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Abstract

Non-malleable codes are a natural relaxation of error correcting/detecting codes that have useful
applications in the context of tamper resilient cryptography. Informally, a code is non-malleable if
an adversary trying to tamper with an encoding of a given message can only leave it unchanged or
modify it to the encoding of a completely unrelated value. This paper introduces an extension of the
standard non-malleability security notion – so-called continuous non-malleability – where we allow
the adversary to tamper continuously with an encoding. This is in contrast to the standard notion of
non-malleable codes where the adversary only is allowed to tamper a single time with an encoding.
We show how to construct continuous non-malleable codes in the common split-state model where
an encoding consist of two parts and the tampering can be arbitrary but has to be independent with
both parts. Our main contributions are outlined below:

1. We propose a new uniqueness requirement of split-state codes which states that it is com-
putationally hard to find two codewords C = (X0, X1) and C ′ = (X0, X

′
1) such that both

codwords are valid, but X0 is the same in both C and C ′. A simple attack shows that unique-
ness is necessary to achieve continuous non-malleability in the split-state model. Moreover,
we illustrate that non of the existing constructions satisfies our uniqueness property and hence
is not secure in the continuous setting.

2. We construct a split-state code satisfying continuous non-malleability. Our scheme is based
on the inner product function, collision-resistant hashing and non-interactive zero-knowledge
proofs of knowledge and requires an untamperable common reference string.

3. We apply continuous non-malleable codes to protect arbitrary cryptographic primitives against
tampering attacks. Previous applications of non-malleable codes in this setting required to
perfectly erase the entire memory after each execution and and required the adversary to be
restricted in memory. We show that continuous non-malleable codes avoid these restrictions.
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1 Introduction

Physical attacks that target cryptographic implementations instead of breaking the black-box security of
the underlying algorithm are amongst the most severe threats for cryptographic systems. A particular
important attack on implementations is the so-called tampering attack. In a tampering attack the adver-
sary changes the secret key to some related value and observes the effect of such changes at the output.
Traditional black-box security notions do not incorporate adversaries that change the secret key to some
related value; even worse, as shown in the celebrated work of Boneh et al. [6] already minor changes
to the key suffice for complete security breaches. Unfortunately, tampering attacks are also rather easy
to carry out: a virus corrupting a machine can gain partial control over the state, or an adversary that
penetrates the cryptographic implementation with physical equipment may induce faults into keys stored
in memory.

In recent years, a growing body of work (see [20, 21, 17, 23, 1, 2, 18] and many more) develop new
cryptographic techniques that protect against tampering attacks. Non-malleable codes introduced by
Dziembowski, Pietrzak and Wichs [17] are an important approach to achieve this goal. Intuitively a code
is non-malleable w.r.t. a set of tampering functions T if the message contained in a codeword modified
via a function in T is either the original message, or a completely unrelated value. Non-malleable codes
can be used to protect any cryptographic functionality against tampering with the memory. Instead of
storing the key in memory, we store its encoding and decode it each time the functionality wants to
accesses the key. As long as the adversary can only apply tampering functions from the set T , the non-
malleability property guarantees that the (possibly tampered) decoded value is not related to the original
key.

The standard notion of non-malleability considers a one-shot game: the adversary is allowed to
tamper a single time with the codeword and obtains the decoded output. In this work we introduce
so-called continuous non-malleable codes, where non-malleability is guaranteed even if the adversary
continuously applies functions from the set T to the codeword. We show that our new security notion
is not only a natural extension of the standard one-shot notion, but moreover allows to protect against
tampering attacks in important settings where earlier constructions fall short to achieve security.

Continuous non-malleable codes. A non-malleable code consists of two algorithms Code =
(Encode,Decode) that satisfy the correctness property Decode(Encode(x)) = x, for all x ∈ X . To de-
fine non-malleability for a function class T , consider the random variable TamperT,x defined for every
function T ∈ T and any message x ∈ X in the game below:

1. Compute an encoding X ← Encode(x) using the encoding procedure.
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2. Apply the tampering function T ∈ T to obtain the tampered codeword X ′ = T(X).

3. If X ′ = X then return the special symbol same?; otherwise, return Decode(X ′). Notice that
Decode(X ′) may return the special symbol ⊥ in case the tampered codeword X ′ was invalid.

A coding scheme Code is said to be (one-shot) non-malleable with respect to functions in T and message
spaceX , if for every T ∈ T and any two messages x, y ∈ X the distributions TamperT,x and TamperT,y
are indistinguishable.

To define continuous non-malleable codes, we do not fix a single tampering function T a-priori.1

Instead, we let the adversary repeat step 2 and step 3 from the above game a polynomial number of
times, where in each iteration the adversary can adaptively choose a tampering function Ti ∈ T . We
emphasize that this change of the tampering game allows the adversary to tamper continuously with
the initial encoding X . As shown by Gennaro et al. [20] such a strong security notion is impossible to
achieve without further assumptions. To this end, we rely on a self-destruct mechanism as used in earlier
works on non-malleable codes. More precisely, when in step 3 the game detects an invalid codeword and
returns ⊥ for the first time, then it self-destructs. This is a rather mild assumption as it can, for instance,
be implemented using a single public untamperable bit.

From non-malleable codes to tamper resilience. As discussed above one main application of non-
malleable codes is to protect cryptographic schemes against tampering with the secret key [17, 23].
Consider a reactive functionality G with secret state st that can be executed on input m, e.g., G may
be the AES with key st encrypting messages m. Using a non-malleable code earlier work showed how
to transform the functionality (G, st) into a functionality (GCode, X) that is secure against tampering
with X . The transformation compiling (G, st) into (GCode, X) works as follows. Initially, X is set to
X ← Encode(st). Each time GCode is executed on input m, the transformed functionality reads the
encoding X from memory, decodes it to obtain st = Decode(X) and runs the original functionality
G(st ,m). Finally, it erases the memory and stores the new state X ← Encode(st). Additionally to
executing evaluation queries the adversary can issue tampering queries Ti ∈ T . A tampering query
replaces the current secret state X with a tampered state X ′ = Ti(X), and the functionality GCode
continues its computation using X ′ as the secret state. Notice that in case of Decode(X ′) = ⊥ the
functionality GCode sets the memory to a dummy value—resulting essentially in a self-destruct.

The above transformation guarantees continuous tamper resilience even if the underlying non-
malleable code is secure only against one-shot tampering. This security “boost” is achieved by re-
encoding the secret state/key after each execution of the primitive GCode. As one-shot non-malleability
suffices in the above cryptographic application, one may ask why we need continuous non-malleable
codes. Besides being a natural extension of the standard non-malleability notion, our new notion has
several important applications that we discuss in the next two paragraphs.

Tamper resilience without erasures. The transformation described above necessarily requires that
after each execution the entire content of the memory is erased. While such perfect erasures may be
feasible in some settings, they are rather problematic in the presence of tampering. To illustrate this
issue consider a setting where besides the encoding of a key, the memory also contains other non-
encoded data. In the tampering setting, we cannot restrict the erasure to just the part that stores the
encoding of the key as a tampering adversary may copy the encoding to some different part of the
memory. A simple solution to this problem is to erase the entire memory, but such an approach is not
possible in most cases: for instance, think of the memory as being the hard-disk of your computer that
besides the encoding of a key stores other important files that you don’t want to be erased. Notice that
this situation is quite different from the leakage setting, where we also require perfect erasures to achieve

1Our actual definition is slightly stronger than what is presented next (cf. Section 3).
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continuous leakage resilience. In the leakage setting, however, the adversary cannot mess around with
the state of the memory by, e.g., copying an encoding of a secret key to some free space, which makes
erasures significantly easier to implement.

One option to prevent the adversary from keeping permanent copies is to encode the entire state of
the memory. Such an approach has, however, the following drawbacks.

1. It is unnatural: In many cases secret data, e.g., a cryptographic key, is stored together with non-
confidential data. Each time we want to read some small part of the memory, e.g., the key, we
need to decode and re-encode the entire state—including also the non-confidential data.

2. It is inefficient: Decoding and re-encoding the entire state of the memory for each access intro-
duces additional overhead and would result in highly inefficient solutions. This gets even worse
as most current constructions of non-malleable codes are rather inefficient.

3. It does not work in general: Consider a setting where we want to compute with non-malleable
codes in a tamper resilient way (similar in spirit to tamper resilient circuits). Clearly, in this
setting the memory will store many independent encodings of different secrets that cannot be
erased. Continuous non-malleable codes are hence a first natural step towards non-malleable
computation.

Using our new notion of continuous non-malleable codes we can avoid the above issues and achieve
continuous tamper resilience without using erasures and without relying on inefficient solutions that
encode the entire state.

Stateless tamper resilient transformations. To achieve tamper resilience from one-shot non-
malleability we necessarily need to re-encode the state using fresh randomness. This not only reduces
the efficiency of the proposed construction, but moreover makes the transformation stateful. Using con-
tinuous non-malleable codes we get continuous tamper resilience for free, eliminating the need to refresh
the encoding after each usage. This is in particular useful when the underlying primitive that we want
to protect is stateless itself. Think, for instance, of any standard block-cipher construction that typi-
cally keeps the same key. Using continuous non-malleable codes the tamper resilient implementation of
such stateless primitives does not need to keep any secret state. We discuss the protection of stateless
primitives in further detail in Section 5.

1.1 Our Contribution

In this work, we propose the first construction of continuous non-malleable codes in the split-state model
first introduced in the leakage setting [16, 13]. Various recent works study the split-state model for non-
malleable codes [23, 15, 1] (see more details on related work in Section 1.2). In the split-state tampering
model, the codeword consists of two halves X0 and X1 that are stored on two different parts of the
memory. The adversary is assumed to tamper with both parts independently, but otherwise can apply any
efficiently computable tampering function. That is, the adversary picks two polynomial-time computable
functions T0 and T1 and replaces the state (X0, X1) with the tampered state (T0(X0),T1(X1)). Similar
to the earlier work of Liu and Lysyanskaya [23] our construction assumes a public untamperable CRS.
Notice that this is a rather mild assumption as the CRS can be hard-wired into the functionality and is
independent of any secret data.

Continuous non-malleability of existing constructions. The first construction of (one-shot) split-
state non-malleable codes in the standard model was given by Liu and Lysyanskaya [23]. At a high-
level the construction encrypts the input x with a leakage resilient encryption scheme and generates a
non-interactive zero-knowledge proof of knowledge showing that (a) the public/secret key of the PKE
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are valid, and (b) the ciphertext is an encryption of x under the public key. Then, X0 is set to the secret
key while X1 holds the corresponding public key, the ciphertext and the above described NIZK proof.

Unfortunately, it is rather easy to break the non-malleable code of Liu and Lysyanskaya in the con-
tinuous setting. Recall that our security notion of continuous non-malleable codes allows the adversary
to interact in the following game. First, we sample a codeword (X0, X1)← Encode(x) and then repeat
the following process a polynomial number of times:

1. The adversary submits two polynomial-time computable functions (T0,T1) resulting in a tam-
pered state (X ′0, X

′
1) = (T0(X0),T1(X1)).

2. We consider three different cases: (1) if (X ′0, X
′
1) = (X0, X1) then return same?; (2) otherwise

compute x′ = Decode(X ′0, X
′
1) and return x′ if x′ 6= ⊥; (3) if x′ = ⊥ self-destruct and terminate

the experiment.

The main observation that enables the attack against the scheme of [23] is as follows. For a fixed (but
adversarially chosen) part X ′0 it is easy to come-up with two corresponding parts X ′1 and X ′′1 such
that both (X ′0, X

′
1) and (X ′0, X

′′
1 ) form a valid codeword that does not lead to a self-destruct. Suppose

further that Decode(X ′0, X
′
1) 6= Decode(X ′0, X

′′
1 ), then under continuous tampering the adversary may

permanently replace the original encoding X0 with X ′0, while depending on whether the i-th bit of X1

is 0 or 1 either replace X1 by X ′1 or X ′′1 . This allows to recover the entire X1 by just |X1| tampering
attacks. Once X1 is known to the adversary it is easy to tamper with (X0, X1) in a way that depends on
Decode(X0, X1).

Somewhat surprisingly, our attack can be generalized to break any non-malleable code that is secure
in the information theoretic setting. Hence, also the recent breakthrough results on information theoretic
non-malleability [15, 1] fail to provide security under continuous attacks. Moreover, we emphasize
that our attack does not only work for the code itself, but (in most cases) can be also applied to the
tamper-protection application of cryptographic functionalities.

Uniqueness. The attack above exploits that for a fixed known part X ′0 it is easy to come-up with two
valid partsX ′1, X

′′
1 . For the encoding of [23] this is indeed easy to achieve. If the secret keyX ′0 is known

it is easy to come-up with two valid parts X ′1, X
′′
1 : just encrypt two arbitrary messages x0 6= x1 and

generate the corresponding proofs. The above weakness motivates a new property that non-malleable
codes shall satisfy in order to achieve security against continuous non-malleability. We call this property
uniqueness, which informally guarantees that for any (adversarially chosen) valid encoding (X ′0, X

′
1)

it is computationally hard to come up with X ′′b 6= X ′b such that (X ′b, X
′′
1−b) forms a valid encoding.

Clearly the uniqueness property prevents the above described attack, and hence is a crucial requirement
for continuous non-malleability.

A new construction. In light of the above discussion, we need to build a non-malleable code that
achieves our uniqueness property. Our construction uses as building blocks a leakage resilient storage
(LRS) scheme [13, 14] for the split-state model (one may view this as a generalization of the leakage
resilient PKE used in [23]), a collision-resistant hash function and (similar to [23]) an extractable NIZK.
At a high-level we use the LRS to encode the secret message, hash the resulting shares using the hash
function and generate a NIZK proof of knowledge that indeed the resulting hash values are correctly
computed from the shares. While it is easy to show that collision resistance of the hash function guar-
antees the uniqueness property, a careful analysis is required to prove continuous non-malleability. We
refer the reader to Section 4 for the details of our construction and to Section 4.1 for an outline of the
proof.
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Tamper resilience for stateless and stateful primitives. We can use our new construction of con-
tinuous non-malleable codes to protect arbitrary computation against continuous tampering attacks. In
contrast to earlier works our construction does not need to re-encode the secret state after each usage,
which besides being more efficient avoids the use of erasures. As discussed above, erasures are problem-
atic in the tampering setting as one would essentially need to encode the entire state (possibly including
large non-confidential data).

Additionally, our transformation does not need to keep any secret state. Hence, if our transformation
is used for stateless primitives, then the resulting scheme remains stateless. This solves an open problem
of Dziembowski, Pietrzak and Wichs [17]. Notice that while we do not need to keep any secret state,
the transformed functionality requires one single bit to switch to self-destruction mode. This bit can
be public but must be untamperable, and can for instance be implemented through one-time writable
memory. As shown in the work of Gennaro et al. [20] continuous tamper resilience is impossible to
achieve without such a mechanism for self-destruction.

Of course, our construction can also be used for stateful primitives, in which case our functionality
will re-encode the new state during execution. Note that in this setting, as data is never erased, an
adversary can always reset the functionality to a previous valid state. To avoid this, our transformation
uses an untamperable public counter2 that helps us to detect whenever the functionality is reset to a
previous state, leading to a self-destruct. We notice that such an untamperable counter is necessary, as
otherwise there is no way to protect against the above resetting attack.

Adding leakage. As a last contribution, we show that our code is also secure against bounded leakage
attacks. This is similar to the works of [23, 15] who also consider bounded leakage resilience of their
encoding scheme. We then show that bounded leakage resilience is also inherited by functionalities that
are protected by our transformation. Notice that without perfect erasures bounded leakage resilience is
the best we can achieve, as there is no hope for security if an encoding that is produced at some point in
time is gradually revealed to the adversary.

1.2 Related Work

Constructions of non-malleable codes. Besides showing feasibility by a probabilistic argument, [17]
also built non-malleable codes for bit-wise tampering and gave a construction in the split-state model
using a random oracle. This result was followed by [9] which proposed non-malleable codes that are
secure against block-wise tampering. The first construction of non-malleable codes in the split-state
model was given by Liu and Lysyanskaya [23] assuming an untamperable CRS. Very recently two
beautiful works showed how to build non-malleable codes in the split-state model without relying on a
CRS [15, 1] even when the adversary has unlimited computing power. Dziembowski et al. [15] show
how to encode a single bit using the inner product function. Agrawal et al. [1] developed a construction
that goes beyond single-bit encoding but induces a huge overhead.

See also [8, 7, 18] for other recent advances on the construction of non-malleable codes. We also
notice that the work of Genarro et al. [20] proposed a generic method that allows to protect arbitrary com-
putation against continuous tampering attacks, without requiring erasures. We refer the reader to [17]
for a more detailed comparison between non-malleable codes and the solution of [20].

Other works on tamper resilience. A large body of work shows how to protect specific cryptographic
schemes against tampering attacks (see [4, 3, 22, 5, 24, 12] and many more). While these works consider
a strong tampering model (e.g., they do not require the split-state assumption), they only offer security
for specific schemes. In contrast non-malleable codes are generally applicable and can provide tamper
resilience of any cryptographic scheme.

2Note that a counter uses very small (logarithmic in the security parameter) number of bits.
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In all the above works, including ours, it is assumed that the circuitry that computes the cryptographic
algorithm using the potentially tampered key runs correctly, and is not subject to tampering attacks. An
important line of works analyze to what extent we can guarantee security when even the circuitry is
prone to tampering attacks [21, 19, 11]. These works typically consider a restricted class of tampering
attacks (e.g., individual bit tampering) and assume that large parts of the circuit (and memory) remain
untampered.

2 Preliminaries

2.1 Notation

We let N be the set of naturals. For n ∈ N, we write [n] := {1, . . . , n}. Given a set S, we write s← S to
denote that element s is sampled uniformly from S. If S is an algorithm, y ← S(x) denotes an execution
of S with input x and output y; if S is randomized, then y is a random variable.

Throughout the paper we denote the security parameter by k ∈ N. A function δ(k) is called neg-
ligible in k (or simply negligible) if it vanishes faster than the inverse of any polynomial in k, i.e.,
δ(k) = k−ω(1). A machine S is called probabilistic polynomial time (PPT) if for any input x ∈ {0, 1}∗
the computation of S(x) terminates in at most poly(|x|) steps and S is probabilistic (i.e., it uses random-
ness as part of its logic).

OracleO`(s) is parametrized by a value s and takes as input functions L and outputs L(s), returning
a total of at most ` bits.

2.2 Robust Non-Interactive Zero Knowledge

Given an NP-relation, let L = {x : ∃w such thatR(x,w) = 1} be the corresponding lan-
guage. A robust non-interactive zero knowledge (NIZK) proof system for L, is a tuple of algorithms
(GNIZK,Prove,Verify,Sim = (Sim1,Sim2),Xtr) such that the following properties hold [25].

Completeness. For all x ∈ L of length k and all w such that R(x,w) = 1, for all Ω← GNIZK(1k) we
have that Verify(Ω, x,Prove(Ω, w, x)) = accept

Multi-theorem zero knowledge. For all PPT adversaries A, we have Real(k) ≈ Simu(k), where Real(k)
and Simu(k) are distributions defined via the following experiment:

Real(k) =
{

Ω← GNIZK(1k); out ← AProve(Ω,·,·)(Ω); Output: out .
}

Simu(k) =
{

(Ω, tk)← Sim1(1k); out ← ASim2(Ω,·,tk)(Ω); Output: out .
}
.

Extractability. There exists a PPT algorithm Xtr such that, for all PPT adversaries A, we have

P
[

(Ω, tk, ek)← Sim1(1k); (x, π)← ASim2(Ω,·,tk)(Ω);w ← Xtr(Ω, (x, π), ek);
R(x,w) 6= 1 ∧ (x, π) 6∈ Q ∧Verify(Ω, x, π) = accept

]
≤ negl(k),

where the list Q contains the successful pairs (xi, πi) that A has queried to Sim2.

Similarly to [23], we assume that different statements have different proofs, i.e., if Verify(Ω, x, π) =
accept we have that Verify(Ω, x′, π) = reject for all x′ 6= x. This property can be achieved by
appending the statement to its proof.

We also require that the proof system supports labels, so that the Prove, Verify, Sim and Xtr algo-
rithms now also take a public label λ as input, and the completeness, zero knowledge and extractability
properties are updated accordingly. (This can be easily achieved by appending the label λ to the state-
ment x.) More precisely, we write Proveλ(Ω, w, x) and Verifyλ(Ω, x, π) for the prover and the verifier,
and Simλ

2(Ω, x, tk) and Xtrλ(Ω, (x, π), ek) for the simulator and the extractor.
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2.3 Leakage Resilient Storage

We recall the definition of leakage resilient storage from [13, 14]. A leakage resilient storage scheme
(LRS,LRS−1) is a pair of algorithms defined as follows. (1) Algorithm LRS takes as input a secret x
and outputs an encoding (s0, s1) of x. (2) Algorithm LRS−1 takes as input shares (s0, s1) and outputs
a message x′. Since the LRS that we use in this paper is secure against computationally unbounded
adversaries, we state the definition below in the information theoretic setting. It is easy to extend it to
also consider computationally bounded adversaries.

Definition 1 (LRS). We call (LRS,LRS−1) an `-leakage resilient storage scheme (`-LRS) if for all
θ ∈ {0, 1}, all secrets x, y and all adversaries A it holds that{

LeakageA,x,θ(k)
}
k∈N ≈s

{
LeakageA,y,θ(k)

}
k∈N ,

where

LeakageA,x,θ(k) =
{

(s0, s1)← LRS(x); outA ← AO
`(s0,·),O`(s1,·); Output: (sθ, outA).

}
.

We remark that Definition 1 is stronger than the standard definition of LRS, in that the adversary
is allowed to see one of the two shares after he is done with leakage queries. A careful analysis of the
proof, however, shows that the LRS scheme of [14, Lemma 22] satisfies the above generalized notion
since the inner product function is a strong randomness extractor [10].

3 Continuous Non-Malleability

We start by formally defining an encoding scheme in the common reference string (CRS) model.

Definition 2 (Split-state Encoding Scheme in the CRS Model). A split-state encoding scheme in the
common reference string (CRS) model is a tuple of algorithms Code = (Init,Encode,Decode) speci-
fied below.

• Init takes as input the security parameter and outputs a CRS Ω← Init(1k).

• Encode takes as input some message x ∈ {0, 1}k and the CRS Ω and outputs a codeword con-
sisting of two parts (X0, X1) such that X0, X1 ∈ {0, 1}n.

• Decode takes as input a codeword (X0, X1) ∈ {0, 1}2n and the CRS and outputs either a message
x′ ∈ {0, 1}k or a special symbol ⊥.

Consider the following oracleOcnm((X0, X1)), which is parametrized by an encoding (X0, X1) and
takes as input functions T0,T1 : {0, 1}n → {0, 1}n.

Ocnm((X0, X1), (T0,T1)):
(X ′0, X

′
1) = (T0(X0),T1(X1))

If (X ′0, X
′
1) = (X0, X1) return same?

If Decode(Ω, (X ′0, X
′
1)) = ⊥, return ⊥ and “self-destruct”

Else return (X ′0, X
′
1).

By “self-destruct” we mean that once Decode(Ω, (X ′0, X
′
1)) outputs ⊥, the oracle will answer ⊥ to any

further query.

8



Definition 3 (Continuous Non-Malleability). Let Code = (Init,Encode,Decode) be a split-state en-
coding scheme in the CRS model. We say that Code is q-continuously non-malleable `-leakage resilient
((`, q)-CNMLR for short), if for all messages x, y ∈ {0, 1}k and all PPT adversaries A it holds that{

Tampercnmlr
A,x (k)

}
k∈N
≈c
{
Tampercnmlr

A,y (k)
}
k∈N

where

Tampercnmlr
A,x (k) =

{
Ω← Init(1k); (X0, X1)← Encode(Ω, x);

outA ← AO
`(X0),O`(X1),Ocnm((X0,X1)); Output: outA

}
and A asks a total of q queries to Ocnm.

Without loss of generality we assume that the variable outA consists of all the bits leaked from X0

and X1 (in a vector Λ) and all the outcomes from oracle Ocnm(X0, X1) (in a vector Θ); we write this
as outA = (Λ,Θ) where |Λ| ≤ 2` and Θ has exactly q elements.

Intuitively, the above definition captures a setting where a fully adaptive adversary A tries to break
non-malleability by tampering several times with a target encoding, obtaining each time some leakage
from the decoding process. The only restriction is that whenever a tampering attempt decodes to ⊥,
the system “self-destructs”.3 Note that whenever the adversary mauls (X0, X1) to a valid encoding
(X ′0, X

′
1), oracle Ocnm returns (X ′0, X

′
1). This is different from [17, 23], where the experiment returns

the output of the decoded message, i.e. Decode(Ω, (X ′0, X
′
1)). The recent work of Faust et al. [18]

consider a similar extension where also the codeword is returned instead of the decoded message and
call it super strong non-malleability. Also, we remark that Definition 3 implies strong non-malleability
(as defined in [17, 23]) if we restrict A to ask a single query (i.e., q = 1) to oracle Ocnm.4 We choose
the formulation above because it is stronger and at the same time achieved by our code!

3.1 Uniqueness

As we argue below, constructions that satisfy our new Definition 3 have to meet the following uniqueness
requirement. Informally this means that for any (possibly adversarially chosen) side of an encoding X ′b
it is computationally hard to find two corresponding sides X ′1−b and X ′′1−b such that both (X ′b, X

′
1−b)

and (X ′b, X
′′
1−b) form a valid encoding.

Definition 4 (Uniqueness). Let Code = (Init,Encode,Decode) be a split-state encoding in the CRS
model. We say that Code satisfies uniqueness if for all PPT adversaries A and for all b ∈ {0, 1} we have:

P
[

Ω← Init(1k); (X ′b, X
′
1−b, X

′′
1−b)← A(1k,Ω);X ′1−b 6= X ′′1−b;

Decode(Ω, (X ′b, X
′
1−b)) 6= ⊥; Decode(Ω, (X ′b, X

′′
1−b)) 6= ⊥

]
≤ negl(k).

The following attack shows that the uniqueness property is necessary to achieve Definition 3.

Lemma 1. Let Code be (0, poly(k))-CNMLR. Then Code must satisfy uniqueness.

Proof. For the sake of contradiction, assume that we can efficiently find a triple (X ′0, X
′
1, X

′′
1 ) such

that (X ′0, X
′
1) and (X ′0, X

′′
1 ) are both valid and X ′1 6= X ′′1 . For a target encoding (Y0, Y1), we describe

an efficient algorithm recovering Y1 with overwhelming probability, by asking n = poly(k) queries to
Ocnm((Y0, Y1), ·).

3As described in [20] it is easy to see that without such a restriction non-malleability can indeed be broken, since A can
simply recover the entire (X0, X1) after polynomially many queries.

4It is easy to see that encoding from [23] satisfies the stronger variant of strong non-malleability.
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For all i ∈ [n] repeat the following:
Prepare the i-th tampering function as follows:
- T(i)

0 (Y0): Replace Y0 by X ′0;
- T(i)

1 (Y1): If Y1[i] = 0 replace Y1 by X ′1; otherwise replace it by X ′′1 .
Submit (T

(i)
0 ,T

(i)
1 ) to Ocnm((Y0, Y1), ·) and obtain (Y ′0 , Y

′
1).

If (Y ′0 , Y
′

1) = (X ′0, X
′
1), set Z[i]← 0.

Otherwise, if (Y ′0 , Y
′

1) = (X ′0, X
′′
1 ), set Z[i]← 1.

Output Z as the guess for Y1.

The above algorithm clearly succeeds with overwhelming probability, whenever X ′1 6= Y1 6= X ′′1 .5

Once Y1 is known, we ask one additional query (T
(n+1)
0 ,T

(n+1)
1 ) to Ocnm((Y0, Y1), ·), as follows:

– T
(n+1)
0 (Y0) hard-wires Y1 and computes y ← Decode(Ω, (Y0, Y1)); if the first bit of y is 0 then

T0 behaves like the identity function, otherwise it overwrites Y0 with 0n.

– T
(n+1)
1 (Y0) is the identity function.

The above clearly allows to learn one bit of the message in the target encoding and hence contradicts
the fact that Code is (0, poly(k))-CNMLR.

Attacking existing schemes. The above procedure can be applied to show that the encoding of [23]
does not satisfy our notion. Recall that in [23] a message x is encoded asX0 = (pk, c := Enc(pk, x), π)
and X1 = sk. Here, (pk, sk) is a valid key pair and π is a proof of knowledge of a pair (x, sk) such that
c decrypts to x under sk and (pk, sk) forms a valid key-pair. Clearly, for some X ′1 = sk′ it is easy to
find two valid corresponding parts X ′0 6= X ′′0 which violates uniqueness.

We mention two important extensions of the attack from Lemma 1, leading to even stronger security
breaches:

1. In case the valid pair of encodings (X ′0, X
′
1), (X ′0, X

′′
1 ) which violates the uniqueness property

are such that Decode(Ω, (X ′0, X
′
1)) 6= Decode(Ω, (X ′0, X

′′
1 )), one can show that Lemma 1 still

holds in the weaker version of the Definition 3 in which the experiment does not output tampered
encodings but only the corresponding decoded message. Note that this applies in particular to the
encoding of [23].

2. In case it is possible to find both (X ′0, X
′
1, X

′′
1 ) and (X ′0, X

′′
0 , X

′
1) violating uniqueness, a sim-

ple variant of the attack allows us to recover both halves of the target encoding which is a total
breach of security! However, it is not clear for the scheme of [23] how to find two valid corre-
sponding parts X ′1, X

′′
1 , because given pk′ it shall of course be computationally hard to find two

corresponding valid secret keys sk′, sk′′.

The above attack can be easily extended to the information theoretic setting to break the construc-
tions of the non-malleable codes (in split-state) recently introduced in [15] and in [1]. In fact, in the
following lemma we show that there does not exist any information theoretic secure CNMLR code.

Lemma 2. It is impossible to construct information theoretically secure (0, poly(k))-CNMLR codes.

Proof. We prove the lemma by contradiction. Assume that there exists an information theoretically
secure (0, poly(k))-CNMLR code with 2n bits codewords. By Lemma 1, the code must satisfy the

5In case (X ′0, X
′
1) = (Y0, Y1) or (X ′0, X

′′
1 ) = (Y0, Y1), then the entire encoding can be recovered even with more ease. In

this case, whenever the oracle returns same? we know Y0 = X ′0 and Y1 ∈ {X ′1, X ′′1 }. In the next step we replace the encoding
with (X ′0, X

′
1); if the oracle returns same? again, then we conclude that Y1 = X ′1, otherwise we conclude Y1 = X ′′1 .
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uniqueness property. In the information theoretic setting this means that, for all codewords (X0, X1) ∈
{0, 1}2n such that Decode(Ω, (X0, X1)) 6= ⊥, the following holds: (i) for all X ′1 ∈ {0, 1}n such that
X ′1 6= X1, we have Decode(Ω, (X0, X

′
1)) = ⊥; (ii) for all X ′0 ∈ {0, 1}n, such that X ′0 6= X0, we have

Decode(Ω, (X ′0, X1)) = ⊥.
Given a target encoding (X0, X1) of some secret x, an unbounded A can define the following

tampering function Tb (for b ∈ {0, 1}): Given Xb as input, try all possible X1−b ∈ {0, 1}n until
Decode(Ω, (X0, X1)) 6= ⊥. By property (i)-(ii) above, we conclude that for all X ′1−b 6= X1−b, the
decoding algorithm Decode(Ω, (Xb, X

′
1−b)) outputs ⊥ with overwhelming probability. Thus, Tb can

recover x = Decode(Ω, (Xb, X1−b)) and if the first bit of the decoded value is 0 leave the target encod-
ing unchanged, otherwise (T0,T1) modifies the encoding with an invalid codeword. The above clearly
allows to learn one bit of the message in the target encoding, and hence contradicts the fact that the code
is (0, poly(k))-CNMLR.

Note that the attack of Lemma 2 requires the tampering function to be unbounded. In case when the
tampering functions are computationally bounded and only the adversary is computationally unbounded
we do not know how to make the above attack work.

4 The Code

Consider the following split-state encoding scheme in the CRS model (Init,Encode,Decode), based
on an LRS scheme (LRS,LRS−1), on a family of collision resistant hash functions H = {Ht :
{0, 1}poly(k) → {0, 1}k}t∈{0,1}k and on a robust non-interactive zero knowledge proof system
(GNIZK,Prove,Verify) which supports labels, for language LH,t = {h : ∃s such that h = Ht(s)}.

Init(1k). Sample t← {0, 1}k and run Ω← GNIZK(1k).

Encode(Ω, x). Let (s0, s1) ← LRS(x). Compute h0 = Ht(s0), h1 = Ht(s1) and π0 ←
Proveλ1(Ω, s0, h0), π1 ← Proveλ0(Ω, s1, h1), where the labels are defined as λ0 = h0, λ1 = h1.
(Note that the pre-image of hb is sb and the proof πb is computed for statement hb using label
h1−b.) Output (X0, X1) = ((s0, h1, π1, π0), (s1, h0, π0, π1)).

Decode(Ω, (X0, X1)). The decoding parses Xb as (sb, h1−b, π1−b, πb), computes λb = Ht(sb) and
then proceeds as follows:

(a) Local check. If Verifyλ1(Ω, h0, π0) or Verifyλ0(Ω, h1, π1) output reject in any of the two
sides X0, X1, return x′ = ⊥.

(b) Cross check. If (i) h0 6= Ht(s0) or h1 6= Ht(s1), or (ii) the proofs (π0, π1) in X0 are
different from the ones in X1, then return x′ = ⊥.

(c) Decoding. Otherwise, return x′ = LRS−1(s0, s1).

We start by showing that the above code satisfies the uniqueness property (cf. Definition 4).

Lemma 3. Let Code = (Init,Encode,Decode) be as above. Then, ifH is a family of collision resistant
hash functions Code satisfies uniqueness.

Proof. We show that Definition 4 is satisfied for b = 0. The proof for b = 1 is identical and is therefore
omitted.

Assume that there exists a PPT adversary A that, given as input Ω ← Init(1k), is able to produce
(X ′0, X

′
1, X

′′
1 ) such that both (X ′0, X

′
1) and (X ′0, X

′′
1 ) are valid, butX ′1 6= X ′′1 . LetX ′0 = (s′0, h

′
1, π
′
1, π
′
0),

X ′1 = (s′1, h
′
0, π
′
0, π
′
1) and X ′′1 = (s′′1, h

′′
0, π
′′
0 , π

′′
1).
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Since s′0 is the same in both encodings, we must have h′0 = h′′0 as the hash function is determinis-
tic. Furthermore, since both (X ′0, X

′
1) and (X ′0, X

′′
1 ) are valid, the proofs must verify successfully and

therefore we must have π′0 = π′′0 and π′1 = π′′1 . It follows that X ′′1 = (s′′1, h
′
0, π
′
0, π
′
1), such that s′′1 6= s′1.

Clearly (s′1, s
′′
1) is a collision for h′1, a contradiction.

Theorem 1. Let Code = (Init,Encode,Decode) be as above. Assume that (LRS,LRS−1) is an `′-
LRS, H = {Ht : {0, 1}poly(k) → {0, 1}k}t∈{0,1}k is a family of collision resistant hash functions and
(GNIZK,Prove,Verify) is a robust NIZK proof system for language LH,t. Then Code is (`, q)-CNMLR,
for any q = poly(k) and `′ ≥ max{2`+ (k + 1)dlog(q)e, 2k + 1}.

4.1 Outline of the Proof

In order to build some intuition, let us first explain why a few natural attacks do not work. Clearly, the
uniqueness property (cf. Lemma 3) rules out the attack of Lemma 1. As a first attempt, the adversary
could try to modify the proof π0 to a different proof π′0, by using the fact that X0 contains the corre-
sponding witness s0 and the correct label h1. However, to ensure the validity of (X ′0, X

′
1), this would

require to place π′0 in X ′1, which should be hard without knowing a witness (by the robustness of the
proof system). Alternatively, one could try to maul the two halves (s0, s1) of the LRS scheme, into a
pair (s′0, s

′
1) encoding a related message.6 This requires, for instance, to change the proof π0 into π′0 and

place π′0 in X ′1, which again should be hard without knowing a witness and the correct label.
Let us now try to give a high-level overview of the proof. Given a polynomial time distinguisher D

that violates continuous non-malleability of Code, we build another polynomial time distinguisher D′

which breaks leakage resilience of (LRS,LRS−1). Distinguisher D′, which can access oracles O`′(s0)
and O`′(s1), has to distinguish whether (s0, s1) is the encoding of message x or message y and will do
so with the help of D’s advantage in distinguishing Tampercnmlr

x from Tampercnmlr
y . The main difficulty

in the reduction is how D′ can simulate the answers from the tampering oracle Ocnm (cf. Definition 3),
without knowing the target encoding (X0, X1). This is the main point where our techniques diverge
significantly from [23] (as in [23] the reduction “knows” a complete half of the encoding). In our
case, in fact, D′ can only access the two halves X0 and X1 “inside” the oracles O`′(s0) and O`′(s1).7

However, it is not clear how this helps answering tampering queries, as the latter requires access to
both X0 and X1 for decoding the tampered message, whereas the reduction can only access X0 and X1

separately.
For ease of description, in what follows we simply assume that D′ can access directly O`′(X0) and

O`′(X1). Furthermore, let us assume that D can only issue tampering queries (we discuss how to addi-
tionally handle leakage briefly at the end of the outline). Like any standard reduction, D′ samples some
randomness r and fixes the random tape of D to r. Our novel strategy is to construct a polynomial time
algorithm F(r) that, given access to O`′(X0), O`′(X1), outputs the smallest index j∗ which indicates
the round where D(r) provokes a self-destruct in Tampercnmlr

∗ . Before explaining how the actual algo-
rithm works, let us explain how D′ can complete the reduction using such a self-destruct finder F. At
the beginning, it runs F(r) in order to leak the index j∗. At this point D′ is done with leakage queries
and asks to get X0 (i.e., it chooses θ = 0 in Definition 1).8 Given X0, distinguisher D′ runs D(r) (with
the same random coins r used for F). Hence, for all 1 ≤ j < j∗, upon input the j-th tampering query
(T

(j)
0 ,T

(j)
1 ), distinguisher D′ lets X ′0 = T

(j)
0 (X0) = (s′0, h

′
1, π
′
1, π
′
0) and answers as follows:

1. In case X ′0 = X0, output same? (cf. type A queries in Figure 1).

6When the LRS is implemented using the inner product extractor this is indeed possible, as argued in [15].
7Looking ahead, this can be achieved by first leaking the hash values h0, h1 of s0, s1, simulating the proofs π0, π1, and

then hard-wiring these values into all leakage queries.
8Recall that this is a simplification, as by choosing θ = 0 the distinguisher will obtain s0. See also footnote 7.

12



2. In case X ′0 6= X0 and either of the proofs in X ′0 does not verify correctly, output ⊥ (cf. type B
queries in Figure 1).

3. In case X ′0 6= X0 and both the proofs in X ′0 verify correctly, check if π′1 = π1; if ‘yes’ (in which
case there is no hope to extract from π′1) then output ⊥ (cf. type C queries in Figure 1).

4. Otherwise, attempt to extract s′1 from π′1, define X ′1 = (s′1, h
′
0, π
′
0, π
′
1) and output (X ′0, X

′
1) (cf.

type D queries in Figure 1).

Note that from round j∗ on, all queries can be answered with ⊥, and this is a correct simulation as D(r)
provokes a self-destruct at round j∗ in the real experiment.

In the proof of Theorem 1, we show that the above strategy is sound. with overwhelming probability
over the choice of r the output produced by the above simulation is equal to the output that D(r) would
have seen in the real experiment until a self-destruct occurs (cf. Lemma 4).9

Let us give some intuition why the above simulation is indeed sound. For type A queries, note that
when X ′0 = X0 we must have X ′1 = X1 with overwhelming probability, as otherwise (X0, X1, X

′
1)

would violate uniqueness. In case of type B queries, the decoding process in the real experiment would
output ⊥, so D′ does a perfect simulation. The case of type C queries is a bit more delicate. In this
case we use the facts that (i) in the NIZK proof system we use, different statements must have different
proofs and (ii) the hash function is collision resistant, to show that X ′0 must be of the form X ′0 =
(s0, h1, π1, π

′
0) and π′0 6= π1. A careful analysis shows that the latter contradicts leakage resilience

of the underlying LRS scheme. Finally, for type D queries, note that whenever D′ extracts a witness
from a valid proof π′1 6= π1, the witness must be valid with overwhelming probability (as the NIZK is
simulation extractable).

Next, let us explain how to construct the algorithm F. Roughly, F(r) runs D(r) “inside” the oracles
O`′(X0), O`′(X1) as part of the leakage functions, and simulates the answers for D(r)’s tampering
queries using only one side of the target encoding, in the exact same way as outlined in (1)-(4) above.
Let Θb, for b ∈ {0, 1}, denote the output simulated by F inside O`′(Xb). To locate the self-destruct
index j∗, we rely on the following property (cf. Lemma 5): the vectors Θ0 and Θ1 contain identical
values until coordinate j∗ − 1, but Θ0[j∗] 6= Θ1[j∗] with overwhelming probability (over the choice of
r). This implies that j∗ can be computed as the first coordinate where Θ0 and Θ1 are different. Hence,
F can obtain the self-destruct index by using its adaptive access to oracles O`′(X0), O`′(X1) and apply
a standard binary search algorithm to Θ0, Θ1. Note that the latter requires at most a logarithmic number
of bits of adaptive leakage.

One technical problem is that F, in order to run D(r) inside of, say O`′(X0), and compute Θ0,
has also to answer leakage queries from D(r). Clearly, all leakages from X0 can be easily computed,
however it is not clear how to simulate leakages fromX1 (as we cannot accessO`′(X1) insideO`′(X0)).
Fortunately, the latter issue can be avoided by letting F query O`′(X0) and O`′(X1) alternately, and
aborting the execution of D(r) whenever it is not possible to answer a leakage query. It is not hard to
show that after at most ` steps all leakages will be known, and F can run D(r) inside O`′(X0) without
having access to O`′(X1). (All this comes at the price of some loss in the leakage bound, but, as we
show in the proof, not too much.)

4.2 Proof of Theorem 1

Assume there exists an adversary A, a pair of messages (x, y), some non-negligible ε and a distinguisher
D such that ∣∣∣P [D(Ω,Tampercnmlr

A,x ) = 1
]
− P

[
D(Ω,Tampercnmlr

A,y ) = 1
]∣∣∣ > ε.

9It is crucial that both the real and simulated experiments are run with the same r.

13



We will build a distinguisher D′ against the underlying LRS scheme. Distinguisher D′ will use D,
A, (x, y) to construct an adversary A′ and some value θ ∈ {0, 1} such that∣∣P [D′(LeakageA′,x,θ) = 1

]
− P

[
D′(LeakageA′,y,θ) = 1

]∣∣ > ε′

for some non-negligible ε′ (a contradiction).
Without loss of generality, we assume that D outputs its guess after a self-destruct takes place. In

fact, in case A does not provoke a self-destruct, we can always modify A such that it asks an additional
query to Ocnm generating a self-destruct before outputting its guess; clearly this does not decrease D’s
advantage. We will construct D′ in several steps. As a first step, we describe a mental experiment
Tamper′′S(b) (for a value b ∈ {0, 1}) where a simulator S (depending on A) simulates the view of
experiment TamperA given only access to Xb and a leakage oracle for X1−b (here (X0, X1) is the target
encoding). We will then explain how to mimic S by using A and access to O`(X0), O`(X1). Finally
we show that S can be used by D′ to locate the index j∗ where a self-destruct happens in TamperA. The
value of j∗ will then be used in the reduction to the security of the leakage-resilient storage scheme.
(See also Section 4.1 for a more detailed outline of the proof.)

Note that we can assume without loss of generality that D distinguishes the two distributions of
experiment TamperA even in case we replace real proofs with simulated proofs. Consider indeed a
modified experiment Tamper′A which is identical to TamperA, but where the GNIZK algorithm is re-
placed by (Ω, tk, ek) ← Sim1(1k) and a proof π is computed by running Simλ

2(Ω, ·, tk). If D distin-
guishes Tampercnmlr

A,x and Tampercnmlr
A,y but does not not distinguish Tamper′A,x and Tamper′A,y, then

one can use D, A, x and y to break the non-interactive zero knowledge property of the proof sys-
tem with non-negligible advantage. By a standard argument, this implies |P

[
D(Ω,Tamper′A,x) = 1

]
−

P
[
D(Ω,Tamper′A,y) = 1

]
| > ε/2.

A mental experiment. Let q = poly(k) be the number of queries A asks to Ocnm((X0, X1), ·); here
(X0, X1) is the target encoding of some value x (to be specified later). We start by considering a mental
experiment where a simulator S (running A) is given one complete side Xb of the encoding (for some
b ∈ {0, 1}), and has oracle access toO`(X1−b). The simulator outputs vectors (Λb,Θb) and is described
in Figure 1.

For a message x and a bit b ∈ {0, 1}, consider the following experiment featuring the above PPT
simulator S:

Tamper′′S,x(k, b) =

{
Ω← Init(1k); (X0, X1)← Encode′(Ω, x);

outS,b ← SO
`(X1−b)(Xb); Output: outS,b

}
.

Algorithm Encode′ is identical to Encode, but the NIZKs are replaced with simulated NIZKs (as in
experiment Tamper′A). We will compare an execution of experiment Tamper′A with an execution of
experiment Tamper′′S(b), where both A and S run with the same random tape r and attack the same
target encoding (X0, X1) of x. Denote with

viewA = ((Λ[0],Θ[0]), . . . , (Λ[q],Θ[q]))

the view of adversary A(r) (i.e., A with random tape r) tampering with encoding (X0, X1) in Tamper′A.
We write view

(j)
A for the view until round j.

Similarly, let10

viewS,b = ((Λb[0],Θb[0]), . . . , (Λb[q],Θb[q]))

be the view of produced by S(Xb; r) (i.e. S running A with random tape r) in Tamper′′S(b). The first
lemma says that, with overwhelming probability over the choice of r and the coin tosses to sample the
encoding, the vectors viewA and viewS are identical before a self-destruct happens.

10Note that A can leak at most ` bits, so some of the values Λ[j] and Λb[j] are empty.
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Simulator SO
`(X1−b)(Xb; r)

For a value b ∈ {0, 1} and a target encoding (X0, X1), the algorithm has access to Xb andO`(X1−b), and is defined as
follows:

• Define (initially empty) vectors Θb, Λb and initialize A(r).

• Repeat the following for all j = 1, . . . , q:

1. Receive (L
(j)
0 , L

(j)
1 ) from A(r) (if any). Compute Λ

(j)
b = Lb(Xb) and forward L1−b toO`(X1−b) receiv-

ing back a value Λ
(j)
1−b. Set Λb[j] := (Λ

(j)
0 ,Λ

(j)
1 ) and give (Λ

(j)
0 ,Λ

(j)
1 ) to A(r).

2. Receive (T
(j)
0 ,T

(j)
1 ) from A(r) and let X ′b = T

(j)
b (Xb) = (s′b, h

′
1−b, π

′
1−b, π

′
b).

3. Set the value Θb[j] as follows:

(a) (Type A query.) If Xb = X ′b define Θb[j] := same? and return same? to A(r).

(b) (Type B query.) Else if Xb 6= X ′b but the local check on X ′b fails (i.e., if Verifyh′1(Ω, h′0, π
′
0) or

Verifyh′0(Ω, h′1, π
′
1) output reject), define Θb[j] := ⊥b (where⊥0,⊥1 are special symbols such

that ⊥0 6= ⊥1) and return ⊥ to A(r).
(c) (Type C query.) Else if π′1−b = π1−b define Θb[j] := ⊥b and return ⊥ to A(r).

(d) (Type D query.) Else run s′1−b ← Xtrh
′
b(Ω, (h′1−b, π

′
1−b), ek) and define Θb[j] := (X ′0, X

′
1)

where X ′b = (s′b, h
′
1−b, π

′
1−b, π

′
b), X ′1−b = (s′1−b, h

′
b, π
′
b, π
′
1−b); return (X ′0, X

′
1) to A(r).

• Output outS,b = (Λb,Θb).

Figure 1: The simulator S of experiment Tamper′′S(b)

Lemma 4. For all x and all PPT adversaries A, let j∗ ∈ [q] be the smallest index such that A generates
a self-destruct in Tamper′A,x. Denote with viewA (resp. viewS,b) the view of A(r) (resp. S(r)) running
in experiment Tamper′A,x (resp. Tamper′′S,x(b)) with target encoding (X0, X1). Then, for all b ∈ {0, 1},
we have that view(j∗−1)

A = view
(j∗−1)
S,b with overwhelming probability over the choice of the randomness

r and the coin tosses to sample the encoding.

The second lemma says that the values contained in the vectors Θ0 and Θ1 produced by S(r) in
a run of Tamper′′S(b) with encoding (X0, X1) are identical until the coordinate corresponding to the
self-destruct index (with overwhelming probability).

Lemma 5. For all x and for all PPT adversaries A, let j∗ ∈ [q] be the smallest index such that
Θ[j∗] = ⊥ in Tamper′A,x(k). Denote with viewS,b = (Λb,Θb) the view of S(r) running in experiment
Tamper′′S,x(b) with target encoding (X0, X1). Then, the following holds with overwhelming probability
over the choice of the randomness r and the coin tosses to sample the encoding:

(i) Θ0[j] = Θ1[j], ∀1 ≤ j ≤ j∗ − 1.

(ii) Θ0[j∗] 6= Θ1[j∗].

Locating the self-destruct point. Consider now the experiment Tamper′A and let (X0, X1) be the
encoding that is computed at the beginning of the experiment. We define an algorithm FO

`(X0),O`(X1)(r)
which is given access to oracles O`(X0),O`(X1) and finds the index j∗ where A(r) provokes a self-
destruct in Tamper′A. The main idea will be to compute the vectors Θ0 and Θ1 inside the leakage
oracles (by running the simulator S of Figure 1), and then leak the first position where the vectors Θ0

and Θ1 are different. (By Lemma 5, this is the right index with overwhelming probability.) Note that the
latter can be done with logarithmic amount of adaptive leakage, e.g. by using a standard binary search
algorithm, once Θ0 and Θ1 are defined.

15



Algorithm FO`(X0),O`(X1)(r)

For a target encoding (X0, X1), the algorithm has access to oracles O`(X0), O`(X1) and is defined as follows:

1. Setup: LetH be a set of collision resistant hash functions. Set j∗ := 0 and Λ0,Λ1 = ∅.
2. Prepare the leakage to obtain Θ0 and Θ1: Define the following leakage query Lb(Xb,Λ0,Λ1), with hard-

wired values (Λ0,Λ1):

(a) Attempt to run SO
`(X1−b)(Xb; r).

(b) Answer all leakage queries on X1−b by using the next value in Λ1−b.

(c) In case no such value is found, terminate and output “not done” together with any value S leaked on
Xb which is not already contained in Λb. Update the vector Λb accordingly.

(d) In case all leakage queries on X1−b can be answered (i.e. S was run successfully), output “done”.

3. Loop to obtain Θ0 and Θ1: Query alternately O`(X0) with L0(X0,Λ0,Λ1) and O`(X1) with
L1(X1,Λ0,Λ1) until they both output “done”.

4. Prepare the leakage to obtain j∗: Sample a hash function Ht ← H. Define the following leakage query
Lb(Xb, imax, imin) depending on two (hard-wired) indexes imax, imin ∈ [q]:

(a) Run SO
`(X1−b)(Xb; r). (Note that this can be done without having access to O`(X1−b), as all the leak-

ages on X1−b are already contained in Λ1−b). Let Θb be the vector defined by S.

(b) Return Ht(Θb[imin], . . . ,Θb[imax]).

5. Loop for the binary search: Set imax = 1, imin = q and repeat the following until imax = imin:

(a) Let imid :=
⌊
imin+imax

2

⌋
.

(b) Forward L0(X0, imid, imin) to O`(X0) and L1(X1, imid, imin) to O`(X1); denote with Λ∗0, Λ∗1 the an-
swers from the oracles.

(c) If Λ∗0 6= Λ∗1 set imax := imid − 1, otherwise set imin = imid + 1.

6. Output: Define j∗ := imax = imin; return (j∗,Λ0,Λ1).

Figure 2: The algorithm F locating the self-destruct index j∗

A technical difficulty is that we cannot run the simulator (say) on X0 because S needs to access
O`(X1), but we do not have access to such oracle inside the leakage function. To solve this problem, F
will attempt to run S alternately on X0, X1 and stop every time it encounters a leakage query it cannot
answer. (Looking ahead this comes at the price of some loss in the leakage bound but, as we show below,
the loss is no more than 2` bits.) After a finite number of steps all the leakages will be known and S can
be run until the end on both sides. At this point, F can perform the binary search (again using adaptive
leakage queries toO`(X0), O`(X1)) in order to learn j∗. A formal description of F is given in Figure 2.
We prove the following property for F.

Lemma 6. For all x and for all PPT adversaries A, let j∗ ∈ [q] be the smallest index such that Θ[j∗] =
⊥ in Tamper′A,x(k). Then, algorithm F outputs j∗ with overwhelming probability. Moreover F runs in
polynomial time and requires a total of 4`+ 2kdlog(q)e bits of leakage.

Proof. The fact that F outputs the correct j∗ follows from Lemma 4 and Lemma 5. Indeed, assuming
that F terminates, we have that the views

view
(j∗−1)
S,b = (Λb,Θb[1], . . . ,Θb[j

∗ − 1]) and view
(j∗−1)
A = (Λ,Θ[1], . . . ,Θ[j∗ − 1])

(cf. step 4a in the description of F), are identical with overwhelming probability (by Lemma 4). This
implies that j∗ can be computed as the first entry where Θ0 and Θ1 are different (by Lemma 5), which
is exactly what the algorithm does (cf. step 5a—5c in the description of F) exploiting the fact that the
hash function is collision resistant.
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It remains to show that F runs in polynomial time. This follows by inspection of the description of
F in Figure 2 as:

1. The loop of step 3 ends after at most 2` steps (since S cannot ask more than ` adaptive leakage
queries on each side).

2. The loop of step 5 is a standard binary search algorithm which requires a logarithmic number of
steps.

Notice that F requires at most 4` bits of leakage (2` bits from the oracles O`(X0) and O`(X1) and at
most 2` more bits for each of the times S returns “not done”) plus 2kdlog(q)e bits for the binary
search as the range of the hash function is k bits.

Description of the reduction. We construct D′ and A′ that for infinitely many k break the security
of the LRS with non-negligible advantage. To this end, they are given access to D and A that win in
game Tamper′A with non-negligible advantage (recall that in Tamper′A we have replaced the NIZKs
with simulated NIZKs). First, A′ samples randomness r and runs the sub-routine F of Figure 2 with this
randomness. By Lemma 6 the algorithm F requires at most 4`+ 2kdlog(q)e bits of leakage to learn the
position j∗ of the query where A(r) provokes the self-destruct. Then, A′ runs A as subroutine using the
same random coins r that were used to identify the self-destruct position. We emphasize that using the
same r is crucial for the reduction to work. A formal description of the reduction follows:

1. Simulate initial encoding: Sample uniformly at random a key t← {0, 1}k for the hash function
and run (Ω, tk, ek)← Sim1(1k) to generate a CRS and the corresponding simulation trapdoor tk.
With access to the target leakage oracle (O`′(s0),O`′(s1)) obtain h0 = Ht(s0) and h1 = Ht(s1);
set the labels λ0 = h0 and λ1 = h1. Notice that given (hb, λ1−b) it is easy to simulate πb, i.e., we
can compute πb ← Sim

λ1−b

2 (Ω, hb, tk).

2. Learn the self-destruct point: Sample random coins r ← {0, 1}∗ and run FO
`(X0),O`(X1)(r).

Note that each leakage query to O`(Xb) can be translated to a leakage query to O`′(sb) by hard-
wiring (h1−b, π1−b, πb). Let (j∗,Λ0,Λ1) be the output of F.

3. Simulate tampering queries: At this point A′ is done with the leakage queries and picks θ = 0,
asking to reveal s0. Hence, A′ runs A(r) simulating the answer for its tampering queries as
follows:

(a) For all j = 1, . . . , j∗ given tampering query (T
(j)
0 ,T

(j)
1 ) forward to A the value Θ0 as

computed in step 3a—3d of the description of SO
`(X1)(X0; r) (cf. Figure 1). Notice that

to run S no further leakage query is needed, as the answers to A(r)’s leakage queries are
already contained in (Λ0,Λ1).

(b) For all j > j∗ given tampering query (T
(j)
0 ,T

(j)
1 ) forward to A the value ⊥.

4. Guess: Output whatever D does.

For the analysis, note that by Lemma 6 the reduction runs in polynomial time and requires at most
4` + (2k + 1)dlog(q)e bits of leakage. Moreover, by Lemma 4, the simulation of the answers to A’s
tampering queries is identical to the distribution A would have seen in the real experiment (with over-
whelming probability). Since we are assuming that D, A have a non-negligible advantage, we have that
D′, A′ have also a non-negligible advantage, contradicting the assumption that the LRS scheme is secure.
This finishes the proof.
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4.3 Proof of Lemma 4

Before proving the lemma, we establish some notation that we will use also in the proof of Lemma 5.
Denote with X0 = (s0, h1, π1, π0), X1 = (s1, h0, π0, π1) the target encoding that is sampled at the
beginning of the two experiments Tamper′A and Tamper′′S. Given a tampering query (T

(j)
0 ,T

(j)
1 ) we

write X ′0 = T
(j)
0 (X0), X ′1 = T

(j)
1 (X1) for the tampered codeword in experiment Tamper′A. For some

value b ∈ {0, 1}, we write S(b) as a short hand of SO
`(X1−b)(Xb). Let X ′b,b = T

(j)
b (Xb) be the tampered

half computed by the simulator S(b) in experiment Tamper′′S(b). Recall that in case (T
(j)
0 ,T

(j)
1 ) is of

type D, then according to the description of S (c.f. step 3d in Figure 1), then the simulator “extracts” the
other half of the codeword which we denote by X ′b,1−b.

On the probability space. In each experiment there are two sources of randomness: (i) the random-
ness of the encoding process to generate the target encoding (X0, X1) and (ii) the randomness r of the
adversary. We have to show that with overwhelming probability over the choice of this randomness the
simulator S(r) produces exactly the same view as A(r) would have seen in the real experiment. In the
proof we will consider some “bad” event over the above randomness space and prove that such event
happens with negligible probability to obtain the statement. In what follows all probabilities are taken
over the above randomness space.

We emphasize that we cannot directly assume that (T
(j)
0 ,T

(j)
1 ) is the same in Tamper′A and Tamper′′S,

as the tampering functions are chosen adaptively by A depending on the view in the two experiments.
However, since in both the experiments A is run with the same random tape r, we have that (T

(1)
0 ,T

(1)
1 )

is the same in Tamper′A and Tamper′′S as the choice of the first tampering query depends only on the
distribution of the CRS Ω (which is the same in the two worlds).

Below, we state that whenever the simulator S extracts a value X ′b,1−b, then the resulting encoding
is valid with overwhelming probability.

Claim 1. Whenever S(b) sets Θb[j] = (X ′b,b, X
′
b,1−b) in response to a tampering query (T

(j)
0 ,T

(j)
1 ) for

some 1 ≤ j ≤ q, then Θb[j] is a valid encoding with overwhelming probability.

Proof. We make the proof for b = 0; the proof for b = 1 is similar. Following the description of S(0),
we observe that the experiment Tamper′′S(0) sets Θ0[j] = (X ′0,0, X

′
0,1) only in the step 3d (i.e., when

the j-th tampering query is of type D). Let X ′0,0 = (s′0, h
′
1, π
′
1, π
′
0) and X ′0,1 = (s′1, h

′
0, π
′
0, π
′
1), where

s′1 ← Xtrh
′
0(Ω, (h′1, π

′
1), ek).11 Now, for the sake of contradiction, assume that (X ′0,0, X

′
0,1) is invalid.

By definition of the decoding algorithm (c.f. Section 4), we observe that the only possibility is that the
extracted value s′1 does not match the statement h′1, i.e. h′1 6= Ht(s

′
1). By simulation extractability of

the NIZK, this can only happen with negligible probability. Therefore we conclude that (X ′0,0, X
′
0,1) is

a valid codeword with overwhelming probability, as desired.

We now turn to the proof of Lemma 4.

Lemma 4. For all x and all PPT adversaries A, let j∗ ∈ [q] be the smallest index such that A generates
a self-destruct in Tamper′A,x. Denote with viewA (resp. viewS,b) the view of A(r) (resp. S(r)) running
in experiment Tamper′A,x (resp. Tamper′′S,x(b)) with target encoding (X0, X1). Then, for all b ∈ {0, 1},
we have that view(j∗−1)

A = view
(j∗−1)
S,b with overwhelming probability over the choice of the randomness

r and the coin tosses to sample the encoding.

Proof. We make the proof for b = 0; the proof for b = 1 is similar. Without loss of generality we
will always assume that in the j-th round the adversary A(r) asks a leakage query and a tampering

11Looking at the description of the simulator, the hashes (h′0, h
′
1) and the proofs (π′0, π

′
1) are the same in X ′0,0 and in X ′0,1.
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query. The corresponding output of the experiments in this round is denoted by out
(j)
A = (Λ[j],Θ[j])

in Tamper′A and out
(j)
S,0 = (Λ0[j],Θ0[j]) in Tamper′′S(0). Denote the distribution of the outputs of the

two experiments Tamper′′S(0) and Tamper′A until round j as

view
(j)
S,0 = (Λ0[1],Θ0[1], . . . ,Λ0[j],Θ0[j]) and view

(j)
A = (Λ[1],Θ[1], . . . ,Λ[j],Θ[j]).

We compute the following:

P
[
view

(j∗−1)
A 6= view

(j∗−1)
S,0

]
≤ P

[
∃j ∈ [j∗ − 1] : (out

(j)
A 6= out

(j)
S,0) ∧ (view

(j−1)
A = view

(j−1)
S,0 )

]
≤

j∗−1∑
j=1

P
[
(out

(j)
A 6= out

(j)
S,0) ∧ (view

(j−1)
A = view

(j−1)
S,0 )

]

≤
j∗−1∑
j=1

P
[
out

(j)
A 6= out

(j)
S,0 | (view

(j−1)
A = view

(j−1)
S,0 )

]
· P
[
(view

(j−1)
A = view

(j−1)
S,0 )

]

≤
j∗−1∑
j=1

P
[
out

(j)
A 6= out

(j)
S,0 | (view

(j−1)
A = view

(j−1)
S,0 )

]
≤ negl(k)

The last inequality follows from Lemma 7 (which we prove below), and the fact the sum is taken only
for polynomially many values since j∗ is polynomially bounded.

Lemma 7. For all j ∈ [j∗ − 1], we have that

P
[
out

(j)
A 6= out

(j)
S,0 | (view

(j−1)
A = view

(j−1)
S,0 )

]
≤ negl(k).

Proof. Fix any j ∈ [j∗ − 1]. Let GOOD(j−1) denote the event that (view
(j−1)
A = view

(j−1)
S,0 ). Note

that, since we are comparing the variables out
(j)
A and out

(j)
S,0 conditioned on the event GOOD(j−1), in

both the experiments Tamper′A and Tamper′′S(0) the leakage query (L
(j)
0 , L

(j)
1 ) and the tampering query

(T
(j)
0 ,T

(j)
1 ) issued by adversary A(st ; r) (where st is either view(j−1)

A or view(j−1)
S,0 ) in the j-th round are

the same.
Consider the following events in the experiment Tamper′′S(0).

• BAD
(j)
1 : The event becomes true when (T

(j)
0 ,T

(j)
1 ) is of type A and we have T

(j)
1 (X1) 6= X1.

• BAD
(j)
2 : The event becomes true when (T

(j)
0 ,T

(j)
1 ) is of type B.

• BAD
(j)
3 : The event becomes true when (T

(j)
0 ,T

(j)
1 ) is of type C.

• BAD
(j)
4 : The event becomes true when (T

(j)
0 ,T

(j)
1 ) is of type D, and either of the following two

facts happens:

– The encoding (X ′0,0, X
′
0,1) is not valid; or

– The encoding (X ′0,0, X
′
0,1) is valid, but we have T

(j)
1 (X1) 6= X ′0,1 (recall that X ′0,1 is the

“extracted half”).

Define the union of all those four events by BAD(j) =
∨4
i=1 BAD

(j)
i .
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The next four claims show that the probability of each event BAD
(j)
i is negligible, conditioned on

the fact that the views until round j − 1 are equal in the real and the simulated experiment.

Claim 2. P
[
BAD

(j)
1 |GOOD(j−1)

]
≤ negl(k).

Proof. Recall the definition of the event BAD
(j)
1 : The event becomes true when (T

(j)
0 ,T

(j)
1 ) is of type

A and we have T
(j)
1 (X1) 6= X1 in Tamper′′S(0). By definition of type A query (cf. Figure 1), we have

that X ′0,0 = T
(j)
0 (X0) = X0 and Tamper′′S(0) would output same? in this round. Now, since we are

conditioning on the the event GOOD(j−1), we get the same tampering query in this round which implies
X ′0 = X ′0,0 = X0 and X ′1 = T

(j)
1 (X1) 6= X1. As (X0, X1) and (X0, X

′
1) are both valid, (X0, X1, X

′
1)

violates uniqueness (c.f. Lemma 3) of our encoding scheme.

Claim 3. P
[
BAD

(j)
2 |GOOD(j−1)

]
≤ negl(k).

Proof. Recall the definition of the event BAD
(j)
2 : The event becomes true when (T

(j)
0 ,T

(j)
1 ) is of type B

in Tamper′′S(0). LetX ′0,0 = (s′0, h
′
1, π
′
1, π
′
0) be the value computed in Tamper′′S(0). From the description

of S we observe that in this caseX ′0,0 6= X0 and at least one of the proofs π′0, π′1 does not verify correctly.
Now, conditioning on GOOD(j−1), we get X ′0 = X ′0,0 in Tamper′A. In this case the experiment

would output ⊥, resulting in a self-destruct, which contradicts our assumption that j < j∗.

Claim 4. P
[
BAD

(j)
3 |GOOD(j−1)

]
≤ negl(k).

Proof. Recall the definition of the event BAD
(j)
3 : The event becomes true when (T

(j)
0 ,T

(j)
1 ) is of type C,

i.e. X ′0,0 = (s′0, h
′
1, π
′
1, π
′
0) 6= X0 and π′1 = π1 in Tamper′′S(0). Again conditioning on GOOD(j−1), we

get that X ′0 = (s′0, h
′
1, π1, π

′
0) in Tamper′A. In this experiment consider the other half of the tampered

codeword, i.e. X ′1 = (s′1, h
′
0, π
′
0, π1). Note that the proofs match, as otherwise we would get ⊥ in

Tamper′A which contradicts the fact that j < j∗.
Note that we consider a NIZK proof system with the following two properties: (i) different state-

ments have different proofs; (ii) it supports public labels which are appended with the statements (c.f.
Section 2.2). Using these properties we get that π′1 = π1 implies h′1 = h1 and h′0 = h0. Here we use
the fact that π1 is a proof of statement h1 with label h0. In the next step, by collision resistance of the
hash function we get s′1 = s1 and s′0 = s0, with overwhelming probability.

So far, we have shown that X ′0 = (s0, h1, π1, π
′
0) and X ′1 = (s1, h0, π

′
0, π1) in Tamper′A (with

overwhleming probability). Since we must have X ′0 = X ′0,0 6= X0, we get π′0 6= π0 and hence the
proof π′0 can be extracted. We claim that the above contradicts leakage resilience of the underlying LRS
scheme. To see this, we construct an adversary A′ against (LRS,LRS−1) attacking a target encoding
(s0, s1) given a pair (T

(j)
0 ,T

(j)
1 ) which provokes the event BAD

(j)
3 . Adversary A′ works as follows:

• First, A′ queries its own leakage oracles O`(s0),O`(s1) to get the hash values Ht(s0) = h0

and Ht(s1) = h1. Then it runs (Ω, tk, ek) ← Sim1(1k) and computes the simulated proofs
π0 ← Simh1

2 (Ω, h0, tk) and π1 ← Simh0
2 (Ω, h1, tk).

• Next, A′ asks one additional leakage query to the oracle O`(s0) with hard-wired values h1, π0,
π1, and ek, and hard-wired function T

(j)
1 as follows: ComputeX ′1 = T

(j)
1 (X1) = (s1, h0, π

′
0, π1);

extract s0 ← Xtrh1(Ω, (h0, π
′
0), ek) and output the first bit of the decoded value (LRS−1(s0, s1)).

Note that the above attack requires 2k + 1 ≤ `′ bits of leakage and clearly allows to break
(LRS,LRS−1) with overwhelming probability. This concludes the proof of claim.

Claim 5. P
[
BAD

(j)
4 |GOOD(j−1)

]
≤ negl(k).
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Proof. Recall the definition of the event BAD
(j)
4 : The event becomes true when in Tamper′′S(0),

(T
(j)
0 ,T

(j)
1 ) is of type D and either of the following two facts happens:

• The encoding (X ′0,0, X
′
0,1) is not valid; or

• The encoding (X ′0,0, X
′
0,1) is valid, but we have T

(j)
1 (X1) 6= X ′0,1 which is actually the extracted

half.

Note that by Claim 1, the encoding (X ′0,0, X
′
0,1) must be valid with overwhelming probability. So,

by a union bound, we can consider only the second case.
Conditioning on GOOD(j−1) implies that in Tamper′A, X ′0 = T

(j)
0 (X0) = X ′0,0 and X ′1 =

T
(j)
1 (X1) 6= X ′0,1. Moreover, (X ′0, X

′
1) is a valid encoding pair as we are assuming j < j∗. Clearly this

violates uniqueness, as in this case X ′1 6= X ′0,1, concluding the proof.

To conclude the proof of Lemma 7 we observe the following:

P
[
out

(j)
A 6= out

(j)
S,0 | (view

(j−1)
A = view

(j−1)
S,0 )

]
= P

[
out

(j)
A 6= out

(j)
S,0 | GOOD(j−1)

]
≤ P

[
out

(j)
A 6= out

(j)
S,0 | BAD(j) ∧ GOOD(j−1)

]
+ P

[
BAD(j)|GOOD(j−1)

]
(1)

≤ P
[
out

(j)
A 6= out

(j)
S,0 | BAD(j) ∧ GOOD(j−1)

]
+

4∑
i=1

P
[
BAD

(j)
i |GOOD(j−1)

]
(2)

≤ negl(k). (3)

Eq. (1) follows from Bayes Theorem, Eq. (2) follows from the union bound and Eq. (3) from Claim 2—5
and Claim 6 (see below).

Claim 6. P
[
out

(j)
A 6= out

(j)
S,0 | BAD(j) ∧ GOOD(j−1)

]
≤ negl(k).

Proof. Here we condition on both the events GOOD(j−1) and BAD(j). Conditioning on GOOD(j−1)

implies that (L
(j)
0 , L

(j)
1 ) and (T

(j)
0 ,T

(j)
1 ) are the same in both Tamper′A and Tamper′′S(0). Given that, we

need to analyze the following leakage and tampering components: out(j)A = (Λ[j],Θ[j]) and out
(j)
S,0 =

(Λ0[j],Θ0[j]). It is easy to observe that, S simulates the leakage correctly as it can compute L
(j)
0 (X0)

directly and forward L
(j)
1 to O`(X1). This shows that Λ[j] = Λ0[j].

Now consider the following cases based on the type of the tampering query (T
(j)
0 ,T

(j)
1 ) in experi-

ment Tamper′′S(0):

• If (T
(j)
0 ,T

(j)
1 ) is of type A, then Θ0[j] = same?. Since BAD(j) ∧ GOOD(j−1) implies BAD

(j)
1 ∧

GOOD(j−1), we get Θ[j] = same? in the experiment Tamper′A.

• Since BAD(j) ∧ GOOD(j−1) implies BAD
(j)
2 ∧ BAD

(j)
3 ∧ GOOD(j−1), the tampering query

(T
(j)
0 ,T

(j)
1 ) is neither of type B nor of type C.

• If (T
(j)
0 ,T

(j)
1 ) is of type D, since BAD(j) ∧ GOOD(j−1) implies BAD

(j)
4 ∧ GOOD(j−1) we get

(X ′0, X
′
1) = Θ[j] = Θ0[j] = (X ′0,0, X

′
0,1) in both Tamper′A and Tamper′′S(0).
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We conclude that in every case we get Θ[j] = Θ0[j] conditioned on BAD(j) and GOOD(j−1) which
proves the claim.

4.4 Proof of Lemma 5

Lemma 5. For all x and for all PPT adversaries A, let j∗ ∈ [q] be the smallest index such that
Θ[j∗] = ⊥ in Tamper′A,x(k). Denote with viewS,b = (Λb,Θb) the view of S(r) running in experiment
Tamper′′S,x(b) with target encoding (X0, X1). Then, the following holds with overwhelming probability
over the choice of the randomness r and the coin tosses to sample the encoding:

(i) Θ0[j] = Θ1[j], ∀1 ≤ j ≤ j∗ − 1.

(ii) Θ0[j∗] 6= Θ1[j∗].

Proof. We compute the probability for which property (i) does not hold and show that this probability
is negligible.

P [∃j ∈ {1, . . . , j∗ − 1} : Θ0[j] 6= Θ1[j]]

≤
j∗−1∑
j=1

P [Θ0[j] 6= Θ1[j]] (4)

≤
j∗−1∑
j=1

(
P [Θ0[j] 6= Θ1[j] | Θ0[j] = Θ[j]] · P [Θ0[j] = Θ[j]]

+ P [Θ0[j] 6= Θ1[j] | Θ0[j] 6= Θ[j]] · P [Θ0[j] 6= Θ[j]]

)
≤

j∗−1∑
j=1

(
P [Θ0[j] 6= Θ1[j] | Θ0[j] = Θ[j]] + P [Θ0[j] 6= Θ[j]]

)

≤
j∗−1∑
j=1

2∑
b=1

P [(Θb[j] 6= Θ[j]] (5)

≤ negl(k) (6)

Eq. (4) follow by a union bound. Eq. (6) follows from Lemma 4 and the fact that j∗ is polynomially
bounded. This concludes the proof of part (i).

Now we prove part (ii) of the lemma. Define the following event BAD′, over the probability space
of experiment Tamper′′S(b): The event becomes true when in round j∗, we have Θ0[j∗] = Θ1[j∗]. In
order to satisfy this condition, the only possible values Θb[j

∗] (for b ∈ {0, 1}) can take are as follows:

1. Θ0[j∗] = Θ1[j∗] = same?. By Lemma 4, we get that before round j∗ the view of A(r) in
Tamper′A is equal to the view of A(r) in Tamper′′S(b) (with overwhelming probability). This
implies that in round j∗ the tampering query (T

(j∗)
0 ,T

(j∗)
1 ) is the same in both experiments. This

gives Θ[j∗] = same?, which contradicts the fact that j∗ is the self-destruct round in Tamper′A.

2. Θ0[j∗] = Θ1[j∗] = (X ′0, X
′
1). Note that (X ′0, X

′
1) is valid with overwhelming probability (by

Claim 1). Now due to the same reason as above Lemma 4 implies that Θ[j∗] = (X ′0, X
′
1) in

Tamper′A with overwhelming probability, which is a contradiction to the fact that j∗ is the self-
destruct round.

22



Therefore using a union bound we can argue that P [BAD′] ≤ negl(k) which concludes the proof of
part (ii).

5 Application to Tamper Resilient Security

In this section we apply our notion of CNMLR codes to protect arbitrary functionalities against split-
state tampering and leakage attacks.

5.1 Stateless Functionalities

We start by looking at the case of stateless functionalities G(st , ·), which take as input a secret state
st ∈ {0, 1}k and a value x ∈ {0, 1}u to produce some output y ∈ {0, 1}v. The function G is public and
can be randomized.

The main idea is to transform the original functionality G(st , ·) into some “hardened” functionality
GCode via a CNMLR code Code. Previous transformations aiming to protect stateless functionalities [17,
23] required to freshly re-encode the state st each time the functionality is invoked. Our approach avoids
the re-encoding of the state at each invocation, leading to a stateless transformation. This solves an
open question from [17]. Moreover we consider a setting where the encoded state is stored in a memory
(M0,M1) which is much larger than the size needed to store the encoding itself (say |M0| = |M1| = s
where s is polynomial in the length of the encoding). When (perfect) erasures are not possible, this
feature allows the adversary to make copies of the initial encoding and tamper continuously with it, and
was not considered in previous models.

Let us formally define what it means to harden a stateless functionality.

Definition 5 (Stateless hardened functionality). Let Code = (Init,Encode,Decode) be a split-state
encoding scheme in the CRS model, with k bits messages and 2n bits codewords. Let G : {0, 1}k ×
{0, 1}u → {0, 1}v be a stateless functionality with secret state st ∈ {0, 1}k, and let ϕ ∈ {0, 1} be
a public value initially set to zero. We define a stateless hardened functionality GCode : {0, 1}2s ×
{0, 1}u → {0, 1}v with a modified state st ′ ∈ {0, 1}2s and s = poly(n). The hardened functionality
GCode is a triple of algorithms (Init, Setup,Execute) described as follows:

• Ω← Init(1k): Run the initialization procedure of the coding scheme to sample Ω← Init(1k).

• (M0,M1) ← Setup(Ω, st): Let (X0, X1) ← Encode(Ω, st). For b ∈ {0, 1}, store Xb in the
first n bits ofMb, i.e.Mb[1 . . . n] ← Xb. (The remaining bits ofMb are set to 0s−n.) Define
st ′ := (M0,M1).

• y ← Execute(x): Read the public value ϕ. In case ϕ = 1 output ⊥. Otherwise, let Xb =
Mb[1 . . . n] for b ∈ {0, 1}. Run st ← Decode(Ω, (X0, X1)); if st = ⊥, then output ⊥ and set
ϕ = 1. Otherwise output y ← G(st , x).

Remark (On ϕ). The public value ϕ is just a way how to implement the “self-destruct” feature. An
alternative approach would be to let the hardened functionality simply output a dummy value and over-
write (M0,M1) with the all-zero string. As we insist on the hardened functionality being stateless, we
use the first approach here.

Note that we assume that ϕ is untamperable. It is easy to see that this is necessary, as an adversary
tampering with ϕ could always switch-off the self-destruct feature and apply a variant of the attack
from [20] to recover the secret state.
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Similarly to [17, 23], security of GCode is defined via the comparison of a real and an ideal exper-
iment. The real experiment features an adversary A interacting with GCode; the adversary is allowed
to honestly run the functionality on any chosen input, but also to modify the secret state and retrieve
a bounded amount of information from it. The ideal experiment features a simulator S; the simulator
is given black-box access to the original functionality G and to the adversary A, but is not allowed any
tampering or leakage query. The two experiments are formally described below.

Experiment REALG
Code(st ′,·)

A (k). First Ω ← Init(1k) and (M0,M1) ← Setup(Ω, st) are run and Ω
is given to A. Then A can issue the following commands polynomially many times (in any order):

• 〈Leak, (L(j)
0 , L

(j)
1 )〉: In response to the j-th leakage query, compute Λ

(j)
0 ← L

(j)
0 (M0) and Λ

(j)
1 ←

L
(j)
1 (M1) and output (Λ

(j)
0 ,Λ

(j)
1 ).

• 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: In response to the j-th tampering query, computeM′0 ← T

(j)
0 (M0) and

M′1 ← T
(j)
1 (M1) and replace (M0,M1) with (M′0,M′1).

• 〈Eval, xj〉: In response to the j-th evaluation query, run yj ← Execute(xj). In case yj = ⊥
output ⊥ and self-destruct; otherwise output yj .

The output of the experiment is defined as

REAL
GCode(st ′,·)
A (k) = (Ω; ((x1, y1), (x2, y2), . . . ); ((Λ

(1)
0 ,Λ

(1)
1 ), (Λ

(2)
0 ,Λ

(2)
1 ), · · · )).

Experiment IDEALG(st ,·)
S (k). The simulator sets up the CRS Ω and is given black-box access to the

functionality G(st , ·) and the adversary A. The output of the experiment is defined as

IDEAL
G(st ,·)
S (k) = (Ω; ((x1, y1), (x2, y2), . . . ); ((Λ

(1)
0 ,Λ

(1)
1 ), (Λ

(2)
0 ,Λ

(2)
1 ), · · · )),

where ((xj , yj), ((Λ
(j)
0 ,Λ

(j)
1 ))) are the input/output/leakage tuples simulated by S.

Definition 6 (Polyspace leak/tamper simulatability). Let Code be a split-state encoding scheme in the
CRS model and consider a stateless functionality G with corresponding hardened functionality GCode.
We say that Code is polyspace (`, q)-leak/tamper simulatable for G, if the following conditions are
satisfied:

1. Each memory partMb (for b ∈ {0, 1}) has size s = poly(n).

2. The adversary asks at most q tampering queries and leaks a total of at most ` bits from each
memory part.

3. For all PPT adversaries A there exists a PPT simulator S such that for any initial state st ,{
REAL

GCode(st ′,·)
A (k)

}
k∈N
≈c
{
IDEAL

G(st ,·)
S (k)

}
k∈N

.

We show the following result.

Theorem 2. Let G be a stateless functionality and Code = (Init,Encode,Decode) be any (`, q)-
CNMLR split-state encoding scheme in the CRS model. Then Code is polyspace (`, q)-leak/tamper
simulatable for G.

24



Proof. We discuss the overall proof approach first. We start with describing a simulator S running in
experiment IDEALG(st ,·)

S (k) which attempts to simulate the view of adversary A running in the experi-

ment REALG
Code(st ′,·)

A (k); the simulator is given black-box access to A (which can issue Tamper, Leak,
and Eval queries) and to the functionality G(st , ·) for some state st . To argue that our simulator is
“good” we show that if there exists a PPT distinguisher D and a PPT adversary A such that for some
state st , D distinguishes the experiments IDEAL

G(st ,·)
S (k) and REAL

GCode(st ′,·)
A (k) with non-negligible

probability, then we can build another distinguisher D′ and an adversary A′ such that D′ can distinguish
Tampercnmlr

A′,0k and Tampercnmlr
A′,st with non-negligible probability. In the last step essentially we reduce the

CNMLR property of Code to the polyspace leak/tamper simulatability of the code itself.
The simulator starts by sampling the common reference string Ω ← Init(1k) and the public value

ϕ = 0. Then it samples a random encoding of 0k, namely (Z0, Z1) ← Encode(Ω, 0k) and sets
Mb[1 . . . , n] ← Zb for b ∈ {0, 1}. The remaining bits of (M0,M1) are set to 0s−n. Hence, S al-
ternates between the following two modes (starting with the normal mode in the first round):

• Normal Mode. Given state (M0,M1), while A continues issuing queries, answer as follows:

– 〈Eval, xj〉: Upon input the j-th evaluation query invoke G(st , ·) to get yj ← G(st , xj) and
reply with yj .

– 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: Upon input the j-th tampering query, compute M′b ← T

(j)
b (Mb)

for b ∈ {0, 1}. In case (M′0[1 . . . n],M′1[1 . . . n]) = (Z0, Z1) then continue in the current
mode. Otherwise go to the overwritten mode defined below with state (M′0,M′1).

– 〈Leak, (L(j)
0 , L

(j)
1 )〉: Upon input the j-th leakage query, compute Λ

(j)
b = L

(j)
b (Zb) for b ∈

{0, 1} and reply with (Λ
(j)
0 ,Λ

(j)
1 ).

• Overwritten Mode. Given state (M′0,M′1), while A continues issuing queries, answer as follows:

– Let τ = (M′0,M′1). Simulate the hardened functionality GCode(τ, ·) and answer all Eval

and Leak queries as the real experiment REALG
Code(τ,·)

A (k) would do.

– Upon input the j-th tampering query (T
(j)
0 ,T

(j)
1 ), computeM′′b ← T

(j)
b (M′b) for b ∈ {0, 1}.

In case (M′′0[1 . . . n],M′′1[1 . . . n]) = (Z0, Z1) then go to the normal mode with state
(M0,M1) := (M′′0,M′′1). Otherwise continue in the current mode.

• When A halts and outputs viewA = (Ω; ((x1, y1), (x2, y2), . . . ); ((Λ
(1)
0 ,Λ

(1)
1 ), (Λ

(2)
0 ,Λ

(2)
1 ), · · · )),

set viewS = viewA and output viewS as output of IDEALG(st ,·)
S (k).

Intuitively, since the coding scheme is non-malleable, the adversary can either keep the encoding
unchanged or overwrite it with the encoding of some unrelated message. These two cases are captured
in the above modes: The simulator starts in the normal mode and then, whenever the adversary mauls
the initial encoding, it switches to the overwritten mode. However, the adversary can use the extra space
to keep a copy of the original encoding and place it back at some later point in time. When this happens,
the simulator switches back to the normal mode; this switching is important to maintain simulation.

To finish the proof, we have to argue that the output of experiment IDEALG(st ,·)
S (k) is computa-

tionally indistinguishable from the output of experiment REALG
Code(st ′,·)

A (k). This is done in the lemma
below.

Lemma 8. Let S be defined as above. Then for all PPT adversaries A and all st ∈ {0, 1}k, the following
holds: {

REAL
GCode(st ′,·)
A (k)

}
k∈N
≈c
{
IDEAL

G(st ,·)
S (k)

}
k∈N

.
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Proof. By contradiction, assume that there exists a PPT distinguisher D, a PPT adversary A and some
state st ∈ {0, 1}k such that:∣∣∣P [D(IDEAL

G(st ,·)
S (k)) = 1

]
− P

[
D(REAL

GCode(st ′,·)
A (k)) = 1

]∣∣∣ ≥ ε, (7)

where ε(k) is some non-negligible function of the security parameter k.
We build a PPT distinguisher D′ and a PPT adversary A′ telling apart the experiments

Tampercnmlr
A′,0k (k) and Tampercnmlr

A′,st (k); this contradicts our assumption that Code is CNMLR. The dis-
tinguisher D′ is given the CRS Ω ← Init(1k) and can access Ocnm((X0, X1), ·) (for at most q times)
andO`(X0),O`(X1); here (X0, X1) is either an encoding of 0k or an encoding of st . The distinguisher
D′ keeps a flag SAME (initially set to TRUE) and a flag STOP (initially set to FALSE). After simulating
the public values, D′ mimics the enviroment for D as follows:

• 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: Upon input tampering functions (T

(j)
0 ,T

(j)
1 ), the distinguisher D′ uses

the oracle Ocnm((X0, X1), ·) to answer them.12 However, it can not simply forward the queries
because of the following two reasons:

– The tampering functions (T
(j)
0 ,T

(j)
1 ) maps from s bits to s bits, whereas the oracle

Ocnm((X0, X1), ·) expects tampering functions mapping from n bits to n bits.

– In both the real and the ideal experiments the tampering functions are applied to the current
state (which may be different from the initial state), whereas in experiment Tampercnmlr

A′,∗ the

oracle Ocnm((X0, X1), ·) always applies (T
(j)
0 ,T

(j)
1 ) to the target encoding (X0, X1).

To take into account the above differences, D′ modifies (T
(j)
0 ,T

(j)
1 ) as follows. Define the func-

tions Tin : {0, 1}n → {0, 1}s and Tout : {0, 1}s → {0, 1}n as Tin(x) = (x||0s−n) and
Tout(x||x′) = x, for any x ∈ {0, 1}n and x′ ∈ {0, 1}s−n. The distinguisher D′ queries
Ocnm((X0, X1), ·) with the function pair (T̃

(j)
0 , T̃

(j)
1 ) where each T̃

(j)
b is defined as T̃

(j)
b :=

Tout ◦ T(j)
b ◦ T

(j−1)
b ◦ . . . ◦ T(1)

b ◦ Tin for b ∈ {0, 1}.
In case the oracle returns ⊥, then D′ sets STOP to TRUE. In case the oracle returns same?, then
D′ sets SAME to TRUE. Otherwise, in case the oracle returns an encoding (X ′0, X

′
1), then D′ sets

SAME to FALSE.

• 〈Leak, (L(j)
0 , L

(j)
1 )〉: Upon input leakage functions (L

(j)
0 , L

(j)
1 ), the distinguisher D′ defines

(L̃
(j)
0 , L̃

(j)
1 ) (in a similar way as above), forwards those functions to O`(X0), O`(X1) and sends

the answer from the oracles back to D.

• 〈Eval, xj〉: Upon input an evaluation query for value xj , the distinguisher D′ checks first that
STOP equals FALSE. If this is not the case, then D′ returns ⊥ to D. Otherwise, D′ checks that
SAME equals TRUE. If this is the case, it runs yj ← G(st , xj) and gives yj to D. Else (if SAME

equals FALSE), it computes yj ← G(st ′, xj), where st ′ is the output of Decode(Ω, (X ′0, X
′
1)),

and gives yj to D.

Finally, D′ outputs whatever D outputs.
For the analysis, first note that D′ runs in polynomial time. Furthermore, D′ asks exactly q queries

to Ocnm and leaks at most ` bits from the target encoding (X0, X1). It is also easy to see that in case
(X0, X1) is an encoding of st ∈ {0, 1}k, then D′ perfectly simulates the view of adversary D in the

experiment REALG
Code(st ′,·)

A (k). On the other hand, in case (X0, X1) is an encoding of 0k, we claim that

12Formally D′ has to access Ocnm(·) via A′. For simplicity we assume that D′ can access the oracle directly. In fact, A′ just
acts as an interface between the experiment Tampercnmlr

A′,∗ and D′.
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D′ perfectly simulates the view of D in the experiment IDEALG(st ,·)
S (k). This is because: (i) Whenever

SAME equals TRUE, then D′ answers evaluation queries by running G on state st and tampering/leakage
queries using a pre-sampled encoding of 0k (this corresponds to the normal mode of S); (ii) Whenever
SAME equals FALSE, then D′ answers evaluation queries by running G on the current tampered state st ′

which results from applying the tampering functions to a pre-sampled encoding of 0k (this corresponds
to the overwritten mode of S).

Combining the above argument with Eq. (7) we obtain∣∣∣P [D(Tampercnmlr
A′,0k (k)) = 1

]
− P

[
D(Tampercnmlr

A′,st (k)) = 1
]∣∣∣ ≥ ε,

which is a contradiction to the fact that Code is (`, q)-CNMLR.

5.2 Stateful Functionalities

Finally, we consider the case of primitives that update their state at each execution, i.e. functionalities
of the type (stnew, y) ← G(st , x) (a.k.a. stateful functionalities). Note that in this case the hardened
functionality re-encodes the new state at each execution.

Note that, since we do not assume erasure in our model, an adversary can always ‘reset’ the func-
tionality to a previous valid state as follows: It could just copy the previous state to some part of the
large memory and replace the current encoding by that. To avoid this, our transformation uses an un-
tamperable public counter (along with the untamperable self-destruct bit) that helps us to detect whether
the functionality is reset to a previous state, leading to a self-destruct. However such a counter can be
implemented, for instance using log(k) bits. We notice that such a counter is necessary to protect against
the above resetting attack. However, we stress that if we do not assume such a counter this “resetting”
is the only harm the adversary can make in our model.

Below, we define what it means to harden a stateful functionality.

Definition 7 (Stateful hardened functionality). Let Code = (Init,Encode,Decode) be a split-state en-
coding scheme in the CRS model, with 2k bits messages and 2n bits codewords. Let G : {0, 1}k ×
{0, 1}u → {0, 1}k × {0, 1}v be a stateful functionality with secret state st ∈ {0, 1}k, ϕ ∈ {0, 1} be a
public value and let 〈γ〉 be a public log(k)-bit counter both initially set to zero. We define a stateful hard-
ened functionality GCode : {0, 1}2s × {0, 1}u → {0, 1}2s × {0, 1}v with a modified state st ′ ∈ {0, 1}2s
and s = poly(n). The hardened functionality GCode is a triple of algorithms (Init, Setup,Execute)
described as follows:

• Ω← Init(1k): Run the initialization procedure of the coding scheme to sample Ω← Init(1k).

• (M0,M1)← Setup(Ω, st): Let (X0, X1)← Encode(Ω, st ||〈1〉) and increment 〈γ〉 ← 〈γ〉+ 1.
For b ∈ {0, 1}, store Xb in the first n bits ofMb, i.e.Mb[1 . . . n] ← Xb.13 (The remaining bits
ofMb are set to 0s−n.) Define st ′ := (M0,M1).

• y ← Execute(x): Read the public bit ϕ. In case ϕ = 1 output ⊥. Otherwise recover Xb =
Mb[1 . . . n] for b ∈ {0, 1} and run (st ′′||〈γ′〉)← Decode(Ω, (X0, X1)). Read the public counter
〈γ〉. If 〈γ〉 6= 〈γ′〉 or st ′′ = ⊥, set ϕ = 1. Else run (stnew, y) ← G(st ′′, x) and output y. Finally,
write Encode(Ω, stnew||〈γ+ 1〉) in (M0[1, . . . , n],M1[1, . . . , n]) and increment 〈γ〉 ← 〈γ〉+ 1.

Remark (On 〈γ〉). Note that the counter is incremented after each evaluation query, and the current
value is encoded together with the new state. We require 〈γ〉 to be untamperable. This assumption

13Without erasure this can be easily implemented by a stack.
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is necessary, as otherwise an adversary could always use the extra space to keep a copy of a previous
valid state and place it back at some later point in time. The above attack allows essentially to reset
the functionality to a previous state, and cannot be simulated with black-box access to the original
functionality.

In the case of stateful primitives, the hardened functionality has to re-encode the new state at each
execution. Still, as the memory is large, the adversary can use the extra space to tamper continuously
with a target encoding of some valid state. Security of a stateful hardened functionality is defined
analogously to the stateless case (cf. Definition 6). We show the following result:

Theorem 3. Let G be a stateful functionality and Code = (Init,Encode,Decode) be any (`, q)-CNMLR
encoding scheme in the split-state CRS model. Then Code is polyspace (`, q)-leak/tamper simulatable
for G.

Proof. Similarly to the proof of Theorem 2, we describe a simulator S running in experiment
IDEAL

G(st ,·)
S (k) which simulates the view of adversary A in the experiment REALG

Code(st ′,·)
A (k). The

simulator is given black-box access to A (which can issue Tamper, Leak, and Eval queries) and to
the reactive functionality G(st , ·) with initial state st . Simulator S sets (M0,M1) to (0s, 0s) and
keeps a log(k)-bit counter 〈γ〉 (initially set to zero). Then, it samples the common reference string
Ω← Init(1k), simulates the public values, and proceeds as follows:

• Normal Mode. Given state (M0,M1), while A continues issuing queries, answer as follows:

– 〈Eval, xj〉: Upon input the j-th evaluation query, forward the input xj to G(stcurr, ·) and
send the reply yj back to A. (Here stcurr is the current state, as the functionally updates the
state at each invocation.) Increment the counter 〈γ〉.

– 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: Upon input the j-th tampering query sample a random encoding of

02k, namely (Z
(j)
0 , Z

(j)
1 ) ← Encode(Ω, 02k), and setMb[1 . . . , n] ← Z

(j)
b for b ∈ {0, 1}.

Hence, computeM′b ← T
(j)
b (Mb). In case (M′0[1 . . . n],M′1[1 . . . n]) = (Z

(j)
0 , Z

(j)
1 ) then

continue in the current mode with state (M0,M1) := (M′0,M′1). Otherwise go to the
overwritten mode defined below with the new state (M′0,M′1).

– 〈Leak, (L(j)
0 , L

(j)
1 )〉: Upon input the j-th leakage query, compute Λ

(j)
b = L

(j)
b (Z

(j)
b ) for b ∈

{0, 1} and reply with (Λ
(j)
0 ,Λ

(j)
1 ).

• Overwritten Mode. Given state (M′0,M′1) and current counter 〈γ〉, while A continues issuing
queries, answer as follows:

– Let τ = (M′0,M′1). Simulate the hardened functionality GCode(τ, ·) (with counter set to
〈γ〉 and self-destruct bit ϕ = 0) and answer all Eval, Leak and Tamper queries as the real

experiment REALG
Code(τ,·)

A (k) would do.

• When A halts and outputs viewA = (Ω; ((x1, y1), (x2, y2), . . . ); ((Λ
(1)
0 ,Λ

(1)
1 ), (Λ

(2)
0 ,Λ

(2)
1 ), · · · )),

set viewS = viewA and output viewS as output of IDEALG(st ,·)
S (k).

We show the following lemma about S’s simulation, which directly implies the theorem.

Lemma 9. Let S be defined as above. Then for all PPT adversaries A and all st ∈ {0, 1}k, the following
holds: {

REAL
GCode(st ′,·)
A (k)

}
k∈N
≈c
{
IDEAL

G(st ,·)
S (k)

}
k∈N

.
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Proof. By contradiction, assume that there exists a PPT distinguisher D, a PPT adversary A and some
state st ∈ {0, 1}k such that:∣∣∣P [D(IDEAL

G(st ,·)
S (k)) = 1

]
− P

[
D(REAL

GCode(st ′,·)
A (k)) = 1

]∣∣∣ ≥ ε, (8)

where ε(k) is some non-negligible function of the security parameter k.
Similar to [23], without loss of generality we define a round as a sequence of queries which contains

at most one execute query, one tampering query and one leakage query. For all i = 1, . . . , q, consider
the following hybrid experiments where in each hybrid the simulator does a modified normal mode and
the same overwritten mode:

Experiment HYB(i)
S,st(k). The simulator S starts with generating the public values and proceeds as fol-

lows.

• In the first i round it does exactly the same as in the experiment IDEALG(st ,·)
S (k).

• Starting from the i + 1-th round if the simulator is already in the overwritten mode, then
continue simulating in the overwritten mode. Otherwise, let stcurr be the current state of the
functionality. Proceed with the following modified normal mode:

– 〈Eval, xj〉: Run (stnew, yj)← G(stcur, xj), set stcur := stnew and give yj to A. Incre-
ment the counter 〈γ〉.

– 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: Sample a random encoding of stcur, namely (Z

(j)
0 , Z

(j)
1 ) ←

Encode(Ω, stcur||〈γ〉), and setMb[1 . . . , n] ← Z
(j)
b for b ∈ {0, 1}. Hence, compute

M′b ← T
(j)
b (Mb). In case (M′0[1 . . . n],M′1[1 . . . n]) = (Z

(j)
0 , Z

(j)
1 ) then continue in

the current mode with state (M0,M1) := (M′0,M′1). Otherwise go to the overwritten
mode with state (M′0,M′1).

– 〈Leak, (L(j)
0 , L

(j)
1 )〉: Compute Λ

(j)
b = L

(j)
b (Z

(j)
b ) for b ∈ {0, 1} and reply with

(Λ
(j)
0 ,Λ

(j)
1 ).

Note that HYB(0)
S,st(k) is distributed exactly as experiment REALG

Code(st ′,·)
A (k), and HYB

(q)
S,st(k) is

distributed exactly as IDEALG(st ,·)
S (k). Hence, by a standard argument, Eq (8) implies∣∣∣P [D(HYB

(i)
S,st(k)) = 1

]
− P

[
D(HYB

(i+1)
S,st (k)) = 1

]∣∣∣ ≥ ε/q, (9)

a non-negligible quantity. We will exploit the advantage of D in distinguishing between HYB
(i)
S,st(k) and

HYB
(i+1)
S,st (k), to build another distinguisher D′ and an adversary A′ breaking CNMLR property of Code.

The distinguisher works similar to the proof of [23, Lemma 22] with some technical differences, that we
emphasize below.

Given the common reference string Ω, the distinguisher D′ initializes a flag STOP to FALSE and
runs the simulator S of hybrid HYB

(i)
S,st until round i to obtain the current state stcur and the current

memory content (M′0,M′1). (Note that D′ can do this as it is given st as advice.) Hence, D′ outputs
the message pair (02k, stcur||〈i〉) and is given access to oracleOcnm((X0, X1), ·) andO`(X0), O`(X1),
where (X0, X1) is either an encoding of 02k or an encoding of stcur||〈i〉. For all rounds i+ 1 ≤ j ≤ q,
the distinguisher handles A’s queries as follows:

• 〈Tamper, (T(j)
0 ,T

(j)
1 )〉: The distinguisher will access the oracle Ocnm((X0, X1), ·). Similarly

to the proof of Theorem 2, D′ cannot simply forward the pair of functions to the oracle, so it
modifies it as follows. Define the functions Tin : {0, 1}n → {0, 1}s and Tout : {0, 1}s →
{0, 1}n as Tin(x) = (x||M′b[n + 1, . . . , s]) and Tout(x||x′) = x, for any x ∈ {0, 1}n and
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x′ ∈ {0, 1}s−n; here (M′0,M′1) is the above state obtained at the end of round i. The distinguisher
D′ queries Ocnm((X0, X1), ·) with the function pair (T̃

(j)
0 , T̃

(j)
1 ) where each T̃

(j)
b is defined as

T̃
(j)
b := Tout ◦ T(j)

b ◦ T
(j−1)
b ◦ . . . ◦ T(i+1)

b ◦ Tin for b ∈ {0, 1}.
In case the oracle returns⊥, then D′ sets STOP to TRUE. In case the oracle returns same?, then D′

does nothing. Otherwise, in case the oracle returns an encoding (X ′0, X
′
1), then D′ checks that the

last k bits of Decode(Ω, (X ′0, X
′
1)) equal 〈j〉; if that is not the case, it sets STOP to TRUE.

• 〈Leak, (L(j)
0 , L

(j)
1 )〉: Upon input leakage functions (L

(j)
0 , L

(j)
1 ), the distinguisher D′ defines

(L̃
(j)
0 , L̃

(j)
1 ) (in a similar way as above), forwards the functions to O`(X0), O`(X1) and sends

the answer from the oracles back to D.

• 〈Eval, xj〉: Upon input an evaluation query for value xj , the distinguisher D′ checks first that
STOP equals FALSE. If this is not the case, then D′ returns ⊥ to D. Otherwise, it runs
(stnew, yj)← G(stcur, xj), set scur := snew and give yj to D.

Define the following event FAIL: the event becomes true in case the simulation has entered already the
overwritten mode at round i+1, or the simulation is in normal mode but D never issues Tamper or Leak
commands after round i. Now, if FAIL happens, D′ gives-up and outputs a random guess. Otherwise it
outputs whatever D does.

It is easy to see that HYB(i)
S,st(k) and HYB

(i+1)
S,st (k) are statistically close in case the simulation

enters the overwritten mode before round i. It follows that there is a non-negligible chance that the
simulation is in normal mode at round i and moreover D will either issue a Leak or a Tamper command
in some later round. The above argument implies that: (i) D′ correctly simulates either the distribution
of HYB(i)

S,st(k) or HYB(i+1)
S,st (k) (depending on the value in the target encoding (X0, X1)), conditioning

on FAIL; (ii) P
[
FAIL

]
≥ α, where α is non-negligible; (iii) D′ has advantage 1/2 conditioning on FAIL.

Let st∗ = stcur||〈i〉. We have obtained∣∣∣P [D′(Tampercnmlr
A′,02k(k)) = 1

]
− P

[
D′(Tampercnmlr

A′,st∗(k)) = 1
]∣∣∣

=

∣∣∣∣P [FAIL]P
[
D′(Tampercnmlr

A,02k (k)) = 1|FAIL
]

+ P
[
FAIL

]
P
[
D′(Tampercnmlr

A′,02k(k)) = 1|FAIL
]

− P [FAIL]P
[
D′(Tampercnmlr

A′,st∗(k)) = 1|FAIL
]
− P

[
FAIL

]
P
[
D′(Tampercnmlr

A′,st∗(k)) = 1|FAIL
] ∣∣∣∣

=
∣∣∣P [D(HYB

(i)
S,st(k)) = 1

]
− P

[
D(HYB

(i+1)
S,st (k)) = 1

]∣∣∣ · P [FAIL
]

≥ ε/q · α,

a non-negligible quantity. This concludes the proof.
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