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Abstract

A program obfuscator takes a program and outputs a “scrambled” version of it, where the
goal is that the obfuscated program will not reveal much about its structure beyond what is
apparent from executing it. There are several ways of formalizing this goal. Specifically, in
indistinguishability obfuscation, first defined by Barak et al. (CRYPTO 2001), the requirement
is that the results of obfuscating any two functionally equivalent programs (circuits) will be
computationally indistinguishable. Recently, a fascinating candidate construction for indistin-
guishability obfuscation was proposed by Garg et al. (FOCS 2013). This has led to a flurry of
discovery of intriguing constructions of primitives and protocols whose existence was not previ-
ously known (for instance, fully deniable encryption by Sahai and Waters, STOC 2014). Most
of them explicitly rely on additional hardness assumptions, such as one-way functions.

Our goal is to get rid of this extra assumption. We cannot argue that indistinguishability
obfuscation of all polynomial-time circuits implies the existence of one-way functions, since if
P = NP, then program obfuscation (under the indistinguishability notion) is possible. Instead,
the ultimate goal is to argue that if P 6= NP and program obfuscation is possible, then one-way
functions exist.

Our main result is that if NP 6⊆ io-BPP and there is an efficient (even imperfect) indis-
tinguishability obfuscator, then there are one-way functions. In addition, we show that the
existence of an indistinguishability obfuscator implies (unconditionally) the existence of SZK-
arguments for NP. This, in turn, provides an alternative version of our main result, based on the
assumption of hard-on-the average NP problems. To get some of our results we need obfuscators
for simple programs such as 3CNF formulas.
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1 Introduction

The goal of program obfuscation is to transform a given program (say described as a boolean circuit)
into another “scrambled” circuit which is functionally equivalent by “hiding” its implementation
details (making it hard to “reverse-engineer”). The theoretical study of obfuscation was initiated by
Barak et al. [BGI+01, BGI+12]. They studied several notions of obfuscation, primarily focusing on
virtual black-box obfuscation (henceforth VBB). Virtual black-box obfuscation requires that anything
that can be efficiently computed from the obfuscated program, can also be computed efficiently
from black-box (i.e., input-output) access to the program. Their main result was that this notion
of obfuscation cannot be achieved for all circuits. Moreover, the existence of virtual black-box
obfuscators for various restricted families of functions is still a major open problem.

As a way to bypass their general impossibility result, Barak et al. [BGI+12] introduced the
notion of indistinguishability obfuscation (henceforth iO). An indistinguishability obfuscator is an
algorithm that guarantees that if two circuits compute the same function, then their obfuscations
are computationally indistinguishable.

Recently, there have been two significant developments regarding indistinguishability obfusca-
tion: first, candidate constructions for obfuscators for all polynomial-time programs were proposed
[GGH+13, BR14, BGK+14, PST14, AGIS14, GLSW14] and second, intriguing applications of iO
have been demonstrated, e.g., general-purpose functional encryption scheme [GGH+13], deniable
encryption with negligible advantage [SW14], two-round secure MPC [GGHR14], traitor-tracing
schemes with very short messages [BZ14], secret-sharing for NP [KNY14] and more. However, es-
sentially all these applications (and others) explicitly rely on some additional hardness assumption
(such as one-way functions).1 This should not come as a surprise: As noted already by Barak et al.
[BGI+12], if P = NP, then there are no one-way functions but iO does exist.2

We consider both “perfect” obfuscators with perfect functionality (i.e., the obfuscator always
preserves the functionality of the input circuit) and “imperfect” obfuscators, where the functionality
is preserved only with overwhelming probability. Our goal is to deepen our understanding of
the relation between several notions of obfuscation and one-way functions. We ask the following
question:

Under which assumptions is it redundant to assume one-way functions on top of an efficient and
possibly imperfect obfuscator?

Our Main Result. In this paper, we provide an answer to the above question. We show that
if NP 6⊆ io-BPP and there is an efficient, even imperfect, iO, then one-way functions exist, where
io-BPP is the class of languages that can be decided by a probabilistic polynomial-time algorithm
for infinitely many input lengths.3

In addition, we also provide a completely different proof of a somewhat weaker statement.
We first show that the existence of efficient indistinguishability obfuscators for 3CNF formulas
implies (unconditionally) the existence of SZK-arguments for NP. Then, we use a result of Os-
trovsky [Ost91] which states that SKZ-arguments for hard-on-the average languages implies the

1Two notable exceptions are witness encryption [GGSW13] and functional witness encryption [BCP14]. However,
Boyle et al. [BCP14] showed that these can be viewed as special cases of iO.

2If P = NP, then the polynomial hierarchy collapses to P, thus we can efficiently find the lexicographically first
circuit that has the same functionality as some given circuit.

3If we assume efficient and perfect iO, then we give a simple argument that proves that NP 6⊆ io-coRP implies
one-way functions. See Section 2 and appendix A for further details.
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existence of one-way functions. Thus, we get that the existence of one-way functions can be based
on the existence of a hard-on-the average NP-problem and, even imperfect, iO for 3CNFs. This re-
sult is weaker than the result above since the existence of hard-on-the average NP-problems implies
that NP 6⊆ io-BPP (however, it only requires an obfuscator for 3CNF formulas, as opposed to all
polynomial-size circuits).

Finally, we generalize a result of [BGI+12] and show that even if imperfect VBB obfuscators
exist (even for a very simple family of functions such as point functions4), then one-way functions
exist. We summarize our results in the following theorem.

Main Theorem. Any of the following three conditions implies that one-way functions exist:

1. NP 6⊆ io-BPP and an efficient, even imperfect, iO for polynomial-size circuits exists.

2. Hard-on-the average functions in NP exist and an efficient, even imperfect, iO for 3CNF
formulas exists.

3. An efficient, even imperfect, VBB obfuscator for point functions exists.

A corollary of our main theorem is that many applications that assume (even imperfect) iO
and one-way functions can be obtained by assuming iO and NP 6⊆ io-BPP. Two notable examples
are the construction of deniable encryption of Sahai and Waters [SW14] and the construction of a
traitor-tracing scheme of Boneh and Zhandry [BZ14]. In addition, we view our results as making
the claim of Sahai and Waters [SW14] that iO is a “central hub” of cryptography more cohesive.

Borrowing from Impagliazzo’s terminology [Imp95], if (even imperfect) iO exists, then our result
rules out Pessiland, where hard-on-the average languages exist but one-way functions do not. We
observe that if NP ⊆ BPP, then one-way functions do not exist but iO does. Therefore, ignoring the
issue of infinitely-often input lengths, we can state Item 1 of our main result as follows: NP ⊆ BPP
if and only if there exists an efficient indistinguishability obfuscator and one-way functions do not
exist.

More Related Work. Subsequently to [BGI+12], Goldwasser and Kalai [GK05] and Goldwasser
and Rothblum [GR07] introduced other variants of definitions of obfuscation and proved that they
are also impossible to achieve in general.

Recently, a work of Garg et al. [GGH+13] proposed the first candidate construction of indistin-
guishability obfuscators relying on multilinear graded encodings. Different variants of this construc-
tion that are secure in idealized algebraic models have been proposed in [BR14, BGK+14, AGIS14],
and [PST14] presents a construction of an iO whose security can be reduced to the assumption
that semantically-secure graded encodings exist.

Paper Organization. In Section 2 we give a high level overview of our main techniques. In
Section 3 we provide preliminary definitions and set up notation. In Sections 4 to 6 we prove
Items 1 to 3 of our main theorem, respectively. In Section 7 we summarize and state some open
problems. In Appendix B we prove that an approximate notion of iO is equivalent to the imperfect
notion of iO, thus one can get similar results to Items 1 and 2 of our main theorem while assuming
approximate iO.

4A Boolean function is a point function if it is the constant 0 function or it assumes the value 1 at exactly one
point (and 0 everywhere else).
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2 Our Techniques

We focus on Item 1 of the main theorem and present our main ideas and techniques. We say that
an indistinguishability obfuscator iO is perfect if it perfectly preserves functionality (i.e., it always
outputs a circuit that agrees with the input circuit on every input), and we say that iO is imperfect
if it preserves functionality with overwhelming probability (i.e., with overwhelming probability it
outputs a circuit that agrees with the input circuit on every input). For the exact definition we
refer to Definition 3.4. By default, we assume that an indistinguishability obfuscator is imperfect
(i.e., if we require it to be perfect, we explicitly say so).

Our starting observation is that if we assume the existence of an efficient perfect indistinguisha-
bility obfuscator, then assuming that NP 6⊆ io-coRP there are one-way functions, where io-coRP
is the class of languages that can be coRP-decided (i.e., efficiently and probabilistically with a
one-sided error) for infinitely many input lengths.

Observation 2.1. Assume that NP 6⊆ io-coRP. If there exists an efficient perfect indistinguisha-
bility obfuscator for 3CNF formulas, then one-way functions exist.

The idea behind the proof of Observation 2.1 is simple and borrows the construction from [GR07,
Theorem 4.1]. Given an efficient and perfect indistinguishability obfuscation scheme iO(C;x) (that
uses randomness x to obfuscate an input 3CNF formula C), our candidate one-way function is
defined as

f(x) = iO(Z;x), (2.1)

where Z is a circuit of appropriate size and input length that always outputs zero. Assuming that
iO satisfies both perfect functionality and indistinguishability, we show how to use an adversary
A that can (infinitely-often) invert the function f with non-negligible advantage (over the choice
of a random input x) in order to (one-sided, infinitely-often) probabilistically decide the circuit
(un)satisfiability of a given 3CNF formula C. This is done by simply observing whether A succeeds
in inverting or not. The key observations in our argument are the following:

• If C is unsatisfiable, then by the indistinguishability of the iO scheme, A inverts f with
non-negligible advantage even if we replace f(x) = iO(Z;x) with f(x) = iO(C;x).

• If C is satisfiable, then by the perfect functionality of the iO scheme, iO(Z;x) can never be a
satisfiable circuit. Thus, no inverse of iO(C;x) exists and A fails to invert f when we replace
f(x) = iO(Z;x) with f(x) = iO(C;x).

The full proof of Observation 2.1 can be found in Appendix A. We note that the intuition above
(as well as the formal proof in Appendix A) makes strong use of the perfect functionality required
from iO.

Indeed, if the obfuscator is imperfect, then we cannot claim that if C is satisfiable, then iO(C;x)
cannot be a circuit that always outputs zero: By the imperfect functionality of iO we are only
guaranteed that for a random string x, with overwhelming probability, it will be the case that
iO(C;x) is functionally equivalent to C. Therefore, for every satisfiable circuit C it is possible that
there exists a string x such that iO(Z;x) is functionally equivalent to C. In this case, the inverter
A can just output that x, causing us to answer incorrectly.
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Remark 2.2. Observe that all we need for Observation 2.1 is an indistinguishability obfuscator for
3CNF formulas. However, for Item 1 of our main theorem (see Theorem 4.1 for a formal statement)
we require iO for polynomial-size circuits. It is a very interesting open problem to get a similar
result to that of Theorem 4.1 but only relying on an obfuscator for 3CNFs.

2.1 Going Beyond Perfect iO

As we noted above, the simple construction given in Equation (2.1) does not work when iO is
only guaranteed to be imperfect. We continue the overview by introducing a useful notation: For
a circuit C we denote by Ĉ ← iO(C) a random variable that corresponds to a random obfuscation
of C. Moreover, for two circuits C and Ĉ we denote by ϕ(C, Ĉ) the set of random strings x for
which iO(C;x) = Ĉ.

Observe that, with the new set of notation, the inverter A of f from above is given a circuit Ĉ
and, if successful, finds an x such that x ∈ ϕ(Z, Ĉ). Thus, with high enough probability for any
unsatisfiable circuit C it holds that |ϕ(Z, Ĉ)| ≥ 1, however, by the perfect functionality of iO, for
any satisfiable circuit C, it holds that |ϕ(Z, Ĉ)| = 0. Hence, using A we can efficiently determine
if the set ϕ(Z, Ĉ) is empty or not, that is, whether C is satisfiable or not.

Unfortunately, as we have said, when iO is imperfect this difference no longer holds. Thus, we
seek for a stronger separation by ϕ of satisfiable and unsatisfiable circuits.

Towards a Strong Separation. One of our main observations (see Lemma 4.4) is that if C is
a satisfiable circuit, then with high probability it holds that

|ϕ(C, Ẑ)| � |ϕ(Z, Ẑ)|. (2.2)

At this point we wish to prove a complementary inequality, that is, if C is unsatisfiable, then
with high probability it holds that

|ϕ(C, Ẑ)| � |ϕ(Z, Ẑ)|. (2.3)

If this were true, then ϕ would act as a measure that can separate satisfiable and unsatisfiable
circuits. Then, we would be left proving that there exists an efficient procedure ϕ≈ that can
estimate the value of |ϕ(·, Ẑ)|. We would decide satisfiability of a given circuit C by computing
Ẑ ← iO(Z), ϕ≈(C, Ẑ) and ϕ≈(Z, Ẑ), and comparing them.

However, the complementary inequality (Equation (2.3)) does not seem to follow from the basic
properties of iO.5 Moreover, it seems hard to establish the estimator ϕ≈ (as defined above) for
reasons we will discuss later.

A Strong Separation via Double Obfuscation. Our main idea, that solves both problems
raised in the previous paragraph, is to consider the double obfuscation of a circuit.

Denote by Z the double obfuscation of the circuit Z (i.e., Z ← iO(Ẑ)). By the functionality
property of iO, a natural corollary of Equation (2.2) is that for a satisfiable circuit C with high
probability it holds that

|ϕ(Ĉ, Z)| � |ϕ(Ẑ, Z)|. (2.4)

5If we assume there are one-way functions, then the complementary inequality is false. However, in a world without
one-way functions, it is unclear.
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Now assume that we have an estimator ϕ≈ that can efficiently estimate ϕ(·, Z). Unlike before,
by the indistinguishability property of iO, we show that a weak version of the complementary
inequality is true. Moreover, we show that this weaker version suffices for completing our proof.
In particular, we show that if C is unsatisfiable, then with probability roughly 1/2 it holds that

|ϕ(Ĉ, Z)| ≥ |ϕ(Ẑ, Z)|. (2.5)

Indeed, given two independent samples from |ϕ(Ẑ, Z)| we know that the first will be smaller than
the second with probability 1/2. Since Ĉ is indistinguishable from Ẑ, it must hold that any efficient

algorithm that estimates |ϕ(·, Z)| is unable to distinguish between whether it was given Ĉ or Ẑ.
Thus, by the indistinguishability described above, we get that the same holds when one sample is

from |ϕ(Ĉ, Z)| and the other is from |ϕ(Ẑ, Z)|.
At this point, given the two inequalities we can decide satisfiability of a given circuit C: compute

Ẑ ← iO(Z), Z ← iO(Ẑ), Ĉ ← iO(C), K1 ← ϕ≈(Ĉ, Z) and K2 ← ϕ≈(Ẑ, Z), and compare K1 and
K2. If C is satisfiable, then with high probability K1 will be much smaller than K2. If C is
unsatisfiable, then with probability roughly 1/2, K1 will be larger than K2. Finally, we repeat

this test many times to amplify the success probability. We are left to prove that ϕ(·, Z) can be
efficiently estimated.

Towards Efficiently Estimating ϕ. We start with a standard trick for estimating the size of
such sets, that was originally used by Impagliazzo and Luby [IL89] (see also [Imp92]). Recall Equa-
tion (2.1) which defines the function f . We append to f a description of a (pairwise independent)
hash function h and its evaluation on x. That is, we define the function

f ′(x, h, k) = Z ◦ iO(Z;x) ◦ h ◦ h(x)|k,

where ◦ denotes string concatenation operator and h(x)|k is the k bit long prefix of h(x). Assuming
that f ′ is not one-way, we have an efficient algorithm A′ that inverts f ′ on random inputs with
non-negligible probability. Using the leftover hash lemma [ILL89, HILL99], the inverter A′ and the
indistinguishability feature of iO, one can obtain an efficient procedure ϕ≈ that estimates |ϕ(Z, Ĉ)|
for any circuit C.

Unfortunately, as we have noted, we are interested in estimating |ϕ(Ĉ, Z)| and not |ϕ(Z, Ĉ)|. A
possible direction that might be useful is to try and estimate |ϕ(C, Ẑ)|. Recall that this is not what
we ultimately want, however, the following example emphasizes a step towards the final solution.
To do this, consider an inverter for the function defined as follows

f ′C(x, h, k) = C ◦ iO(C;x) ◦ h ◦ h(x)|k. (2.6)

This direction, however, has an immediate drawback: for each circuit C, f ′C might have a different
inverter A′C , which cannot be found efficiently, thus yielding a non-uniform estimator ϕ≈. We re-
mark that if we assume that deciding circuit satisfiability is hard-on-the-average, then this problem
can be solved. This is true since, in this case, C is sampled at random and can be thought of as an
input to the function and not part of its description,6 which results in having only a single inverter.

6That is, we can define the function f ′(C, x, h, k) , f ′C(x, h, k).
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Estimating ϕ via Double Obfuscation. This step can intuitively be seen as a worst-case
to average-case reduction. Roughly speaking, the double obfuscation allows us to re-randomize
unsatisfiable instances while maintaining the separation by ϕ, yielding a uniform estimator ϕ≈ for
the measures in Equations (2.4) and (2.5).

The idea is, as we discussed above, to obfuscate the obfuscation of Z. That is, we define the
following variant of f ′ which is our final construction:

f ′′(x, y, h, k) = iO(Z; y) ◦ iO(iO(Z; y);x) ◦ h ◦ h(x)|k,

Assuming that f ′′ is not one-way, then, there exists an inverter A′′ for f ′′. As opposed to the
previous construction, here we have a single inverter A′′ that can be used for any circuit C. Using
similar estimation techniques as before (sampling combined with the leftover hash lemma), we

are able to use A′′ to construct an estimator ϕ≈ that can estimate |ϕ(Ẑ, Z)| and |ϕ(Ĉ, Z)| for
satisfiable circuits C (we remark that we only require and achieve estimation in some suffice sense).

For unsatisfiable circuits C, in this case, any efficient estimator for |ϕ(Ẑ, Z)| is also a good estimator

for |ϕ(Ĉ, Z)|, since Ĉ and Ẑ are indistinguishable.
At this point, we have all the ingredients. Given a circuit C, we can use ϕ≈ to efficiently

estimate KC = |ϕ(Ĉ, Z)| and KZ = |ϕ(Ẑ, Z)|. Using the guarantees of Equations (2.4) and (2.5)
we can determine if C is satisfiable or not by the difference between KC and KZ . For the exact
details and the full proof we refer to Section 4.

3 Preliminaries

We start with some general notation. We denote by [n] the set of numbers {1, 2, . . . , n}. We denote
by neg : N → R a function such that for every positive integer c there exists an integer Nc such
that for all n > Nc, neg(n) < 1/nc. For two strings x ∈ {0, 1}n and y ∈ {0, 1}m we denote by x ◦ y
the string concatenation of x and y.

For a set S, we let US denote the uniform distribution over S. For an integer m ∈ N, we let
Um denote the uniform distribution over {0, 1}m, the bit-strings of length m. For a distribution or
random variable X we write x← X to denote the operation of sampling a random x according to
X. For a set S, we write s← S as shorthand for s← US . For a randomized algorithm A, we write
PrA[·] (resp., EA[·]) to state that the probability (resp., expectation) is over the internal randomness
of the algorithm A. Finally, throughout this paper we denote by log the base 2 logarithm and we
define log 0 = 0.

Throughout this paper we deal with Boolean circuits. We denote by |C| the size of a circuit C
and define it as the number of wires in C.

3.1 Computational Indistinguishability

Definition 3.1 (Computational Indistinguishability). Two sequences of random variables X =
{Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable if for every probabilistic polynomial
time algorithm A there exists an integer N such that for all n ≥ N ,

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| ≤ neg(n).

where the probabilities are over Xn, Yn and the internal randomness of A.
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3.2 One-Way Functions

Definition 3.2 (One-Way Functions). A function f is said to be one-way if the following two
conditions hold:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every x ∈ {0, 1}∗.

2. For every probabilistic polynomial-time algorithm A and all sufficiently large n,

Pr[A′(1n, f(x)) ∈ f−1(f(x))] < neg(n),

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the internal random-
ness of A′.

Definition 3.3 (Weak One-Way Functions). A function f is said to be weakly one-way if the
following two conditions hold:

1. There exists a polynomial-time algorithm A such that A(x) = f(x) for every x ∈ {0, 1}∗.

2. There exists a polynomial p such that for every probabilistic polynomial-time algorithm A and
all sufficiently large n,

Pr[A′(1n, f(x)) ∈ f−1(f(x))] < 1− 1

p(n)
,

where the probability is taken uniformly over all possible x ∈ {0, 1}n and the internal random-
ness of A′.

3.3 Obfuscation

We say that two circuits C and C ′ are equivalent and denote it by C ≡ C ′ if they compute the
same function (i.e., ∀x : C(x) = C ′(x)).

Indistinguishability Obfuscation

Definition 3.4 (Perfect/Imperfect Indistinguishability Obfuscator). Let C = {Cn}n∈N be a class
of polynomial-size circuits, where Cn is a set of circuits operating on inputs of length n. A uniform
algorithm iO is called an ( imperfect) indistinguishability obfuscator for the class C if it takes as
input a security parameter and a circuit in C and outputs a new circuit so that following properties
are satisfied:

1. (Perfect/Imperfect) Preserving Functionality:

There exists a negligible function α such that for any input length n ∈ N, any λ and any
C ∈ Cn it holds that

Pr
iO

[
C ≡ iO(1λ, C)

]
≥ 1− α(λ),

where the probability is over the internal randomness of iO. If α(·) = 0, then we say that iO
is perfect.
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2. Polynomial Slowdown:

There exists a polynomial p(·) such that: For any input length n ∈ N, any λ and any circuit
C ∈ Cn it holds that

∣∣iO(1λ, C)
∣∣ ≤ p(|C|).

3. Indistinguishable Obfuscation:

For any probabilistic polynomial-time algorithm D, any n ∈ N, any two equivalent circuits
C1, C2 ∈ Cn of the same size and large enough λ, it holds that∣∣∣∣ Pr

iO,D

[
D
(
iO
(

1λ, C1

))
= 1
]
− Pr
iO,D

[
D
(
iO
(

1λ, C2

))
= 1
]∣∣∣∣ ≤ neg(λ).

We say that iO is efficient if it runs in polynomial-time.

Virtual Black-Box Obfuscation

Definition 3.5 (Perfect/Imperfect VBB Obfuscator). Let C = {Cn}n∈N be a class of polynomial-
size circuits, where Cn is a set of circuits operating on inputs of length n. A uniform algorithm O
is called an ( imperfect) VBB obfuscator for the class C if it takes as input a security parameter and
a circuit in C and outputs a new circuit so that following properties are satisfied:

1. (Perfect/Imperfect) Preserving Functionality:

There exists a negligible function α such that for any input length n ∈ N, any λ and any
C ∈ Cn it holds that

Pr
O

[
C ≡ O(1λ, C)

]
≥ 1− α(λ),

where the probability is over the internal randomness of O. If α(·) = 0, then we say that O
is perfect.

2. Polynomial Slowdown:

There exists a polynomial p(·) such that: For any input length n ∈ N, any λ and any circuit
C ∈ Cn it holds that

∣∣O(1λ, C)
∣∣ ≤ p(|C|).

3. Virtual Black-Box:

For any probabilistic polynomial-time algorithm D, any predicate π : Cn → {0, 1}, any n ∈ N
and any circuit C ∈ Cn, there is a polynomial-size simulator S such that for large enough λ
it holds that∣∣∣∣ Pr

O,D

[
D
(
O
(

1λ, C
))

= π(C)
]
− Pr

S

[
D
(
SC
(

1λ
))

= π(C)
]∣∣∣∣ ≤ neg(λ).

We say that O is efficient if it runs in polynomial-time.

Notation. For ease of notation, 1λ, the first parameter of iO and O, is sometimes omitted when
it is clear from the context.
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3.4 Leftover Hash Lemma

Definition 3.6 (Statistical Distance). The statistical distance between two random variables X,Y
is defined by

SD(X,Y ) ,
1

2
·

(∑
x

|Pr[X = x]− Pr[Y = x]|

)

Definition 3.7 (Pairwise Independence). A family Hkn : {h : {0, 1}n → {0, 1}k} of functions is
called pairwise independent if for all distinct x, y ∈ {0, 1}n and every a1, a2 ∈ {0, 1}k, it holds that

Pr
h←Hkn

[h(x) = a1 ∧ h(y) = a2] = 2−2k.

The following formulation of the leftover hash lemma is taken from [Gol08, Theorem D.5].

Theorem 3.8 (Leftover Hash Lemma). Let Hkn be a family of pairwise independent hash functions
and S ⊆ {0, 1}n. Let ε = 3

√
2k/ |S|. Consider random variables X and H that is uniformly

distributed on S and Hkn, respectively. Then,

SD (H ◦H(X), H ◦Uk) ≤ 2ε.

4 From Imperfect iO to One-Way Functions

In this section we prove Item 1 of our main theorem and show that if an efficient indistinguishability
obfuscator exists and NP 6⊆ io-BPP, then one-way functions exist.

Theorem 4.1. Assume that NP 6⊆ io-BPP. If there exists an efficient (even imperfect) indistin-
guishability obfuscator for polynomial-size circuits, then one-way functions exist.

To prove Theorem 4.1, we assume towards contradiction that there are no one-way functions
(and, in particular, there are no weakly one-way functions (see e.g., [Gol01, Theorem 2.3.2]). Note,
however, that the latter only guarantees that for every function there is an efficient inverter that
succeeds on infinitely many inputs length. We use the existence of this efficient inverter to solve
an NP-complete problem in probabilistic polynomial-time with two sided error. Thus, we get that
an algorithm that solves the NP-complete problem infinitely-often (io), and thus NP ⊆ io-BPP
contradicting our assumption. In the rest of the proof, for simplicity, we ignore this infinitely-often
issue.

Let iO(1λ, C; r) be an efficient indistinguishability obfuscator, where λ is a security parameter,
C is the input circuit and r is the randomness used by the obfuscator. Let Zs,n be the canonical
zero circuit of size s that accepts n inputs.

Throughout the proof, we use several parameters: λ the security parameter, n the number of
input bits, s the size of the circuit and |r| the number of random bits used by the obfuscator (the
latter might depend on λ and s). For simplicity of exposition, we will assume that they are all
equal and denote them by n (otherwise, one could always increase the security parameter and add
dummy inputs to make them equal).

Let Hm = {h : {0, 1}m → {0, 1}m} be a pairwise independent hash function family (see Def-
inition 3.7). For a function h ∈ Hm, an input x ∈ {0, 1}m and an integer k ∈ [m] we denote by
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h(x)|k the k bit long prefix of h(x). Define the function family F = {fn : {0, 1}n × {0, 1}n ×Hn ×
{0, 1, . . . , n} → {0, 1}∗}n∈N where

fn(r1, r2, h, k) = iO(1n, Zn,n; r2) ◦ iO (1s, iO(1n, Zn,n; r2); r1) ◦ h ◦ k ◦ h(r1)|k.

Note that since iO is efficiently computable then so is fn.
Suppose, towards contradiction, that F is not weakly one-way. Then, there exists a probabilistic

polynomial-time adversary A that can invert outputs of fn on random inputs with probability at
least 1−1/n50.7 We show that using A we are able to (probabilistically and) efficiently solve circuit
satisfiability. Let f = fn.

Notation. Recall that for every two circuits C and C ′ we define

ϕ(C,C ′) , {r ∈ {0, 1}n | iO(C; r) = C ′}.

That is, ϕ(C,C ′) is the set of random strings r for which applying iO on C with randomness r
leads to C ′. For a circuit C, we denote by Ĉr , iO(C; r) a shorthand for the obfuscation of the

circuit C when applied with randomness r. Moreover, we denote by Cr1,r2 = iO(iO(C; r2); r1) the
shorthand for the (double) obfuscation of the circuit C when applied with randomness r2 and then
applied with randomness r1.

Proof Overview. Roughly speaking, the proof follows the ideas presented in Section 2. In what
follows, we give an overview of these main steps and how they are used to prove our main result.

Let C be a circuit. Let Ĉ be a uniform obfuscation of C and Z be a uniform obfuscation of a
uniform obfuscation of the canonical zero circuit Z. Our main claims are the following:

1. Lemma 4.2 - We prove that there exists a procedure that gives a good estimation for |ϕ(Ĉ, Z)|
(see Lemma 4.2 for the exact details). This result uses the assumption that f is not one-way
in a very strong way.

2. Lemma 4.3 - We prove that since we can efficiently estimate |ϕ(Ĉ, Z)| (by the previous item),
then it must be that case that with probability 1/2 for every unsatisfiable circuit it holds that

|ϕ(Ĉ, Z)| ≥ |ϕ(Ẑ, Z)|.

This is true since otherwise we get an efficient algorithm that breaks the indistinguishability
feature of iO.

3. Corollary 4.5 - We prove that if C is a satisfiable circuit, then with very high probability

|ϕ(Ĉ, Z)| � |ϕ(Ẑ, Z)|.

We emphasize that this inequality is unconditional and follows from the (possibly imperfect)
functionality feature of iO.

Using Items 1,2 and 3 it is easy to get an algorithm that distinguishes between a satisfiable and an

unsatisfiable circuit: we compute ϕ≈(Ĉ, Z) and ϕ≈(Ẑ, Z) and compare them.

7More precisely, we are only guaranteed that A is able to invert random outputs of fn infinitely-often (i.e., for
infinitely many n’s). However, as we said, in order not to complicate the proof, we ignore this issue throughout the
analysis.
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The Full Proof. We begin by showing that although we cannot compute exactly |ϕ(C,C ′)| for
any two circuits, in some cases we can approximate it quite well.

Lemma 4.2. Let C be a circuit. Let Ĉ ← iO(C) and Z ← iO(iO(Z)) be random variables. There

exists a procedure ϕ≈ that gets as input Ĉ and Z and with probability at least 1− 1/n10 over Ĉ, Z
and the internal randomness of ϕ≈ satisfies that:

1. ϕ≈(Ĉ, Z) ≤ log |ϕ(Ĉ, Z)|+ 90 log n.

2. If C is unsatisfiable, then ϕ≈(Ĉ, Z) ≥ log |ϕ(Ĉ, Z)| − 90 log n.

Proof. We describe the procedure ϕ≈ that gets two obfuscated circuit as input Ĉ, Z and estimates

|ϕ(Ĉ, Z)|. The procedure ϕ≈ approximates the maximum k on which A is able to invert on inputs

of the form Ĉ ◦Z ◦ h ◦ k ◦ s where s is a random string of length k. If |ϕ(Ĉ, Z)| is small, then there
is a small number of random string r′ that A can find, thus the probability that one of them also
satisfies h(r′) = s is small. Therefore, A will fail to invert with high probability for large enough
values of k. The formal description appears in Figure 1. In the rest of the proof we analyze the
procedure ϕ≈.

The ϕ≈ Procedure

Input : A circuit Ĉ ← iO(C) and a circuit Z ← iO(iO(Z)).

1. Initialize maxk ← −∞.

2. For k = 0 . . . n do:

(a) Sample uniformly at random a hash function h ∈ Hn and a random strings s of length k.

(b) Set y ← Ĉ ◦ Z ◦ h ◦ k ◦ s.
(c) Run r′1, r

′
2, h
′, k′ ← A(y).

(d) If f(r′1, r
′
2, h
′, k′) = y, set maxk ← k.

3. Return maxk.

Figure 1: ϕ Estimation Procedure.

Point 1 of the lemma (Upper Bound). We show that with very high probability it holds

that the output of ϕ≈(Ĉ, Z) is (roughly) upper bounded by log |ϕ(Ĉ, Z)|. Let Ĉ ← iO(C), Z ←
iO(iO(Z)) and let k ≥ log |ϕ(Ĉ, Z)|+ 90 log n. Then, for any h, there are at most |ϕ(Ĉ, Z)| strings

of the form h(z) for z ∈ ϕ(Ĉ, Z). Since there are n90 · ϕ(Ĉ, Z) strings of this length (i.e., of length
k), and since we select s at random, the probability that it is in this set is at most 1/n90. Clearly, if
there is no inverse to y, then A cannot successfully invert. Therefore, the probability that maxk is
updated to be k in Step 2d (i.e., A successfully inverts) is at most 1/n90. Since there are at most n
different values for k as above, this gives a bound of at most 1/n89 probability of any such k being
the final value of maxk.
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Point 2 of the lemma (Lower Bound). We show that if C is unsatisfiable, then with high

probability it holds that the output of ϕ≈(Ĉ, Z) is (roughly) lower bounded by log |ϕ(Ĉ, Z)|.
Intuitively, the proof of the lower bound goes as follows. We begin with the assumption that A

is a very good inverter for random images of f that are of the form Ẑ ◦ Z ◦ h ◦ k ◦ h(x)|k (since f
is not weakly one-way). In particular, A is a good inverter when we fix k and the other inputs are
random, as above. It follows, by the leftover hash lemma, that for small enough values of k, the

inverter A must also invert inputs of the form Ẑ ◦Z ◦h◦k ◦s. By the indistinguishability feature of
iO, for every unsatisfiable circuit C the inverter A must also invert (with high enough probability)

given inputs sampled uniformly at random from the distribution Ĉ ◦Z ◦ h ◦ k ◦ s, which proves our
claim. This intuition is made precise in the rest of the proof.

By our assumption, A fails to invert a random image of f with probability at most 1/n50.
Namely,

Pr
r1,r2,h,k,A

[A(f(r1, r2, h, k)) 6∈ f−1(f(r1, r2, h, k))] ≤ 1/n50.

Denote Zrouter,rinner , iO(iO(Z; rinner); router). By Markov’s inequality we have that for a randomly
chosen r1, r2 with probability at least 1 − 1/n25 the conditional probability that A succeeds on

fn(r′1, r2, h, k) over a random choice of h, k and r′1 ∈ ϕ(Ẑr2 , Zr1,r2) , Γ is at least 1 − 1/n25.
Namely,

Pr
r1,r2

[ Pr
r′1←Γ,h,k,A

[A(f(r′1, r2, h, k)) ∈ f−1(f(r′1, r2, h, k))] ≥ 1− 1/n25] ≥ 1− 1/n25.

Since every possible value of k is chosen with probability 1/n we get that given any fixed value of
k it holds that

Pr
r1,r2

[ Pr
r′1←Γ,h,A

[A(f(r′1, r2, h, k)) ∈ f−1(f(r′1, r2, h, k))] ≥ 1− 1/n24] ≥ 1− 1/n25.

Recall that the procedure ϕ≈(Ĉ, Z) emulates the execution ofA on input of the form Ĉ◦Z◦h◦k◦s
where h is chosen uniformly at random from Hn and s is chosen uniformly at random from {0, 1}k.
Using the leftover hash lemma (see Theorem 3.8) we have that

SD
(
H ◦H(X ′), H ◦Uk

)
≤ ε,

where X ′ is uniformly distributed over ϕ(Ĉ, Z), H is uniformly distributed over Hn and ε =

2 · 3

√
2k/|ϕ(Ĉ, Z)|. We get that, for any possible value of k it holds that

Pr
r1,r2

[ Pr
r′1←Γ,h,A,s

[A(Ẑr2 ◦ Zr′1,r2 ◦ h ◦ k ◦ s) ∈ f
−1(f(r′1, r2, h, k))] ≥ 1− 1/n24 − ε] ≥ 1− 1/n25.

Plugging in k∗ = log |ϕ(Ẑr1 , Zr1,r2)| − 90 log n we get that

Pr
r1,r2

[ Pr
r′1←Γ,h,A,s

[A(Ẑr2 ◦ Zr′1,r2 ◦ h ◦ k
∗ ◦ s) ∈ f−1(f(r′1, r2, h, k

∗))] ≥ 1− 1/n23] ≥ 1− 1/n25.

Since C is unsatisfiable (i.e., functionally equivalent to Z), then A is able to distinguish between
the distribution ẐU and the distribution ĈU only with negligible probability. Moreover, the joint
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distribution (ẐU1 , ZU1,U2) is computationally indistinguishable from (ĈU1 , ZU2,U3), where U1, U2, U3

are distributed uniformly at random from {0, 1}n. Therefore, since A is efficient, it must also invert

inputs of the form Ĉ ◦ Z ◦ h ◦ k∗ ◦ s. Namely, for Γ′ , ϕ(Ĉr3 , Zr1,r2) we have

Pr
r1,r2,r3

[ Pr
r′1←Γ′,h,A,s

[A(Ĉr3 ◦ Zr′1,r2 ◦ h ◦ k
∗ ◦ s) ∈ f−1(f(r′1, r2, h, k

∗))] ≥ 1− 1/n23] ≥ 1− 1/n24.

The claim follows.

Next, we show that for every unsatisfiable circuit C, with probability roughly 1/2, the value

|ϕ(Ĉ, Z)| cannot be much smaller than |ϕ(Ẑ, Z)|.

Lemma 4.3. Let C be any unsatisfiable circuit whose size is equal to the size of Z. Let Ẑ ← iO(Z),

Z ← iO(Ẑ) and Ĉ ← iO(C) be random variables. Then, with probability 1/2 − 1/n9 over the
internal randomness of iO, it holds that

log |ϕ(Ĉ, Z)| ≥ log |ϕ(Ẑ, Z)| − 200 log n.

Proof. Let Ẑ, Ẑ ′ ← iO(Z) and Z ← iO(Ẑ) be random variables. Since Ẑ and Ẑ ′ are functionally

equivalent (with probability 1−neg(n)), the distribution (Ẑ, Z) is computationally indistinguishable

from (Ẑ ′, Z). Therefore, since ϕ≈ is a polynomial-time algorithm, it must be that the distribution

of the output of ϕ≈(Ẑ, Z) is computationally indistinguishable from the output of ϕ≈(Ẑ ′, Z). That
is,

ϕ≈(Ẑ, Z) ≈c ϕ≈(Ẑ ′, Z).

Similarly, for C as in the statement and the random variable Ĉ ← iO(C), it holds that

ϕ≈(Ẑ ′, Z) ≈c ϕ≈(Ĉ, Z)

Together, we get that

ϕ≈(Ẑ, Z) ≈c ϕ≈(Ĉ, Z). (4.1)

Let K1 ← logϕ≈(Ẑ, Z) and K2 ← logϕ≈(Ẑ, Z) be two independent samples from the distribu-

tion of the output of ϕ≈(Ẑ, Z) (where both Ẑ’s are fresh samples and Z ← iO(Ẑ) of the appropriate
Ẑ). Therefore, with probability at least 1/2, it holds that

K1 ≤ K2.

Thus, from Equation (4.1), it holds that for K3 ← logϕ≈(Ĉ, Z), with probability 1/2− neg(n):

K1 ≤ K3.

Finally, using the fact that the procedure ϕ≈ gives a good estimation to ϕ (see Lemma 4.2), we
get that with probability 1/2− neg(n)− 1/n10, it holds that

log |ϕ(Ĉ, Z)| ≥ log |ϕ(Ẑ, Z)| − 200 log n.
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Next, we show that for every two unsatisfiable circuits C and D, with high probability the value
|ϕ(C, D̂)| is much smaller than |ϕ(D, D̂)|.

Lemma 4.4. Let C and D be any two equal-size functionally non-equivalent circuits and let p(·) be
any polynomial. Let D̂ ← iO(D). Then, with probability 1− neg(n) over the internal randomness
of iO, it holds that

p(n) · |ϕ(C, D̂)| < |ϕ(D, D̂)|.

Proof. Let p(·) be a polynomial and let D̂r = D̂, where r is the randomness used to generate D̂.
Assume towards contradiction that there exists a polynomial q(·) such that

Pr
r

[
p(n) · |ϕ(C, D̂r)| ≥ |ϕ(D, D̂r)|

]
≥ 1

q(n)
. (4.2)

Denote by Bad the set of r’s for which p(n) · |ϕ(C, D̂r)| ≥ |ϕ(D, D̂r)|. By Equation (4.2) we have
that Prr[r ∈ Bad] ≥ 1/q(n). From the completeness of iO we have that Prr[r ∈ Bad ∧ D̂r ≡ D] ≥
1/q(n) − neg(n). Denote by Bad′ the set of all r ∈ Bad for which D̂r ≡ D. In particular, for any
r ∈ Bad′ it holds that |{y ∈ {0, 1}n | iO(C; y) = D̂r}| ≥ |{y ∈ {0, 1}n | iO(D; y) = D̂r}|/p(n).
Then,

Pr
y

[iO(C; y) 6≡ C] ≥ Pr
y

[iO(C; y) ∈ {D̂r | r ∈ Bad′}]

≥ Pr
y

[iO(D; y) ∈ {D̂r | r ∈ Bad′}] · 1

p(n)

≥ 1

p(n)
·
(

1

q(n)
− neg(n)

)
≥ 1

2p(n) · q(n)
.

Clearly, this is a contradiction to the completeness of iO which proves the claim.

Since for every circuit C it holds that Ĉ ← iO(C) is functionally equivalent to C with probability
1− neg(n), we get the following corollary.

Corollary 4.5. Let C be any satisfiable circuit whose size is the size of Z. Let Ĉ ← iO(C),

Ẑ ← iO(Z) and Z ← iO(Ẑ). For any constant c ∈ N, with probability at least 1− neg(n) it holds

that c log n+ log |ϕ(Ĉ, Z)| < log |ϕ(Ẑ, Z)|.

4.1 Proof of Theorem 4.1

We prove Theorem 4.1 by showing how to combine Lemmas 4.2 and 4.3 and Corollary 4.5 in order
to devise an efficient (probabilistic) algorithm SolveSAT that gets a circuit C as input and satisfies
the following (infinitely-often):

1. If C is satisfiable, then PrSolveSAT[SolveSAT(C) = “SAT”] ≥ 1− neg(n).

2. If C is unsatisfiable, then PrSolveSAT[SolveSAT(C) = “UNSAT”] ≥ 1/2− 1/n8.
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The SolveSAT Procedure

Input : A circuit C that receives n inputs.

Let ϕ≈ be the procedure from Lemma 4.2.

Algorithm:

1. Sample Ẑ ← iO(Z), Z ← iO(Ẑ) and Ĉ ← iO(C).

2. Compute KZ ← ϕ≈(Ẑ, Z) and KC ← ϕ≈(Ĉ, Z).

3. If KZ −KC < 400 log n, output “UNSAT” and halt.

4. Otherwise, output “SAT”.

Figure 2: SAT Solver.

Then, one can amplify the probabilities by a standard BPP amplification technique (i.e., repeat
multiple times).

The algorithm SolveSAT runs as follows. It samples Ẑ ← iO(Z), Z ← iO(Ẑ) and Ĉ ← iO(C)

and uses ϕ≈ to estimate ϕ≈(Ẑ, Z) and ϕ≈(Ĉ, Z). If the distance between the two is small, then
it outputs “UNSAT”. Otherwise, in the end it outputs “SAT”. The formal description appears in
Figure 2.

By Lemma 4.2 we know that with probability at least 1− 1/n10 it holds that

|KZ − ϕ(Ẑ, Z)| ≤ 90 log n.

Assume that C is an unsatisfiable circuit. By Lemma 4.2 we get that with probability 1−1/n10

it holds that

|KC − ϕ(Ĉ, Z)| ≤ 90 log n.

Using Lemma 4.3 we also know that with probability 1/2− 1/n9

|ϕ(Ẑ, Z)− ϕ(Ĉ, Z)| ≤ 200 log n.

Therefore, using the triangle inequality, with probability 1/2− 1/n8 it holds that

KZ −KC < 400 log n,

and the procedure will output “UNSAT”.
Next, assume that C is a satisfiable circuit. Using Corollary 4.5 we know that with probability

1− neg(n) it holds that

ϕ(Ẑ, Z)− ϕ(Ĉ, Z) ≥ 800 log n.

Using Item 2 of Lemma 4.2 we have that with probability at least 1− 1/n9 it holds that

KZ −KC ≥ ϕ(Ẑ, Z)− 90 log n− (ϕ(Ĉ, Z) + 90 log n) > 600 log n.

Therefore, in this case, SolveSAT outputs “SAT” with probability at least 1− neg(n), as required.
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5 From Imperfect iO to One-Way Functions Through SZK

In this section we prove Item 2 of our main theorem. We assume the existence of an (imperfect)
indistinguishability obfuscator for 3CNF formulas. We show that assuming the existence of hard-
on-the average NP problems, one-way functions exist.

Theorem 5.1. Assume the existence of a hard-on-the average NP-problem. If there exists an
efficient imperfect indistinguishability obfuscator for 3CNF formulas, then one-way functions exist.

In order to prove Theorem 5.1 we need the following theorem (that might be interesting in its
own right) that states that iO implies unconditionally SZK-arguments for NP.

Theorem 5.2. If there exists an efficient (and even imperfect) indistinguishability obfuscators for
3CNF formulas, then there exists a statistical zero-knowledge argument for NP.

Theorem 5.1 follows by combining Theorem 5.2 with a result of Ostrovsky [Ost91] - showing
that honest-verifier statistical zero-knowledge arguments for hard-on-the average languages implies
the existence of one-way functions.8

Proof of Theorem 5.2. We first prove the theorem assuming that iO is an indistinguishability ob-
fuscator for polynomial-size circuits and then show how to modify the protocol to get the same
result but only assuming that iO is an indistinguishability obfuscator for 3CNF formulas.

We first observe that iO for polynomial-size circuits implies a two-round perfect honest-verifier
zero-knowledge argument for NP.9 Let iO be an efficient indistinguishability obfuscator and con-
sider an NP-language L with an associated witness relation RL. Let Πs

x(w) be a circuit that outputs
s if w ∈ RL(x); otherwise, it outputs ⊥. The verifier V on input a statement x ∈ {0, 1}n picks a
random s ← {0, 1}n, generates C ← iO(Πs

x) and sends it to the prover. The prover P , on input
x, a witness w, and receiving C from V , lets s′ ← C(w) and sends s′ back to V . V accepts if and
only if s = s′.

The protocol is clearly complete and perfect honest-verifier zero-knowledge (a simulator knowing
the random tape of V simply outputs s).

To show soundness, consider some cheating prover P ∗ that convinces V with inverse polynomial
probability 1/p(|x|) for infinitely many x /∈ L. Consider some x /∈ L. Note that Πs

x is functionally
equivalent to the “dummy” circuit Π⊥ that always outputs ⊥. Thus, by the indistinguishability
property of iO, C is indistinguishable from C ′ = iO(Π⊥). It follows that in a modified experiment
where V sends C ′ instead of C, P ∗ also convinces V with inverse polynomial probability 1/p′(|x|)
for infinitely many x /∈ L. However, in this experiment P ∗’s view is independent of s and it can
thus only guess s with probability 2−|s|, which is a contradiction.

Finally, to conclude the first part of our theorem we use a result by Ong and Vadhan [OV07]
showing that the existence of a statistical honest-verifier zero-knowledge argument for a language
L implies the existence of a statistical zero-knowledge argument for L.

8Alternatively, using a result of Ostrovsky and Wigderson [OW93], if we assume NP 6⊆ io-BPP, then we can deduce
the existence of “auxiliary input” one-way functions, which are not sufficient for many cryptographic applications.
However, the result of Theorem 4.1 shows that under the same assumption (i.e., NP 6⊆ io-BPP) we can deduce a
stronger result (i.e., that one-way functions exist).

9A similar observation was made informally and independently by Pandey et al. [PPS13] using exactly the same
construction. We thank Kai-Min Chung for pointing this out.
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Using iO for 3CNFs. We show how the protocol from above can be modified to get an SZK-
argument while assuming iO for 3CNF formulas only. Let the length of the secret s be ` and denote
s = s1, . . . , s`.

Assume that the NP language L is 3SAT. Then, we observe that R3SAT can be implemented
using a 3CNF formula. Moreover, for every i ∈ [`] it holds that Πsi

x can be implemented using
a 3CNF formula, as well. Thus, instead of sending iO(Πs

x) to the prover, we send the circuits
iO(Πs1

x ), . . . , iO(Πs`
x ). The prover acts similarly to the prover from the previous protocol on each

obfuscated circuit separately. It is easy to see that this protocol is also a honest-verifier SZK-
argument for 3SAT, which uses only an obfuscator for 3CNFs.

In the general case, where L is an arbitrary language in NP, since 3SAT is NP-complete, we can
apply the previous protocol after reducing the instance of L to an instance of 3SAT. That is, we add
an additional step in which the verifier (resp., the prover) convert its input x (resp., witness w) for
L into an input x′ (resp., witness w′) for 3SAT. Then, instead of sending iO(Πsi

x ), the verifier sends
iO(Π′six′) (for every i ∈ [`]), where Π′ implements the relation R3SAT. Thus, it is enough to use an
obfuscator for Π′, where Π′ can be implemented using a 3CNF formula, as discussed above.

Remark. In the above proof of Theorem 5.2, the only thing we require from C is that it is a
“witness encryption” [GGSW13] (at least according to the definition from [BCP14]) of the string
s. Recall that a witness encryption scheme enables one to encrypt a message m with respect to an
NP-language L, an instance x and a function f , such that anyone that has, and only those that
have, a witness w for x ∈ L can recover f(m,w). Therefore, we have actually shown that witness
encryption for NP (even with imperfect correctness) implies statistical zero-knowledge arguments
for NP.

6 From Imperfect VBB to One-Way Functions

In this section we prove Item 3 of our main theorem. We show that the existence of efficient, even
imperfect, VBB obfuscators implies (unconditionally) the existence of one-way functions.

Barak et al. [BGI+12, Lemma 3.8] proved that perfect efficient VBB obfuscators imply one-way
functions. Their proof strongly relies on the assumption that O is a perfect VBB obfuscator. In
the rest of this section we generalize their result and prove the following theorem.

Theorem 6.1. If an efficient, even imperfect, VBB obfuscator for point functions exists, then
one-way functions exist.

Proof. For α ∈ {0, 1}n and b ∈ {0, 1}, let Cα,b : {0, 1}n → {0, 1} be the circuit defined by

Cα,b(x) ,

{
b if x = α

0 otherwise.

Suppose that O(1λ, C; r) is an efficient (possibly imperfect) VBB obfuscator, where λ is a
security parameter, C is the input circuit and r is the randomness used by the obfuscator. Assume
that |r| = p(λ) for a polynomial p. For m ∈ N let Hm = {h : {0, 1}m → {0, 1}m} be a pairwise
independent hash function family (see Definition 3.7). As in Section 4, for a function h ∈ Hm, an
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input r ∈ {0, 1}m and an integer k ∈ [m] we denote by h(r)|k the k-bit long prefix of h(r). For
n ∈ N let n′ = n+ 1 + p(n) and define fn : {0, 1}n′ ×Hn′ × [n′]→ {0, 1}∗ as

fn(α, b, r, h, k) = O(1n, Cα,b; r) ◦ h ◦ k ◦ h(α ◦ b ◦ r)|k, (6.1)

i.e., the obfuscation of the circuit Cα,b using randomness r followed by a description of a hash
function h ∈ Hn and the k-bit long prefix of h(α ◦ b ◦ r). We prove that the function f =

⋃
n∈N fn

is a weak one-way function.

Notation. For a circuit Ĉ define

ψ(Ĉ) = {(α, b, r) ∈ {0, 1}n′ | O(Cα,b; r) = Ĉ},

i.e., ψ(Ĉ) is the set of tuples (α, b, r) for which the obfuscation of Cα,b with randomness r is exactly

the circuit Ĉ.
The following claim states with non-negligible probability the input (α, b, r, h, k) to fn is good in

the following sense: (1) k is chosen to be the “correct” value, and (2) the only valid string α′, b′, r′

that is consistent with h(α ◦ b ◦ r) (i.e., h(α′ ◦ b′ ◦ r′)|k = h(α ◦ b ◦ r)|k) is α ◦ b ◦ r itself.

Claim 6.2. With non-negligible probability over a random input (α, b, r, h, k) to fn the following
two conditions hold simultaneously:

1. k = max{1, log |ψ(O(Cα,b; r))| − 10}.10

2. |ψ(O(Cα,b; r)) ∩ {(α′, b′, r′) | h(α′ ◦ b′ ◦ r′)|k = h(α ◦ b ◦ r)|k}| = 1.

Proof. We prove Item 1 of the claim. Notice that log |ψ(O(Cα,b; r))| ≤ n′. Thus, with probability
at least 1/n′ it holds that k = max{1, log |ψ(O(Cα,b; r))| − 10}.

We proceed with the proof of Item 2 of the claim. Let t , |ψ(O(Cα,b; r))|. It is clear that
the tuple (α, b, r) itself is in the intersection of ψ(O(Cα,b; r)) and {(α′, b′, r′) | h(α′ ◦ b′ ◦ r′)|k =
h(α ◦ b ◦ r)|k}.

We are left to show that with non-negligible probability there is no (α′, b′, r′) ∈ ψ(O(Cα,b; r))
such that (α′, b′, r′) 6= (α, b, r) and h(α′◦b′◦r′)|k = h(α◦b◦r)|k. From the pairwise independence of
Hn we have that for any (α′, b′, r′) 6= (α, b, r) it holds that Prh[h(α′◦b′◦r′)|k 6= h(α◦b◦r)|k] = 1−2−k.
Therefore, the probability that for all (α′, b′, r′) ∈ ψ(O(Cα,b; r)) such that (α′, b′, r′) 6= (α, b, r) it
holds that h(α′ ◦ b′ ◦ r′)|k 6= h(α ◦ b ◦ r)|k is at least (1− 2−k)t ≥ Ω(1) by Item 1 of the claim.

Assume that the event from Claim 6.2 holds. We show that, in this case, every probabilistic
polynomial-time algorithm cannot invert fn with probability larger than 1 − 1/poly(n). More
precisely, we prove the following claim.

Claim 6.3. Assume that the event from Claim 6.2 holds. Then, for any probabilistic polynomial-
time algorithm A it holds that

Pr[A(fn(α, b, r, h, k)) /∈ f−1
n (fn(α, b, r, h, k))] ≥ 1/poly(n).

10As before, for simplicity, we ignore integrality issues.
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Since the event from Claim 6.2 holds with non-negligible probability Claim 6.3 implies that any
efficient algorithm fails to invert fn with probability larger than 1/poly(n). Therefore, the function
f is weakly one-way, which implies that one-way functions exist (see e.g., [Gol01, Theorem 2.3.2]).
We conclude with the proof of Claim 6.3.

Proof of Claim 6.3. Clearly for any simulator S and random string s (that is independent of α and
b) of length k, we have that

Pr[SO(Cα,b;r)(h ◦ k ◦ s) = b] ≤ 1/2 + neg(n).

From the security guarantee of O (recall that O is a VBB obfuscator) it holds that

Pr[A(O(Cα,b; r) ◦ h ◦ k ◦ s) = b] ≤ 1/2 + neg(n).

By Markov’s inequality we get that for a randomly chosen (α, b, r) with probability at least 1/5
the conditional probability that A succeeds on fn(α′, b′, r′, h, k) over a random choice of h, k and
(α′, b′, r′) ∈ ψ(Cα,b; r) , Γ is at least 1/3. Namely,

Pr
α,b,r

[Pr
h,k

[A(O(Cα,b; r) ◦ h ◦ k ◦ s) 6= b] ≥ 1/3] ≥ 1− (3/4 + neg(n)) ≥ 1/5.

From Item 1 of Claim 6.2 and the leftover hash lemma (see Theorem 3.8), we get that

Pr
α,b,r

[ Pr
(α′,b′,r′)∈Γ,h,k

[A(O(Cα′,b′ ; r
′) ◦ h ◦ k ◦ h(α′, b′, r′)|k) 6= b] ≥ 1/3− ε] ≥ 1/5,

where ε = 2 · 3
√

2k/|ψ(O(Cα,b; r))| ≤ 1/5. Therefore,

Pr
α,b,r,h,k

[A(O(Cα,b; r) ◦ h ◦ k ◦ h(α, b, r)|k) 6= b] ≥ Ω(1),

Using Item 2 of Claim 6.2 we have that any inverter A must, in particular, find the “correct”
value of b. That is,

Pr[A(fn(α, b, r, h, k)) ∈ f−1
n (fn(α, b, r, h, k))] ≤

Pr[A(O(Cα,b; r) ◦ h ◦ k ◦ h(α ◦ b ◦ r)|k) = b] ≤ 1− Ω(1),

which completes the proof of the claim.

7 Summary and Open Problems

We have shown that several definitions of obfuscation essentially imply one-way functions. In
particular, we showed that (even imperfect) efficient indistinguishability obfuscators together with
complexity-theoretic assumptions imply one-way functions (see Theorems 4.1 and 5.1), and imper-
fect VBB obfuscators (unconditionally) imply one-way functions (see Theorem 6.1).

Theorem 4.1 assumes NP 6⊆ io-BPP and iO for polynomial-size circuits, and Theorem 5.1
assumes hard-on-the average NP-problems and iO for 3CNF formulas (or, better yet, witness en-
cryption for NP). That is, Theorem 4.1 assumes a weaker complexity-theoretic assumption but
a stronger obfuscator than Theorem 5.1. It would be very interesting to fully characterize the
minimal class of functions whose indistinguishability obfuscation (or witness encryption) implies
one-way functions under the weakest complexity-theoretic assumption (cf., Theorems 4.1 and 5.1).
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A From Perfect iO to One-Way Functions

In this section we assume the existence of a perfect indistinguishability obfuscator. We show that
assuming NP 6⊆ io-coRP, one-way functions exist.

Observation 2.1 (Restated). Assume that NP 6⊆ io-coRP. If there exists an efficient perfect
indistinguishability obfuscator for 3CNF formulas, then one-way functions exist.

In the rest of this section we make the intuition given in Section 2 precise and prove Obser-
vation 2.1. Let iO(1λ, C; r) be a perfect indistinguishability obfuscator for 3CNFs, where C is the
input circuit and r the randomness used in obfuscation. As in Section 4 we denote by Zs,n a canon-
ical constant zero circuit with inputs of n bits of size s gates. Moreover, for simplicity of writing,
we assume that the size of the circuits s, the number of inputs n and the security parameter λ are
all equal and denote them by n (otherwise, one could always increase the security parameter and
add dummy inputs to make them equal).

For every n ∈ N define

fn(x) , iO(1n, Zn,n;x)

and let F = {fn : {0, 1}n → {0, 1}∗}n∈N be the corresponding (efficiently computable) family of
functions. Observation 2.1 follows immediately from the following lemma.

Lemma A.1. If NP 6⊆ io-coRP, then F is a family of one-way functions.

Proof. Suppose, in contradiction, that F is not weakly one-way. Then there exists a probabilistic
polynomial time adversary A who can invert fn (for infinitely many n’s) with probability 1−1/p(n)
for any polynomial p. Let f = fn. Since A cannot distinguish between an obfuscation of Z and
any circuit C that is unsatisfiable we get that∣∣∣∣Pr

x,A
[A(1n, iO(C;x)) ∈ f−1(x)]− Pr

x,A
[A(1n, f(x)) ∈ f−1(x)]

∣∣∣∣ ≤ neg(n)

On the other hand, for any satisfiable circuit C, there will never be a pre-image under f . Thus
we get that

Pr
x,A

[A(1n, iO(C;x)) ∈ f−1(x)] = 0.

Given a 3CNF instance C on n variables with n gates, we will now use A to (one-sided) proba-
bilistically decide if C is satisfiable with very high probability:

Assume that C is unsatisfiable. Then, by the indistinguishability feature of iO and the inversion
feature of A, we get that

Pr[SolveSAT(C) = “UNSAT”] ≥ 1− 1/p(n)− neg(n) ≥ 2/3.

On the other hand, when C is satisfiable, it is impossible to find an x′ such that f(x′) = Ĉ and,
hence

Pr[SolveSAT(C) = “UNSAT”] = 0.
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The SolveSAT Algorithm

Input : A circuit C that gets inputs of length n.

1. Compute Ĉ ← iO(C).

2. Run x′ ← A(1n, Ĉ).

3. If f(x′) = Ĉ output “UNSAT”; Otherwise, output “SAT”.

Figure 3: SolveSAT Algorithm from Perfect iO.

B From Approximate iO to One-Way Functions

A natural variant of Definition 3.4 is to consider approximate indistinguishability obfuscators.11

In this variant we require from iO the second and third requirements from Definition 3.4 (i.e.,
polynomial slowdown and indistinguishability) but replace the first requirement with the following:

1. (Approximate) Preserving Functionality:

There exists a negligible function α such that for any input length n ∈ N, any λ, any C ∈ Cn
and every x ∈ {0, 1}n it holds that

Pr
iO

[
C(x) = iO(1λ, C)(x)

]
≥ 1− α(λ).

We observe that by standard error amplification we have that if approximate indistinguishability
obfuscators exist, then imperfect indistinguishability obfuscators exist. We note that the other
direction is trivial.

Lemma B.1. If there is an approximate indistinguishability obfuscator, then there exists an im-
perfect indistinguishability obfuscator, and vice-versa.

As a corollary, we obtain that our main results (Theorems 4.1 and 5.1) are true even if we
assume the existence of approximate iO instead of imperfect iO.

Proof of Lemma B.1. One direction (from imperfect iO to approximate iO) is trivial. We proceed
with the other direction. Let approx-iO be an approximate iO algorithm as defined above. We
construct an algorithm imperfect-iO that is an imperfect iO according to Definition 3.4. Given a
circuit C as input to imperfect-iO it outputs a circuit which is described in Figure 4.

Our goal is to prove that imperfect-iO is an imperfect indistinguishability obfuscator. The first
thing that we prove is the imperfect functionality feature of imperfect-iO.

Claim B.2. imperfect-iO is functionality preserving.

11This definition is inspired by the definition of approximate virtual black-box obfuscation defined and studied by
Barak et al. [BGI+12]. In that work, they also proved an impossibility result for general-purpose approximate virtual
black-box obfuscators.
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The imperfect-iO Algorithm

Input : A circuit C that gets inputs of length n.

Let approx-iO be an approximate iO.

1. Compute n2 independent obfuscation of C using approx-iO: C1, . . . , Cn2 ← approx-iO(C).

2. Output a circuit that gets x ∈ {0, 1}n as input and outputs the circuit that implements

MAJORITY(C1(x), C2(x), . . . , Cn2(x)).

Figure 4: imperfect-iO Obfuscator.

Proof. Assume that for every circuit C ∈ Cn and every x ∈ {0, 1}n it holds that

Pr
approx-iO

[approx-iO(C)(x) = C(x)] ≥ 1− ε(n).

Fix x ∈ {0, 1}n. Observe that, by Chernoff’s bound, since we output the majority of n2 independent
executions, we get that for this x

Pr
approx-iO

[approx-iO(C)(x) 6= C(x)] ≤ ε(n) · 2−n,

which implies, by a union bound (since the latter is true for every x ∈ {0, 1}n), that

Pr
imperfect-iO

[∀x ∈ {0, 1}n : imperfect-iO(C)(x) 6= C(x)] ≤ ε(n),

as required.

Second, we show that imperfect-iO is still secure.

Claim B.3. imperfect-iO is secure.

Proof. The majority gate in the root of the output circuit of imperfect-iO is public and appears in
every output of imperfect-iO. Thus, all we are left to do is to show that the fact that the output of
imperfect-iO consists of n independent obfuscations of the same circuit does not help an adversary
trying to break the indistinguishability of our construction. This follows by a standard hybrid
argument given for completeness in Claim B.4.

This completes the proof of the lemma.

Claim B.4. Let iO be an efficient indistinguishability obfuscator. For any probabilistic polynomial
time algorithm D, large enough security parameter λ > 0, any n = poly(λ) and any two functionally
equivalent circuits C1, C2 of the same size it holds that

|Pr[D(iO(1λ, C1), . . . , iO(1λ, C1)︸ ︷︷ ︸
n times

) = 1]− Pr[D(iO(1λ, C2), . . . , iO(1λ, C2)︸ ︷︷ ︸
n times

) = 1]| ≤ neg(λ),

where iO(1λ, C), . . . , iO(1λ, C) are n independent executions of iO on the circuit C with a security
parameter λ.

25



Proof. Assume that there exists a polynomial-time algorithm D and some ε such that

|Pr[D(iO(1λ, C1), . . . , iO(1λ, C1)︸ ︷︷ ︸
n times

) = 1]− Pr[D(iO(1λ, C2), . . . , iO(1λ, C2)︸ ︷︷ ︸
n times

) = 1]| ≥ ε, (B.1)

For σ ∈ {1, 2} let iOσ be a random variable sampled according to the distribution iO(Cσ).
With this notation, eq. (B.1) can be rewritten as∣∣∣Pr[D(iO1, . . . , iO1) = 1]− Pr[D(iO2, . . . , iO2) = 1]

∣∣∣ ≥ ε. (B.2)

For 0 ≤ i ≤ n let C(i) be the distribution induced by the sequence iO1, . . . , iO1︸ ︷︷ ︸
n−i times

, iO2, . . . , iO2︸ ︷︷ ︸
i times

.

Using this notation, eq. (B.2) can be rewritten as∣∣∣Pr[D(C(0)) = 1]− Pr[D(C(n)) = 1]
∣∣∣ ≥ ε.

By a hybrid argument, there exists an index i ∈ [n] for which∣∣∣Pr[D(C(i−1)) = 1]− Pr[D(C(i)) = 1]
∣∣∣ ≥ ε/n.

Expanding the definition of C(i),

|Pr[D(iO1, . . . , iO1︸ ︷︷ ︸
n−i times

, iO2, iO2, . . . , iO2︸ ︷︷ ︸
i−1 times

) = 1]−

Pr[D(iO1, . . . , iO1︸ ︷︷ ︸
n−i−1 times

, iO1, iO2, . . . , iO2︸ ︷︷ ︸
i times

) = 1]| ≥ ε/n.

At this point, it follows that there exists D′ that distinguishes between iO1 and iO2. Namely,
it holds that ∣∣Pr[D′(iO(C1)) = 1]− Pr[D′(iO(C2)) = 1]

∣∣ ≥ ε/n,
as required.
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