (z, r, t).

In the proof phase Sim computes the PCPP proof π for the public theorem (z, r, t), and with
witness V ∗. Formally proving (a = (z, r, t), (ECC(V ∗)) ∈ LP . This is in contrast with the prover
who commits to 0n. Finally, it runs VSS-WI on string 0|w|, instead of the real witness. Again, this
is in contrast with the prover who commits to the witness w. When executing BBProve, Sim uses
the witness ECC(π), π to prove that φ-ZK is true, instead of using the fact that (x,w) ∈ RL. The
difference between Sim and P lies in the strings that are committed using the commit-and-prove
protocol. Indeed, Sim commits to the triple: (ECC(V ∗), π, 0n) while P commits to: (0n, 0n, w).

Note that here we are using the extension of the commit-and-prove protocol over multiple strings,
namely Protocol 4. In order to prove indistinguishability of the transcript generated by Sim, we
essentially have to prove that also Protocol 4 is WI.

In the following we prove that Witness Indistinguishability of Protocol 2 follows from the IND-
SO-COM security of the underlying commitment scheme and the perfect t-privacy of the MPC
protocols in use.

E.2.1 Witness Indistinguishability under Multiple Oracles.

Let w0 = (0n, 0n, w) be the witness used by the honest prover P , and w1 = (ECC(V ∗), π, 0n), the
witness used by Sim in the simulation. Assume that there exists an adversary V ∗, a distinguisher
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D such that:

AdvWI = Prob[D(φ-ZK, z, 〈P (w0), V ∗(z)〉 = 1]− Prob[D(φ-ZK, z, 〈Sim(w1), V ∗(z)〉 = 1] ≥ ε

We turn V ∗ into an adversary Asoa of the underlying commitment scheme that is IND-SO-COM
secure.

The proof is structured in the real world, the simulated worlds, and 3 intermediate hybrids. In the
real world, which is Hybrid 0, Sim plays the protocol with triple: (0n, 0n, w). In the simulated world,
which is Hybrid 4, Sim plays the protocol with triple: (ECC(V ∗), π, 0). The crucial property that
it allows us to move from one hybrid to another exploiting V ∗ distinguishing advantage, is the fact
that φ-ZK is true in all hybrids. (Specifically, φ-ZK(ECC(V ∗), 0n, w) is true; φ-ZK(ECC(V ∗), π, w)
is true; φ-ZK(ECC(V ∗), π, 0) is true).

Hybrid 1. In this hybrid Sim1 runs BBCom(ECC(V ∗)) in the trapdoor generation phase. Then in
the proof phase it commits to 0n running BBCom(0n) and to the witness for (x,w) ∈ RL, running
VSSCom(w).

Assume that V ∗, a theorem x and a distinguisher D, so that D is able to distinguish Hybrid 1
from Hybrid 0 with non negligible probability. We construct Asoa trying to break the IND-SO-COM
security of the underlying commitment scheme.
Overview of the reduction. Asoa, on input V ∗, (x,w) computes witnesses w0 = (0n, 0n, w) and
w1 = (ECC(V ∗), 0n, w). Then it emulates the prover to V ∗ as follows. In the trapdoor generation
phase Asoa does not compute the commitments for BBCom() by itself, but it forward messages
ECC(V ∗) and 0n to the sampling algorithm M and receives the commitments from the IND-SO-
COM experiment. Such commitments are parsed as an extendable merkle tree, with additionally
one execution of MPC-in for each node of the tree. Note that instances of MPC-φ are computed
directly by Asoa. As we explain later, because property φ-ZK is computed over multiple string, Asoa

in principle cannot compute such views without knowing the views for the tree computed by the
IND-SO-COM experiment. Here the statistically hiding of the underlying commitment scheme (and
thus only computational binding) comes in handy. Indeed, Asoa will commit to zero strings instead
of views of MPC-φ. Then, when receiving all the openings from IND-SO-COM, Asoa will break the
binding of its own commitments so that the views of MPC-φ’s players are consistent with the views
opened by IND-SO-COM experiment.

As shown already in Sec. C.2, to describe the attack of Asoa to IND-SO-COM security we need
to describe the sampling algorithmM, the re-sampling algorithmM|MI , and the strategy of Asoa.

Sampling Algorithm M. Let κ be the size of the longest string between w0 = ECC(V ∗) and
w1 = 0n.

The sampling algorithm takes as input z′ = (w0, w1, κ, h) and N = poly(κ), and it computes
the tree for wb, for a randomly chosen b, running BuildRealTree(wb, h). Then it extends the real tree
so that it reaches the length |κ| (unless |wb| = κ). For each node, the sampling algorithm prepares
views of MPC-in.

Finally, M outputs M, which consists of all nodes and labels of the real tree, fake nodes (in
case the witness chosen was shorter that κ). Additionally it contains executions of MPC-in for each
node. Finally it runs depth for the size of the real tree. The last message of M is the bit b chosen
above. The vector M is sent to the IND-SO-COM experiment.
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Re-sampling AlgorithmM|MI. As it is clear, the commitments obtained by Asoa will be parsed
as commitments nodes (and instances of MPC-in) of the tree representing wb. In the reduction, Asoa

(following the malicious V ∗) will ask for the opening of t views for some nodes and some MPC-in
computed by the sampling algorithm. The views that Asoa will receive are denoted by the set MI .
Then Asoa expects to get from the experiment the remaining n−t views (without the decommitment
information).

The re-sampling algorithm computes the remaining n − t views as follows. M|MI picks a
random bit σ, and on input the views already opened in MI tries to compute the remaining views
(i.e., M∗|MI) so that they are consistent with string wσ. This is possible due to the perfect t-privacy
of the MPC used to compute the extendable merkle tree and MPC-in.

The adversary Asoa. The adversary Asoa essentially tries to simulate Hybrid 0/ Hybrid 1 to V ∗

using the commitments respectively of 0n or ECC(V ∗) received from the IND-SO-COM experiment
(and later the openings too).

Asoa, on input h received from V ∗ sets z′ = (w0 = 0n, w1 = ECC(V ∗), κ, h) and activated the
sampling algorithmM. The sampling algorithm computes the vector of plaintext M and IND-SO-
COM produces the corresponding vector of commitments C and sent them to Asoa. Asoa forwards
to V ∗ only the commitment of the root and of depth and obtain the random string r. Then Asoa

computes BBCom(h, 0n) and views VSS-WI = P VSS-Wit
1 , · · · , P VSS-Wit

n by running VSS-Witn(Share, w).
In the Proof phase, V ∗ sends queries IM = {IM1 , . . . , IM`d }, and I

π = {Iπ1 , . . . , Iπ`d}. From C, Asoa

selects the committed paths corresponding to the queries in IM along with the commitment of
the executions of MPC-in. Note that the real tree obtained from IND-SO-COM experiments has
length |κ|. Thus, for the queries in sets {IM`κ , . . . , I

M
`d
}, Asoa extends the paths so to reach the

length dictated by the queries, by sending commitments of 0. Later Asoa will open the correct views
accordingly by breaking the binding of its own commitments

For the queries in Iπ it computes the paths by itself. Finally, for each query Asoa computes
instances of MPC-φ by committing to all zeros.

Then, when V ∗ picks the t positions p1, . . . , pt to be opened for each node and MPC, Asoa

computes the set of indexes I to play in the IND-SO-COM experiment accordingly. Namely, such
that it obtains the openings for t views for each node (and MPC-in) on the paths previously forwarded
to V ∗. Asoa obtains from the experiment the openings for the selected views. Additionally, Asoa

receives the vector M containing the views of all the nodes in the clear, but without decommitment
information. Using views in M, Asoa finally computes the correct views for MPC-φ and opens
the previous commitments according to such views by breaking the computational binding of the
scheme.

By looking at M Asoa obtains the witness that is claimed to be used to compute the real path,
let us denote it by wb∗ .

When V ∗ terminates, Asoa runs the distinguisher D. Let b the output of D. Asoa then outputs
b∗ ⊕ b.

When Asoa is running in the real world, then Asoa is simulating Hybrid 0 or Hybrid 1 (according
to the bit chosen byM) identically, thus the output of Asoa relates to the advantage of AdvWI +1/2.
When Asoa is running in the ideal world, the bit b∗ is randomly chosen, thus the output of Asoa is
also a random bit.
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Hybrid 2. In this hybrid Sim2 runs BBCom(ECC(V ∗)) in the trapdoor generation phase. Then in
the proof phase it computes a valid PCPP proof π and commits to it running BBCom(π) and to the
witness for (x,w) ∈ RL, running VSSCom(w). The difference between Hybrid 1 and Hybrid 2 is in
the value committed in the second execution of BBCom. In Hybrid 1 Sim1 runs the protocol with
strings w0 = (ECC(V ∗), 0n, w) while in Hybrid 2, Sim2 uses strings w1 = (ECC(V ∗), π, w), where π
is a valid PCPP proof.

Assume that V ∗, a theorem x and a distinguisher D, so that D is able to distinguish Hybrid 1
from Hybrid 2 with non negligible probability. We construct Asoa trying to break the IND-SO-COM
security of the underlying commitment scheme.

Sampling Algorithm M. Let d be the size of the longest string between w0 = 0n and w1 = π.
The sampling algorithm takes as input z′ = (w0, w1, d, h) and N = poly(d), and it computes the
tree for wb, for a randomly chosen b, running BuildRealTree(wb, h). Then it extends the real tree
so that it reaches the length `d (unless |wb| = d). For each node, the sampling algorithm prepares
views of MPC-in.

Finally, M outputs M, which consists of all nodes and labels of the real tree, fake nodes (in
case the witness chosen was shorter that d). Additionally it contains executions of MPC-in for each
node. Finally it runs depth for the size of the real tree. The last message of M is the bit b chosen
above. The vector M is sent to the IND-SO-COM experiment.

Re-sampling AlgorithmM|MI. The re-sampling algorithm computes the remaining n−t views
as follows. M|MI picks a random bit σ, and on input the views already opened in MI tries to
compute the remaining views (i.e., M∗|MI) so that they are consistent with string wσ. This is
possible due to the perfect t-privacy of the MPC used to compute the extendable merkle tree and
MPC-in.

The adversary Asoa. The adversary Asoa simulates Hybrid 1/ Hybrid 2 to V ∗ using the commit-
ments respectively of 0n or π received from the IND-SO-COM experiment (and later the openings
too).

In order to do that, Asoa, on input h first compute BBCom(h,ECC(V ∗)), then it computes
VSS-WI = P VSS-Wit

1 , · · · , P VSS-Wit
n , by running VSSCom(w). Asoa sends z′ = (w0 = 0n, w1 = π, d, h) to

the sampling algorithm of IND-SO-COM experiment.
Then, Asoa receives the commitments C from the experiment, which correspond to the real

tree computed for wb. Asoa forwards to V ∗ only the commitment of the root and of depth and
obtain the random string r. In the Proof phase, V ∗ sends queries IM = {IM1 , . . . , IM`d }, and I

π

= {Iπ1 , . . . , Iπ`d}. From C, Asoa selects the committed paths corresponding to the queries in Iπ,
along with the commitment of the executions of MPC-in. Note that the real tree obtained from
IND-SO-COM experiments has length |κ|. Thus, for the queries in sets {Iπ`κ , . . . , I

π
`d
}, Asoa extends

the paths so to reach the length dictated by the queries, by sending commitments of 0. Later Asoa

will open the correct views accordingly by breaking the binding of its own commitments. The paths
for the indexes in IM are computed by Asoa directly. Asoa also computes instances of MPC-φ by
committing to zero strings.

Then, when V ∗ picks the t positions p1, . . . , pt, Asoa computes the set of indexes I to play in the
IND-SO-COM experiment accordingly. Namely, such that it obtains the openings for t views for
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each node (and MPC-in) on the paths previously forwarded to V ∗. Asoa obtains from the experiment
the openings for the selected views.

Additionally, Asoa receives the vector M containing the views of all the nodes in the clear, but
without decommitment information. Using the opened views Asoa is able to compute the correct
views for MPC-φ, and is able to open the previous commitment according to such new views by
breaking the computational binding of the commitment scheme.

By looking at M Asoa obtains the witness that is claimed to be used to compute the real path,
let us denote it by wb∗ . When V ∗ terminates, Asoa runs the distinguisher D. Let b the output of D.
Asoa then outputs b∗ ⊕ b.

When Asoa is running in the real world, then Asoa is simulating Hybrid 1or Hybrid 2 (according
to the bit chosen byM) identically, thus the output of Asoa relates to the advantage of AdvWI +1/2.
When Asoa is running in the ideal world, the bit b∗ is randomly chosen, thus the output of Asoa is
also a random bit.

Hybrid 3. In this hybrid Sim3 runs BBCom(ECC(V ∗)) in the trapdoor generation phase. Then in
the proof phase it computes a valid PCPP proof π and commits to it running BBCom(π). Instead
of committing to the witness, Sim3 commits to 0n running VSSCom(0n).

The difference between Hybrid 2 and Hybrid 3 is in the witness committed in VSS-WI. In Hybrid
2 Sim2 commits to a valid witness w while in Hybrid 3, Sim3 commits to the string 0n. (Namely Sim2
plays with the triple w0 = (ECC(V ∗), π, w), while Sim3 plays with triple w1 = (ECC(V ∗), π, 0n).)

Assume that V ∗, a theorem x and a distinguisher D, so that D is able to distinguish Hybrid 1
from Hybrid 2 with non negligible probability. We construct Asoa trying to break the IND-SO-COM
security of the underlying commitment scheme.

Sampling Algorithm M. Let w0 = w and w1 = 0n.
The sampling algorithm takes as input z′ = (w0, w1) and N = poly(n), and it computes the tree

for wb, for a randomly chosen b, running VSSCom(wb). and outputs M =PVSS-WI
1 , · · · , PVSS-WI

n , b.
The last message of M is the bit b chosen above. The vector M is sent to the IND-SO-COM
experiment.

Re-sampling AlgorithmM|MI. The re-sampling algorithm computes the remaining n−t views
as follows. M|MI picks a random bit σ, and on input the views already opened in MI tries to
compute the remaining views (i.e., M∗|MI) so that they are consistent with string wσ. This is
possible due to the perfect t-privacy of the VSS VSS-Witn used in VSSCom.

The adversary Asoa. The adversary Asoa simulates Hybrid 2/ Hybrid 3 to V ∗ using the commit-
ments respectively of w and 0n received from the IND-SO-COM experiment (and later the openings
too).

In order to do that, Asoa, computes BBCom(ECC(V ∗)) and after having received r from V ∗,
it computes a valid PCPC proof π and commits to it running BBCom(π). Then it obtains the
vector C from the experiment IND-SO-COM, where C consists of n commitments for the views of
VSS-Witn’s players, and forward them to V ∗.

In the Proof phase, V ∗ sends queries IM = {IM1 , . . . , IM`d }, and I
π = {Iπ1 , . . . , Iπ`d}. Asoa prepares

the paths for such queries and additionally it prepares instances of PCPVer by committing to zero
strings.
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Then, when V ∗ picks the t positions p1, . . . , pt to be opened for each node and MPC, Asoa

computes the set of indexes I to play in the IND-SO-COM experiment accordingly. Thus it receives
views PVSS-WI

p1
, · · · , PVSS-WI

pt . Additionally, Asoa receives the vector M containing the remaining
(n−t) views of all VSS-WI but without decommitment information. Asoa use such views to correctly
compute views of instances MPC-φ. Then it opens the previous commitments of MPC-φ according
to such views by breaking the computational binding of the underlying commitment scheme.

By looking at M Asoa obtains the witness that is claimed to be used to compute the real path,
let us denote it by wb∗ . When V ∗ terminates, Asoa runs the distinguisher D. Let b the output of D.
Asoa then outputs b∗ ⊕ b.

When Asoa is running in the real world, then Asoa is simulating Hybrid 2 or Hybrid 3 (according
to the bit chosen byM) identically, thus the output of Asoa relates to the advantage of AdvWI +1/2.
When Asoa is running in the ideal world, the bit b∗ is randomly chosen, thus the output of Asoa is
also a random bit.

Hybrid 3 corresponds to the simulated transcript.
The following Lemma is therefore proved.

Lemma 4. If SHCom is a IND-SO-COM-secure commitment scheme, if VSS-Witn,VSS, depth are
perfect t-private VSS and MPC-in,MPC-φ are perfect t-private MPC protocol, then Protocol 2 is
statistical Zero Knowledge.

F Generalized Size-Hiding Black-Box Proof of Set Membership

In this section we describe in details our construction of Generalized BB Proofs of Set Membership.
In this section we use the word index in place of element. Namely, we say that the verifier sends

index i, to mean that the verifier wants to check if the element i is not empty in the database. We
use this nomenclature just because it seems more intuitive when used in conduction with accessing
nodes of a Merkle Tree.

F.1 Overview of the construction

In size-hiding black-box proofs of membership, a prover P commits to a sparse set D (sparse means
that there exist indexes i for which D[i] = ⊥). In this setting we do not want to consider any
polynomial upper bound on the size of the set. As such, a verifier can query an index i in the
set [2poly(n)]. At the same time a prover has a finite set and supports only indexes belonging to a
certain range [2maxIndSize]. In addition to hiding the size of D, namely the number of elements that
D actually contains, here we want to hide even the range of the indexes that P is able to answer.

In the proof phase, the verifier challenges P with an index i ∈ [2poly(n)]. P then proves whether
the position i in D is not empty. From such proof V learns the following. If i hits a YES instance,
then V learns that P supports indexes of length ≥ |i|. If i hits a NO instance, then V learns only
that D[i] is empty, without learning anything about the size of the set D and the range of indexes
that P supports.

We next show how Idea 1 and Idea 2 behind the extendable Merkle Tree are used to implement
size-hiding BB proofs of membership. Let us setup some notation. A prover P supports range k,
means that its set contains element in the range [2k]. In this setting we assume that an index is
always in its shortest bit representation (e.g., an index 0110 it is always cut as 110).
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In the commit-and-prove setting, P has a full string and when challenged with a set of indexes,
it proves that for those indexes the property is satisfied. In the proof of membership setting, P
has a sparse set, and when challenged with an index, it proves whether the set contains such index.
Thus, the first difference between the two setting is that in the latter, because the set is sparse and
potentially huge, P cannot afford to compute the complete tree as before, but it should compute
only the paths for non-empty leaves. The second difference is that, when proving membership P
should be able to provide proofs for NO-instances.

The most important challenge in this setting though, is that the range of the indexes supported
by the prover must remain hidden. This becomes problematic when proving YES-instances for
short indexes, due to the way merkle trees are built. The reason is the following. A merkle tree
is constructed by arranging all the elements on the leaves, and building up paths till the root.
Thus, only leaves carry information about the set. Any internal node instead carries only control
information. Namely they store values that enable checking of consistency (i.e., the hash values). It
follows that, to prove any property wrt an element of the set, P must show a path from the root to
the leaf. Now, if P supports all queries in the set 2k, in order to represent all the elements, it must
arrange them on a tree of depth k. In particular, if V asks a proof for an element in position i with
|i| << k, P can only open a path which is at least of depth k. The problem of this approach is that,
because all the elements of the set are arranged at level k, the length of the path for a YES-instance
depends on the range k.

We need to construct a merkle tree such that, for any index i, the length of the path opened to
prove membership of such index depends only on i (and is independent of k).

We do this by building the merkle tree in the following way. P places the actual elements of
the set in every level of the tree and not only on the leaves. Namely, level i of the tree contains
the non-empty elements for indexes in 2i. Consequently here also internal nodes carry actual value
information (along with the control information necessary for the consistency of the tree). Note
that, along a path from a YES instance to the root, there can be nodes which are not in the set (they
are NO-instances). As we shall see later, such nodes will carry only control information necessary
to prove consistency. This new technique allows us to open paths for YES-instances for indexes
which are shorter then the range supported by P , without revealing anything about the range. For
indexes which are longer than the range support, we allow P to provided extended paths, using
same techniques as before.

In the following we outline the main differences with the previous construction of the extendable
merkle tree. Detailed explanations are provided in App. F. Let D be the sparse set that P is
committing to, and let T be the length of maximum index in D.
Building the tree.
- Node representation. Any node i carries two types of information: control information, is the

label l as before; value, is the value of the element in position i, and belongs to the set
{D[i],⊥, dead}, where ⊥ denotes the fact D[i] = ⊥ but node i is an active node on the path
(it has children); dead means that D[i] = ⊥ and node i is a dead node on the path.
A node in position i here is again a pair [li,VSSi], the only difference is that now the VSS
part is secret sharing a pair Vali = [li, vi], where v ∈ {D[i],⊥, dead}. The membership proof
is tested only over Val[2].

- Tree Construction. To build a tree, P arranges the elements of D according to their index.
Namely, at any level j it arranges elements in D with index |γ| = j and computes the nodes
accordingly (i.e., it compute Valγ = [lγ , D[γ]] for yes instances, and Valγ = [lγ , dead] for
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siblings which are NO-instances). Given the nodes at level j, P builds the level j − 1 by first
creating nodes for the elements D[γ′] with γ′ ∈ {0, 1}j−1, and then creating the remaining
nodes at level j−1 which are on the paths from nodes of the level below, by computing Valγ

′
=

[lγ
′
,⊥].

Verifier’s Challenge. V sends an index i ∈ [2n]. Because there is no upper bound over the size
of the set, V can ask for any index in any exponentially large set.
Functionalities. Finnode. Finnode is computed only for YES-instance. Thus, for a node γ, after
obtained value Val from the reconstruction of VSSγ , Finnode first check Val[1] to check that the innode
property holds. Then it checks that Val[2] 6 dead. Indeed, a dead node cannot be on the path for a
YES-instance. FYES. For a node γ, [lγ ,VSSγ ], functionality FYES runs the reconstruction of VSSγ ,
obtains the value Val and outputs 1 iff Val[2] /∈ {⊥, dead}.
Proof of YES-instance. If D[i] 6= ⊥, then it does exist a real path from the root to D[i].
Therefore, P roughly follows the same procedure used in BBProve and opens a path of length i. It
runs MPC-Yes only for the node in position i.
Proof of NO-instance. If D[i] = ⊥ OR i > T then P must prove that the i-th value is not
present in the set. There are two cases:
1. node i exists already in the real tree because is on the path of an existing node (e.g., if node

110 is in the database, then also node 11 must exist even if D[3] = ⊥). In this case, P has to
prove that there exists a real consistent path from the root of node i, and that Vali[2] = ⊥.

2. node i is not in the real tree. In this case i, P builds a fake path from i up to the first “dead”
node at position j (with |j| < |i|) in the real tree which is on the path from i to the root.
The consistency requirements is that 1) the path from root to node j − 1 is consistent; 2)
node j is dead (i.e., Valj [2] = dead). Thus for NO-instances P runs an MPC-in-the-head for
a functionality FNO (Fig. 12), which takes as input a path, and outputs 1 iff both conditions
1) and 2) hold.

Underlying Commitment Scheme. As we are constructing ZK proof of membership, here we
need a commitment scheme which is SOA-secure under the simulation based definition. We use the
simulation based BB SOA-secure scheme presented in [ORSV13].
Multiple Queries. To handle multiple queries both P and V must be stateful. They have to
remember the paths opened so far. If this was not the case, then for each query P will open
different views for the same path, and privacy is violated.
MPC-in-the-head in use. Here we use 4t-private, t-correct MPC-protocols. The reason is that
here V is allowed to make multiple queries. Therefore, a node might appear along the path for
several queries. In such a case, new MPC-in-the-head are run for the same node, and a new subset
of t views must be open to convince the verifier (note that for soundness, it cannot be the case
that P opens the same views for every request). The observation here is that, because we are in a
binary tree the same node can be used to prove at most 2 paths. More explanations are provided
in App. F.2.

F.2 The protocol

In the following we use the shorter notation Share(value) to denote VSS(Share, value).
Procedure BuildSparseTree. On input a sparse set D of maximum range maxIndSize, and a hash
function h.

Leaves. For every index i such that |i| = maxIndSize and D[i] 6= ⊥; compute VSS part of node i
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as follows. [P VSSi

1 , . . ., P VSSi

n ] ← Share(0n|D[i]). Let VSSi = [P VSSi

1 , . . ., P VSSi

n ].

Level j. For j = maxIndSize− 1 to 1:

• Compute nodes for element in D. For every γ such that |γ| = j and D[γ] 6= ⊥, compute:

– Label part.
- Case 1. If node γ0 and γ1 both exist. lγ = [h(PVSSγ0

1 | . . . |h(PVSSγ1

n )];
- Case 2. If node γb exists and γb̄ does not exists. Compute VSSγb̄ = [P VSSγb̄

1 , . . .,
PVSSγb̄
n ] ← Share(dead|0n). lγ = [h(PVSSγ0

1 | . . . |h(PVSSγ1

n )];
- Case 3. If node γ0 and γ1 do not exist. lγ = 0n.

– VSS part. Compute VSSγ = [P VSSγb̄

1 , . . ., PVSSγb̄
n ] ← Share(lγ |D[γ]|).

• Compute empty nodes which are ancestors of non-empty nodes. Let γ be a node at level
j which is an ancestor of a non-empty node. This means that node γ has both children
γ0 and γ1. Compute Label as Case 1. Compute VSS part as follows. VSSγ = [P VSSγb̄

1 ,
. . ., PVSSγb̄

n ] ← Share(lγ |⊥). Note, an empty node on a real path is stored with symbol ⊥
and not dead. This means that even if such node is empty, as it is on the path of same
YES-instance, it it still must be consistent.

Protocol 6 (Generalize BB Proofs of Set Membership). P has in input a possible sparse database
D which contains range maxIndSize.

Commitment of the Database. V sends a randomly chosen h ∈ H to P . P runs db ← SOAcom
(BuildSparseTree(h,D,maxIndSize)). Send db to V .

Proof First Query. V sends query q1 to P .

- Commitment of proof starting from nd = root.
1. Case 1. YES-instance: D[q1] = v.

(a) Retrieve the path from the node nd to node q1.
(b) For each node on the path from q1 up to nd, run MPC-DBInnode to prove con-

sistency of the node.
(c) For node q1 run MPC-Yes on public input v.
(d) Send to V , the value v, commitments of each node of the path, one execution

of MPC-DBInnode for each node on the path (starting from node nd), and the
execution MPC-Yes for the node in position q1.

2. Case 2. NO-instance which is part of the real tree: D[q1] = ⊥.
(a) Retrieve the path from the node nd s to node q1.
(b) Run protocol MPC-No over the nodes belonging to the path starting from node

nd.
(c) Send to V , the value ⊥, commitments of each node of the path and of MPC-No.

3. Case 3. NO-instance which does not exist: D[q1] = ⊥. In this case P computes a
fake path till position q1 and then prove that q1 is a NO-instance as is case 2. The
path is computed as follows. Let j be the first node along the path between the node
nd and node q1 which belongs to the real tree (i.e., which actually exists). Computes
the node as follows.
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(VSS part) For each node γ along the path from j to q1 compute the VSS part,
denoted by VSSγ = P VSSγ

1 , . . ., P VSSγ

n ← Share(0n, dead). Namely, construct a
dead node.

(Label) For each node γ along the path from j to q1 compute label as lγ = [h(P VSSγ0

1 )|
. . . |h(P VSSγ1

n )].
- Challenge. V randomly chosen players p1, . . . , pt and send them to P . P opens the re-

quested views for each node of the path, and each MPC-in-the-head committed previously.
- Verification. V performs the following checks.

YES-Instance
1. Check Hash Consistency. For each node i, check that the values opened for the label

is the hash of the correspondent views. Namely, check that li[pj ] = h(P VSSi0

pj ) and
li[pj + n] = h(P VSSi1

pj ) (for j = 1, . . . , t).
2. Check Consistency of Nodes (innode property). This property is checked for all nodes

on the path (except for the leaf). For each player PDbinnodei
pj of MPC-DBInnode checks

that: 1) input consistency: check that player PDbinnodei
pj plays with input the view

of the correspondent player in VSSi and the pj-th hash of the label associated to
such node. Namely, the input consists of the values li[pj ], li[pj + n], P VSSi

pj . 2)
View Consistency. Check that the views of all t players are consistent. 3) Output
correctness. Check that the output of all the revealed views is 1.

3. Check Membership: i.e. D[q1] = v. This property is checked only for node q1. Check
view of players P YES

p1
, . . . , P YES

pt as follows. Input: check that P YES
pj has in input the view

P VSSq1

pj and the value v, for j = 1, . . . , t. View Consistency. Check that the views of
all t players are consistent. Output: check that all t players output 1.
If any of this check fails, abort.

NO-Instance
1. Check Hash Consistency. For each node i, check that the values opened for the label

is the hash of the correspondent views. Namely, check that li[pj ] = h(P VSSi0

pj ) and
li[pj + n] = h(P VSSi1

pj ) (for j = 1, . . . , t).

2. Check NON-membership. For each player PMPC-Noi
pj of MPC-No checks that: 1) input

consistency: check that player PMPC-Noi
pj plays with input the view of the correspon-

dent player in VSS for every node on the path, and the corresponding label value.
Namely, the input consists of the values: li[pj ], li[pj + n], P VSSi

pj for i = 1 to i = q1.
2) Views consistency. Check that the opened views are consistent with the honest
execution of the protocol and with each other. 3) Output correctness. Check that the
output of all the revealed views is 1. If any of this check fails, abort.

Proof i-th Query. V sends query qi to P .

• Case YES-instance. If D[qi] = v. Consider the longest path from the root to node qi that
has been opened for a YES-instance. Let qprev the last node over such path. Follow the
same procedure shown for the first query case, but set nd = qprev.
• Case NO-instance. If D[qi] = ⊥. Consider the longest path from the root to node qi that
has been opened for a YES-instance OR NO-instance. Let qprev the last node over such
path. Run same procedure as for first query setting nd = qprev.
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Functionality FYES.
This functionality is computed for a node q.
Public Input: Index of the leaf q, claimed value D[q]

• Input. From player Pj obtains input P VSSq

j .

• Computation. Run Valq= [lq, v′] ← Recon(P VSSq

1 , | · · · |, P VSSq

n ). If v′ = v output 1 to all
players. Else output 0 to all players.

Figure 10: The FYES functionality.

Functionality Fdb
innode.

This functionality is computed for a node γ.
Public Input: Index of the node γ.

• Input. From player Pj obtains input P VSSγ

j , lγ [j], lγ [j + n].

• Computation. Check the innode property.

– run Valγ= [lγ , v′] ← Recon(P VSSγ

1 , | · · · |, P VSSγ

n ).

– If lγ = lγ [1]| . . . |lγ [2n] AND if v′ 6 dead output 1 to all players.

– Else, output 0 to all players.

Figure 11: The Fdb
innode functionality.

Observations.

1. YES-instance paths. Any node on a YES-instance path is consistent, i.e., the innode property
holds.

2. NO-instance paths. A node on a NO-instance path is not necessarily consistent.

3. We do not need to commit to the size of the tree in advance. The reason is that for YES-
instances we always open real paths. For NO-instances the flag that allows to cheat is the first
dead node along the path. Thus, it is sufficient to have one dead node to extend any path to
any arbitrary length.

The need of MPC with 4t-privacy. When multiple queries are allowed, a node (which is essentially a
VSS execution) can be along the path of multiple queries, thus involved in multiple proofs, and for
each independent proof V will ask to open t freshly selected players. In our construction, a node at
position i can be involved in at most: 1) one NO-proof, 2) one YES-proof, 3) one hash consistency
because is on the path of some query j with j > i; and 4) one (YES/NO) proof when node i is the
node which is actually queried. Therefore, for a node P will have to show at most 4t values.
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Functionality FNO.
This functionality is computed nodes on the path from node nd to node q.
Public Input: Index of the starting node nd, index of the leaf q.

• Input. From player Pj obtains input P VSSγ

j , lγ′ [j], lγ′ [j + n], for γ = nd to γ = q, for γ′ = nd
to γ′ = q/2.

• Computation. Check the innode property. For γ = nd to γ = q/2.

– run Valγ= [lγ , v] ← Recon(P VSSγ

1 , | · · · |, P VSSγ

n ).

– If lγ = lγ [1]| . . . |lγ [2n], continue.

– Else, if v = dead, break.

– Else, output 0 to all players. (In this case, γ is a node that it is non consistent and not
dead. Note that a node in which v = ⊥, still must be consistent).

Run Valγ ← Recon(P VSSq

1 , | · · · |, P VSSq

n ). If Valγ [2] ∈ ⊥, dead output 1 to all players. Else,
output 0 to all players.

Figure 12: The FNO functionality.

F.3 Soundness

Soundness follows from the collision resistance property of the hash function, the binding of the
underlying commitment scheme and the t-correctness of the VSS and MPC protocol being used.

Assume that there exists a PPT malicious prover P ∗ which outputs a commitment cmDb, and
a query q for which P ∗ opens two accepting proofs (π1

q , v
1
q ) and (π2

q , v
2
q ) and v1 6= v2. The proof of

divided in two cases.

Case 1. π1
q and π2

q are both YES-proofs. We consider the following hybrids.
Hybrid 1. In Hybrid 1 the prover sends everything in the clear. In this hybrid to prove that q is a
YES-instance and that D[q] = v, P simply sends the path pathq from the root till node q. Namely,
a YES-proof πq in this hybrid consists of each node i, [li,VSSi] (recall that VSSi = P VSSq

1 , | · · · |,
P VSSq

n ) which is on the path from the root to node q. A YES proof is accepting if, for each node
i, it holds that (hash consistency) li corresponds to the hash of VSSi0,VSSi1 and that (Dbinnode
property) li is the value obtained when running Recon(P VSSi

1 , | · · · |, P VSSi

n ) and that it is not a dead

node. Because everything is in the clear, V checks both property on its own.
Now assume that P is able to compute π1

q = path1
q and π2

qpath2
q = such that

(l1, v
1
q )← Recon([P VSSq

1 , | · · · |, P VSSq

n ]path1
q
)

and
(l2, v

2
q )← Recon([P VSSq

1 , | · · · |, P VSSq

n ]path2
q
)

but v1
q 6= v2

q .
It follows that [VSSq]path1

q
6= [VSSq]path2

q
in at least (n− 4t) positions (as it was already shown in

Lemma 1). Because path1
q and path2

q share the same root, and because Dbinnode property holds, it
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must be the case the there exists a node i, such that [li]path1
q
=[li]path2

q
but [VSSib]path1

q
6= [VSSib]path2

q
,

for a bit b ∈ {0, 1}. Namely, for a node i on the path, the label li is the same in both path1
q and

path2
q , but at least one of the children between i0 and i1, values [VSSib]path1

q
and [VSSib]path1

q
differ

in at least (n − 4t) views in the two paths. Thus, we found a collision, hence contradicting the
collision resistance of family H.

Hybrid 2. In this hybrid the prover sends everything in the clear, but the verifier V refrains to
look to all views of the nodes and checks only t views. Hence, P additionally sends execution of
MPC-DBInnode for each node of the path, and MPC-Yes for node q.

In this hybrid a YES-proof consists of: 1) t views for every node on the path from root to q; 2)
t views for each execution of Dbinnode (one for each node); 3) t views for the execution of MPC-Yes
for node q. A YES-proof is accepting if: for each node i (hash consistency), li[pj ] = h(P VSSi0

pj ) and
li[pj +n] = h(P VSSi1

pj ); (Dbinnode property): t views of MPC-DBInnode’s players pass the verification
step of the protocol; (membership): t views of MPC-Yes’s players pass the verification step of the
protocol. Note that in this hybrid P ∗ does not know which views are tested.

The difference between Hybrid 1 and Hybrid 2 is in fact that the consistency of the node and
the validity of the proof is proved using MPC-in-the-head instead of being verified directly by V .
This, in this hybrid we use the t correctness of the MPC protocols being used to argue that P ∗ has
no better advantage of cheating in hybrid 2 wrt hybrid 1.

A bit more in details, assume P ∗ provides accepting (π1
q , v

1
q ) and (π2

q , v
2
q ).

Due to the t-correctness of protocol MPC-Yes (recall that MPC-Yes implements FYES, and the
task of FYES on input v, is to check that the VSS part of node q reconstructs to value v), whp it
holds that:

(l1, v
1
q )← Recon([P VSSq

1 , | · · · |, P VSSq

n ]path1
q
)

(l2, v
2
q )← Recon([P VSSq

1 , | · · · |, P VSSq

n ]path2
q
)

Hence, given that v1
q 6= v2

q , due to the hash consistency check it follows that parent label lq′ of
node q from path1

q must differ from the one in path2
q in at least (n− 4t), if not we found already a

collision.
Due to the t-correctness of protocol MPC-DBInnode, which guarantees that each node is consis-

tent whp, the above argument can be extended for each level of the path. Therefore, a P ∗ successful
in hybrid 2, can be reduced to a P ∗ successful in hybrid 1.

Hybrid 3. This hybrid is the same as before, except that now the prover sends the commitment to
the YES-proof and later it opens only the t views requested by V . It follows from the binding of the
underlying commitment scheme that a successful P ∗ in hybrid 3 can be transformed in a successful
adversary in hybrid 2.

Case 2. π1
q is a NO-proof and π2

q is a YES-proof. For better clarity, let us define πyesq
def
= π1

q

and πnoq
def
= π2

q . We consider the following hybrids.

Hybrid 1. In this hybrid the prover sends everything in the clear.
In this hybrid, a NO-proof πnoq corresponds to a path from the root to node q. A NO-proof is

accepting if the following holds: (hash consistency) for each node on the path li corresponds to the
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hash of VSS part VSSi0,VSSi1. (Consistency of the path up to the first dead node) Let j be the
first dead node along the path from root to q. Check innode property for all nodes above j. (NO
membership). For node q check that (lnoq , vno)← Recon(VSSq) and vno ∈ {⊥, dead}.

A YES-proof corresponds to the one described in Hybrid 1 for Case 1.
Now assume that P ∗ is able to compute a NO-proof pathno

q and a YES-proof pathyes
q and both are

accepting. Because pathno
q is a NO-proof, than it holds that: vno ← Recon([P VSSq

1 , | · · · |, P VSSq

n ]pathnoq )

and vno ∈ {dead,⊥} Because pathyes
q is a YES-proof, than it holds that: vyes ← Recon([P VSSq

1 , | · · · |,
P VSSq

n ]pathyesq ) vyes /∈ {dead,⊥}. Thus vno 6= vyes.
Now first note that, for a NO-proof the verifier checks that innode property is verified for only

for the nodes on the path from the root to the first dead node. Any node which has a dead node as
ancestor does not have to be consistent. In a YES-proof instead V checks that every node on the
path satisfies the innode property and it is not dead.

Therefore it could have been the case that P ∗ computed a consistent path pathyes
q opening to

vyes for the YES-proof, and a path pathno
q opening to a dead node, exploiting the fact that on a

path leading to a dead node, some nodes can be inconsistent.
The observation is that, even for a NO-proof, an inconsistent node is accepted only after a

dead node was found on the path. Now, because both pathno
q and pathyes

q start from the same
root and end to the node q, and because on a YES-path every node must be not dead, there must
have been a node i along the path such that (lnoi , dead) ← Recon([P VSSi

1 , | · · · |, P VSSi

n ]pathnoq ) while
(lyesi , vi) ← Recon([P VSSi

1 , | · · · |, P VSSi

n ]pathyesq ). Consequently, [VSSi]pathnoq 6= [VSSi]pathyesq in at least
(n− 4t) views, but they have the same parent label in path pathno

q and pathyes
q .

Thus we extract a collision.

Hybrid 2. In this hybrid the verifier only checks t views, thus the prover computes the additional
MPC-in-the-head: Dbinnode,MPC-Yes for the YES-proof, and MPC-No for the NO-proof.

Because the MPC-in-the-head performs the very same tests that V performed by itself in Hybrid
1, and due to the t-correctness of the MPC being used, any P ∗ successful in this hybrid can be
transformed in a P ∗ successful in hybrid 1.

Hybrid 3. In this hybrid the prover first sends a commitment of the YES/NO proof and then opens
t views as requested by V . Due to the binding of the underlying commitment scheme, any P ∗

successful in this hybrid can be transformed in a P ∗ successful in hybrid 2.

F.4 Zero Knowledge

Zero knowledge follows from the simulation based SOA-security of the underlying commitment
scheme and from the 4t privacy of the underlying MPC protocols being used.

The Simulator Sim here will commit to the 0 string in the commitment phase. Then, when
receiving a query q, it obtains the value of D[q] from the experiment. It computes the commitments
required for the type of proof (i.e., YES-proof or NO-proof). For example, if q is a YES-instance,
Sim will compute the commitments for the residual path (i.e., the path contains only nodes that
haven’t been involved in previous YES-proofs so far), the MPC-DBInnode for each node, and finally
one execution of MPC-Yes. Note that, even if D[q] is revealed, still Sim has no information about
the other values, so it cannot actually commit to a valid path or valid MPC executions. Thus,
Sim will compute the commitments for the proof, by running the SOA-simulator granted by the
SOA-security of the commitment scheme.
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Then, when V ∗ sends the positions p1, . . . , pt to be revealed, Sim proceeds as follows. First, it
computes the nodes on the residual path so that the hash consistency is preserved. Each of such
node is just computed as the VSS of the zero string. Obviously for such nodes the Dbinnode property
(or any other property) is not satisfied.

This is not a problem because Sim will compute views of player MPC-DBInnode and MPC-Yes/MPC-No,
by exploiting the knowledge of the t selected players, and running the simulator SimMpc granted
from the perfect 4t-privacy of the MPC protocols being used. Namely, Sim runs SimMpc providing
values P VSSi

pj (for each j ∈ [t]) as the inputs for the t malicious parties, and for output 1. It then
uses the output of SimMpc to set the views of each MPC-DBInnode and MPC-Yes/MPC-No.

With such views so computed, Sim uses the SOA-simulator to equivocate the commitments sent
before.
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