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Abstract. Motivated by the problem of how to communicate over a public chan-
nel with an active adversary, Dodis and Wichs (STOC’09) introduced the no-
tion of a non-malleable extractor. A non-malleable extractor nmExt : {0, 1}n ×
{0, 1}d → {0, 1}m takes two inputs, a weakly-random W and a uniformly ran-
dom seed S, and outputs a string which is nearly uniform, given S as well as
nmExt(W,A(S)), for an arbitrary function A with A(S) ̸= S.

In this paper, by developing the combination and permutation techniques, we
improve the error estimation of the extractor of Raz (STOC’05), which plays
an extremely important role in the constraints of the non-malleable extractor
parameters including seed length. Then we present improved explicit construction
of non-malleable extractors. Though our construction is the same as that given by
Cohen, Raz and Segev (CCC’12), the parameters are improved. More precisely,
we construct an explicit (1016, 1

2
)−non-malleable extractor nmExt : {0, 1}n ×

{0, 1}d → {0, 1} with n = 210 and seed length d = 19, while Cohen et al.
showed that the seed length is no less than 46

63
+66. Therefore, our method beats

the condition “2.01 · logn ≤ d ≤ n” proposed by Cohen et al., since d is just
1.9 · logn in our construction. We also improve the parameters of the general
explicit construction given by Cohen et al. Finally, we give their applications to
privacy amplification.

Keywords: extractors; non-malleable extractors; seed length; privacy amplifi-
cation protocol

1 Introduction

Randomness extractors are functions that convert weakly random sources into nearly
uniform bits. Though the motivation of extractors is to simulate randomized algorithms
with weak random sources as might arise in nature, randomness extractors have been
successfully applied to coding theory, cryptography, complexity, etc. [12, 14, 22]. In this
paper, we focus on the extractors that can be applied to privacy amplification. In this
scenario, two parties Alice and Bob share a weakly random secret W ∈ {0, 1}n. W may
be a human-memorizable password, some biometric data, and physical sources, which
are themselves weakly random, or a uniform secret which may have been partially leaked
to an adversary Eve. Thus, only the min-entropy of W is guaranteed. Alice and Bob
interact over a public communication channel in order to securely agree on a nearly
uniform secret key R ∈ {0, 1}m in the presence of the adversary, Eve, who can see every
message transmitted in the public channel. The public seed length and min-entropy
of W are two main measures of efficiency in this setting. If Eve is passive, a (strong)
randomness extractor yields the following solution: Alice sends a uniformly random seed
S to Bob, then they both compute R = Ext(W,S) as the nearly uniform secret key [18].

⋆⋆ Most of this work was done while the author visited New York University.
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If Eve is active (i.e., it may change the messages in arbitrary ways), some protocols have
been proposed to achieve this goal [4, 6–9, 13–15, 21, 23].

As a major progress, Dodis and Wichs [9] introduced non-malleable extractors to
study privacy amplification protocols, where the attacker is active and computationally
unbounded. If an attacker sees a random seed S and modifies it into an arbitrarily
related seed S′, then the relationship between R = Ext(W,S) and R′ = Ext(W,S′) is
bounded to avoid related key attacks. More formally, a non-malleable extractor is a
function nmExt : {0, 1}n × {0, 1}d → {0, 1}m that takes two inputs, a weakly-random
secret source 1 W with min-entropy α and uniformly random seed S, and outputs a string
which is γ−close to uniform (see Definition 1), given S as well as nmExt(W,A(S)), for an
arbitrary functionA withA(S) ̸= S. They proved that (α, 2γ)−non-malleable extractors
exist as long as α > 2m+3 log 1

γ +log d+9 and d > log(n−α+1)+2 log 1
γ +7. The first

explicit non-malleable extractor was constructed by Dodis, Li, Wooley and Zuckerman
[8]. It works for any weakly random input source with the min-entropy α > n

2 and
uniformly random seed of length d = n (It works even if the seed has entropy only
Θ(m + log n)). However, when outputting more than a logarithmic number of bits, its
efficiency relies on a longstanding conjecture on the distribution of prime numbers.

Li [14] proposed that (α, 2γ)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d →
{0, 1}, where α = ( 12 − δ) · n and d = O(log n + log(1/γ)) for any constant δ > 0,
can be constructed as follows: the seed S is encoded using the parity check matrix of
a BCH code, and then the output is the inner product function of the encoded source
and the encoded seed over F2. Dodis and Yu [11] observed that for 4-wise independent
hash function family {hw : {0, 1}d → {0, 1}m | w ∈ {0, 1}n}, nmExt(w, s) = hw(s) is

a (α, 2
√
2n−α−d)-non-malleable extractor. In 2012, an alternative explicit construction

based on the extractor of Raz [20] was given by Cohen et al. [6]. Without using any
conjecture, their construction works for any weakly random source with the min-entropy
α = ( 12 + δ) · n and uniformly random seed of length d ≥ 23

δ ·m+ 2 log n (see Theorem
1 for details). However, their result suffers from some drawbacks: The non-malleable
extractor is constructed based on the explicit seeded extractor of Raz [20], while the
error 2 estimation in that construction is too rough. Furthermore, though one main
purpose of [6] is to shorten the length of the seed, the lower bound on the seed length
is still not optimal.

OUR CONTRIBUTIONS AND TECHNIQUES.

• By developing the combination and permutation techniques, we improve the error
estimation of Raz’s extractor in STOC’05 [20], a special case of which was used by Cohen
et al. in CCC’12 [6]. For simplicity, denote γ1 as the error of the extractor in [6], and

γ2 as the counterpart in this paper. Recall that γ1 = 2
( 1
2
−δ)n

k · (2ϵ) 1
k in [6] under the

assumption that ϵ ≥ 2−
dk
2 · kk and 0 < δ ≤ 1

2 (see Lemma 1). If ϵ ≥ 1

2(
1
2
−δ)n+1

, then

γ1 = 2
( 1
2
−δ)n

k · (2ϵ) 1
k ≥ 1. In this case, the error estimation is meaningless. One main

reason is that in those proofs, the partition method about the sum [6, 20] which bounds
the error didn’t capture the essence of the biased sequence for linear tests (see Definition
2). In this paper, we propose another partition method and give a better bound on
the sum by employing the combination and permutation formulas. In particular, the
combination and permutation techniques (see Proposition 1) may be useful in future

works. Correspondingly, the error is γ2 = 2
( 1
2
−δ)n

k ·[2− dk
2 ·(k−1)·(k−3)·· · ··1·(1−ϵ)+ϵ]

1
k

(see Theorem 2). Since ϵ ≥ 2−
dk
2 · kk and 2−

dk
2 · kk > 2−

dk
2 · (k − 1) · (k − 3) · · · · · 1 for

1 When we say a source in this paper, we mean a random variable.
2 The concept of the error of seeded extractor can be seen in Definition 1.
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any even integer k, we get γ1 > γ2. To simplify this bound, let k be a specific value. For

instance, let k = 4, then the error γ2 = 2
( 1
2
−δ)n

4 · [2−2d · 3 · (1− ϵ) + ϵ]
1
4 .

• Note that the error estimation of the Raz’s extractor impacts greatly on the con-
straints of the parameters including the seed length, the weak source’s min-entropy and
the error 3 of the non-malleable extractor. Based on the above improvement of the error
estimation, we present an explicit construction of non-malleable extractors, which is an
improvement of the construction of Cohen et al. in CCC’12 [6] in the sense that the
seed length is shorter. More concretely, we present an explicit (1016, 1

2 )−non-malleable
extractor nmExt : {0, 1}n × {0, 1}d → {0, 1} with n = 1024 and d = 19, which beats
the condition “2.01 · log n ≤ d ≤ n” in [6], since seed length d is just 1.9 · log n in our
construction while it is no less than 46

63 + 66 according to [6]. Moreover, we improve the
parameters of the general explicit construction given by Cohen et al.

• We show how our non-malleable extractors are applied to privacy amplification.

ORGANIZATION. The remainder of the paper is organized as follows. In Section 2,
we review some notations, concepts, and results. In section 3, we show an existing central
lemma about the error estimation of Raz’s Extractor and improve it by proposing a new
partition method. In section 4, we propose the explicit construction of non-malleable
extractors with shorter seed length compared with that in [6]. In Section 5, we show how
the non-malleable extractors are applied to privacy amplification. Section 6 concludes
the paper.

2 Preliminaries

For any positive integer n, denote [n] = {1, 2, . . . , n}. Denote Um as the uniformly
random distribution over {0, 1}m. We measure the distance between two distribution-
s by the L1 norm in order to be consistent with [6]. The statistical distance of X
and Y is defined as SD(X,Y ) = 1

2∥X − Y ∥1. It’s well known that for any function f ,
SD(f(X), f(Y )) ≤ SD(X,Y ). Denote SD((X1, X2), (Y1, Y2) | Z) as the abbreviation of
SD((X1, X2, Z), (Y1, Y2, Z)).

The min-entropy of variableW is H∞(W ) = − logmaxw Pr(W = w). W over {0, 1}n
is called an (n, α)-source if H∞(W ) ≥ α. We say that a source (i.e., a random variable)
is a weak source if its distribution is not uniform. We say W is a flat source if it is
a uniform distribution over some subset S ⊆ {0, 1}n. Chor and Goldreich [5] observed
that the distribution of any (n, α)-source is a convex combination of distributions of
flat (n, b)-sources. Therefore, for general weak sources, it will be enough to consider flat
sources instead in most cases.

Definition 1. We say that the distribution X is ϵ-close to the distribution Y if ∥X −
Y ∥1 =

∑
s |Pr[X = s] − Pr[Y = s]| ≤ ϵ 4. A function Ext : {0, 1}n × {0, 1}d →

{0, 1}m is an (α, γ)−seeded extractor if for every (n, α)-source W and an independent
uniformly random variable S (called seed) over {0, 1}d, the distribution of Ext(W,S) is
γ-close to Um. γ is called the error of the seeded extractor. A seeded extractor is a strong
(α, γ)−extractor if for W and S as above, (Ext(W,S), S) is γ-close to (Um, Ud).

Definition 2. A random variable Z over {0, 1} is ϵ-biased if bias(Z) = |Pr[Z = 0] −
Pr[Z = 1]| ≤ ϵ (i.e., Z is ϵ-close to uniform). A sequence of 0-1 random variables
Z1, Z2, . . . , ZN is ϵ-biased for linear tests of size k if for any nonempty τ ⊆ [N ] with

3 The concept of the error of non-malleable extractor can be seen in Definition 3.
4 In other papers (e.g., [9, 11, 14, 24]), X is ϵ-close to Y if 1

2
∥X − Y ∥1 = 1

2

∑
s |Pr[X =

s]− Pr[Y = s]| ≤ ϵ. To keep consistency, Definition 1 holds throughout this paper.
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|τ | ≤ k, the random variable Zτ = ⊕i∈τZi is ϵ−biased. We also say that the sequence
Z1, Z2, . . . , ZN ϵ−fools linear tests of size k.

For every k′, N ≥ 2, variables Z1, · · · , ZN as above can be explicitly constructed
using 2 · ⌈log(1/ϵ) + log k′ + log logN⌉ random bits [1].

The Extractor of Raz. Raz [20] constructed an extractor based on a sequence
of 0-1 random variables that have small bias for linear tests of a certain size. Let
Z1, · · · , Zm·2d be 0-1 random variables that are ϵ-biased for linear tests of size k′ that
are constructed using n random bits. The set of indices [m · 2d] can be considered as
the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. Define Ext : {0, 1}n × {0, 1}d → {0, 1}m by
Ext(w, s) = Z(1,s)(w)||Z(2,s)(w) . . . ||Z(m,s)(w), where “||” is the concatenation operator.
Raz proposed that Ext is a seeded extractor with good parameters [20].

Cohen et al. [6] proved that the above extractor is in fact non-malleable. We’ll also
construct non-malleable extractors based on it. The formal definition of non-malleable
extractors is as follows.

Definition 3. (see [6]) We say that a function A : {0, 1}d → {0, 1}d is an adversarial
function, if for every s ∈ {0, 1}d, f(s) ̸= s holds. A function nmExt : {0, 1}n×{0, 1}d →
{0, 1}m is a (α, γ)-non-malleable extractor if for every (n, α)-source W , independent
uniformly random variable S, and every adversarial function A,

∥(nmExt(W,S), nmExt(W,A(S)), S)− (Um, nmExt(W,A(S)), S)∥1 ≤ γ.

γ is called the error of the non-malleable extractor.

One-time message authentication code (MAC) is used to guarantee that the received
message is sent by a specified legitimate sender in an unauthenticated channel. Formally,

Definition 4. A family of functions {MACr : {0, 1}v → {0, 1}τ}r∈{0,1}m is a ε-secure
(one-time) message authentication code (MAC) if for any µ and any function f :
{0, 1}τ → {0, 1}v × {0, 1}τ , it holds that,

Pr
r←Um

[MACr(µ
′) = σ′ ∧ µ′ ̸= µ | (µ′, σ′) = f(MACr(µ))] ≤ ε.

Recall that the main theorem about the explicit construction of non-malleable ex-
tractors proposed in [6] is as follows.
Theorem 1. (see [6]) For any integers n, d, and m, and for any 0 < δ ≤ 1

2 such

that d ≥ 23
δ · m + 2 log n, n ≥ 160

δ · m, and δ ≥ 10 · log(nd)
n , there exists an explicit

((12 + δ) · n, 2−m)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}m.

3 Error Estimation of Raz’s Extractor and its Improvement

In this section, we first recall the central lemma used in [6], which is a special case about
the error estimation of Raz’s Extractor [20]. Then we point out the flaw in the proof
and improve its error estimation. Afterwards, we compare our result with the original
one and roughly show the role of the improvement.

3.1 A Special Case of Raz’s Extractor

The central lemma used in [6] is below, the proof of which is essentially the same as that
in [20]. It can be considered as a special case of Raz’s Extractor [20].
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Lemma 1. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ϵ-biased for
linear tests of size k′ that are constructed using n random bits. Define Ext(1): {0, 1}n ×
{0, 1}d → {0, 1} by Ext(1)(w, s) = Zs(w), that is, Ext

(1)(w, s) is the random variable Zs,
when using w as the value of the n bits needed to produce Z1, . . . , ZD. Then, for any
0 < δ ≤ 1

2 and even integer k ≤ k′ s.t. k · ( 1ϵ )
1
k ≤ D

1
2 , Ext(1) is a (( 12 + δ) · n, γ1)-seeded-

extractor, with γ1 = (ϵ · 2( 1
2−δ)n+1)

1
k .

Proof. Let W be a (n, ( 12 + δ) · n)-source. Let S be a random variable that is uniformly
distributed over {0, 1}d and is independent of W . We will show that the distribution of

Ext(1)(W,S) is γ1−close to uniform. As in [5], it is enough to consider the case where W
is uniformly distributed over a set W ′ ⊆ {0, 1}n of size 2(1/2+δ)n. For every w ∈ {0, 1}n
and s ∈ {0, 1}d denote e(w, s) = (−1)Zs(w).
Claim 1. For any r ∈ [k] and any different s1, . . . , sr ∈ {0, 1}d,∑

w∈{0,1}n

r∏
j=1

e(w, sj) ≤ ϵ · 2n.

Proof. ∑
w∈{0,1}n

r∏
j=1

e(w, sj) =
∑

w∈{0,1}n

r∏
j=1

(−1)Zsj
(w) =

∑
w∈{0,1}n

(−1)Zs1 (w)⊕···⊕Zsr (w),

and since Zs1(w)⊕ · · · ⊕ Zsr (w) is ϵ−biased, the last sum is at most ϵ · 2n. 2

The L1 distance of Ext(1)(W,S) and U is

∥Ext(1)(W,S)− U∥1
= |Pr[Ext(1)(W,S) = 0]− Pr[Ext(1)(W,S) = 1]|

= | 1

2(
1
2+δ)n

· 1

2d
(
∑

w∈W ′

∑
s∈{0,1}d

e(w, s))|.

Denote γ(W,S) = 1

2(
1
2
+δ)n

· 1
2d
(
∑

w∈W ′

∑
s∈{0,1}d

e(w, s)).

Define f : [−1, 1] → [−1, 1] by f(z) = zk, then f is a convex function for any even
positive integer k.

Thus, by a convexity argument, we have

2(
1
2+δ)n · (2d · γ(W,S))k = 2(

1
2+δ)n · {

∑
w∈W ′

[
1

2(1/2+δ)n

∑
s∈{0,1}d

e(w, s)]}k

≤ 2(
1
2+δ)n · {

∑
w∈W ′

1

2(1/2+δ)n
[

∑
s∈{0,1}d

e(w, s)]k}

≤
∑

w∈{0,1}n
[

∑
s∈{0,1}d

e(w, s)]k

=
∑

w∈{0,1}n

∑
s1,...,sk∈{0,1}d

k∏
j=1

e(w, sj)

=
∑

s1,...,sk∈{0,1}d

∑
w∈{0,1}n

k∏
j=1

e(w, sj).
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The sum over s1, . . . , sk ∈ {0, 1}d is broken into two sums. The first sum is over
s1, . . . , sk ∈ {0, 1}d such that in each summand, at least one sj is different than all other
elements in the sequence s1, . . . , sk

5, and the second sum is over s1, . . . , sk ∈ {0, 1}d
such that in each summand every sj is identical to at least one other element in the
sequence s1, . . . , sk. The number of summands in the first sum is trivially bounded by
2d·k, and by Claim 1 each summand is bounded by 2n · ϵ. The number of summands in
the second sum is bounded by 2d·

k
2 · (k2 )

k, and each summand is trivially bounded by
2n. Therefore,

2(
1
2+δ)n · 2d·k · γ(W,S)k ≤ 2n · ϵ · 2d·k + 2n · 2d· k2 · (k

2
)k ≤ 2 · 2n · ϵ · 2d·k,

where the last inequality follows by the assumption that k · (1/ϵ)1/k ≤ D
1
2 . That is,

γ(W,S) ≤ (ϵ · 2( 1
2−δ)n+1)

1
k . 2

The above partition method about the sum over s1, . . . , sk ∈ {0, 1}d is not optimal,
since it doesn’t capture the essence of random variable sequence that is biased for linear
tests (i.e., Z1, . . . , Z2d is called ϵ-biased for linear tests of size k if for any nonempty
τ ⊆ [2d] with |τ | ≤ k, the random variable Zτ = ⊕i∈τZi is ϵ−biased). Moreover, the
bounds on the number of summands in the two sums are too large. The same problem
exists in [20].

In fact, when every sj is identical to at least one other element in the sequence
s1, . . . , sk under the assumption that at least one sj appears odd times in the sequence

s1, . . . , sk, the summand
∑

w∈{0,1}n

k∏
j=1

e(w, sj) is still upper bounded by 2n · ϵ, since

∑
w∈{0,1}n

k∏
j=1

e(w, sj) =
∑

w∈{0,1}n

k∏
j=1

(−1)Zsj
(w) =

∑
w∈{0,1}n

(−1)Zs1 (w)⊕···⊕Zsk
(w) and Z1,

. . ., ZD are 0-1 random variables that are ϵ-biased for linear tests of size k′. However,

in this case the upper bound on the summand
∑

w∈{0,1}n

k∏
j=1

e(w, sj) was considered to be

2n in [6, 20].

3.2 Improvement for the Error Estimation of Raz’s Extractor

We improve the error estimation of Raz’s extractor as follows. Unlike [6, 20], we present
another partition method of the sum in the following proof. The combination and per-
mutation formulas are exploited to show a tight bound on the sum. Correspondingly,
the error can be reduced.

Proposition 1. Consider fixed positive numbers k and d. Assume that a sequence
s1, . . . , sk satisfies the following two conditions: (1) for every i ∈ [k], si ∈ {0, 1}d, and
(2) for every j ∈ [k], sj appears even times in the sequence s1, . . . , sk. Then the number

of such sequences s1, . . . , sk is 2
dk
2 · (k − 1) · (k − 3) · · · · · 1.

Proof. Denote Cl
r as the number of possible combinations of r objects from a set of l

objects. Then Cl
r = l!

r!(l−r)! =
l(l−1)(l−2)···(l−r+1)

r! . Denote P l
r as the number of possible

permutations of r objects from a set of l objects. Then P l
r = l!

(l−r)! = l(l−1)(l−2) · · · (l−
r + 1). Hence the number of the corresponding sequences is

Ck
2 · Ck−2

2 · · · · · C2
2

P
k
2
k
2

· 2 dk
2 =

k! · 1

2
k
2

(k2 )!
· 2 dk

2 =
k!

(k2 )! · 2
k
2

· 2 dk
2 = 2

dk
2 · (k− 1) · (k− 3) · · · · · 1.

5 In this paper, two elements si and sj in the sequence s1, . . . , sk, where i ̸= j, might represent
the same string.
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2

Theorem 2. Let D = 2d. Let Z1, . . . , ZD be 0-1 random variables that are ϵ-biased for
linear tests of size k′ that are constructed using n random bits. Define Ext(1): {0, 1}n ×
{0, 1}d → {0, 1} by Ext(1)(w, s) = Zs(w), that is, Ext

(1)(w, s) is the random variable Zs,
when using w as the value of the n bits needed to produce Z1, . . . , ZD. Then, for any
0 < δ ≤ 1

2 and any even integer k ≤ k′, Ext(1) is a ((12 + δ) · n, γ2)-seeded-extractor,

where γ2 = 2
( 1
2
−δ)·n
k · [2− dk

2 · (k − 1) · (k − 3) · · · · · 1 · (1− ϵ) + ϵ]
1
k .

Proof. We improve the proof by proposing another method for partitioning the sum∑
s1,...,sk∈{0,1}d

∑
w∈{0,1}n

k∏
j=1

e(w, sj) into two sums. The first sum is over s1, . . . , sk ∈ {0, 1}d

such that in each summand, at least one sj appears odd times in the sequence s1, . . . , sk,
and the second sum is over s1, . . . , sk ∈ {0, 1}d such that in each summand every sj ap-
pears even times in the sequence s1, . . . , sk. By Proposition 1, the number of summands
in the second sum is 2

dk
2 · (k − 1) · (k − 3) · · · · · 1, and each summand is 2n. There-

fore, the number of summands in the first sum is 2dk − 2
dk
2 · (k − 1) · (k − 3) · · · · · 1,

and by Claim 1 each summand is bounded by 2n · ϵ. Hence, 2(
1
2+δ)·n · 2d·k · γ(W,S)k ≤

2n · [2 dk
2 ·(k−1) ·(k−3) · · · · ·1]+2n ·ϵ · [2dk−2

dk
2 ·(k−1) ·(k−3) · · · · ·1]. Correspondingly,

γ(W,S)k ≤ 2n · 2dk

2(
1
2+δ)·n · 2d·k

· [2− dk
2 · (k − 1) · (k − 3) · · · · · 1 · (1− ϵ) + ϵ]

= 2(
1
2−δ)·n · [2− dk

2 · (k − 1) · (k − 3) · · · · · 1 · (1− ϵ) + ϵ]

That is, γ(W,S) ≤ 2
( 1
2
−δ)·n
k · [2− dk

2 · (k − 1) · (k − 3) · · · · · 1 · (1− ϵ) + ϵ]
1
k . 2

3.3 Comparison

For simplicity, in the rest of the paper, denote γ1 as the error of the extractor in Lemma
1, and γ2 as the counterpart in Theorem 2.

Proposition 2. (k− 1) · (k− 3) · · · · · 1 ≤ (k2 )
k for any positive even integer k, and “=”

holds iff k = 2. Furthermore, lim
k→∞

(k−1)·(k−3)·····1

2
1
2 ·( k

e )
k
2

= 1.

Proof. When k = 2, it’s trivial that (k− 1) · (k− 3) · · · · · 1 = (k2 )
k. In the following, we

only consider any positive even integer k with k > 2.

Since k!
( k
2 )!

< kk

2
k
2
, we have k!

( k
2 )!·2

k
2
< kk

2k
. Hence,

(k − 1) · (k − 3) · · · · · 1 =
k!

(k2 )! · 2
k
2

<
kk

2k
.

From the Stirling’s Formula, we have lim
k→∞

k!√
2πk( k

e )
k
= 1. Therefore,

lim
k→∞

(k − 1) · (k − 3) · · · · · 1

2
1
2 · (ke )

k
2

= lim
k→∞

[
k!√

2πk · (ke )k
·

√
2π · k

2 · ( k
2e )

k
2

(k2 )!
] = 1.

2

The error estimation of the extractor in Theorem 1 is better than that in Lemma 1.
Recall that in Theorem 1, we have

γ2 = 2
( 1
2
−δ)n

k · [2− dk
2 · (k − 1) · (k − 3) · · · · · 1 · (1− ϵ) + ϵ]

1
k

= 2
( 1
2
−δ)n

k · {2− dk
2 · (k − 1) · (k − 3) · · · · · 1 + [1− 2−

dk
2 · (k − 1) · (k − 3) · · · · · 1] · ϵ} 1

k ,
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while in Lemma 1, we have γ1 = 2
( 1
2
−δ)n

k · (2ϵ) 1
k in [6] under the assumption that

ϵ ≥ 2−
dk
2 · kk and 0 < δ ≤ 1

2 .

In general, since ϵ ≥ 2−
dk
2 · kk and 2−

dk
2 · kk > 2−

dk
2 · (k − 1) · (k − 3) · · · · · 1 for any

even integer k, we get γ1 > γ2. In particular, when k is large enough, from Proposition

2, we get that (k − 1) · (k − 3) · · · · · 1 ≈ 2
1
2 · (ke )

k
2 . Therefore,

γ2 ≈ 2
( 1
2
−δ)n

k · {2− dk
2 · 2 1

2 · (k
e
)

k
2

+ [1− 2−
dk
2 · 2 1

2 · (k
e
)

k
2

] · ϵ} 1
k .

Correspondingly, ϵ ≥ 2−
dk
2 · kk > 2−

dk
2 · 2 1

2 · (ke )
k
2 . Hence, γ1 > γ2.

Remark 1. To simplify γ2, let k be a specific value. For instance, let k = 4, then the

error γ1 = 2
( 1
2
−δ)n

4 · (2ϵ) 1
4 and γ2 = 2

( 1
2
−δ)n

4 · [2−2d · 3 · (1− ϵ) + ϵ]
1
4 .

Remark 2. Noted that when k is large enough, (k2 )
k is much greater than (k − 1) · (k −

3) · · · · ·1. For instance, when k = 6, we have (k2 )
k = 729 and (k−1) · (k−3) · · · · ·1 = 15.

Therefore, “The number of summands in the second sum is 2
dk
2 · (k− 1) · (k− 3) · · · · · 1,

and each summand is 2n.” in the proof of Theorem 2 is a great improvement on “The
number of summands in the second sum is bounded by 2d·

k
2 · (k2 )

k, and each summand
is trivially bounded by 2n.” in the proof of Lemma 1.

Remark 3. If ϵ ≥ 1

2(
1
2
−δ)n+1

, then γ1 = 2
( 1
2
−δ)n

k · (2ϵ) 1
k ≥ 1. In this case, the error

estimation is meaningless.

3.4 Important Role in Improving the Seed Length of Non-Malleable
Extractors

It should be noticed that the error of the non-malleable extractor in Theorem 1 given
by Cohen et al. [6] relies on some constrained parameters. The main idea of the proof
about Theorem 1 given by Cohen et al. [6] is as follows. Assume for contradiction that
Ext is not a non-malleable extractor, then after some steps, an inequality γ1 > A is
deduced, where A denotes a certain formula. On the other hand, from the assumption
of Theorem 1, γ1 < A should hold. Thus Ext is a non-malleable extractor. Essentially,
the constraints on the parameters in Theorem 1 are chosen according to the inequality
γ1 < A. From Proposition 2, we have γ1 > γ2 for any positive even integer k ≥ 4.
Therefore, we may relax the constraints on the parameters in Theorem 1 according to
γ2 < A. See the proofs of Theorems 3 and 4 below for details. Correspondingly, the seed
length may be further shortened.

4 Explicit Construction of Non-malleable Extractors with
Shorter Seed Length

In this section, we improve the parameters of the explicit construction of non-malleable
extractors by Cohen et al. in [6]. The seed length here is shorter than that in Theorem
1.

We first review two lemmas that will be used later.

Lemma 2. (see [6]) Let X be a random variable over {0, 1}m. Let Y , S be two random
variables. Then,

∥(X,Y, S)− (Um, Y, S)∥1 = Es∼S [∥(X,Y, S)|S=s − (Um, Y, S)|S=s∥1].
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Lemma 3. (see [6]) Let X, Y be random variables over {0, 1}m and {0, 1}n respectively.
Then ∥(X,Y )− (Um, Y )∥1 ≤

∑
∅̸=σ⊆[m],τ⊆[n]

bias(Xσ ⊕ Yτ ), where Xi is the i-th bit of X,

Yj is the jth bit of Y , Xσ = ⊕i∈σXi, and Yτ = ⊕j∈τYj .

In what follows, we show a specific explicit construction of a non-malleable extractor
such that it is an improvement of [6] in the sense that the seed length is shorter.

Theorem 3. There exists an explicit (1016, 1
2 )-non-malleable extractor Ext : {0, 1}1024×

{0, 1}19 → {0, 1}.

Proof Idea. We borrow the reductio ad absurdum approach in the proof of Theorem
1. The proof sketch is as follows. Assume by contradiction that Ext is not non-malleable.
Then

Phase 1: There must exist a weak source W with min-entropy at least α and an
adversarial function A such that the statistical distance between (Ext(W,S),
Ext(W,A(S)), S) and (U1,Ext(W,A(S)), S) has a certain lower bound. Then there exists
S ⊆ {0, 1}d s.t. for every s ∈ S, Ys = Ext(W, s) ⊕ Ext(W,A(s)) is biased. Consider the
directed graph G = (S ∪ A(s), E) with E = {(s,A(s) : s ∈ S}, where G might contains
cycles. By employing a lemma about graph as shown in [6], we can find a subset S′ ⊆ S
s.t. the induced graph of G by S′ ∪ A(S′) is acyclic.

Phase 2: We prove that the set of variables {Ys}s∈S′ is ϵ-biased for linear tests of size
at most k/2. Consider the extractor of Raz built on the variables {Ys}s∈S′ . It’s a good
seeded-extractor, which yields a contradiction.

Phase 1 of the proof is almost the same as that in [6]. Phase 2 jumps out of the idea
in [6]. We exploit the error estimation of the extractor in Theorem 2 instead of Lemma
1. We use a trick such that the even integer k is just 4 instead of the largest even integer

that is not larger than ⌈128δ⌉2 , where δ can be seen in Theorem 1. Therefore the extractor

error can be simplified and we don’t need to prove k · ( 1ϵ )
1
k ≤ (2d)

1
2 as shown in Lemma

1.

Proof. The explicit construction we present is the extractor constructed in [20]. Alon
et al. [1] observed that for every k′, N ≥ 2, the sequence of 0-1 random variables
Z1, . . . , ZN that is ϵ-biased for linear tests of size k′ can be explicitly constructed using
2 · ⌈log(1/ϵ) + log k′ + log logN⌉ random bits. Therefore, let D = 219 and ϵ = 2−

1024
2 +r

with r = 1 + log k′ + log 19, then we can construct a sequence of 0-1 random variables
Z1, . . . , Z219 that is ϵ-biased for linear tests of size k′ using n random bits. Let k′ = 8.
Define Ext : {0, 1}1024 × {0, 1}19 → {0, 1} by Ext(w, s) = Zs(w).

Let S be a random variable uniformly distributed over {0, 1}19.
Assume for contradiction that Ext is not a (1016, 1

2 )-non-malleable-extractor. Then
there exists a source W of length 1024 with min-entropy 1016, and an adversarial func-
tion A : {0, 1}19 → {0, 1}19 such that

∥(Ext(W,S),Ext(W,A(S)), S)− (U1,Ext(W,A(S)), S)∥1 >
1

2
.

As in [5], suppose W is uniformly distributed over a set W ′ ⊆ {0, 1}1024 of size 21016.

For every s ∈ {0, 1}19, let Xs be the random variable Ext(W, s). By Lemmas 2 and
3, we have ∑

∅̸=σ⊆[1],τ⊆[1]

Es∼S [bias((Xs)σ ⊕ (XA(s))τ )] >
1

2
.

Let σ∗, τ∗ ⊆ [1] be the indices of (one of) the largest summands in the above sum.
For every s ∈ {0, 1}19, let Ys = (Xs)σ∗ ⊕ (XA(s))τ∗ .
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There is a set S′′ ⊆ {0, 1}19 satisfying that

|S′′| > ξ · 219−2

2(1 + 1)2
= 213.

The S′′ here is the same as that in the proof of Theorem 1 by replacing t there with 1
and the error 2−m there with 1

2 . Please see [6] for details.
Define a random variable YS′′ over {0, 1} as follows: To sample a bit from YS′′ ,

uniformly sample a string s from S′′, and then independently sample a string w uniformly

from W ′. The sampled value is Ys(w). We have that bias(YS′′) >
1
2

21+1(2−1)(1+1) = 1
24 .

For every s ∈ S′′, let Y ′s = Z(1,s) ⊕ (⊕j∈τ∗Z(j,A(s))), where Z(1,s) = Zs.
Let t = 1 and m = 1 in Claim 7.2 of [6], we get the following claim.

Claim 2. The set of random variables {Y ′s}s∈S′′ ϵ−fools linear tests of size 4.

We apply Theorem 2 on the random variables {Y ′s}s∈S′′ . For simplicity of presenta-

tion we assume |S′′| = 2d
′
. By Theorem 2, the distribution of Ext(1)(W,S′′) is γ2−biased

for γ2 = 2
8
k · [2− d′k

2 · (k − 1) · (k − 3) · · · · · 1 · (1 − ϵ) + ϵ]
1
k . Let k = k′

2 = 4, then

γ2 = 2
8
4 · [2−2d′ · 3 · (1− ϵ) + ϵ]

1
4 . We note that Ext(1)(W,S′′) has the same distribution

as YS′′ . In particular, both random variables have the same bias. Therefore, we get

2
8
4 · [2−2d

′
· 3 · (1− ϵ) + ϵ]

1
4 ≥ bias(YS′′) >

1

24
,

Moreover, since 2d
′
= |S′′| > 213, we have

22 · [4 · 2−28 · 3 · (1− ϵ) + ϵ]
1
4 > 22 · [2−2d

′
· 3 · (1− ϵ) + ϵ]

1
4 >

1

24
.

That is,

2−38 > 2−4·2−20−ϵ
3(1−ϵ)·212 , (a)

where ϵ = 2−516+r and r = 4 + log 19.

On the other hand, we have 2−38 < 2−4·2−20−ϵ
3(1−ϵ)·210·22 , which is in contradiction to the

inequality (a). 2

Comparison. In Theorem 1, the seed length d and the source length n should satisfy
d ≥ 23

δ m + 2 log n with 0 < δ ≤ 1
2 . However, in the above construction, we have

d = 1.9 log n. We compare them in detail as follows.
Let n = 210, m = 1, and δ = 63

128 in Theorem 1, then it can be easily verified
that n ≥ 160

δ · m. To construct an explicit ((12 + δ) · n, 2−m)-non-malleable extractor
nmExt : {0, 1}n×{0, 1}d → {0, 1}m (that is, an explicit (1016, 1

2 )-non-malleable extractor
nmExt), by Theorem 1, the seed length d should satisfy d ≥ 23

δ ·m+ 2 log n = 46
63 + 66.

Moreover, when d ≤ 241, the precondition δ ≥ 10 · log(nd)
n in Theorem 1 is satisfied.

Meanwhile, by Theorem 3, the seed length d can just be 19. In this sense, our construction
is much better than that of [6].

Using the extractor with improved error estimation (see Theorem 2), we can also im-
prove the parameters of the explicit non-malleable extractor nmExt : {0, 1}n×{0, 1}d →
{0, 1}m constructed by Cohen et al. [6] below.

Theorem 4. Assume that

0 < 2log 3−2θ+4m+8 − 2log 3−n
2 +4+log d−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d−

n
2 +4+log d.

Then there exists an explicit (α, 2θ)-non-malleable extractor nmExt : {0, 1}n×{0, 1}d →
{0, 1}m.
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The proof is similar to that of Theorem 3. Please see Appendix A for details.

Due to the analysis of Section 3.4, we conclude that the above theorem is really an
improvement in the sense that the seed length here is shorter. Though the constrains
on the parameters in Theorem 4 are complex, we show some simplification in Appendix
B. How to further simplify the constraints is an open problem.

5 Application to Privacy Amplification

In this section, we show how the non-malleable extractor is applied to the privacy ampli-
fication protocol [8, 9] (also known as an information-theoretic key agreement protocol),
the formal concept of which can be seen in Appendix C.

Roughly speaking, in this scenario, Alice and Bob share a shared weak secret W ,
the min-entropy of which is only guaranteed. They communicate over a public and
unauthenticated channel to securely agree on a nearly uniform secret key R, where the
attacker Eve is active and computationally unbounded. To achieve this goal, the protocol
is designed as follows.

Alice: W Eve Bob: W

Sample random S.

S −→ S′

Sample random S0.

R′ = nmExt(W,S′).

T0 = MACR′ (S0).

Reach KeyDerived state.

Output RB = Ext(W,S0).

(S′
0, T

′
0)←− (S0, T0)

R = nmExt(W,S).

If T ′
0 ̸= MACR(S′

0), output RA = ⊥.
Otherwise, reach KeyConfirmed state,

and output RA = Ext(W,S′
0).

Table 1. The Dodis-Wichs privacy amplification protocol.

Assume that we’ll authenticate the seed S0. Alice initiates the conversation by trans-
mitting a uniformly random seed S to Bob. During this transmission, S may be modified
by Eve into any value S′. Then Bob samples a uniform seed S0, computes the authen-
tication key R′ = nmExt(W,S′), and sends S0 together with the authentication tag
T0 = MACR′(S0) to Alice. At this point, Bob reaches the KeyDerived state and out-
puts RB = Ext(W,S0). During this transmission, (S0, T0) may be modified by Eve into
any pair (S′0, T

′
0). Alice computes the authentication key R = nmExt(W,S) and verifies

that T ′0 = MACR(S
′
0). If the verification fails then Alice rejects and outputs RA = ⊥.

Otherwise, Alice reaches the KeyConfirmed state and outputs RA = nmExt(W,S′0).

The security can be analyzed in two cases [6, 8]. Case 1: Eve does not modified the
seed S in the first round. Then Alice and Bob share the same authentication key (i.e.,
R′ = R), which is statistically close to a uniform distribution. Therefore, Eve has only
a negligible probability of getting a valid authentication tag T ′0 for any seed S′0 ̸= S0.
Case 2: Eve does modify the seed S to a different seed S′. Since T0 is a deterministic
function of S0 and R′, Eve may guess R′. According to the definition of non-malleable
extractors, the authentication key R computed by Alice is still statistically close to a
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uniform distribution. Thus, again, the adversary has only a negligible probability of
computing a valid authentication T ′0 for any seed S′0 with respect to the authentication
key R. Consequently, the above protocol is secure.

Theorem 6. (see [6, 9]) Assume nmExt : {0, 1}n × {0, 1}d1 → {0, 1}m1 is a (α, γnmExt)-
non-malleable extractor, Ext : {0, 1}n × {0, 1}d2 → {0, 1}m2 is a strong (α − (d1 +
m1)− log 1

ϵ′ , γExt)-extractor, and {MACr : {0, 1}d2 → {0, 1}τ}r∈{0,1}m1 is a εMAC-secure
message authentication code. Then for any integers n and α ≤ n, the protocol in Table 1
is a 2-round (n, α,m, η)-privacy amplification protocol, with communication complexity
d1 + d2 + τ and η = max{ϵ′ + γExt, γnmExt + εMAC}.

The explicit non-malleable extractor in this paper can be applied to construct the
above privacy amplification protocol with low communication complexity.

6 Conclusion

Non-malleable extractor is a powerful theoretical tool to study privacy amplification
protocols, where the attacker is active and computationally unbounded. In this paper, we
improved the error estimation of Raz’s extractor using the combination and permutation
techniques. Based on the improvement, we presented an improved explicit construction
of non-malleable extractors with shorter seed length. Similar to [6], our construction
is also based on biased variable sequence for linear tests. However, our parameters are
improved. More precisely, we presented an explicit (1016, 1

2 )−non-malleable extractor
nmExt : {0, 1}1024×{0, 1}d → {0, 1} with seed length 19, while it is no less than 46

63 +66
according to Cohen et al. in CCC’12 [6]. We also improved the parameters of the general
explicit construction of non-malleable extractors proposed by Cohen et al. and analyzed
the simplification of the constraints on the parameters (see Appendix B for details).
How to further simplify the constraints is an open problem. Finally, we showed their
applications to privacy amplification protocol (or information-theoretic key agreement
protocol).
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A Proof of Theorem 4

Proof. The explicit construction we present is the extractor constructed in [20]. Alon
et al. [1] observed that for every k′, N ≥ 2, the sequence of 0-1 random variables
Z1, . . . , ZN that is ϵ-biased for linear tests of size k′ can be explicitly constructed using
2 · ⌈log(1/ϵ) + log k′ + log logN⌉ random bits. Therefore, let D = m · 2d and ϵ = 2−

n
2 +r

with r = 1+log k′+log logD, then we can construct a sequence of 0-1 random variables
Z1, . . . , ZD that is ϵ-biased for linear tests of size k′ using n random bits. Let k′ = 8m.
We interpret the set of indices [D] as the set {(i, s) : i ∈ [m], s ∈ {0, 1}d}. Define
Ext : {0, 1}n × {0, 1}d → {0, 1}m by Ext(w, s) = Z(1,s)(w) · · · ||Z(m,s)(w), where “||” is
the concatenation operator.

Let S be a random variable uniformly distributed over {0, 1}d.
Assume for contradiction that Ext is not a (α, 2θ)-non-malleable-extractor. Then

there exists a source W of length n with min-entropy α, and an adversarial-function
A : {0, 1}d → {0, 1}d such that

∥(Ext(W,S),Ext(W,A(S)), S)− (Um,Ext(W,A(S)), S)∥1 > 2θ.

As in [5], suppose W is uniformly distributed over W ′ ⊆ {0, 1}n of size 2α.
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For every s ∈ {0, 1}d, let Xs be the random variable Ext(W, s). By Lemma 2 and
3, we have

∑
∅≠σ⊆[m],τ⊆[m]

Es∼S [bias((Xs)σ ⊕ (XA(s))τ )] > 2θ. Let σ∗, τ∗ ⊆ [m] be the

indices of (one of) the largest summands in the above sum. For every s ∈ {0, 1}d, let
Ys = (Xs)σ∗ ⊕ (XA(s))τ∗ . There is a set S′′ ⊆ {0, 1}d satisfying that

|S′′| > 2θ · 2d−2

2mt(2m − 1)(t+ 1)2
=

2θ · 2d−2

2m+2(2m − 1)
.

The S′′ here is the same as that in the proof of Theorem 1 by replacing t there with 1
and the error 2−m there with 2θ. Please see [6] for details.

Define a random variable YS′′ over {0, 1} as follows: To sample a bit from YS′′ ,
uniformly sample a string s from S′′, and then independently sample a string w uniformly
from W ′. The sampled value is Ys(w). We have that

bias(YS′′) >
2θ

2mt+1(2m − 1)(t+ 1)
=

2θ

2m+2(2m − 1)
.

For every s ∈ S′′, let Y ′s = ⊕i∈σ∗Z(i,s) ⊕ (⊕j∈τ∗Z(j,A(s))).
Let t = 1 in Claim 7.2 of [6], we get the following claim.

Claim 2’. The set {Y ′s}s∈S′′ ϵ−fools linear tests of size k′

(t+1)m = 4.

We apply Theorem 2 on the random variables {Y ′s}s∈S′′ . For simplicity of pre-

sentation, we assume |S′′| = 2d
′
. By Theorem 2, the distribution of Ext(1)(W,S′′) is

γ2−biased for γ2 = 2
n−α

k · [2− d′k
2 · (k − 1) · (k − 3) · · · · · 1 · (1− ϵ) + ϵ]

1
k . Let k = 4, then

γ2 = 2
n−α

4 · [2−2d′ ·3 · (1− ϵ)+ ϵ]
1
4 . We note that Ext(1)(W,S′′) has the same distribution

as YS′′ . In particular, both random variables have the same bias. Therefore, we get

2
n−α

4 · [2−2d
′
· 3 · (1− ϵ) + ϵ]

1
4 ≥ bias(YS′′) >

2θ

2m+2(2m − 1)
.

Moreover, since 2d
′
= |S′′| > 2θ·2d−2

2m+2(2m−1) , we have

2
n−α

4 · [(2θ)−2 · 2−2d+2m+8 · (2m − 1)2 · 3 · (1− ϵ) + ϵ]
1
4 >

2θ

2m+2 · (2m − 1)
.

Hence, 2n−α · [2−2θ · 2−2d+4m+8 · 3 · (1− ϵ) + ϵ] > 24θ

28m+8 . That is,

2−2d >
24θ−8m−8−n+α − ϵ

3(1− ϵ)2−2θ+4m+8

with ϵ = 2−
n
2 +4+log d, which is in contradiction to the assumption of the theorem. 2

B Analysis of the assumption in Theorem 4

In order to construct an explicit non-malleable extractor, it’s enough to guarantee that
the parameters satisfies

0 < 2log 3 · (1− 2−
n
2 +4+log d) · 2−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d−

n
2 +4+log d. (b)

For simplicity, denote

A′ = log 3− 2θ + 4m+ 8, B′ = log 3− n

2
+ 4 + log d− 2θ + 4m+ 8,

C ′ = 2d+ 4θ − 8m− 8− n+ α, D′ = 2d− n

2
+ 4 + log d,
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then (b) holds ⇔ 0 < 2A
′ − 2B

′ ≤ 2C
′ − 2D

′
. We discuss what happens under the

assumption (b) in three cases as follows.

Case 1. Assume that A′ ≥ C ′ and B′ ≥ D′. Since “B′ ≥ D′” implies “A′ ≥ C ′”, we
only need to consider B′ ≥ D′ (i.e., log 3−2θ+4m+8 ≥ 2d). Let 1−ϵ = 1−2−

n
2 +4+log d =

2ρ
′
.

From log 3 + 8 + 4m ≥ 2d+ 2θ, α ≤ n, m ≥ 1, and θ < 0, we get

− 16 > −8m− 8 + 4θ − n+ α

= (log 3 + 8 + 4m) + 4θ − 12m− 16− log 3− n+ α

≥ 2d+ 2θ + 4θ − 12m− 16− log 3− n+ α.

Let ρ′ ≥ −16. Then we have ρ′ > 2d+ 2θ + 4θ − 12m− 16− log 3− n+ α.

Therefore, log 3+ρ′−2θ+4m+8 > 2d+4θ−8m−8−n+α, which is in contradiction
to the inequality (b).

Consequently, when ϵ ∈ (0, 1 − 2−16], A′ ≥ C ′, and B′ ≥ D′, (b) does not hold.
From Theorem 2, only if ϵ is small enough, the corresponding seeded extractor is useful.
Therefore, we assume that ϵ ∈ (0, 1− 2−16].

Case 2. Assume that A′ ≥ C ′ and B′ < D′, then it’s in contradiction to the inequal-
ity (b).

Case 3. Assume that A′ < C ′, then it’s trivial that B′ < D′. Thus, we only need to
consider A′ < C ′. Since A′ > B′, we have C ′ > D′, that is, 4θ−8m−12− n

2 +α > log d.

Therefore, we obtain the following corollary.

Corollary. Assume that ϵ = 2−
n
2 +4+log d ∈ (0, 1− 2−16] and

2log 3 · (1− 2−
n
2 +4+log d) · 2−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d−

n
2 +4+log d.

Then there exists an explicit (α, 2θ)-non-malleable extractor nmExt : {0, 1}n×{0, 1}d →
{0, 1}m.

In particular, the parameters of the non-malleable extractor can be chosen according
to the inequality system log 3− 6θ + 16 + 12m+ n− α < 2d

4θ − 8m− 12− n
2 + α > log d

2−
n
2 +4+log d ≤ 1− 2−16

(1)

then check whether they satisfy the inequality

2log 3−2θ+4m+8 − 2log 3−n
2 +4+log d−2θ+4m+8 ≤ 22d+4θ−8m−8−n+α − 22d−

n
2 +4+log d.

Remark. α can’t be less than n
2 , since 4θ − 8m− 12− n

2 + α > log d.

C The concept of privacy amplification protocol

Definition 7. (see [6, 9]) In an (n, α,m, η)-privacy amplification protocol ( or information-
theoretic key agreement protocol), Alice and Bob share a weak secret W , and have two
candidate keys rA, rB ∈ {0, 1}m∪⊥, respectively. For any adversarial strategy employed
by Eve, denote two random variables RA, RB as the values of the candidate keys rA, rB
at the conclusion of the protocol execution, and random variable TE as the transcript
of the (entire) protocol execution as seen by Eve. We require that for any weak secret
W with min-entropy at least α the protocol satisfies the following three properties:
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• Correctness: If Eve is passive, then one party reaches the state, the other party
reaches the KeyConfirmed state, and RA = RB .

• Privacy: Denote KeyDerivedA and KeyDerivedB as the indicators of the events in
which Alice and Bob reach the KeyDerived state, respectively. Then during the protocol
execution, for any adversarial strategy employed by Eve, if Bob reaches the KeyDerivedB
state then SD((RB, TE), (Um, TE)) ≤ η; if Alice reaches the KeyDerivedA state, then
SD((RA, TE), (Um, TE)) ≤ η.

• Authenticity: Denote KeyConfirmedA and KeyConfirmedB as the indicators of the
events in which Alice and Bob reach the KeyConfirmed state, respectively. Then, for any
adversarial strategy employed by Eve, it holds that

Pr[(KeyConfirmedA ∨ KeyConfirmedB) ∧RA ̸= RB ] ≤ η.


