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Abstract. We provide the first standard model construction for a powerful class of Universal Com-
putational Extractors (UCEs; Bellare et al. Crypto 2013) based on indistinguishability obfuscation.
Our construction suffices to instantiate g-query correlation-secure hash functions and to extract
polynomially many hardcore bits from any one-way function.

For many cryptographic primitives and in particular for correlation-secure hash functions all known
constructions are in the random-oracle model. Indeed, recent negative results by Wichs (ITCS 2013)
rule out a large class of techniques to prove the security of correlation-secure hash functions in
the standard model. Our construction is based on puncturable PRFs (Sahai und Waters; STOC
2014) and indistinguishability obfuscation. However, our proof also relies on point obfuscation under
auxiliary inputs (AIPO). This is crucial in light of Wichs’ impossibility result. Namely, Wichs proves
that it is often hard to reduce two-stage games (such as UCEs) to a “one-stage assumption” such
as DDH. In contrast, AIPOs and their underlying assumptions are inherently two-stage and, thus,
allow us to circumvent Wichs’ impossibility result.

Our positive result is also noteworthy insofar as Brzuska, Farshim and Mittelbach (Crypto 2014)
have shown recently, that iO and some variants of UCEs are mutually exclusive. Our results, hence,
validate some of the new UCE notions that emerged as a response to the iO-attack.
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1 Introduction

For many cryptographic primitives, it is easy to construct a secure scheme in the random oracle
model, but it is hard to give a construction in the standard model. For example, correlated-input hash
functions (CIH) which were introduced by Goyal, O’'Neill, and Rao [GOR11], are easy to construct in
the random oracle model, because the random oracle itself is secure under correlated inputs. However,
up to now, no standard-model construction is known, and indeed, a recent black-box separation by
Wichs [Wicl3] explains why it is so hard to construct them. Namely, the security definition of a CIH
involves a pair of adversaries (Aj,.42) and is thus a two-stage game (i.e., the adversary is not a single
algorithm but consists of two separate algorithms). The first adversary samples correlated inputs
(z1,...,2¢). Then a hash key hk is generated and the second adversary with access to hk needs to
distinguish between getting a tuple of random strings and getting the tuple (H (hk,z1), ..., H(hk, z;)).
Now, Wichs employs a meta reduction to show that it is unlikely to have a black-box reduction R
from CIH to a (one-stage) cryptographic assumption such as the decisional Diffie-Hellman assumption
(DDH). Namely, he shows that if such a reduction to DDH exists, then the DDH assumption is wrong.
In his proof, he substantially exploits that the CIH game is a two-stage game. For a black-box reduction
R it must hold that if the reduction R gets access to a pair of oracles (A;,.Az) that break CIH,
then R4142 must also break DDH. Wichs constructs a pair of inefficient adversaries (Aj;,.42) which,
however, can be efficiently emulated using a stateful simulator Sim. That is, the simulator simulates
both adversaries together while sharing state between them. As the reduction cannot distinguish
between the two settings RA142 and R3™ this breaks DDH, and hence, if we believe that DDH is a
hard problem, then such an R cannot exist. Note that Wichs’ proof is not specific to DDH, but rather
applies to any one-stage assumption and presents a substantial barrier to prove security. Moreover,
Wichs’ impossibility result extends to a range of security notions that are specified by two-stage games.

In this paper, we use cryptographic obfuscation techniques to circumvent Wichs’ impossibility result
and achieve security notions that are based on two-stage assumptions. Towards this goal, the key idea
is to combine point-function obfuscation and indistinguishability obfuscation.

POINT AND INDISTINGUISHABILITY OBFUSCATION. A point function p, is a function that returns 1 on
input z and L on all other values. A point function obfuscator under auxiliary input AIPO returns a
point function p <—s AIPO(z) that hides the point = even in case the adversary receives some side-channel
information z about x. More formally, the security of AIPO is defined as security for all computationally
unpredictable distributions D, that is, D outputs a pair (x, z), where x is a point and z is some leakage
that hides 2 computationally. AIPO is secure, if for all computationally unpredictable D, (AIPO(x), z)
is indistinguishable from (AIPO(u), z), where (x, z) - D and u is a uniformly random point. Such
AIPO schemes have been constructed in [Can97, BP12].

While point function obfuscators are obfuscation schemes for a very specific class of functionalities
(namely point functions) Garg et al. [GGH™ 13| have recently revived the study of general obfuscation
schemes with their candidate construction of indistinguishability obfuscation. The notion of indistin-
guishability obfuscation is weaker than VBB-obfuscation—thereby circumventing the impossibility
results of Barak et al. [BGI*T01, BGI*T12]—and says intuitively that, for any two circuits that compute
the same function, their obfuscations are indistinguishable. The publication of the candidate for indistin-
guishability obfuscation by Garg et al. inspired simultaneous breakthroughs for hard problems in various
sub-areas of cryptography [SW14, BCP14, ABG*13, GGHR14, HSW14, BZ14, BST14, GGG™'14] in-
cluding functional and deniable encryption, two-round secure multi-party computation, full-domain
hash, poly-many hardcore bits from any one-way function, multi-input functional encryption and more.



CORRELATED-INPUT HASH-FUNCTIONS. In this paper, we give the first standard-model construction
for g-query CIHs. Our CIH is not only one-way under correlated inputs, but also outputs elements that
are indistinguishable from random. We will compare our notion of q-query CIH with other notions of
CIHs shortly.

On a high-level, our construction is a de facto instantiation of a random oracle. As the behavior of
a PRF is similar to that of a random function, we instantiate the random oracle by securely delegating
a PRF, that is, we obfuscate a PRF with a hard coded key. Indeed, our hash-function construction
only consists of a (puncturable) PRF that is obfuscated via an indistinguishability obfuscator (i0):

Hash Construction: iO(PRF(k,.)) .

Bellare, Stepanovs, and Tessaro (BST; [BST14]) already used this natural construction in the direct
construction of hardcore functions for injective one-way functions from indistinguishability obfuscation.
We will discuss BST and the relation to our our work shortly.

Noteworthy, and we will also come back to this, is that before obfuscating the PRF we need to pad
the circuit to a specific length. This is needed when using indistinguishability obfuscation to move
from one circuit to another one in the security proof and thus the construction must be padded to the
length of the biggest circuit needed within the security proof. Jumping ahead, we note that although
our construction and that of BST look identical on the outside the padding is different. For BST, the
construction needs to be padded differently depending on the size of the one-way function. In turn,
our padding is universal and thus, we yield a universal hardcore function that works for any one-way
function.

CIRCUMVENTING WICHS’ IMPOSSIBILITY RESULT. Although the construction is natural, proving its
security is non-trivial, as the security guarantees of iO do not even allow us to show easily that it is hard
to extract the PRF key. Towards proving the security of our construction, we build on the puncturable
PRF technique by Waters and Sahai [SW14] and combine it with point function obfuscators secure
under auxiliary input (AIPO).

Using AIPOs is crucial to circumvent the impossibility result by Wichs [Wic13], because the security
of AIPOs is defined via a two-stage security game. The first AIPO adversary samples a point, and the
second adversary tries to break the obfuscation of the point function. In a sense, the impossibility result
of Wichs tells us that using a two-stage assumption such as AIPO in the proof is, indeed, necessary.
In particular, iO and PRFs are both one-stage assumptions. Note that, as AIPOs are only used in
the proof and not in the construction, it might be possible that the same construction can be proven
secure without making use of ATPOs possibly through some other two-stage assumption.

UNIVERSAL HARDCORE FUNCTIONS FOR ANY ONE-WAY FUNCTION. Bellare, Stepanovs, and Tes-
saro (BST; [BST14]) recently established that the same construction (with a different amount of
padding) also yields a hardcore function for any injective one-way function, assuming a puncturable
PRF and iO.

For general one-way functions, BST gave a second, different construction of a hardcore function
and proved it based on so-called differing-inputs obfuscation. Differing-inputs obfuscation is a stronger
assumption than iO and has been shown conditionally impossible by Garg et al. [GGHW14a] assuming
special-purpose obfuscators. Therefore, in the current version of their paper, Bellare et al. [BST14] use
a weaker variant of diO that is not affected by the results of Garg et al. [GGHW14a].

In an updated version of their paper, Garg et al. [GGHW14b] show that, assuming a special-purpose
obfuscator and indistinguishability obfuscation for Turing Machines, there are one-way functions for
which the second construction of BST cannot be a secure hardcore function, because their hardcore



function has “output-only dependence”. This means that hardcore bits h(z) are completely determined
by f(x), or in other words, for any inputs x and 2’ such that f(z) = f(2') it holds that h(z) = h(z').
We note that the only candidate for iO for Turing machines is currently based on full diO.

The conditional negative result for output-only dependent hardcore functions does not apply to
the construction iO(PRF(k,.)) which is the construction that we use throughout this paper and which
BST—with a different amount of padding—prove to be a hardcore function for injective one-way
functions. In turn, assuming ATPO in addition to iO allows us to prove this construction secure for all
one-way functions, even those that have many pre-images. Another difference with the BST result is
that we yield a universal hardcore function for any one-way function while their padding depends on
the one-way function.

Our proof builds on ideas by BST, and we will come back to their result in the context of presenting
our proof techniques. We note that for our security proof, we assume AIPO in addition to iO and
thereby are able to avoid diO variants altogether. The assumption of point obfuscators is currently
incomparable to the assumption of differing-inputs obfuscation as well as to more restricted versions that
were used by BST. It is an interesting question to explore the relationship between these assumptions.

MODULARIZING PROOFS VIA UCEs. We could prove the security of our construction directly, but
instead, we split our proof into two parts. First, we show that our construction enjoys some useful,
abstract properties. Then we use results by Bellare et al. [BHK13a] that show that these abstract
properties suffice for the application at hand. This way, we provide a means of using iO in a black-box
way. Our abstraction is a version of UCE security [BHK13a] that we discuss next.

The UCE Framework by Bellare, Hoang, and Keelveedhi (BHK; [BHK13a]) introduces assumptions
that allow us to instantiate random oracles in a wide range of applications. Loosely speaking, UCEs
are PRF-like assumptions that split the distinguisher into two parts: a first adversary S that gets
access to a keyed hash function or a random oracle (and which is called the source), and a second
adversary D that gets the hash key hk (and which is called the distinguisher). The two algorithms
together try to guess whether the source was given access to a keyed hash function (under a randomly
chosen key) or to a random oracle.

Concretely, the UCE notions are defined via a two-stage UCE game (we depict the communication
flow in Figure 1 and the pseudocode in Figure 2). First, the source S is run with oracle access to HASH
(which either implements a random oracle or the hash function with a randomly chosen key hk) to
output some leakage L. Subsequently, distinguisher D is run on the leakage L and hash key hk but
without access to oracle HASH. Distinguisher D outputs a single bit b indicating whether oracle HASH
implements a random oracle or hash function H with key hk.

Without any restrictions, (S, D) can easily win the UCE game. For example, say, source S makes
a random query z to receive y <— HASH(z) and outputs (z,y) as leakage. As distinguisher D knows
the hash key hk as well as the leakage (z,y), it can recompute the hash value and check whether
y = H(hk, z).

BHK present several possible restrictions on the source which give rise to various UCE notions.
It turns out to be particularly useful to restrict sources to be computationally unpredictable, that
is, the leakage created by the source S—when interacting with a random oracle—should not reveal
(computationally) any of the source’s queries to HASH. This notion is denoted by UCE[S“"P], where SP
denotes the class of computationally unpredictable sources [BHK13b]. BHK show that UCE[S®"P]-secure
hash functions can safely replace a random oracle in a large number of interesting applications such as
hardcore functions or deterministic public-key encryption [BHK13a]. In a recent work Brzuska, Farshim
and Mittelbach (BFM; [BFM14]) show that UCE security with respect to computational unpredictability
cannot be achieved in the standard model assuming indistinguishability obfuscation exists. Several



refinements have been proposed since, including a statistical notion of unpredictability denoted by &SP
as well as source classes containing sources that are structurally required to produce output in a special
way as well as sources which are restricted to only a fixed number of queries [BHK13b, BFM14, MH14b].

Our notion of UCE security strengthens the notion of unpredictability to what we call strong
unpredictability and we denote the corresponding class of sources by S¥°"P for the computational
variant and by S%*UP for its statistical version. Namely, we demand that the leakage be computation-
ally/statistically unpredictable even if the predictor additionally gets the answers to the queries that
the source received from the oracle. We give the pseudo-code for strong unpredictability in Figure 3.

It turns out that UCEs for strongly computationally unpredictable sources that can only make
a single query (denoted by UCE[S*¢" N S1-aueY]) already imply hardcore functions for any one-way
function. Furthermore, UCEs for strongly statistically unpredictable sources that can only make ¢
queries (denoted UCE[S%5"P N ST9"Y]) imply g-query correlation-secure hash functions. We note that
strongly unpredictable sources can be regarded as a generalization of so-called split sources [BHK13b]
which were introduced by BHK after the BFM impossibility results. We will discuss the exact
relationship later.

So far UCEs have only been constructed in idealized models. BHK showed that a random oracle
is UCE-secure in the strongest proposed settings and conjectured that HMAC is UCE-secure if the
underlying compression function is modeled as an ideal function. This conjecture has recently been
confirmed by Mittelbach [Mit14] who shows that HMAC and various Merkle-Damgard variants are UCE-
secure in the ideal compression function model. We note that so far, no standard model instantiation
of any (non-trivial) UCE variant has been proposed and, hence, we present the first standard model
construction of UCEs.!

TECHNIQUES. Our construction is based on indistinguishability obfuscation and similar to many
other recent constructions from iO [SW14, BST14, HSW14, BZ14] our construction also makes use
of puncturable PRFs [SW14] which admit the generation of keys that allow to evaluate the PRF on
all points except for points in a small target set (often containing just a single point). Our security
reduction, however, differs from existing techniques. That is, we make use of point function obfuscations
which allows us to hide the punctured points within our constructed circuits. Hiding the punctured
points was also the key problem in the earlier discussed work by Bellare, Stepanovs and Tessaro [BST14]
who construct hardcore-functions for one-way functions. They solve the problem elegantly by using the
one-way function from the security game to blind the punctured point by embedding the image under
the one-way function. However, when testing whether a given point is equivalent to the punctured
point this test is ambiguous which is why they need to assume differing-inputs obfuscators for one-way
functions that map more than polynomially many points to the same image value. This is where point
function obfuscation comes into the picture which allows us to bypass any assumptions related to
differing-input obfuscation variants. Yet, of course, point obfuscators are as far as is currently known
is an assumption incomparable to differing-inputs obfuscation.

PoOINT OBFUSCATION AND 10. In a recent and independent work, Hofheinz uses point obfuscation
in a similar way to construct fully secure constrained pseudorandom functions [Hof14] in the random
oracle model. A constrained PRF is a generalized form of a puncturable PRF which allows for the
generation of keys that enable the holder to evaluate the PRF on a set of points but not on all points.
In contrast to previous constructions [BW13, BGI14, KPTZ13| Hofheinz uses point obfuscation and an
extension he introduces as extensible testers in conjunction with indistinguishability obfuscation to hide

!The UCE Framework is very flexible and it is, for example, possible to define a UCE restriction that corresponds to
PRF security.



which points a given key allows to honestly evaluate. This allows him to achieve full security without
relying on complexity leveraging which was used in previous constructions entailing a superpolynomial
loss of security in the adaptive setting. We note that unlike this work Hofheinz relies on the simpler
assumption of plain point obfuscation (that is, obfuscation without auxiliary inputs) and he shows how
to build extensible testers based on the DDH-based point obfuscator by Canetti [Can97].

Brzuska and Mittelbach study the connection between point obfuscation with multi-bit output
secure in the presence of auxiliary inputs and indistinguishability obfuscation [BM14]. They show that
indistinguishability obfuscation and a strong form of multi-bit point obfuscation are mutually exclusive.
Their results do not carry over to the setting of statistically hard-to-invert auxiliary information (which
we rely on for our construction of CIHs) and it is not clear if their results can be extended to cover
plain ATPO, that is point functions with single-bit outputs.

OUR RESULTS. We next discuss the specific UCE assumptions that our construction will meet and the
relation to the specific point obfuscation schemes used. In Section 3 we will show that our construction
is UCE[S% % N S1-auery]_gecure assuming iO, puncturable PRFs and the existence of AIPO. That is, we
consider functions which are UCE-secure for computationally strongly unpredictable sources that make
a single query. In Section 3.3, we prove that our construction is also UCE[S*5"P N ST9""Y]-secure, that
is, secure against statistically unpredictable sources that make at most ¢ queries.

As explained, we base the security of our construction on the existence of a different (incomparable)
notion of point obfuscation. We consider a notion of AIPO which only needs to be secure against
statistically unpredictable distributions but, in turn, we require it to be g-composable [CD08, BC10)].
Intuitively, ¢g-composability says that an obfuscation remains secure even if an adversary sees ¢ many
(possibly related) obfuscations. The reason that we need g-composable AIPO is that now, the source is
a allowed to make ¢ queries and hence, we need to hide ¢ points in the proof. g-composable AIPO
implies multi-bit point function obfuscation [CDO08| and thus does not exist, if iO exists [BM14].

However, as we here only consider sources in S%%"P, that is, sources which are only statistically
strongly unpredictable, it suffices that our AIPO-notion is secure against statistically unpredictable
samplers which weakens the notion of AIPO. Matsuda and Hanoka [MH14a] have recently shown
that g-composable AIPO secure against statistically unpredictable samplers is implied by composable
VGB-AI point obfuscators, a notion that Bitansky and Canetti constructed under the ¢-Strong Vector
Decision Diffie Hellman assumption [BC10]. Note that, for the proof to work, we need to let the circuit
size of our construction grow, artificially, with the number of queries q. Towards this goal, we use some
padding that does not have any functionality.

In summary we get the following results:
Theorem [informal].

e Our construction is UCE[S*% N S1-0Y]_secure assuming indistinguishability obfuscation for
all circuits in P/poly and AIPO secure with respect to computationally hard-to-invert auzxiliary
information exist.

e Our construction is UCE[S*S"P N STY]-secure assuming indistinguishability obfuscation for
all circuits in P /poly and q-composable AIPO with respect to statistically hard-to-invert auziliary
information exist.

ON THE FEASIBILITY OF OUR AIPO ASSUMPTIONS. Standard AIPO secure against computationally
unpredictable samplers has been constructed by Canetti in [Can97] under (non-standard) variants
of the DDH assumption and by Bitansky and Paneth in [BP12] under (non-standard) assumptions



on pseudorandom permutations. We present the constructions and the underlying assumptions in
Appendix A. One might hope that AIPO is naturally composable. However, Canetti et al. show that
this is generally not the case [CD08, BC10]. On the other hand, Bitansky and Canetti [BC10] show
that under the ¢-Strong Vector Decision Diffie Hellman assumption the original point obfuscation
scheme of Canetti [Can97] composes in the so-called virtual grey-box (VGB) setting. The VGB setting
was introduced by Bitansky and Canetti [BC10] and is a relaxation of the strongest obfuscation
setting the virtual black-box (VBB) setting [BGIT01, BGI*12]. Similarly to VBB obfuscation, VGB
obfuscation is in general not achievable, yet for the class of point functions it seems in reach [BC10].
The VGB setting is particularly interesting because “plain” VGB and VGB with auxiliary information
are equivalent [BC10]. This result stands in contrast to the VBB setting where allowing auxiliary
information results in a stronger notion. Furthermore, we currently have no candidate constructions for
composable point obfuscation schemes in this stronger setting. We note that composable obfuscation in
the VGB setting is sufficient for our purpose as Matsuda and Hanaoka [MH14a] show that this setting
already implies g-composable ATPO with respect to statistically unpredictable samplers which form
the basis for our g-query correlation-secure hash functions.

In a very recent work Brzuska and Mittelbach (BM) investigate the connection between indistin-
guishability obfuscation and multi-bit output point obfuscation secure in the presence of auxiliary
input (MB-AIPO) [BM14]. A multi-bit point function p, ,, is zero everywhere except on z where it
outputs m. BM show that various strong notions of MB-AIPO and indistinguishability obfuscation
are mutually exclusive. However, their results do not seem to carry over to plain AIPO, that is to
ATPO for plain point functions as needed in our constructions. We refer to [BM14] for a discussion on
MB-ATPO and discuss the implications of an extension of the results of BM to plain AIPO shortly
when talking about the feasibility of our UCE notions.

ON THE FEASIBILITY OF OUR UCE NOTIONS. In a recent work, Brzuska, Farshim, and Mittelbach
(BFM; [BFM14]) show that, assuming indistinguishability obfuscation exists, no standard model
hash construction can be UCE-secure with respect to computationally unpredictable sources. Our
construction achieves a weaker yet related notion of security, namely UCE-security with respect to
strongly computationally unpredictable sources which raises the question whether the BFM result can
be extended to this setting.

The BFM result crucially hinges on the possibility of extending the output-length of the studied
hash construction such that it is significantly larger than the key size. For example, this can be achieved
by using multiple queries to the hash construction or via extending the output size by applying a
pseudo-random generator [BFM14, BHK13c|. Both approaches fail with our construction: the size of
our hash key grows with the number of allowed queries and since we consider strong unpredictability
it seems implausible to prove the construction PRG(H(-,-))-secure under the assumption that H is
UCE-secure with respect to strongly computationally unpredictable sources. Thus, we think that
extending the BFM attack is implausible. Furthermore, if it can be extended this would immediately
imply that indistinguishability obfuscation implies the non-existence of ATPO, which would be a
surprising result. We discuss the BFM result in greater detail in Section 5 and note that, even if an
extension of the BFM result were to break AIPOs with computational unpredictability, then the second
construction would not be affected, as it only considers AIPOs secure with respect to statistically
hard-to-invert auxiliary information.

NOTIONS OF CORRELATION-SECURE HASH-FUNCTIONS. We now compare our notion of g-query
CIHs to different notions of correlated-input security. Note that g-query CIH means that the size
of the hash-key can depend on the number of inputs q. However, and that is a crucial difference to



previous works, each input value is hashed using the same hash-key. In turn, Freeman et al. [FGK'13]
as well as Rosen and Segev [RS10] use a fresh hash-key for every input. Notably, the correlation-secure
functions that they construct also have a trapdoor. Note that the correlated-input variant? of the IND
security game for deterministic public-key encryption [BFOR08, BBO07, BFO08] and the CIH game
are almost identical if it is required that the CIH has a trapdoor. We can then view the computation
of the CIH as an encryption operation and the CIH game becomes a slightly stronger version of the
IND security game (that is, a real-or-random rather than a left-or-right game). Hence, a CIH function
which has a trapdoor is also a deterministic public-key encryption scheme.

As in the schemes of [FGK™13, RS10] a new key needs to be generated for every new message, the
constructions are not a deterministic public-key encryption scheme. In turn, if our g-query CIH were a
trapdoor function, then by definition, it would also be a g-query deterministic public-key encryption
scheme. Unfortunately, our construction of a gq-query CIH does not come with a trapdoor, and we do
not know whether this is possible.

Another related notion of CIH are statistically secure q-query CIHs. Here, as for our notion of
g-query CIH, the key size may grow with the number of queries and one uses the same hash key for
each query. In contrast to our security notion one here requires that the output is statistically close to
random given the hash key. As we are concerned with statistical security, this notion is only achievable
for distributions that come with a notable amount of entropy, that is, the ¢ pre-images need to have
entropy that is at least ¢ times the output length. In turn, for the notion of entropy that we consider,
the entropy of the pre-images does not need to grow with ¢ and can also be less than the length of the
output.

Hence, this notion of statistically secure CIH only applies to a substantially smaller class of
distributions. In turn, while our construction relies on the strong assumption of indistinguishability
obfuscation, statistically secure CIH can be achieved without any assumptions. That is, if the pre-
images carry enough (true) entropy, then one can extract ¢ uniformly random image values by using a
g-wise independent hash-functions [FOR12].

Finally, Goyal, O’Neill, and Rao [GOR11] construct CIHs that are secure under polynomially related
inputs and introduce a hierarchy of CIH notions: One-wayness under correlated inputs, unpredictability
under correlated inputs and pseudorandomness under correlated inputs. These notions describe a
hierarchy of security notions when we consider CIHs with superlogarithmic output length. We note
that we achieve the strongest of these notions, namely pseudorandomness under correlated inputs.

2 Preliminaries

NOTATION. By X € N, we denote the security parameter that we give to all algorithms implicitly in
unary representation 1. By {0, 1}’ we denote the set of all bit-strings of length ¢, and by {0,1}* the
set of all bit-strings of finite length. If z,y € {0,1}* are two bit strings of the same length, then we
denote their inner product over GF(2) by (x,y). The length of z is denoted by |z|. For a finite set X,
we denote the action of sampling x uniformly at random from X by x <—s X, and denote the cardinality
of X by |X|. We denote by [¢] the set {1,...,7}. Algorithms are assumed to be randomized, unless
otherwise stated. We call an algorithm efficient or PPT if it runs in time polynomial in the security
parameter. If A is randomized then by y < A(x;r) we denote that A is run on input x and with
random coins r and produced output y. If no randomness is specified, then we assume that A is run
with freshly sampled uniform random coins, and write this as y «—s A(z). We often refer to algorithms,
or tuples of algorithms, as adversaries. If E is an event then we denote by Pr[E] its probability and

2Here, we refer to the variant where each message needs to have high entropy on its own, but might have low entropy
conditioned on the other messages.



if X is a random variable, we denote its expectation by E[X]. We write X|E to denote the random
variable X conditioned on event E. We say a function negl()) is negligible if negl(\) € A=), We say
a function poly is polynomial if poly € AO(1).

If we speak of an ensemble or a family {Cy}en of circuits, denoted by a calligraphic letter such
as C, we mean that C) contains a set of circuits for each security parameter A € N. We speak of a
sequence of circuits {C) }ren to denote a non-uniform circuit, that is, one circuit for every security
parameter. By a distribution or an ensemble of distributions D = {D)} en we identify a function
ensemble {fy : Sy — [0, 1]} xen With corresponding set Sy that assigns each element in Sy a probability
weight in [0,1] such that 3 s fa(z) = 1 for all A € N. We consider only efficiently sampleable
distributions D by which we mean that a (possibly non-uniform) algorithm Sam) exists that on input
a uniformly random string r outputs a value in S) according to distribution D), that is, such that for
all Ae Nand z € S,

Pr,[Samy(r) = z] = fi\(x).

We often say we “run” a distribution or we simply write Dy (1) to denote that the corresponding
sample algorithm is invoked on fresh random coins.

2.1 Obfuscation

Obfuscation has a long tradition within cryptographic research and comes in many flavors. In the
following section we present the various definitions that we use in this paper. We discuss constructions
and candidates in Appendix A.

We start by recalling the strongest definition of virtual black-box (VBB) obfuscation with auxiliary
inputs due to [BGIT01, GK05, BGIT12].

Definition 2.1 (Worst-case obfuscator with auxiliary input (VBB-AI)). A PPT O is a worst-case
obfuscator with auxiliary input for an ensemble C = {Cy}aen of poly-size circuits if it satisfies:

e Functionality. For any A € N and C € Cy, O(C) is a circuit which computes the same function
as C, that is, for all x it holds

Pr[C'(z) = C(x) ‘ C'+s 0(0)] =1.

e Polynomial slowdown. For any A € N and C € Cy, Pr[|C’| < poly(|C]) | C'+s O(C)] = 1.

e Virtual black-box. For any PPT adversary A there is a PPT simulator Sim such that for all
sufficiently large A € N,C € Cy and z € {0,1}POYP);

Pr[A(z,O(C)) = 1] — Pr [Simc(z, 161y = 1” < negl())

where the probability is taken over the coins of A, Sim and O.

VBB obfuscation with auxiliary input requires that for any PPT adversary given the code of some
functionality (and some auxiliary input) there exists a PPT simulator that given only black-box access to
the functionality (and as input the same auxiliary input) produces a computationally indistinguishable
distribution.

A provably weaker notion of obfuscation called virtual grey-box (VGB) was introduced by Bitansky
and Canetti [BC10]. VGB is defined analogously to VBB with the exception that the simulator is given
unbounded computation time but still restricted to only make polynomially many oracle queries. We
will return to VGB obfuscation when discussing composition of so-called point function obfuscators.

10



INDISTINGUISHABILITY OBFUSCATION. While VBB and VGB obfuscation as defined above provably
do not exist in general for all circuits [BGIT01, BC10], weaker notions such as indistinguishability
obfuscation may well exist. VBB requires the existence of a simulator. On the other hand, an
indistinguishability obfuscation (i0) scheme only ensures that the obfuscations of any two functionally
equivalent circuits are computationally indistinguishable. Indistinguishability obfuscation was originally
proposed by Barak et al. [BGIT01] as a potential weakening of virtual-black-box obfuscation. We recall
the definition from [GGH*13].

Definition 2.2. A PPT algorithm iO is called an indistinguishability obfuscator for a circuit ensemble
C = {Cr}aen if the following conditions are satisfied:

e Correctness. For all security parameters A € N, for all C € Cy, and for all inputs x we have
that
Pr [0’(:,:) — O(x): C' s 10(1&0)} —1.

e Security. For any PPT distinguisher D, for all pairs of circuits Cy, C1 € Cy such that Cy(z) =
Cy(z) on all inputs = the following distinguishing advantage is negligible:

Pr [D(ﬂ, i0(1*,Cy)) = 1} —Pr [D(ﬂ, i0(1, Cy)) = 1} ‘ < negl()).

DIFFERING-INPUTS OBFUSCATION. The notion of differing-inputs obfuscation is closely related to
indistinguishability obfuscation and also goes back to the seminal paper of Barak et al. [BGIT01].
While indistinguishability obfuscation requires circuits to be identical on all inputs, differing-inputs
obfuscation intuitively says that if a distinguisher can tell apart two obfuscated circuits then one
can efficiently extract a value on which the circuits differ. We follow the definition of Ananth et
al. [ABG™13] and Boyle et al. [BCP14] and first define the notion of differing-inputs circuits.

Definition 2.3 (Differing-inputs circuits). A sample algorithm (Co, C1, z) +—s Sam (1) that samples
circuits from a circuit ensemble C = {Cx}aen is said to be a differing-inputs distribution if for all PPT
algorithms A there is a negligible function negl such that:

Pr [co(a;) £ Cy(z) : (Co, C1, 2) s Sam(1*), z s A(1*, Co, cl,z)} < negl())

Definition 2.4 (Differing-inputs obfuscation). A PPT algorithm diO is a differing-inputs obfuscator
for a differing-inputs distribution Sam (for circuit ensemble {Cy}ren) if the following holds:

e Correctness. For all security parameters A € N, for all C' € Cy, and for all inputs v we have
that
Pr [C'(m) = C(x) : C' < diO(1?, C)} =1.

e Security. For any PPT distinguisher D, for any (Cy, C1,z) +s Sam(1*) the following distin-
guishing advantage is negligible:

‘Pr [D(l)‘,diO(l’\,Cl),z) _ 1} _Pr [D(ﬂ,diom,co),z) _ 1} ‘ < negl()\).

The notion of differing-inputs obfuscation recently also gained much attention [ABG*13, BCP14,
BP13]. In particular, we will build on the work by Boyle, Chung and Pass [BCP14] who show that any
general indistinguishability obfuscator also yields a mild version of a differing-inputs obfuscator. That
is, any indistinguishability obfuscator for all circuits in P /poly is a also a differing-inputs obfuscator
for circuits that differ on at most polynomially many inputs. We will use their result in a crucial way
on circuits that differ on a single input.
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Theorem 2.5 ([BCP14]). Let iO be an indistinguishability obfuscator for P/poly. Let ({Cx},Sam) be
a differing-inputs family for which there exists a polynomial d : N — N, such that

Pr [|{x : Co(x) # C1(x)} < d(N) | (Co, C1,2) s Sam(11) | > 1 — negl()).
Then i0O is a differing-inputs obfuscator for ({Cx},Sam).

POINT OBFUSCATION. Wahile indistinguishability, as well as differing-inputs, obfuscation are obfusca-
tion schemes for general circuits one can also study obfuscation schemes for particular function classes
such as point functions. A point function p, for some value x € {0,1}* is defined as

1 ifs==x
Pa(s) = {J_ o/w

We consider a variant of point function obfuscators under auxiliary input which was first formalized
by Canetti [Can97], although in a slightly different context. We here give the definition from [BP12]
presented in a game based formulation. The first definition formalizes unpredictable distributions
which are in turn used to define obfuscators for point functions.

Definition 2.6 (Unpredictable distribution). A distribution ensemble D = {Dy = (Zx, X)) }ren, on
pairs of strings is unpredictable if no poly-size (non-uniform) circuit can predict Xy from Zy. That is,
for every poly-size circuit sequence {Cy}xen and for all large enough A:

Pr(z,:p)<—$ D, [C)\(Z) = .T] < negl (A)

Remark. Alternatively, we could use a variant of Definition 2.6 for uniform distributions D. Jumping
ahead, we note that our positive result, Theorem 3.3 only requires AIPOs secure against uniform
adversaries. For ease of presentation, we omit the explicit treatment of uniform and non-uniform
adversaries.

Definition 2.7 (Auxiliary input point obfuscation for unpredictable distributions (AIPO)). A PPT
algorithm AIPO is a point obfuscator for unpredictable distributions if if on input (z,x) it outputs a
polynomial-size circuit that returns 1 on x and 0 everywhere else and satisfies the following secrecy
property: for any (efficiently sampleable) unpredictable distribution By over {0,1}P°YXN) x {0,1}* it
holds for any PPT algorithm By that the probability that the following experiment outputs true for
(By, B2) is negligibly close to %:

b«s{0,1}
(z,x0) s B (1Y)
1 {0, 1}
p<s AIPO(xy)

Y s Ba(17,p, 2)
return b =/

The probability is over the coins of adversary (Bi,Bz), the coins of AIPO and the choices of 1 and b.
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CoMPOSABLE VGB POINT OBFUSCATION. The definition of ATPO requires that a single point
obfuscation is secure. A natural question to ask is whether the scheme remains secure even if the
adversary is allowed to see multiple obfuscations, possibly of related points. This leads to the study of
composition of obfuscators and the version we consider in this work is composition by concatenation
formalized by Lynn, Prabhakaran, and Sahai [LPS04]:

Definition 2.8 (t-composable obfuscation [LPS04]). A PPT machine O is a t-composable obfuscator for
a circuit ensemble C = {Cy}xen if it satisfies the functionality and polynomial slow-down requirements,
as in Definition 2.1, and for any PPT distinguisher A and polynomial p, there is a simulator Sim, such
that for any sequence of circuits Ct, ..., C* € Cy (where t = poly(\)), and any sufficiently large \:
1
‘Pr[A((’)(Cl), .0 =1] —Pr [Simcl"“’ct(ﬂcll, oalety = 1” <%
p

where oracle C*, ... Ct gets as input (x,i) and returns C*(x).

Note that while [LPS04] consider t-composability in the VBB setting, we only require the relaxed
VGB setting, that is, we allow the simulator to run in unbounded time. Interestingly, while VBB
obfuscation in the presence of auxiliary input (Al) is a seemingly stronger requirement than plain VBB
obfuscation, Bitansky and Canetti show that AI does not add any power to VGB. Note that in this
setting we can only allow auxiliary input that statistically hides the target points, as the simulator
could otherwise trivially recover the obfuscated points from the auxilliary input.

Proposition 2.9 ([BC10]). Let O be a VGB obfuscator for a circuit ensemble C = {C\}ren. Then O
is also a VGB obfuscator with (statistically unpredictable) auziliary input for the ensemble.

Bitansky and Canetti, furthermore, show that the point obfuscation scheme of Canetti [Can97] is a t-
composable VGB point obfuscator under the ¢-Strong Vector Decision Diffie Hellman assumption [BC10).
Note that, as we can first compose and then introduce auxiliary input, this implies that under the
t-Strong Vector Decision Diffie Hellman assumption Canetti’s obfuscation scheme is also a VGB-AI
point obfuscator. We recall the scheme by Canetti [Can97] in Appendix A.

FroM VGB BACK TO AIPO. In this work we develop techniques to work with AIPOs. In a recent
work, Matsuda and Hanaoka [MH14a] relate the notions of VGB point obfuscators (resp. VGB-AI
point obfuscators) and AIPO and show that composable VGB-AI point obfuscators imply the existence
of composable AIPO with respect to statistically unpredictable distributions (Matsuda et al. call this
notion AIND-6-sPUAI [MH14a]). Statistically unpredictable distributions are defined analogously to
unpredictable distributions (Definition 2.6) with the exception that we allow the predictor to run in
unbounded time.

2.2 Universal Computational Extractors (UCE)

The UCE Framework by Bellare, Hoang, and Keelveedhi (BHK; [BHK13a]) introduces assumptions
that allow us to instantiate random oracles in a wide range of applications and which are not succeptible
to the impossibility result by Canetti, Goldreich and Halevi [CGH98]. Loosely speaking, UCEs are
PRF-like assumptions that split the distinguisher into two parts: a first adversary S that gets access to
a keyed hash function or a random oracle (and which is called the source), and a second adversary D
that gets the hash key hk (and which is called the distinguisher). The two algorithms together try to
guess whether the source was given access to a keyed hash function or to a random oracle.
Concretely, the UCE notions are defined via a two-stage UCE game (we depict the communication
flow in Figure 1 and the pseudocode in Figure 2). First, the source S is run with oracle access to HASH

13



MaIN UCESP (V) MAIN PredE (\)
b+<${0,1}; hk<s H.KGen(1*) done « false; Q + 0
1A L <s SHASH(1A) L 3 ST (12); done + true
b s D(1*, hk, L) Q' s PESI(1A 1)
S 0 return (b =b') return (QN Q' # 0)
HasH(x) HasH(x)
L if T[z] = L then if done = false then
if b =1 then T'[z] + H.Eval(hk, z) Q+ QuU{z}
else Tz] s {0, 1}V if T[z] = L then
D(hk) v return T[x] T[z] s {0, 1}1-°1(})
return T'[z]

Figure 1: Schematic of the UCE game. Figure 2: The UCE security game together with the unpredictability
game (on the right). In the UCE game source S has access to HASH,
which returns real or ideal hash values, and leaks L to a distinguisher
D. The latter additionally gets the hash key and outputs a bit &’. On
the right we give the unpredictability game.

to output some leakage L. Subsequently, distinguisher D is run on the leakage L and hash key hk but
without access to oracle HASH. Distinguisher D outputs a single bit b indicating whether oracle HASH
implements a random oracle or hash function H with key hk.

Without any restrictions, (S, D) can easily win the UCE game. For example, say, source S makes
a random query x to receive y «— HASH(x) and outputs (z,y) as leakage. As distinguisher D knows
the hash key hk as well as the leakage (z,y), it can recompute the hash value and check whether
y = H(hk,z). BHK present several possible restrictions on the source which give rise to various UCE
notions.

ForMAL UCE DEFINITION. In line with [BST14] we consider families of functions F' consisting
of algorithms F.KGen, F.kl, F.Eval, F.il and F.ol. Algorithm F.KGen is a PPT algorithm taking the
security parameter 1 and outputting a key k € {0, l}F'k'(’\) where F.kl : N — N denotes the key length.
Functions Fl.il : N — N and F.ol : N — N denote the input and output length functions associated to F'
and for any € {0, 1}7"™ and k<s F.KGen(1*) we have that F.Eval(k,z) € {0,1}7°') where the
PPT algorithm F.Eval denotes the “evaluation” function associated to F'.

We denote hash functions by H. Let H = (H.KGen, H.Eval, H.kl, H.il, H.ol) be a hash-function family
and let (S,D) be a pair of PPT algorithms. We define the UCE advantage of a pair (S, D) against H
through

AdviE p(\) =2 Pr [UCE&D(A)} 1,

where game UCEa’D(A) is shown in Figure 2 on the left (in Figure 1 we give a schematic overview of
the communication within the game).

UNPREDICTABILITY. Without any further restrictions there are PPT pairs (S,D) that achieve an
advantage in the UCEa’D()\) game close to 1. BHK define several possible restrictions for sources
yielding various flavors of UCE assumptions [BHK13a]. Here, we are interested in a strengthened
version of the original computational unpredictability [BHK13a] restriction. A source S is called
computationally unpredictable if the advantage of any PPT predictor P, defined by

AdVE'E () = Pr [Predg’(x)} ,
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is negligible, where game Predg (M) is shown in Figure 2 on the right. In line with [BHK13b], we call
the class of all computationally unpredictable sources S"P, where S°"P denotes the class (set) of all
computationally unpredictable sources. Similarly, we define the class of statistically unpredictable
sources where the predictor in game Predg (M) can run in unbounded time but is still restricted to only
polynomially many oracle queries. The class of statistically unpredictable sources is denoted by S"P.

UCE SEcURITY. We say a hash function H is UCE secure for sources S € S denoted by UCEIS],
if for all PPT sources S € S and all PPT distinguishers D the advantage Adviy’s p()) is negligible.
In that way we get the UCE assumptions UCE[S®"P] and UCE[S®*"P], that is, UCE with respect to
computationally (resp. statistically) unpredictable sources.?

2.3 Puncturable PRFs

Besides point function obfuscation schemes, our main ingredient in the upcoming proofs are so-called
puncturable pseudorandom functions (PRF) [SW14]. A family of puncturable PRFs G :=(G.KGen,
G .Puncture, G .kl, G.Eval, G.il, G.ol) consists of functions that specify input length, output length and
key length as well as a key generation algorithm k < G.KGen, a deterministic evaluation algorithm
G.Eval(k, x) that takes a key k, an input x of length G.il(1*) and outputs a value y of length G.ol(1*).
Additionally, there is a PPT puncturing algorithm G.Puncture which on input a polynomial-size set
S C {0,1}¢1) | outputs a special key kg. A family of functions is called puncturable PRF if the
following two properties are observed

e Functionality preserved under puncturing. For every PPT adversary A such that A(1})
outputs a polynomial-size set S C {0,1}¢1N it holds for all z € {0, 1}%"™) where = ¢ S that:

Pr|G.Eval(k,z) = G.Eval(ks,z) : k s G.KGen(1"), kg s G.Puncture(k,S)| =1

e Pseudorandom at punctured points. For every PPT adversary (A, As) such that A;(1})
outputs a set S C {0,1}¢1(N) and state st, consider an experiment where k < G.KGen(1*) and
ks = G.Puncture(k, S). Then we have

‘Pr [Ag(st, ks, S, G.Eval(k, S)) = 1] Py [Ag(st, ks, S, Ugolny 15]) = 1} ‘ < negl(\)

where Eval(k, S) denotes the concatenation of Eval(k,z1),...,Eval(k, ;) where S = {z1,..., a1}
is the enumeration of the elements of S in lexicographic order, negl is a negligible function, and
U, denotes the uniform distribution over {0, 1}*.

As observed by [BW13, BGI14, KPTZ13] puncturable PRF's can, for example, be constructed from
pseudorandom generators via the GGM tree-based construction [GGM84]. Note that, as AIPO implies
one-way functions (see Lemma B.1) AIPO, thus, also implies the existence of puncturable PRFs.

3 UCEs from iO and Point Obfuscation

In this section we present our constructions of UCEs from iO and AIPO. We first define the precise UCE
notions that our constructions achieve and introduce the UCE restriction of strong unpredictability. We
will then in Section 3.2 present a construction of a UCE-secure function with respect to sources which

3The notion UCE[S"P] was originally named UCE1 and later changed to UCE[S®"?] [BHK13a, BHK13b]. The notion
of statistical unpredictability was introduced in [BFM14, BHK13b].
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MAIN stPred§ ()

X*Y* <0
L+ ST (1Y)
o s PHASH(IA [ y™)

Splt SOURCE SHASH(14)

(Lo,X) 3 So(lA)
fori=1,...,|x| do y[i]<s Hasu(x[i])
L1 —$ Sl(lk,y); L+ (L()7 L1)

return (z’ € X*) return L

HasH(x)

X* « X*U{z}
y {0, 1oV
Y* e« Y*U{y}
return y

Figure 3: On the left: the strong unpredictability game where the predictor, in addition to the leakage is also given the
result of the HASH queries. On the right: the definition of split sources [BHK13b]. A split source S = Splt[So, S1] consists
of two parts Sp and Si1 that jointly generate leakage L and neither part gets direct oracle access to HASH. Note that the
BFM attack [BFM14] applies to split sources as presented above (see discussion in Section 3.1).

are strongly computationally-unpredictable and which make exactly one oracle query. In Section 3.3 we
will show how to extend the construction to allow for an a-priory fixed number of queries by switching
to a statistical version of strong unpredictability.

Interestingly, our construction for both cases is basically the same modulo circuit padding. That is,
our constructions depend on an obfuscation of a circuit, which in both cases is the same but padded
to a different length. A larger but functionally equivalent circuit seems to be necessary to allow for
multiple source queries.

We will discuss applications of our constructions in Section 4. In Section 5 we will discuss why
our construction does not (seem to) fall pray to the BEM attacks on computationally unpredictable
sources [BFM14].

3.1 Strongly Unpredictable and ¢-Query Sources

We now introduce the precise source restrictions for our upcoming UCE constructions. We define a
new restriction that we call strong unpredictability and which can be seen as either a stronger form of
unpredictability or a relaxed version of split sources. Secondly, we consider sources that make only a
bounded number of oracle queries.

STRONG UNPREDICTABILITY. We consider sources which are strongly unpredictable both in the
computational and in the statistical sense. We denote by S¥°"P the class of sources which are strongly,
computationally unpredictable and by S%°"P the class of strongly, statistically unpredictable sources.
Strong unpredictability is a stronger requirement than unpredictability and we require that the leakage
hides queries to HASH even if the predictor is given the query results. We say that a source S is called
strongly computationally unpredictable if the advantage of any PPT predictor P, defined by

AdVER(N) = Pr [Stpredg W] ’

is negligible, where game stPredE (A) is shown in Figure 3 on the left. For the case of strongly statistically
unpredictable sources (S¥5'P) we allow the predictor to be unbounded in its running time, but restrict
the number of oracle queries to be bounded polynomially.

In order to circumvent the BFM attacks on computationally unpredictable sources BHK introduce
the notion of split sources [BHK13b, BFM14]. A source S is called split source, denoted by S € SP!*
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if it can be decomposed into two algorithms Sy and S; such that neither part gets direct access to
oracle HasH. We give the pseudocode of split sources in Figure 3 on the right. In a first step algorithm
So outputs a leakage string Ly together with a vector x. Then, each of the entries in x is queried to
HAasH and the results stored in vector y. Finally, the second algorithm Sy is run on vector y to produce
the second part of the leakage L.

There is one intricacy with split sources that we discovered when discussing strong unpredictability
with Mihir Bellare [Bell4]. Sp outputs a list x that is then used to generate the input to S; as

for i =1,...,|x| do y[i] <—s Hasu(x[i])

As x is a list it allows for duplicate values. This, however, means that Sy can communicate arbitrary
values to S; by encoding them using duplicates (e.g., using the two identical values to encode a 0 and
two different values to encode a 1). The result is that the attack due to BFM also applies to split
sources. A simple solution to recover split sources is to disallow duplicates in vector x. This yields the
following formulation which we henceforth associate with split sources:

Splt SOURCE SHASH(11)

(Lo, x) s So(1)
fori=1,...,|x| do
if Vj <4 : x[j] # x[i] then
vyl + 1] Hasn(x[i])
L1 s S1(1%,y); L « (Lo, L1)
return L

We note that when considering only single-query split sources, which suffice for the only known
application (universal hardcore functions, see Section 4) then both formulations are equivalent.

One can prove that split sources are a (strict) subclass of strongly unpredictable sources, that is,
SSPIt N SCUP C SSCUP (and similarly in the statistical case SPI* N SSUP C S¥5UP). For this note that the
leakage Lg of the first algorithm of a split source is independent of any oracle answers. Similarly, if the
oracle is implemented by a random oracle (which is the case in the unpredictability experiment) then
the leakage L of the second algorithm is independent of any actual oracle query. The inclusion is strict.
Consider, for example, a source that queries HASH on z to receive y to then output PRF,(y) that is the
image of a pseudorandom function at point y under key x. For the case of statistical unpredictability
consider the source that outputs x @ y. Both distributions cannot be simulated by a split source. This
yields the following lemma:

Lemma 3.1. The class of split sources is a strict subclass of strongly unpredictable sources:
Ssplt N SCUP C Gs-cup and Ssplt N SSuP C gs-sup
We formally prove Lemma 3.1 for the statistical case. The computational case follows analogously.

Proof. We have already seen that there are sources in S¥" that are not in S*P!*. It thus remains to
show that any source in S!* N S'P is also a strongly, statistically unpredictable source. We assume
that we are always in the random oracle setting, that is, HASH is implemented by a random oracle.
Note that this is without loss of generality since membership in S**"P is only defined via the strong
unpredictability game which is in the random oracle setting.

Let S = (So,S1) be a source in S%!* N SUP and assume there exists a predictor P in the strong
unpredictability game. We construct P’ in the plain unpredictability game. Predictor P’ gets as input
leakage L = (Lo, L1). It guesses the number of queries ¢ that were made by source Sy and constructs a
vector y’ consisting of ¢ random values of length H.ol(\). It then runs source Sy on input y’ to receive
leakage L). Finally, it runs predictor P on input ((Lg, L}),Y ™) where Y* is a random permutation of
the values in y’. It outputs whatever P outputs.
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ANALYSIS.  As the unpredictability game (as well as the strong unpredictability game) is in the random
oracle setting, the simulation of the input for Sy is perfect in case P’ guesses the correct number of
queries. In this case leakage (Lo, L1) and (Lo, L}) are distributed identically and the simulation for P
is perfect and hence

re 1 stpre
AdVERI(A) = —— - ATR™ (V)
q

where max, is an upper bound on the maximum number of queries of source Sp. O

¢-QUERY UCE. Our first construction will only admit sources which make exactly one query. We
call such sources single-query sources and denote the corresponding source class by S99y We also
consider a relaxed notion to allow for polynomially bounded number of queries for some polynomial
q := q(\). We call the corresponding sources g-query sources and denote their source class by S¢9UeY,
We note that sources restricted to a constant number of queries are discussed in [BHK13b].

3.2 A UCE Construction Secure Against Sources in S5 N Sl-auery

We will now present our construction which depending on different assumptions on the existence of
point obfuscators will achieve UCE[SS ¢ N S1-auey]_security or UCE[SSSW N §T9UeY]_security. Note
that depending on the number of supported queries the construction needs to pad the circuit before
obfuscating it.

Construction 3.2. Let s: N — N, let G be a puncturable PRF and let iO be an indistinguishability
obfuscator for all circuits in P/poly. We define our hash function family H as

H.KGen(1?) H.Eval(hk, z)
k8 G.KGen(1*) C « hk

hk <$ iO(PAD(s()\), G.Eval(k, -))) return O(z)
return hk

where PAD : N x {0,1}* — {0, 1}* denotes a deterministic padding algorithm that takes as input an
integer and a circuit and outputs a functionally equivalent circuit padded to length s(\).*

In other words, the key generation algorithm H.KGen(1*) runs k < G.KGen(1?) and returns
iO(G.Eval(k,-)), i.e., an obfuscation of the evaluation circuit of PRF G with key k hardwired into it.
Function H.Eval is basically a universal Turing machine which runs input = on the obfuscated circuit
hk.

Theorem 3.3. If G is a secure puncturable PRF, if iO is a secure indistinguishability obfuscator and if
AIPO exists, then the hash function family H defined in Construction 3.2 is UCE[SS"PNST-ueY]_secyre.

We prove the theorem via a sequence of 5 games (depicted in Figure 4) where game Game; denotes
the original UCE[S¥"P N S1-9uY] game with hidden bit b fixed to 1. We first present the games and
subsequently the analysis of the individual game hops. Let S € S¥¢uWP 0 Sl-auery,

Game;: The first game is the original UCE[SS "’ N S19uY]-game. Here, the hash key hk is an
obfuscation of the circuit Ci[k](z) := G.Eval(k,z) (see Figure 4) where k is a key for the
puncturable PRF.

4Function s needs to be chosen in accordance with the puncturable PRF to allow for the required number of puncturings.
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0 PRF i0 AIPO +i0 + [BCP14]

Gamey () Gamesy () Games () Gamey () Games ()
z* Yyt +— L Yyt L ",y +— L Yyt L Yyt L
k+$ G.KGen(1)) k<8 G.KGen(1*) k+$ G.KGen(1*) k +8 G.KGen(1*) k+$ G.KGen(1*)
L s SHasH(1A) L« SHASI(1A) L s SHasH(1}) L s SHAST(1A) L s SHAST(1Y)
p<$ AIPO(z™) p<+s$ AIPO(z™) p<$ AIPO(z™)
k* < G.Puncture(k,z*) k* < G.Puncture(k,z™)
hk < i0(C1 [k]) hk < iO(Ca[k*, p,y*])  hk«s iO(C2[k*,p,y*])  hk<s$iO(Cslk,p,y*])  hk<s iO(C4lk])
b s D(1*,hk,L) b <s D(1*,hk, L) b s D(1*, hk, L) b s D(1*, hk, L) b s D(1*, hk, L)
return (1 =1') return (1 =1') return (1 =1?) return (1 =1') return (1 =1")
HasH(z) HasH(z) HasH(z) HasH(z) HasH(z)
¥~z zt ¥ ¥ ¥
y* < G.Eval(k, ) y* < G.Eval(k,x) y* <3 {0, 1}”»0'()‘) y* <38 {0, 1}H‘°|()\) y* 3 {0, 1}H40|(>\)
return y* return y* return y* return y* return y*

Circult C1[k](z) CircuiT Colk*, p,y*](x) CirculT Cslk,p,y*](z)  CirculT Cylk|(z)

return G.Eval(k, z) if p(z) = L then //ifz # z* if p(z) = L then return G.Eval(k, z)
return G.Eval(k™, z) return G.Eval(k, z)
return y* return y*

Figure 4: The games used in the proof of Theorem 3.3 on the top and the used circuits on the bottom. To highlight the
changes from game to game we have marked the changed lines with a light gray background color. By C[k](x) we denote
that circuit C' depends on k (during construction time) and takes = as input. The arrows above the games indicate the
security reduction to get from Game; to Game; .

Gameg: Let z* be the single query that the source S makes to its HASH oracle and let y* :=
G.Eval(k,z*). Gameg is similar to Game; except that we puncture the PRF at z*. Namely, the
hash key hk does not consist of an obfuscation of C[k] anymore, but rather of an obfuscation of
the circuit Ca[k*, p,y*]. The circuits C}[k] and Cylk*, p, y*] are functionally equivalent. However,
instead of the normal PRF key, Cs uses a punctured PRF key £* which is punctured at value z*
(or equivalently, at all values 2 where p(x) = 1). Here, p is computed as the AIPO obfuscation of
the point function p,~ and hence, p(x) = 1 if and only if x is equal to the single hash query z* of
the source. On input a value z, circuit Cy[k*, p, y*] checks whether p(x) = L (i.e., if x # z*): if
so, it returns G.Eval(k*, z), otherwise it outputs y*.

Games: The game is equivalent to Games except that oracle HASH now samples y* uniformly at
random instead of invoking G.Eval(k,.). Note that Co[k*, p, y*| is parametrized by y*.

Gamey: The game is equivalent to the previous game except that now an obfuscation of circuit
Cslk,p,y*] is used as hash key hk. Circuit Cs[k, p, y*] is identical to circuit Co[k*, p, y*], except
that it uses the original PRF key k instead of the punctured key £*. Note that circuits Cs[k, p, y*]
and Co[k*, p, y*] have identical input-output behaviour.

Games: The game is equivalent to the previous game except that now an obfuscation of circuit Cyk]
is used as hash key hk. Circuit Cy4[k] is our original circuit again, that is, C4[k](-) := G.Eval(k,-).
Games is our intended target. It is the UCE-security game for our construction in the random
oracle world (that is, oracle HASH implements a random oracle).

In Games we are in an identical setting to the UCE-game with the hidden bit set to 0. That is, the
HASH oracle answers with randomly chosen values independent of the hash key. Further note, that Cy
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and C are identical, that is they are as in the construction. Thus, we can write the advantage of an
adversary (S, D) in the UCE-security game as

AdVES 4 (A) = Pr [UCES’D()\) ) b= 1] +Pr [UCE&D(A) ‘ b= 0} 1
=Pr [Game? D(A)} - [Gamegs) D()\)}

4

<2 [P

It remains to show that the individual games are negligibly close.

[Game ()\)} — [GameZSJrDl()\)”

Game;(A) TO Gamey(\). In order to reduce to the security of the indistinguishability obfuscator
iO, we show that, by construction, the circuits C1[k] and Co[k*, p, y*] compute the same function. If
p(z) = L, then Cslk*, p,y*| returns G.Eval(k*,z). If p(z) = 1, then x = z* and Cy[k*, p, y*] returns

* = G.Eval(k,z*) = G.Eval(k,z). Hence, on all inputs =, Co[k*, p, y*] returns G.Eval(k,z) and so
does C1[k|. Having established that circuits C}[k] and Ca[k*, p,y*] compute the same functionality,
iO(C1[k]) and iO(Ca[k*, p,y*]) are indistinguishable and we can bound the difference between games
Game; and Gamey by the distinguishing advantage against the indistinguishability obfuscator iO. We
now formalize this intuition.

Firstly, let us externalize some of the variables that the games use and introduce a unified notation
for Game; and Gamey. For i € {1,2}, let Game;[k,r, y*, k*](A) be equal to the game Game;(\) where
key k is chosen as PRF key, source S uses randomness r, which defines its single query to HASH,
the result to that query is y* and the punctured key is chosen as k* (if such a punctured key exists,
namely only in Gamey). Note that the query x* of the source is well-defined by its randomness. We
define A[k,r, y*, k*](C) to be an adversary against the indistinguishability obfuscator iO that gets
a circuit C as input, where C' is either an obfuscation of circuit C}[k] or an obfuscation of circuit
Calk*, p,y*], where p is a point obfuscation of the point generated by S with randomness r. Adversary
Alk,r,y*, k*](C) runs source S(r) to get the query z*, returns y* on the single HASH query and receives
leakage L. It then runs distinguisher D on input (1)‘,07 L) and outputs whatever D outputs. We
present the pseudo-code of the adversary in Figure 5:

If C = C41]k] then adversary Alk,r, y*, k*](C) perfectly simulates game Game; [k, r, y*](\) and if
C = Cy[k*, p,y*] then the adversary simulates Gamey[k, 7, y*, k*|(A). Thus, we can rewrite the difference
between the two games’ distributions

Pr[Game;(\)] — Pr[Gamea ()]

Bty | PrlGamenlk, 7, 5| (V]| = Ep e s | PrlGameslk 5", k()]

= Egry 1+ | Pr[Gamei[k, 7, y*](N)] — Pr[Games[k, 7, y", k*]()\)]]

= Ep e | Pr[ Al ' K1(1,10(CIKD) = 1) = Pr [ Alk, 5%, K] (1, 10(Colk*, p,y'])) = 1}]

= Egry ke AdVE% Ak, y* k*),C1 [K],Ca [k*,p,y*] ()‘)}

S pmax, AV Al ko], 1Ol ] ()
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10 ADVERSARY Alk,r,y*, k*](1*,C) PRF ADVERSARY A;(1%)

L s S(r)Hasnly ] (1) run S(1*) until it makes query z* and
b s D(1*,C, L) denote by st the state at this point
return b’ S {z"}
return (5, st)
Hasnly*](x)
As(17 st ks, S, 7)
return y*

¥+ S

L <$ continue computation of S with state st and
answer its query with 7

p <3 AIPO(z™)

hk <$ i0(Czlks, p, 7])

b’ s D(1*, hk, L)

return b’

Figure 5: Pseudo-code of the iO adversary used in game transition from Game; to Gamez on the left, and the puncturable
PRF adversary used in the transition of Games to Games on the right.

By the security of the indistinguishability obfuscator, the advantage of any efficient adversary is
negligible and, hence, also maxy ;. k= AdVig Ak 1y 14,01 (K, Calk pyr] (M) 18 Diegligible.

Gamez(A) TO Games(\). We reduce the difference between Games and Games to the security of the
puncturable PRF G. We define an adversary (A, 42) against the puncturable PRF as follows. On
input the security parameter, adversary A; runs source S(1*) on the security parameter. When source
S makes its single HASH query z*, adversary A; stops, outputs {z*} as puncture set S together with
the current state st of the source S. Adversary As gets as input state st, the punctured key k* = kg,
the puncture point {z*} = S and a target value 7 which is either G.Eval(k, z*) or a uniformly random
value. Adversary A, uses the source’s state st to continue the simulation of the source S, which
expects an answer from its HASH oracle. The adversary A, passes value 7 to S and receives leakage
L. It then constructs an obfuscation p <—s AIPO(pz+) as well as an obfuscation hk <—s iO(Cz[k*, p, T]).
Subsequently, it runs distinguisher D on input (1)‘, hk, L) and outputs whatever D outputs. We give
the pseudo-code of the adversary in Figure 5.

If 7 = G.Eval(k, z*), then adversary (A1,.A2) perfectly simulates Games and otherwise it perfectly
simulates Games. Thus, we have that

Pr[Gamey(\)] — Pr[Games()\)] < AdvE;f’jflm()\)

which by the security of the puncturable PRF G is negligible.

Games(A) TO Gamey(A). We show that the circuits Cy[k*, p,y*] and Cslk, p,y*] compute the same
function. As the functionality of punctured PRFs is preserved under puncturing, for all  where
p(z) = L, it holds that Cy[k*,p,y*|(z) = G.Eval(k*,z) = G.Eval(k,z) = Cslk,p,y*]. For z with
p(z) = 1, by definition, both circuits Cs[k*, p, y*|(z) and Cs[k, p, y*] return y*.

As both circuits are equal, iO(Ca[k*, p, y*]) and iO(Cs[k, p, y*]) are indistinguishable by the security
of indistinguishability obfuscation. Analogously to the first game hop, we get that

Pr[Game(A)] — Pr[Games(V)] < max, AdVIY Afk o+ k], Co ke piy], Cs ] () -
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DIO SAMPLER Sam(1%) pIO ADVERSARY A(1*,C, L) AIPO ADVERSARY Bi(1%)

¥yt L b +$ D(1*,C, L) oy e L
k+$ G.KGen(1?) return b’ L s SHAs(12)
L s STt ks G.KGen(1")
p<+$ AIPO(z™) s {0, 1}Hjl(,\)
return (CS[krp’ y*}’C‘L[kLL) b+ (T,(E*>
return (z*, (b,7,y", L))
HasHu(z)
* 82(1)\)177 T)k7Lup)
¥
y* s {0, 1}HI) e L
return y* T +$ Ext(Cs[k, p,y*], Calk], L)
if = 1 then
c+$4{0,1}
else if (r,7) = b then
c<1
else c+ 0
return c

Figure 6: On the left, pseudo-code of the differing-inputs sampler Sam that we use in the transition from Games to
Gamey. We present the differing-inputs adversary A in the middle and the AIPO adversary (81, B2) on the right. Both of
them are used in the game transition from Gameys to Games. Note that the HASH oracle given to S in the description of
Bi is equivalent to the HASH oracle used by sampler Sam on the left.

Gamey(A\) TO Games(A\). By construction, the circuits C3lk,p,y*] and C4[k] only differ on points
where p(z) is not equal to L, that is, they differ on a single point, which is the query point x*. We
will bound the difference between games Game, and Games by the differing-inputs security of the
indistinguishability obfuscator iO. For this, we build on a result by Boyle, Chung and Pass (here given
as Theorem 2.5) who show that any indistinguishability obfuscator is also a differing-inputs obfuscator
for differing-inputs circuits which differ on at most polynomially many points [BCP14]. As explained
above, our circuits differ only on a single point and we can, thus, apply their theorem. In order to
argue with the security property of differing-inputs obfuscation, we need to show that the family of
circuit pairs (Cslk, p, y*], C4]k], Sam) is differing-inputs, where Sam is the circuit sampler that runs the
same steps as game Gamey up-to and including the obfuscation of the point function p,+, constructs
circuits Cslk, p, y*] and Cy[k], and outputs (Csk, p,y*], Ca[k], L). We give the pseudo-code of sampler
Sam in Figure 6.

Claim 3.4. If AIPO is a secure AIPO obfuscator (see Definition 2.7), then the family of circuit pairs
(Cslk,p, y*], Calk], Sam) is differing-inputs.

Before proving Claim 3.4, we show how to use it to prove that the difference between Gamey(\)
and Games(\) is small. Theorem 2.5 by Boyle et al. [BCP14] says that, if a family is differing-inputs
and only differs on at most polynomially many points, then their indistinguishability obfuscations
are indistinguishable. Claim 3.4 establishes that the family (Cs[k, p, y*], C4]k], Sam) is differing-inputs,
and we already observed that circuits Cslk, p, y*] and Cy[k] only differ on a single input value. Hence,
Theorem 2.5 allows us to do an analysis similar to the one from the first game hop. That is, we define
adversary A which gets as input a circuit C' and leakage L where C is either an indistinguishability
obfuscation of circuit C3[k,p,y*] or of circuit Cy[k] as sampled by Sam. It runs distinguisher D on
input (1%, C, L) and outputs whatever D outputs. We give the pseudo-code of adversary A in Figure 6.

If C =i0(Cslk, p,y*]), then adversary A perfectly simulates Gamey(), and if C' = i0(Cyk]), then
it perfectly simulates Games(A). Thus, we have

Pr[Gamey(\)] — Pr[Games ()] < Advi‘j(i)‘fA7C37C47Sam()\) < negl(A)
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We now proceed to proving Claim 3.4. Assume there exists an adversary (i.e., an extractor) Ext
against the differing-inputs of the above circuit family which receives as input (Cs[k, p, y*], C4[k], L)
and outputs a value 7 such that Cs[k, p, y*](17) # C4[k](7). Then, p(7) = 1 and thus, intuitively, Ext
breaks the AIPO property of the point obfuscation scheme. Let us now make this intuition formal.

We construct adversary (B1, Bz) where By describes an unpredictable distribution. On input the
security parameter, B; runs source S(1*) and answers its single HASH query z* with a uniformly
random value y* and then receives leakage L from S. B; draws a random string r. It then computes
b := (r,z*) and finally outputs (z*, (b,r,y*, L)).

Adversary Bs gets as input the security parameter, the auxiliary input (b, r, y*, L) and an obfuscation
p which is either an obfuscation of point function p,+ or of a point function p, for a uniformly random
u. It samples a random key k <—s G.KGen(\) and constructs circuits Cs[k, p, y*| and Cy[k]. It then calls
Ext on input (Cs[k, p, y*|, Ca[k], L) to receive a value 7. If Ext outputs 7 = L, then Bs flips a bit and
returns the outcome of the bitflip. Else, if 7 is such that C3[k, p,y*](17) # C4[k](7) and hence p(7) =1
then By outputs 1 if (r,7) equals b and 0 otherwise.

If p is an obfuscation of p,~ then circuits Cs[k, p, y*] and Cy[k] differ on input 7 if and only if 7 = z*,
unless y* = G.Eval(k, 2*), which happens only with negligible probability. Hence, if the differing-inputs
adversary Ext outputs 7, then 7 = z* and, thus, with probability 1, By will output 1. If, on the other
hand, p is an obfuscation of p,, then the circuits Cslk, p, y*] and Cy[k] differ on input 7 if and only if
7 = u. Hence, if the differing-inputs adversary Ext outputs 7, then 7 = w and thus, B will only output
1 with probability 3 (since Pr[(u,r) =b] = 3). Let us make the probability analysis formal. Let d = 0
describe the event that in the AIPO-game, p,+ gets obfuscated, and d = 1 describe the event that in
the AIPO-game, p,, gets obfuscated for a random u. Let € be the probability that Ext returns a value
7 # 1 in the differing-inputs game, that is, ¢ := Pr[ L # Ext |d = 0]. Note, that for readability we
do not specify the input of adversaries Ext and B in the following treatment. We now consider the
distinguishing probability of adversary Bs

Pr[By=1|d=0]-Pr[By=1]|d=1]
which can be rewritten as

=Pr[Bo=1|d=0,Ext# L]-Pr[Ext# L |d=0]+
Pr[Bo=1|d=0,Ext= 1] -Pr[Ext= 1 |[d=0]—
Pr(Bs=1|d=1]

1
:Pr[Ext#J_\d:0}+§~Pr[Ext:J_\d:O}—Pr[BQ:I |d=1]

:Pr[Ext;éJ_\dzO}—i—%-(l—Pr[Ext;&J_|d:0]>—Pr[l’9’2:1 ld=1]

1 1
:§-Pr[Ext7$J_|d:0]+§—Pr[82:1 |d=1]

In the following, we consider the random variable U to describe the underlying choice of point function
pu (in case d = 1).

1 1
:§6+§—PI'[BQ:1 |d=1Ext# L] -Pr[Ext# L |d=1]+

Pr(Ba=1|d=1Ext=_1]-Pr[Ext= 1 |d=1]
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ﬁ Z <Pr[62:1|d:1,U:u,Ext7éJ_]-Pr[Ext;éJ_\U:u,dzl]—k

uE{O,l}H‘”()‘)

Pr(By =1 ]dzl,U:u,Ext:J_]-Pr[Ext:J_\Uzu,dzl])

If extractor Ext outputs a value u (given that d = 1), then the probability of By of outputting 1, that is,
Pr(Bs =1|d=1,U =u,Ext # L] is equivalent to Prg ;[ (R, u) = b] where random variable R denotes
the choice of value r by B; to compute b = (r, z*). Note that extractor Ext is independent of R and b
and, thus, we have that Prpy[(R,u) = b] = 1.

R
272
1 1
S0 > <PrR7b[<R,u):b]-Pr[Ext7éJ_|U:u,d:1]+2-Pr[Ext:J_|U:u,d:1]>
ue{0,1}H10)
S S > L (P [Ext# L |U=u,d=1]+Pr[Ext= L |U = d—l])
—56 5 m - 5 r|EX =u,a = I EXTt = =u,a =
ue{o,l}HJ'()\)
11 1 1 1
=5¢t3 w2 37 l173¢

’U,E{O,I}H‘”o‘)

To finish the proof of Claim 3.4, we need to argue that B; implements an unpredictable distribution.
By assumption, the source S is strongly computationally unpredictable (i.e., S € S¥"P) and hence
leakage L hides x* even in the presence of y*. Thus, to see that 1 defines an unpredictable distribution,
we need to argue that x* remains unpredictable if additionally given a single bit of *. But a single bit
can be guessed with probability % Hence, (B1, Ba) breaks the security of the AIPO obfuscation, which
concludes the proof of Claim 3.4 and the proof of Theorem 3.3.

3.3 A UCE Construction Secure Against Sources in S**"P N S-auey

In this section we prove that our construction is also UCE-secure with respect to sources which are
strongly unpredictable in a statistical sense and which allow the source to make g-many queries for any
polynomial ¢ := ¢(\). That is, we consider sources in class S¥'P N STy,

In case we allow the source to make ¢ many queries, the first observation is that we need to choose
the size of our obfuscated circuit such we can puncture at ¢ many points. For each point, we will
encode a random string into the circuit and thus, the circuit size grows with the number of points we
need to puncture out. Besides this, the construction is identical to the one before with the exception
that we need a different (incomparable) security property of our point function obfuscation scheme.
That is, we require the point obfuscator to be a g-composable VGB obfuscator secure in the presence
of statistically unpredictable auxiliary information which implies an AIPO obfuscator with statistically
unpredictable auxiliary information (see Section 2.1).

Theorem 3.5. Let q be a polynomial. If G is a secure puncturable PRF, if iO is a secure indistinguisha-
bility obfuscator and if there exist a q-composable VGB point obfuscator for statistically unpredicatable
auzxiliary input, then the hash function family H defined in Construction 3.2 is UCE[S%S"P N ST4uery].
secure.

The proof follows analogously to the proof of Theorem 3.3, except for puncturing at several points
instead of a single point and therefore, we reduce to t-composable VGB point obfuscation. The proof
is deferred to Appendix C. For an overview of the game-hops, see Figure 9.
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MAIN CIH{{()) MaIN HC7 4 (A)

b«s{0,1} b+s5{0,1}
hk s H.KGen(1*) k<+s$ F.KGen(1"); hk+s H.KGen(1*)
m s A (17) z+s{0,1}*
fori=1,...,|m| do y « F.Eval(k,z)
hg[i] 3 {0, 1}1-9'(}) if b =1 then r «$ H.Eval(hk, x)
hy [i] < H.Eval(hk, m[i]) else 7+ {0, 1}H-o1M)
b s Az(1*, hk, hy) b’ s A (k, hk,y,r)
return (b =1b') return (b ="b')
Figure 7: The security game for correlated- Figure 8: The security game for hardcore func-
input hash functions. tions.

4 Applications

In the following section we describe the applications that our UCE constructions fulfill. Our UCE[S%"PN
St-auery]_gecure function can be shown to be a universal hardcore function for any one-way function
and our UCE[S*%"P N ST9"Y]-secure function achieves correlated-input security. We note that our
UCE[S*5"P N ST9U¢Y] construction is also sufficient to instantiate proof-of-storage schemes and we
refer to [BHK13b] for further details.

4.1 Hash Functions Secure under Correlated Inputs

Correlated-input secure hash functions (CIH) demand that an adversary that is able to obtain a sequence
of (potentially correlated) hash values cannot distinguish between these being real or uniformly random
assuming that source values come from a distribution that has super-logarithmic min-entropy. The
notion was introduced by Goyal, O’Neill, and Rao [GOR11] and GOR present several constructions
for limited CIH in the standard model. However, constructions for full CIH are only known in the
random oracle model, even if the number of number of queries are bounded by a polynomial. Bellare,
Hoang, and Keelvedhi show that hash functions secure under UCE[SS"P N SP!t]-assumptions are also
CIH secure [BHK13b]. As statistically strong unpredictability is a strictly larger source class than
statistically secure split sources (see Lemma 3.1) our construction from Section 3.3 yields the first
candidate construction of g-query CIH-secure hash functions.

We present game CIH“,_‘|l for correlated-input secure hash functions in Figure 7. We say that a
function H is CIH-secure if the advantage of any admissible PPT adversary A = (Aj,.A3) defined as

Advy 4 := 2 - Pr[CIH{(\)] — 1

is negligible. An adversary is admissible if on input the security parameter adversary A; outputs
a vector m of distinct values and of length |m| = v(A\) where v is a polynomial depending on A;.
Furthermore, we require that the guessing probability of each entry is negligible, that is, the min-entropy
of [i] for all i = 1,...,v(\) must be at least super-logarithmic in the security parameter.

BHK give the following theorem [BHK13b]:

Theorem 4.1 ([BHK13b]). If H is UCE[S®™ N S*P!*]-secure then H is a correlated-input hash function
(CIH).

In our construction of a UCE[S*®"P N ST9"Y] the number of queries that we can allow a source to
make can be regarded as a parameter of the key generation function. We give the following adaption
of CIH-secure hash functions called ¢-query correlated-input secure hash functions where the number
of queries is specified as part of the key generation process.

25



Definition 4.2. Let ¢ be a polynomial. A hash construction H is called q-query correlated-input
secure if its key generation algorithm takes as input parameter q and if the advantage of any adversary
A = (A1, Ay) where Ay outputs a message vector of length at most q in the CIH{ game is negligible.

Combining Theorems 3.5 and 4.1 we get:

Proposition 4.3. Let g be a polynomial. If G is a secure puncturable PRF, if iO is a secure in-
distinguishability obfuscator and if there exist a g-composable VGB point obfuscator for statistically
unpredicatable auxiliary input, then the hash function family defined in Construction 3.2 is q-CIH
secure.

4.2 Universal Hardcore Functions

A hardcore function for a one-way function f is a (deterministic) algorithm whose output on a random
point x is indistinguishable from random even given the image under f, that is, given f(z). Random
oracles are natural hardcore functions. BHK show that also UCE-secure functions, secure with respect
to computationally unpredictable split sources are hardcore for any one-way function.

Let F be a (possibly keyed) one-way function. We say that function H is hardcore for F' if the
advantage of any PPT adversary A in game HC“I‘,{ y (given in Figure 8) is negligible, where we define
the advantage as

Advy 4 =2 Pr[HCH4 (V)] — 1.

Bellare, Hoang, and Keelvedhi show that any UCE-secure function with respect to split sources
that are computationally unpredictable are universal hardcore functions. We recall their result:

Theorem 4.4 ([BHK13b]). If H is UCE[SP’ N St N ST-averY]_secyre then H is a hardcore function
for any one-way function.

Combined with Construction 3.2 and Theorem 3.3 we get an instantiation of a universal hardcore
function.

Proposition 4.5. If G is a secure puncturable PRF, if iO is a secure indistinguishability obfuscator
and if AIPO ezxists, then the hash function family H defined in Construction 3.2 is a universal hardcore
function.

THE BR93 PKE SCHEME. In their seminal paper on random oracles, Bellare and Roggaway proposed
a very simple, yet elegant public-key encryption scheme [BR93] based on a single trapdoor function f.
The public-key of the encryption scheme is set to the evaluation key of the trapdoor function, and the
private key is the set to be the trapdoor. To encrypt a message m the encryption algorithm chooses
a random value = and outputs (f(x),H(z) @ m), where H is a hash function. For decryption, one
inverts f(z) using the trapdoor and can, thus, recover message m. Bellare et al. show that we can
safely instantiate the hash function with any UCE[S®P N St 0 St-auery] [BHK13b]. Combined with
Construction 3.2 and Theorem 3.3 we get an instantiation of that scheme.

Proposition 4.6. If f is a trapdoor one-way function, if G is a secure puncturable PRF, if iO
is a secure indistinguishability obfuscator and if AIPO exists, then the BR93 PKE scheme [BR93]
instantiated with f and the hash function family H defined in Construction 3.2 is IND-CPA secure.
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5 The BFM Impossibility Result

In a recent work, Brzuska, Farshim, and Mittelbach [BFM14] show that assuming indistinguishability
obfuscation exists, no standard model hash construction can be UCE[S®"P]-secure, that is, UCE secure
with respect to computationally unpredictable sources. In the following section we discuss the possibility
of the BFM attack being extended to also cover UCE with respect to strongly unpredictable sources
and implications thereof.

THE BFM ATTACK. Let us recall the intuition behind the BFM attack. Consider the source Sgrum
that makes a single (random) query z to receive HASH(z). It then prepares an indistinguishability
obfuscation of the circuit (H.Eval(-, z) = y), that is the predicate that on input a hash key hk tests, if
H.Eval(hk,z) = y. If y is chosen uniformly at random and if the output length of the hash function
is (much) larger than the key-space, then the probability that there exists some key hk such that
H.Eval(hk, z) = y becomes negligible. This means that the circuit is with high probability the constant
zero circuit and, thus, an indistinguishability obfuscation of the circuit does not leak anything more
than the obfuscation of the constant zero circuit. It follows that the source is (computationally)
unpredictable. A distinguisher, given access to the above circuit can, however, easily distinguish by
simply plugging the hash key hk that it got as input into the circuit and outputting whatever the
circuit outputs. We next give the pseudocode of the BFM adversary:

SOURCE Sgpym (1) DISTINGUISHER Dgpy (17, hk, L)
x5 {0, 1} C« L
y < HasH(z) b« C(hk)
C~’ < (H.Eval(-,z) = y) return b’
¢ +$i0(C)

return L :=C

In the above intuition we relied upon the output length of the hash function being significantly
larger than the key-size. To bootstrap their attack to hash functions for which this does not hold BFM
simply extended the source to make multiple queries until the combined length of the received hash
values is sufficiently longer than the size of the key. Bellare, Hoang, and Keelvedhi [BHK13c| point out
that the attack can also be extended by applying a pseudorandom generator to the output of the hash
construction. The idea here is, that if H is a UCE[S"P]-secure function then so is H'(+,-) := PRG(H(-, -))
where PRG is a pseudorandom generator.

IMPLAUSIBILITY OF EXTENDING BFM. While it is straight forward to prove that if H is a UCE[S"P]-
secure function then so is H'(+,-) := PRG(H(-,-)) this is not the case if we restrict our sources to be
strongly unpredictable, that is, to source class S>“"P. The reason is that in the reduction from a
predictor to the PRG security the predictor requires the single oracle answer y as additional input
which in the reduction would correspond to the seed of the PRG value. This, however, means that the
reduction given either an image under the PRG or a uniformly random value must be able to compute
the corresponding seed (if it exists) thereby breaking the PRG security on its own.

Similarly, using multiple queries seems not to allow extending the BFM attack to break our
construction. In our construction the key is an obfuscation of a puncturable PRF. In order to use
the puncturing technique the size of this circuit must be chosen according to the number of potential
puncture points. Thus, the key size of our construction will always be strictly larger than the combined
output length that can be achieved using the allowed number of queries.
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IMPLICATIONS OF AN EXTENDED ATTACK. Finally, we want to discuss the implications of a successful
extension of the BFM attacks. In this case we would have the following implications:

1. i0 = —UCE[S*<P]
2. i0 + AIPO = UCE[S¥"]

Combining the two would result in the statement
i0 = -AIPO

that is, if indistinguishability obfuscation exists then point function obfuscation secure in the presence
of auxiliary inputs does not exist and vice versa. This would be a surprising result as currently we
hope that both forms of obfuscation exists. While iO has been used in numerous works lately [SW14,
BCP14, ABG*13, GGHR14, HSW14, BZ14, BST14], point function obfuscation secure in the presence
of auxilliary inputs has been used, for example, to circumvent black-box impossibility results and
construct 3-round proofs with negligible soundness error satisfying the zero-knowledge notions weak
ZK and witness hiding [GK96] and very recently to construct CCA secure public key encryption
schemes [MH14a]. In a very recent work Brzuska and Mittelbach [BM14] give a partial answer to this
question and show that indistinguishability obfuscation and multi-bit output point function obfuscation
secure in the presence of auxiliary information (MB-AIPO) are mutually exclusive. A multi-bit output
point function p; ., is similar to a plain point function p, except that the the input x is mapped to m
instead of to 1. We note that the their techniques do not seem to carry over to plain ATPO.

An intriguing direction for further research is, thus, the study of point obfuscation with auxiliary
inputs in the lights of the new results regarding indistinguishability obfuscation. Finally, let us note
that in case AIPOs, indeed, do not exist that our result could be salvaged by considering a statistical
version of strong unpredictability. This fix, was also proposed by BFM (and independently by BHK)
to salvage a large number of applications for UCEs [BFM14, BHK13b].
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A Constructions and Candidates for Obfuscation Schemes

In the following we present existing candidates for indistinguishability obfuscation (which also yield
restricted forms of differing-inputs obfuscation with a beautiful result of Boyle, Chung and Pass [BCP14])
and point obfuscation schemes with auxiliary input (AIPOs).

INDISTINGUISHABILITY OBFUSCATION. In a breakthrough paper, Garg et al. [GGH" 13| present a
candidate construction for indistinguishability obfuscation. Their candidate is based on an intractability
assumption related to multi-linear maps and their construction yields an indistinguishability obfuscator
for all circuits in N'C'. They go on to show that, if additionally assuming a perfectly correct leveled
fully homomorphic encryption scheme and a perfectly sound non-interactive witness-indistinguishable
proof system that their obfuscator can be bootstrapped to yield an indistinguishability obfuscator for
all circuits in P/poly. In recent works, Brakerski and Rothblum [BR14] and Barak et al. [BGK™14]
have further simplified the construction and showed that it is secure against all generic multi-linear
attacks. A result by Ananth et al. [AGIS14] yields a more efficient construction. Complementary, Pass,
Seth and Telang [PST14] show how to base an adapted construction on a novel assumption they call
semantically-secure multilinear encodings. In a very recent work Gentry et al. [GLSW14] show that iO
can be based on instance-independent assumptions and give a construction based on the Multilinear
Subgroup Elimination Assumption.

CANDIDATES FOR POINT OBFUSCATION WITH AUXILIARY INPUT (AIPO). The study of point function
obfuscation started with Canetti [Can97] who gives a construction that satisfies Definition 2.7 under a
strong variant of the DDH assumption. We here present the construction in the formulation of [BP12]
and then present the assumption it is based on.

Construction A.1 (AIPO obfuscator due to [Can97]). Let G := {G}ren be a group ensemble, where
each Gy, is a group of prime order py € (2)71,2*). We define an obfuscator AIPO for points in the

domain Zy, as follows: p, AIRO C(r,r®), where r<s Gy is a random generator of Gy, and C(r,r") is a

circuit which on input ¢, checks whether r* = r*.

Assumption A.2 ([Can97],[BP12]). There exists an ensemble of prime order groups G := {Gx}xen
such that for any unpredictable distribution D = {Dy = (Zx,Y»)}xen with support {0, 1}POYR) x Ly,
it holds that for all PPT algorithms A there exists a negligible function negl such that

Prr<—$ G, <8 (z,x) <8 Dy [.A(Z, r, Tx) = 1] - Prr<—$ G,z 48 Zx,uss Zp, [.A(Z, T, Tu) = 1] < negl()‘)

A second candidate construction for ATPO is due to Bitansky and Paneth [BP12] who adapt a
point obfuscation construction by Wee [Wee05] to allow for auxiliary input. Their construction is
based on an assumption on the existence of strong pseudorandom permutations. Let us recall the
underlying assumption (which generalizes the original assumption due to Wee [Wee05]) before recalling
the construction.

Assumption A.3 ([BP12]). There exists an ensemble of permutation families F = {Fy = {f}} such
that for any unpredictable distribution ensemble D = {Dy = (Zx,Y))}en, the following two distribution
ensembles are also unpredictable:

o ((Zx, f(Y2), [);Yy)
o ((Zx, 1) (YY),
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where in both f<s Fy (independently of D) ).

Based on Assumption A.3, Bitansky and Paneth show that the following construction yields an
ATPO obfuscator satisfying Definition 2.7 [BP12].

Construction A.4 ([BP12]). Let F be a family of permutations as given by Assumption A.3. AIPO
obfuscator AIPO works as follows: given a point y € {0,1}*, AIPO samples 3\ permutations {fitien
from Fx and 3\ strings {ri}icizx from {0, 1}, For every i € [3)], let fi:= fiofi_10...0f1 (whereo
denotes composition). Obfuscator AIPO outputs a circuit Cy that has hardcoded into it the randomness
of AIPO, {fi,7i}icizn and the bits {b; := (rs, f'(y)) }icpsn), where (.,.) denotes the inner product over
GFy. Circuit Cy outputs 1 on a point x if for all i € [3A\] : b; = <ri, f’(a:)>, and 0 otherwise.

STATISTICAL AIPO. Bitansky and Canetti show that the point obfuscation scheme of Canetti [Can97]
is a t-composable VGB point obfuscator and that t-composable VGB point obfuscation implies
obfuscation in the presence of auxiliary information (VGB-AI). Matsuda and Hanoka [MH14a] relate
the notions of VGB point obfuscators (resp. VGB-AI point obfuscators) and AIPO and show that
composable VGB-AI point obfuscators imply the existence of composable AIPO with respect to
statistically unpredictable distributions.

B AIPO Implies One-way Functions

In this section, we show that, like most cryptographic primitives, AIPO implies one-way functions.
As one-way functions imply PRGs [HILL99] and as PRGs imply puncturable PRFs [BW13, BGI14,
KPTZ13], that suffices to prove that AIPO implies puncturable PRFs.

Lemma B.1 (AIPO implies one-way functions). Point Function Obfuscation (that is secure under
auziliary inputs) implies puncturable PRFs.

Proof. Two distributions that are statistically close and computationally far imply a distributional one-
way function [Gol90], and a distributionally one-way function implies a standard one-way function [IL89].
The security property of AIPO implies that the obfuscation of p, for a random x, where 1 =0 (i.e.,
the first bit of z is 0) is indistinguishable from the obfucation of p, for a random u. Hence, we have
two computationally indistinguishable distributions. Let us argue that they are statistically far. With
probability %, the first bit of v does not equal 0 and hence, the obfuscation of u is outside of the
support of the distributions over p,. Hence, the two random variables have statistical distance at least
% which concludes the proof. ]

C Proof of Theorem 3.5

The main differences compared to the proof of Theorem 3.3 is that we now puncture on ¢ many points
and also construct ¢ many point obfuscations and hence, in the analogue to Claim 3.4 we need to use
composable point obfuscations. We now describe the five games and then give the proof of the analogue
to Claim 3.4. We present the pseudocode for the games in Figure 9. Note that we assume, without
loss of generality, that the source always makes ¢ distinct queries. Further note the notation we have
chosen to store the queries: we use two lists X™*, Y™ to store queries  and corresponding answer y. In
order to emulate that in strong unpredictability the query answers are not given in an ordered list to
the predictor but as an unordered set we fill the lists X* and Y* in a random order using the helper
set Indexes (see Figure 9).
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Gamej: The first game is the original UCE[S*®"P N ST ]-game. Here, the hash key hk is an
obfuscation of the circuit C4[k](z) := G.Eval(k, z) where k is a key for the puncturable PRF.

Gameg: Let z7,...,2; denote the ¢ queries that the source S makes to its HASH oracle and let
yr = G.Eval(k,z}) (for i = 1,...,q). Gamey is similar to Game; except that we puncture the
PRF on z7 to . Namely, the hash key hk does not consist of an obfuscation of C} [k] anymore,
but rather of an obfuscation of the circuit Co[k*, p1,...,pq,¥7,-- -, y;]. The circuits C1[k] and
Colk*,p1, -+, Pg, Y3, - - - Yy| are functionally equivalent. However, instead of the normal PRF
key, Cy uses a punctured PRF key k* which is punctured at values z} (for i =1,...,q). Here,
pi is computed as the point obfuscation of the point function pyx. On input a value z, circuit
Co[k*,p1, -+, Y1, - - - Yy checks whether there exists i € {1,..., ¢} such that p;(z) = L. If so,
it returns y, otherwise it outputs G.Eval(k*, x).

Games: The game is equivalent to Gamey except that oracle HASH now samples y; uniformly at
random instead of invoking G.Eval(k,.). Note that Co[k™,p1,...,pg 47, -, ¥y, is parametrized

by y;.

Gamey: The game is equivalent to the previous game except that we now use an obfuscation of
circuit Cslk,p1,...,Pg, Y7, - - - ¥,] as hash key hk. Circuit C3[k,p1,...,pq,¥1, .- -,y;] is identical
to circuit Colk*, p1,...,0q, Y5, - - - ,y;“], except that it uses the original PRF key k instead of the
punctured key k*. Note that circuits C3[k,p1,...,0q, U5, - -, y;] and Co[k*,p1,. .., pg, U1, - - -, Y5]
have identical input-output behaviour.

Games:  The game is equivalent to the previous game except that now an obfuscation of circuit Cyk]
is used as hash key hk. Circuit Cy[k] is our original circuit again, that is, C4[k](-) := G.Eval(k, -).
Games is our intended target. It is the UCE-security game for our construction in the random
oracle world (that is, oracle HASH implements a random oracle).

It remains to give the analogue of Claim 3.4.

Claim C.1. If AIPO is a g-composable AIPO obfuscator for statistically hard-to-invert auxiliary
information, then the family of circuit pairs

(Cslk,p1, s Pgs Y5 - - - Yy, Calk], Sam)
18 differing-inputs.

Proof. Assume there exists an adversary (i.e., an extractor) Ext against the differing-inputs of the
above circuit family which receives as input (C3[k, p1,...,pg, 47, - -, ¥;], Ca[k], L) and outputs a value
7 such that Cs[k, p1,...,pg 47, - -, Y |(7) # Calk](7). Then, p;(7) =1 for some i € {1,...,q} and thus,
intuitively, Ext breaks the security property of the point obfuscation scheme. Let us now make this
intuition formal.

We construct adversary (B1, B2) where B; describes a statistically unpredictable distribution. On
input the security parameter, By runs source S(1*). Without loss of generality we assume that the
source’s queries are distinct. Adversray B; answers the ¢ many distinct HASH queries z] each with a
uniformly random value y; and then receives leakage L from S. Adversary By then draws a random
string 7 and index j<-s{1,...,¢}. It computes b := (r, 1’;> and chooses a random permutation perm,
on the set [¢] = {1,...,q}. That is Vi € [q] : perm (i) € [q] and Vi,j € [q] : perm (i) # perm (j).
Finally adversary B; outputs ((x;ermq(l), .. ,:L‘;ermq(q)), (b,r, permq(j),y;ermq(l), .. ,y;ermq(q),L)). That
is, it permutes the queries =] and corresponding images y; while keeping index j intact. Note that the
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0 PRE i0 g-comp. VGB +i0 + [BCP14]

Gamey () Gamey () Games () Gamey () Games ()
Indexes < {1,...,q} Indexes < {1,...,q} Indexes < {1,...,q} Indexes « {1,...,q} Indexes < {1,...,q}
X5 V"« | X5 Y* X5 V"« X5 Y* ] X5 Y* +
140 140 i< 0 10 10
k% G.KGen(1?) ks G.KGen(1*) k<% G.KGen(1?) k% G.KGen(1*) ks G.KGen(1*)
L+s SHASII(l)\) L«s SHASH(l)\) L«s SHASII(l)\) L+«s SHASII(l)\) L«s SHASII(l)\)

Pl Pl Pl

fori=1,...,qdo fori=1,...,qdo fori=1,...,qdo

P[i] <s AIPO(X™[i]) Pli] +s AIPO(X™[i]) Pli] <8 AIPO(X™[i])

k* < G.Puncture(k, X™) k™ < G.Puncture(k, X™)
hk <—$ i0(C1[k]) hk<s iO(Ce[k*, P,Y*])  hk<siO(Ce[k*,P,Y*])  hk<siO(Cslk, P,Y*])  hk<s$ iO(Cy4[k])
b’ s D(1*, hk, L) b <3 D(1*, hk, L) b’ «s D(1*, hk, L) b <5 D(1*, hk, L) b <s D(1*, hk, L)
return (1 =) return (1 =1b') return (1 =1") return (1 =1b") return (1 =1")
HasH(z) HasH(z) HasH(z) HasH(z) HasH(z)
1 4% Indexes 1<% Indexes 1 4—$ Indexes 1 4—$ Indexes 1<% Indexes
Indexes < Indexes \ {i}  Indexes <+ Indexes \ {i} Indexes < Indexes \ {i} Indexes — Indexes \ {i}  Indexes < Indexes \ {i}
X'+ =z X*[i] + = X*[i] + =z X*[i] + = X*[i] + =
Y*[i] + G.Eval(k, z) Y*[i] + G.Eval(k, z) Y * [i] s {0, 1}H~°|(>\) Y *[i] < {0, 1}H-°|(/\) Y*[i] «s3 {0, 1}H-°|(>\)
return Y [i] return Y™ (4] return Y *[i] return Y *[i] return Y *[i]

Circult C4[k](z) Circult Colk*, P,Y*](z) Circult Csk, P,Y*](x) CIircurr Cy[k](x)

return G.Eval(k, z) fori=1,...,q fori=1,...,q return G.Eval(k, z)
if P[i](z) = 1 then if P[i](z) =1 then
return Y *[i] return Y *[i]
return G.Eval(k*, z) return G.Eval(k, z)

Figure 9: The games used in the proof of Theorem 3.5 on the top and the corresponding circuits on the bottom. Note
that we use lists X*, Y™ and P to store queries, answers and point functions. Further note that the lists X* and Y™ are
filled in a random order emulating a set (with the exception that collisions are kept).

usage of the random permutation emulates the random assignment of indexes in games Games and
Gamey (see Figure 9).

Adversary By gets as input the security parameter, the auxiliary input (b,7,j,v7,...,9;, L), as
well as ¢ obfuscations pi,...,pg which are either honest obfuscations of point functions py: (for
i = 1,...,q) or of q uniformly random points. It samples a random key k<s G.KGen()\) and
constructs circuits C3[k,p1,...,pq, Y1, --,y;] and Cy[k]. It then calls the extractor Ext on input
(C3[k,p1,- g Y55 - - - Ygl, Calk], L) to receive a value 7. If Ext outputs 7 = L, then Bs flips a bit and
returns the outcome of the bitflip. Else, if 7 is such that C3[k,p1,...,pg,u1, ..., y;](7) # Culk](7) and
p;(7) =1, then By outputs 1 if (r,7) equals b and 0 otherwise. Else, if p;(7) = L, then By also flips a
bit and returns the outcome of the bitflip.

If the obfuscations where chosen honestly with respect to the target points z7,...,zy, then circuits
Cslk,p1,- - Pg, Y15 - - -, Y] and Cylk] differ on input 7 if and only if 7 = 7 for some i € {1,...,q}.
Hence, if the differing-inputs adversary Ext outputs 7, then 7 = z} for some i € {1,...,q} and, thus,
with probability 1/q value 7 is equal to z; and, hence, By will output 1. If, on the other hand, the
obfuscations p; are of random points u;, then the circuits Cs[key,p1,...,pq, y1, - - -, y;] and Cy[k] differ
on input 7 if and only if 7 = u; for some i € {1,...,q}. Hence, if the differing-inputs adversary Ext
outputs 7 and 7 = u; then B will only output 1 with probability % (since Pr[(uj,r) =b] = 1). The
formal analysis is equivalent to the one for Claim 3.4 with an additional loss of factor % for guessing
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the right index.

To finish the proof of Claim C.1, we need to argue that B; implements a statistically unpredictable
distribution. By assumption, the source S is strongly, statistically unpredictable (i.e., S € §¥%"P) and
hence leakage L hides the query points even in the presence of a set containing the HASH answers. As
all y; in the simulation are chosen uniformly at random the probability of a collision is negligible. (Note
that strong unpredictability is only guaranteed in the presence of the set of answers of the oracle, and if
a collision occurs B; violates this condition.) Additionally, note that B; outputs values y; not in their
correct order but in a random order perfectly mimicking the requirements of a strongly unpredictable
source. Thus, to see that B; defines an unpredictable distribution, we need to argue that x} remain
unpredictable if additionally given a single bit of 2 and an index j. But a single bit and index can
be guessed with probability 2%1. Hence, (By,B2) breaks the security of the AIPO obfuscation, which
concludes the proof of Claim C.1.
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