
Millions of Millionaires:

Multiparty Computation in Large Networks

Mahdi Zamani

University of New Mexico

zamani@cs.unm.edu

Mahnush Movahedi

University of New Mexico

movahedi@cs.unm.edu

Jared Saia

University of New Mexico

saia@cs.unm.edu

Abstract

We describe a general Multi-Party Computation (MPC) protocol for arithmetic circuits

that is secure against a static malicious adversary corrupting up to a 1/7 fraction of the

parties. The protocol requires each party to send an average of O
(
m
n log3 n

)
bits, and compute

O
(
m
n log4 n

)
operations in a network of size n, where m is the size of circuit. This is achieved by

increasing latency from constant to O(d), where d is the depth of the circuit. Our protocol has

a setup phase that is independent of the circuit and relies on Threshold Fully Homomorphic

Encryption (TFHE). The setup requires each party to send Õ(κ2) messages and compute Õ(κ2)

operations, where κ is the security parameter. We provide results from microbenchmarks

conducted over a sorting network showing that our protocol may be practical for deployment

in large networks. For example, we consider a network of size 225 (over 33 million) where each

party has an input item of size 20 bytes. To securely sort the items, our protocol requires each

party on average to send 5 kilobytes per item sorted.

Keywords. Multiparty Computation; Byzantine fault tolerance; Threshold cryptography; Secret sharing.

1 Introduction

In secure Multi-Party Computation (MPC), a set of n parties, each having a secret value (input),

want to compute a common function represented as a circuit over their inputs, without revealing

the inputs to each other. This problem dates back to Yao [44] who proposed an algorithm for

two-party computation in the presence of a passive adversary that can only read the internal

state of the corrupted parties and their communication. Goldreich et al. [29] proposed the first

multi-party computation protocol that is secure against an active adversary who can make the

corrupted parties deviate from the protocol in any arbitrary fashion. In the last three decades,

a large body of work has been devoted to designing MPC protocols for the active adversarial

setting. Unfortunately, most of these protocols are inefficient for the case where the number of

parties is large.

In this paper, we specifically address the problem of MPC when the number of parties is large.

We believe this problem is of increasing importance with the growth of modern networks. For

example, how can peers in BitTorrent auction off resources without hiring an auctioneer? How

can we design a decentralized Twitter that enables provably anonymous broadcast of messages?

How can we perform data mining over data spread over large numbers of machines?

1

1.1 Our Results

We provide a general multiparty computation protocol with a communication complexity that is

polylogarithmic in the number of parties and linear in the size of circuit. We prove the following

main theorem (in Section B) under τ -Strong Diffie-Hellman (τ -SDH) and τ -polynomial Diffie

Hellman (τ -polyDH) hardness assumptions defined in Section 3, where τ ≤ (1/3− ε)N .

Theorem 1. Let f be any deterministic function over n inputs in Zp for prime p = poly(n), and

C be a circuit with m gates and depth d that computes f . There exists an n-party protocol that

securely computes f with the following properties:

• The protocol can tolerate up to t < (1/7− ε)n malicious parties.

• Each party sends O
(
m
n log3 n

)
messages and computes O

(
m
n log4 n

)
operations.

• The protocol has a setup phase that is secure in the CRS model and requires each party to
send Õ(κ2) messages and compute Õ(κ2) operations.

• Each message has O(log p) bits.

• The protocol has O(d) rounds of communication.

We also provide results from microbenchmarks for the problem of secure Multi-Party Sorting

(MPS). MPS is useful in many applications such as anonymous communication [38, 9], privacy-

preserving statistical analysis [22] (e.g., top-k queries [14]), auctions [45], and distributed intrusion

detection [32]. It is often important for these applications to be run among many parties. For

example, MPS is a critical component of communications algorithms that could enable the cre-

ation of large anonymous microblogging services without requiring trusted authorities (e.g., an

anonymous Twitter). Our microbenchmarks consider many large network sizes. For example, we

consider a network of size 225 (over 33 million) where each party has an input item of size 20

bytes. To securely sort the items, our protocol requires each party on average to send 5 kilobytes

per item sorted.

1.2 Technical Overview

A naive approach to solving MPC is for each party to divide its secret input into n pieces called

shares, which reveal nothing about the input. Each party then sends one share to each of the

other parties. In the next step, each party computes the circuit gate by gate over the shares and

broadcasts the result. Finally, each party computes the circuit output using the pieces it receives

at the end of the previous step.

Unfortunately, this algorithm does not always work correctly. Suppose C is an arithmetic

circuit. If C has only addition gates, the algorithm is correct. However, if C also contains

multiplication gates, there would likely be a problem. This is because most secret sharing schemes

are not multiplicatively homomorphic meaning that the product of two shares is not necessarily

a valid share of the product of the corresponding secrets. In the case where the secret-sharing

technique is not multiplicatively homomorphic, certain techniques are required to build a valid

2

share of the product. We are not aware of any such technique that can perform this, without

requiring further rounds of communication and for any number of multiplication gates.

One approach for solving MPC is to use Fully Homomorphic Encryption (FHE), which was

recently made practical by Gentry. [25]. In this approach, each party first encrypts its input

under an FHE scheme. The parties then evaluate the desired function on the encrypted data, and

finally perform a distributed decryption on the final encrypted data to get the results. Due to

the homomorphic properties of FHE, the decrypted value is the correct evaluation of the function

over the inputs. FHE-based MPC protocols are usually optimal in terms of round complexity,

however their computation cost is usually expensive. Current FHE schemes are very slow and

can only evaluate circuits of small depth.

Our goal is to reduce both communication complexity1 and computation complexity, and to

this end we make a trade-off between these complexities and latency. We are inspired by the

unconditionally-secure MPC algorithm of Dani et al. [21]. However, we make extensive use of

cryptographic tools in order to reduce costs in practice. We reduce the costs further by per-

forming local communications in polylogarithmic-size groups of parties called quorums, where

the number of adversary-controlled parties in each quorum is at most a certain fraction. The

quorums are created in a one-time setup phase that is secure in the Common Reference String

(CRS) model2. The setup phase uses the quorum building algorithm of Santoni et al. [13] and

the fully homomorphic encryption scheme of Brakerski et al. [12] to generate a number of param-

eters required for our protocol. Our online phase combines the circuit randomization technique

of Beaver [4] and the efficient verifiable secret sharing scheme of Kate et al. [33] to perform fast

computations on secret-shared values.

In our protocol, each gate of the circuit is assigned a quorum Q and the parties in Q are

responsible for computing the function associated with that gate. Then, they send the result of

this computation to any quorums associated with gates that need this result as input. Let Q′

be one such quorum. It is necessary to securely send the output from Q to Q′ without revealing

any information to any individual party (or to any coalition of adversarial parties). This is a

technically challenging problem.

Dani et al. [21] handle this problem by masking the result in Q and unmasking the result in

Q′. This method is expensive in practice since parties in Q′ need to reconstruct the masks jointly

for each input. Boyle et al. [11] handle this problem by sending all the inputs to only one quorum

which does all of the computation. This results in large computation and communication costs

for parties in that quorum.

We introduce a new solution for this problem. We let each party in Q hold shares of the inputs

to the gate associated with Q. Using homomorphic property of these shares, each party can run

the gate function on their input to evaluate a share of the output. It is essential that parties

in each quorum have a method to send the shares of the result to Q′. These shares cannot be

the same shares because this would leak information to the adversary after multiple steps. Thus,

in our algorithm, parties in Q jointly generate a fresh sharing of the output of the gate for Q′.

Performing this fresh sharing correctly is one of the main technical challenges of this paper; it is

1Communication complexity is the number of bits transferred in the network.
2An algorithm is secure in the CRS model if it assumes all parties have access to a common random string taken

from a predetermined distribution.

3

described as algorithm Reshare in Section 4.

1.3 Model

We consider a network of n parties whose identities are common knowledge. We assume there

is a private and authenticated communication channel between every pair of parties and the

communication is synchronous. Our protocol does not require the presence of any trusted third-

party, and we do not assume the existence of a reliable broadcast channel. We assume t <

(1/7− ε)n of the parties are controlled by a malicious adversary, for some fixed, positive constant

ε. We assume our adversary is computationally bounded with respect to a security parameter3

κ, and is actively trying to prevent the protocol from succeeding by attacking the privacy of the

parties, and the integrity of communications, by attempting to corrupt, forge, or drop messages.

We say that the parties controlled by the adversary are malicious and that the remaining parties

are semi-honest (or simply, honest) meaning that they are curious to learn about other parties’

secret information but they strictly follow the protocol. We finally assume that the adversary is

static meaning that it must select the set of dishonest parties at the start of the protocol.

The rest of this paper is organized as follows. In Section 2 we discuss related work. Prelim-

inaries are given in Section 3. In Section 4, we describe our protocol. The analysis is given in

Section B. We conclude and give problems for future work in Section 6.

2 Related Work

The MPC problem dates back to Yao [44]. The first generic solutions presented in [29, 16,

24] are based on cryptographic assumptions. This work was followed by some unconditionally-

secure schemes in late 1980s [7, 15, 37, 6, 30, 31, 5]. Unfortunately, these methods all have

poor communication scalability that prevents their wide-spread use. In particular, if there are n

parties involved in the computation and the function f is represented by a circuit with m gates,

then these algorithms require each party to send a number of messages and perform a number of

computations that is Ω(mn) (see [23, 28, 22]).

Recent years have seen exciting improvements in the cost of MPC when m is much larger

than n [17, 19, 18]. For example, Damgard et al. give an algorithm with computation and

communication cost that is Õ(m) plus a polynomial in n [18]. However, the additive polynomial

in n is large (e.g., Ω(n6)) and so these new algorithms are only efficient for relatively small n.

Thus, there is still a need for MPC algorithms that are efficient in both n and m.

Boyle et al. [11] describe a synchronous cryptographic protocol to solve MPC using quorums.

The algorithm is secure against an adversary that controls up to (1/3− ε) fraction of parties for

any fixed positive ε. Interestingly, the communication costs are independent of circuit size, which

is achieved by using a fully homomorphic encryption scheme. Unfortunately, the protocol is not

fully load-balanced as it evaluates the circuit using only one quorum (called supreme committee)

for performing general MPC. The protocol requires each party to send polylog(n) messages of size

Õ(n) bits and requires polylog(n) rounds.

3The security parameter controls the success probability of an adversary in breaking the security of our protocol
in any way.

4

Dani et al. [21] describe an algorithm for solving MPC in a similar model we consider in this

paper but with unconditional security. The algorithm creates logarithmic-size quorums using the

quorum building algorithm of [34]. For each gate in the circuit, a quorum is used to compute

the output of gate. The protocol ensures that all parties in the quorum learn the output of

gate masked with a value selected uniformly at random. Thus, no party learns any information

about the output, but the parties together have enough information to provide the input for

computation of the masked output of the next gate. This procedure is repeated to for every level

of gates in the circuit. At the top level of the circuit, the output of the function is computed and

is sent down to all parties through all-to-all communication between the quorums. This algorithm

has communication and computation complexity of Õ(m/n +
√
n) for each party. Although the

algorithm scales well, it has several hidden logarithmic factors that make it inefficient in practice.

3 Preliminaries

In this section, we define standard terms and notation used throughout the paper, and describe

the results we use in our protocol.

3.1 Notation

An event occurs with high probability, if it occurs with probability at least 1− 1/nc, for any c > 0

and all sufficiently large n. A function ε : N→ R+ is said to be negligible if ε(k) < 1/kc, for any

c > 0 and all sufficiently large k. A problem with solution S is computationally intractable with

respect to the security parameter κ, if for every adversary A given information I, the probability

Pr[A(I) = S] = ε(κ). We denote the set of integers {1, ..., n} by [n]. Let Zp denote the additive

group of integers modulo a prime p, Zp[x] denote all integer polynomials4 in variable x modulo p,

and Z∗p denote the multiplicative group of integers modulo p. Throughout the paper, we assume

g is a generator of the multiplicative group G of prime order p. We use the notation Ca to denote

an encryption of a plaintext a ∈ Zp ciphered by the encryption algorithm of Section 3.4, meaning

that Ca = Enc(a).

3.2 Verifiable Secret Sharing (VSS)

For η, τ ∈ N, where τ < η, an (η, τ)-secret sharing scheme is a pair of algorithms (Share, Recon-

struct) such that a dealer runs Share(s) to share a secret s among η parties, and any subset of

τ + 1 or more parties can compute s using Reconstruct, but no subset of τ or less parties can. An

(η, τ)-non-interactive verifiable secret sharing scheme is a tuple of algorithms (Share, Reconstruct,

Commit, Verify) such that (Share, Reconstruct) is an (η, τ)-secret sharing scheme, and

• there is no polynomial-time strategy for picking τ pieces of the secret, such that they can

be used to predict the secret with any perceivable advantage, and

• either Reconstruct outputs s in which case Verify outputs true, or honest parties conclude

that the dealer is malicious in which case Verify outputs false.

4i.e., polynomials with integer coefficients.

5

By Commit, the dealer commits to the set of shares that is constructed via Share, and by Verify,

the parties verify the commitments. In our protocol, we make extensive use of a verifiable secret

sharing protocol proposed by Kate et al. [33] called eVSS 5. This protocol uses Shamir’s secret

sharing scheme [41] along with a commitment scheme that is computationally-hiding under the

Discrete Logarithm (DL) assumption and computationally-binding under the τ -Strong Diffie-

Hellman (τ -SDH) assumption.

Definition 1. [DL Assumption] Given g, gx ∈ G, computing x is computationally intractable.

Definition 2. [τ-SDH Assumption] Let a ∈ Z∗p. Given g, ga, g(a
2), ..., g(a

τ) ∈ G, finding c ∈ Zp
and g1/(a+c) is computationally intractable.

Definition 3. [τ-polyDH Assumption] Let a ∈ Z∗p. Given g, ga, g(a
2), ..., g(a

τ) ∈ G, finding

φ(x) ∈ Zp[x] and gφ(a) is computationally intractable.

Boneh and Boyen [10] and Kate et al. [33] show that solving τ -SDH and τ -polyDH problems with

τ < O(3
√
p) each requires Ω(

√
p/τ) in expected time.

Theorem 2. [eVSS [33]] There exists a synchronous (η, τ)-non-interactive verifiable secret shar-

ing scheme for τ ≤ (1/2− ε)η secure under the DL, τ -SDH, and τ -polyDH assumptions. In worst

case, the protocol requires two broadcasts and four rounds of communication.

The eVSS scheme consists of a setup algorithm denoted by VSetup that generates an algebraic

structure and a public-private key pair required for the protocol. VSetup can be either run by a

trusted party or a distributed authority [33].

3.2.1 Sharing Phase

For simplicity, we assume algorithm VShare executes Share, Commit, and Verify respectively repre-

senting the verifiable sharing phase (Sh) of eVSS [33]. To share a secret α ∈ Zp among η parties,

a party (called dealer) runs VShare(s, η, τ) to picks a random polynomial φ ∈ Zp[x] of degree d

such that φ(0) = α, and sends each party Pi a share αi = φ(i), for all i ∈ [η].

Definition 4. [Sharing] Let φ ∈ Zp[x] be a degree d polynomial. A sharing of α ∈ Zp among

η parties is denoted by Sα =
〈
α1, ..., αη

〉
and is defined as a set of values (shares) α1, ..., αη ∈ Zp

such that αi = φ(i) is held by the i-th party and φ(0) = α.

Definition 5. [(η, τ)-Secrecy] Let τ be a positive integer and Sα =
〈
α1, ..., αη

〉
be a sharing of

α ∈ Zp among η parties. We say Sα has (η, τ)-secrecy if and only if given a set of at most τ shares

X, for every adversary A the probability Pr[A(X) = α] ≤ 1/p. Informally, this means Sα does

not reveal any information about the secret α. We denote such a sharing by S
(τ)
α =

〈
α1, ..., αη

〉
τ
.

Theorem 3. For positive integers η and τ , VShare generates a sharing with (η, τ)-secrecy if and

only if the adversary can learn up to τ shares. Also, VShare is zero-knowledge for any malicious

verifier.

Proof. We prove the secrecy property in Lemma 5. The zero-knowledge property is proved in [33].

5stands for efficient VSS.

6

3.2.2 Reconstruction Phase

During the secret reconstruction phase, any τ +1 or more parties send their accepted shares to all

other parties. In the malicious case, it is possible that dishonest parties send spurious shares, i.e.,

values that are different from values given to them in the sharing phase. In eVSS, this is solved by

asking all parties to broadcast a proof (called witness) during reconstruction to verify broadcast

shares [33]. In our protocol, the reconstruction phase is postponed to after circuit computation.

Since the witnesses are generated in the sharing phase at the beginning of the computation, and

they do not have necessary homomorphic properties, we cannot use them for consistency checking

in our reconstruction phase.

In this paper, we use a different reconstruction method that does not depend on witnesses. The

method is proposed by McEliece and Sarwate [36], and is based on the properties of Reed-Solomon

(RS) codes [39]. RS codes can be used along with Shamir’s scheme for detecting and correcting

up to η/3 − 1 errors in shares. Using an RS decoding algorithm, the secret can be successfully

recovered. In our protocol, we use the efficient RS decoder of Berlekamp and Welch [8].

Welch-Berlekamp Error Correction. Let Fp denote a finite field of prime order p, and

S = {(x1, y1) | xi, yi ∈ Fp}ηi=1 be a set of η points, where η − ε of them are on a polynomial

y = P (x) of degree τ , and the rest ε < (η− τ + 1)/2 points are erroneous. Given the set of points

S, the goal is to find the polynomial P (x). The algorithm proceeds as follows. Consider two

polynomials E(x) = e0 + e1x + ... + eεx
ε of degree ε, and Q(x) = q0 + q1x + ... + qkx

k of degree

k ≤ ε+ τ − 1 such that yiE(xi) = Q(xi) for all i ∈ [η]. This defines a system of η linear equations

with ε+k = η variables e0, ..., eε, q0, ..., qk that can be solved efficiently using Gaussian elimination

technique to get the coefficients of E(x) and Q(x). Finally, calculate P (x) = Q(x)/E(x).

3.3 Quorum Formation

Similar to [21], we reduce the amount of communication required for our protocol by creating

n groups of N = O(log n) parties called quorums, where at most T = (1/6 − ε)N − 1 of the

parties in each quorum are dishonest. Scalability is achieved by allowing parties of each quorum to

communicate only with members of the same quorum and members of a constant number of other

quorums. A Byzantine Agreement (BA) algorithm can be used to build a set of quorums [34, 13].

In this paper, we use the BA algorithm of Santoni et al. [13] for quorum formation.

Theorem 4. [13] There exists an unconditionally-secure protocol that brings all good parties to

agreement on n quorums with high probability. The protocol has amortized communication and

computation complexity 6 Õ(1) and runs in polylogarithmic time.

Reliable Broadcast. In the malicious model, when parties have only access to secure pairwise

channels, a protocol is required to ensure reliable broadcast. Such a broadcast protocol guarantees

all parties receive the same message even if the broadcaster is dishonest and sends different

messages to different parties. A BA protocol can be used to perform reliable broadcast. We use

6Amortized communication complexity is the total number of bits exchanged divided by the number of parties.
Since the protocol is not load-balanced, the amortized complexity is calculated, which is essentially the same as
per-party complexity for load-balanced protocols.

7

the BA algorithm of Santoni et al. [13] to perform broadcasts in our protocol. The following

theorem will be used in our protocol.

Theorem 5. [13] There exists an unconditionally-secure protocol for performing reliable broadcast

in a network with n parties connected via secure pairwise channels, where at most a 1/3 fraction of

the parties are malicious. The protocol has amortized communication and computation complexity

Õ(1) and runs in polylogarithmic time.

3.4 Fully Homomorphic Encryption (FHE)

An FHE scheme allows to perform non-interactive secure computation, which is very useful in

designing communication efficient MPC protocols. Gentry [25] proposed the first FHE scheme,

which is based on the hardness of lattice problems and is very computationally intensive. Although

in the past few years the efficiency of FHE schemes has been improved by several orders of

magnitude [43, 12, 26], current FHE schemes are still far from being used in practice.

The impracticality of current FHE schemes is primarily due to noise management techniques

(like bootstrapping) that are used to deal with a noise term in ciphertexts that increases slightly

with homomorphic addition and exponentially with homomorphic multiplication. On the other

hand, if the circuit has a sufficiently small multiplicative depth, then it is possible to use the

current FHE schemes in practice without using the expensive noise management techniques.

Such a scheme is sometimes called somewhat homomorphic encryption (SHE), which requires

significantly less amount of computation than an FHE with noise management.

Similar to Damgard et al. [20], we use SHE in a setup phase to generate multiplication triples

that can be used later to perform secure multiplication in constant number of rounds. In this

technique, SHE is only used to evaluate circuits of depth one and only in the setup phase. We

use the fast FHE scheme of Brakerski-Gentry-Vaikuntanathan (BGV) [12] that is based on ring

learning with error (R-LWE) assumption and provides an effective approach for controlling the

noise level of ciphertexts. LWE [40] is a post-quantum lattice problem that asks to recover a

secret given a sequence of approximate random linear equations on the secret. R-LWE is a special

case of LWE with practical key sizes and yet strong hardness guarantees [35]. In order to make

homomorphic computations of BGV faster, we use the ciphertext packing technique of Smart and

Vercauteren [42] and the optimizations of Gentry et al. [27].

Theorem 6. [12] There exists a fully homomorphic encryption public key cryptosystem E(D) =

(Gen, Enc, Dec, Eval) secure under the R-LWE assumption and against a semi-honest adversary

such that E(D) is homomorphic for all circuits of depth at most D, and all algorithms of the scheme

have computation complexity polynomial in the depth and size of the circuit and the security

parameter7.

In the case of a malicious adversary, a threshold FHE (TFHE) scheme is required, where is

replaced with a protocol TGen for agreeing on a common public key as well as a sharing of the

secret key and Dec is replaced with a threshold decryption protocol TDec. In this paper, we use

the TFHE scheme of Asharov et al. [2] that is based on the FHE construction of BGV.

7Such a scheme is also called a leveled FHE scheme with d be the maximum number of levels in the circuit.

8

Theorem 7. [2] There exists a threshold fully homomorphic encryption public key cryptosystem

T E(D) = (TGen, Enc, TDec, Eval) secure under the R-LWE assumption and against a static

malicious adversary corrupting t ≤ n parties such that T E(D) is homomorphic for all circuits of

depth ≤ D.

4 Our Protocol

In this section, we present our protocol for general MPC. Let f be a deterministic function

computed by an arithmetic circuit C of depth d and depth |C |. Let G1, ..., G|C | denoted the gates

of C , where instead of only + or ×, each gate G` ∈ C for ` ∈ [|C |] can compute an arithmetic

circuit CG` that has at most two inputs and at most two outputs8. In C , every gate with indegree

zero is called an input gate, and every gate with outdegree zero is called an output gate. Let

G1, ..., Gn be the input gates. Consider n parties P1, P2, ..., Pn with inputs x1, ..., xn ∈ Zp, who

want to jointly evaluate C over their inputs. Let denote the number of gates in C . Our main

algorithm proceeds as follows.

Algorithm 1 Main

1. Setup:

(a) Quorum Building : Parties run the quorum formation algorithm of Theorem 4 to agree
on n quorums Q1, ..., Qn. For all ` ∈ [|C |], gate G` is assigned to Q(` mod n).

For all i ∈ [N] and j ∈ [n], party Pi ∈ Qj performs the following:

(b) Key Generation: Pi runs algorithms TGen and VSetup.

(c) Triple Generation: Pi runs InitTriple to jointly create a sufficient number of multipli-
cation triples (ui, vi, wi).

2. Input Broadcast: For all i ∈ [n], party Pi runs VShare(xi, N, τ) in Qi associated with
input gate Gi, where τ = (1/3− ε)N .

3. Circuit Computation: The circuit C is evaluated level-by-level starting from the input
gates. For each gate G in C , the associated quorum QG computes CG in the following way.
Let

〈
α1, ..., αN

〉
τ

and
〈
β1, ..., βN

〉
τ

be the sharings associated with the inputs of G. For
each gate g in CG, and each party Pi ∈ QG,

(a) if g is an addition gate, then Pi computes γi = αi + βi,

(b) if g is a multiplication gate, then Pi runs γi = Multiply(αi, βi),

(c) if g is the output gate of CG with output value γi , then Pi runs Reshare(γi, QG′) for
the quorum associated with G′, which is the corresponding parent of G.

4. Output Propagation: Each party in each quorum associated with an output gate runs
z= Reconst(γi), and then runs Output(z).

8An arithmetic circuit is a directed acyclic graph, where every node with indegree zero is called an input gate
and every other gate is labeled by either + (called a addition gate) or × (called a multiplication gate).

9

In the rest of this section, we define various algorithms used in Main. Due to space limitations,

we only give the proof of some of the algorithms in this section. The rest of the proofs can be

found in Section B.

4.1 Setup

In our protocol, each gate G of the circuit is assigned a quorum that is in charge of computing

the function associated with G. Consider a quorum Q of N = O(log n) parties P1, P2, ..., PN with

inputs α1, ..., αN ∈ Zp respectively, who want to jointly compute a circuit CG corresponding to

a gate G of C , while ensuring no parties learn anything about the inputs other than what is

revealed from the output of the circuit. Throughout this section, we assume all parties belong to

Q unless otherwise stated.

As described in algorithm Main, inputs of G are securely shared in Q using VShare, and the

gate is evaluated over these secret-shared inputs. If G is an addition gate, then each party simply

computes a share of the output by adding the input shares. However, if G is a multiplication

gate, then the product of input shares is not necessarily a valid share of the product. We address

this by generating a set of multiplication triples for each quorum using FHE in the setup phase

similar to [20]. As a result of this procedure, each party Pi ∈ Q holds a sufficient number of

multiplication triples (ui, vi, wi), where ui and vi are shares of uniform random values u, v ∈ Zp
, and wi is a share of w = u · v. These shares are all computed using TFHE such that no party

learns anything about u , v , and w beyond their own shares. Algorithm InitTriple implements the

triple generation functionality.

Algorithm 2 InitTriple

Usage. Each party Pi jointly computes a triple (ui, vi, wi), where
〈
u1, ..., uN

〉
τ
,
〈
v1, ..., vN

〉
τ
, and〈

w1, ..., wN
〉
τ

are sharings of u, v, and w respectively, where u, v ∈ Zp are chosen uniformly at
random, w = u · v, and τ = (1/3− ε)N .

InitTriple():

1. For all i ∈ [N], party Pi chooses values ai, bi ∈ Zp uniformly at random, and broadcasts the
pair (Enc(ai),Enc(bi)).

2. Let {(Caj , Cbj)}Nj=1 be the set of pairs Pi receives from the previous step9. Pi computes

Cu =

N∑
j=1

Caj , Cv =

N∑
j=1

Cbj , and Cw = Cu · Cv.

Parties runs CipherShare(Cu), CipherShare(Cv), and CipherShare(Cw) to generate three shar-
ings 〈Cu〉τ , 〈Cv〉τ , and 〈Cw〉τ .

3. For all i ∈ [N], party Pi runs ui = DecPrivate(Cui), vi = DecPrivate(Cvi), and wi =
DecPrivate(Cwi).

9Throughout the paper, if the party receives less than N messages, it assumes a default value (in this case 0)
for unreceived messages. Clearly, the party always receives at least 2t messages from honest parties.

10

Algorithm 3 CipherShare

Usage. Initially, all parties in Q hold a common ciphertext Cu. Using the algorithm, parties jointly
convert Cu into a sharing

〈
Cu1 , ..., CuN

〉
τ
, where ui is an eVSS share of u ∈ Zp and τ = (1/3− ε)N .

CipherShare(Cu):

For all i ∈ [N],

1. Party Pi runs GenRand to jointly generate a sharing
〈
r1, ..., rN

〉
(τ−1) of a uniform random

value r ∈ Zp.

2. Pi computes Cui = Cu + Enc(i · ri). The party sends its share Cui to all parties in Q via
one-to-one communication.

3. Let Cu1 , ..., CuN be the messages Pi receives from the previous step. Pi runs the Welch-
Berlekamp algorithm to recover the correct polynomial φ′(x) of degree τ . For all j ∈ [N], if
φ′(j) 6= Cuj , then Pi concludes that Pj is dishonest, and ignores its share Cuj .

We now prove the correctness of CipherShare. From the correctness of GenRand, ri is a share of

a global random value r ∈ Zp. Let φ1(x) ∈ Zp[x] be a random polynomial of degree τ−1 such that

ri = φ1(i). Using φ1(x), we define a new polynomial φ2(x) ∈ Zp[x] such that φ2(x) = x · φ1(x).

Clearly, φ2(x) has degree τ and passes through the origin. Finally, we use φ2(x) to define a new

polynomial φ3(x) ∈ Zp[x] such that φ3(x) = w + φ2(x). It is clear that φ3(x) passes through

the point (0, w), and for all i ∈ [N], wi = φ3(i) is a valid eVSS share of w. Thus, using the

homomorphic properties of Enc,

Enc(w) + Enc(i) · Enc(ui) = Enc(w + i · ui) = Enc(w + φ1(i)) = Enc(wi).

Step 3 is correct because the Welch-Berlekamp algorithm (Section 3.2) can be represented as an

arithmetic circuit and thus, can be computed over cipher inputs using the homomorphic properties

of the TFHE scheme.

We define GenRand using a simple and well-known technique for generating uniformly random

secrets (as also used by Beaver [4]), which is done by adding shares of uniformly random secrets

received from all parties.

Algorithm 4 GenRand

Usage. Parties jointly generate a sharing
〈
u1, ..., uN

〉
τ

of a value u ∈ Z∗p chosen uniformly at
random.

GenRand(τ):

For all i ∈ [N],

1. Party Pi chooses ρi ∈ Z∗p uniformly at random, and runs VShare(ρi, N, τ) to generate a
sharing

〈
ρi1, ..., ρiN

〉
τ
.

2. Let ρ1i, ..., ρNi be the shares Pi receives from step 1. Pi computes ui =
∑N

j=1 ρji.

11

Algorithm 5 DecPrivate

Usage. Initially, all parties in Q hold a common ciphertext Cu. Using this algorithm, parties in Q
jointly decrypt Cu for a party Pj ∈ Q. Initially, each party Pi ∈ Q holds a share ski of the joint

secret key sk =
∑N

i=1 ski created by TGen during the setup phase of the protocol.

DecPrivate(Cu):

1. For all i ∈ [N], party Pi ∈ Q sends the pair (Cu, wi) to party Pj ∈ Q, where wi is calculated
using Cu and ski as in the first step of TDec (see algorithm TFHE.Dec of [2]).

2. Let {(C(1)u , w1), ..., (C(N)
u , wN)} be the set of pairs party Pj ∈ Q receives from the previous

step. From {C(1)u , ..., C(N)
u }, party Pj chooses the element with majority as Cu, and computes

the output using Cu and w1, ..., w` as in the second step of TDec (algorithm TFHE.Dec in [2]).

4.2 MPC in Quorums

In this section, we give the two main algorithms that are used by quorums in the online phase to

evaluate gates in the circuit. A product gates G associated with quorum Q and two shared inputs

α, β ∈ Zp is computed as follows. Let Pi be a party in Q, who holds αi and βi as the shares of α

and β respectively and let (ui, vi, wi) be a multiplication triple generated using InitTriple for Pi.

The party then uses the technique proposed by Beaver [4] for computing a share of the product

γ = α · β as described in algorithm Multiply.

Algorithm 6 Multiply

Usage. Initially, parties jointly hold two sharings
〈
α1, ..., αN

〉
τ

and
〈
β1, ..., βN

〉
τ

of secret values
α, β ∈ Zp respectively, where τ < (1/3 − ε)N . For i ∈ [N], each party Pi also hold a triple
(ui, vi, wi) generated during the setup phase of the protocol. The algorithm computes a new
sharing

〈
γ1, ..., γN

〉
τ

of γ ∈ Zp such that γ = α · β.

Multiply(αi, βi):

For all i ∈ [N], party Pi computes εi = αi + ui and δi = βi + vi and runs Reconst(εi) and
Reconst(δi) to learn ε and δ. Party Pi computes and returns γi = wi − δαi − εβi + εδ.

Clearly, ε and δ can be safely revealed to all parties so that each party can compute εδ locally.

Correctness and security of Multiply are proved by Beaver in [4]. Once the computation in Q is

finished, the parties in Q send the result to any quorums associated with gates that need this

result as input. Let Q′ be one such quorum. It is necessary to securely send the output from Q

to Q′ without revealing any information to any individual party or to any coalition of adversarial

parties. We refer to this problem as resharing, which is depicted in Figure 1 (in the figure, G

refers to the gate associated with Q and FG refers to the functionality of G). Algorithm Reshare

describes a simple technique reshare the output of Q in Q′.

12

𝛾𝑖
′

𝛼𝑖 𝛽𝑖

𝛾𝑖

𝛾𝑖 = 𝐹𝐺 𝛼𝑖 , 𝛽𝑖

𝑄

𝑄′

Figure 1: Resharing output of Q in Q′.

Algorithm 7 Reshare

Usage. Let Q be the quorum associated with gate G in circuit C , and Q′ be the quorum associated
with a parent of G in C . Initially, parties in Q hold a sharing Sγ =

〈
γ1, ..., γN

〉
τ

of a secret γ ∈ Zp
over φ ∈ Zp[x], where deg(φ) = (1/3− ε)N and τ = (1/3− ε)N − 1. Using this algorithm, parties
in Q jointly generate a fresh sharing of γ in Q′. More formally, they generate a new sharing
Sγ′ =

〈
γ′1, ..., γ

′
N

〉
τ

of a value γ′ ∈ Zp in Q′ such that γ′ = γ.

Reshare(γi, Q
′):

For all i ∈ [N],

1. Party Pi ∈ Q runs GenRand to jointly generate a sharing
〈
r1, ..., rN

〉
τ

of a uniform random
value r ∈ Zp over a polynomial ρ ∈ Zp[x], where deg(ρ) = deg(φ)− 1.

2. Pi ∈ Q computes γ′i = γi + i · ri, and sends γ′i to party Pi ∈ Q′.

We now prove the correctness of Reshare. Figure 2 shows a sketch of the proof. From the

correctness of GenRand, ri ∈ Zp is a share of a global random value r ∈ Zp. Let φo(x) = x · ρ(x).

Clearly, deg(φo) = deg(ρ) + 1 = deg(φ). Now, define φ′(x) = φ(x) + φo(x). Since φ(0) = γ and

φo(0) = 0, we have φ′(0) = γ. Hence, each party Pi can locally compute a new share of γ denoted

by γ′i from γ′i = γi + i · ri, where γ′i = φ′(i), γi = φ(i), and i · ri = φo(i). We prove the security of

Reshare in Appendix B.5.

4.3 Output Propagation

The last step of the protocol is to reconstruct the output values in output gates. This can be done

by polynomial interpolation and error-correcting techniques to recover possible spurious shares

sent by dishonest parties. Algorithm Reconst (Section A) implements this idea. Once the outputs

are reconstructed, the next step is to send them to all parties in the network. Initially, all parties

in the quorums associated with output gates hold the corresponding output values. The parties

send their values to all parties of quorum Q1. All parties in Q1 then send the value to other

quorums via a complete binary tree of quorums, rooted at Q1. Algorithm Output (Section A)

implements this idea.

13

𝑟

𝛾

𝜙 𝑥

𝜙0 𝑥 = 𝑥 ⋅ 𝜌 𝑥

𝜌 𝑥

𝜙′ 𝑥

𝜙′ 𝑥 = 𝜙 𝑥 + 𝜙0 𝑥

𝑥

𝑦

Figure 2: Resharing technique

5 Microbenchmarks

We now describe the microbenchmarks for our protocol. We use our protocol to solve the problem

of secure Multi-Party Sorting (MPS) over a large number network.

MPS can be performed efficiently using sorting networks. A sorting network is a network of

comparators. Each comparator has two input wires and two output wires. When two values enter

a comparator, it outputs the lower value on the top output wire, and the higher value on the

bottom output wire. Ajtai et al. [1] proposes an asymptotically-optimal (depth O(log n)) sorting

network called AKS. Unfortunately, the AKS network is not practical due to large constants

hidden in the depth complexity. Batcher [3] proposes an efficient and simple sorting network with

depth 1/2 log n(1 + log n) = O(log2 n). In our simulations, we use Batcher’s sorting network over

n inputs. Each input is provided by a different party. Each comparator gate in the network uses

the following simple arithmetic comparator formula.

Lemma 1. [Comparator Formula] Let F : Z2
p → Z2

p be a comparator function over two inputs

x1, x2 ∈ Zp, i.e.,

F (x1, x2) =

{
(x1, x2), if x1 ≥ x2
(x2, x1), otherwise

Then the following arithmetic formula over Zp computes (y1, y2) = F (x1, x2),

x3 = x1 · x−12 , b = x3 · x−13

y1 = b · x1 + (1− b) · x2 (1)

y2 = b · x2 + (1− b) · x1.

Proof. If x1 ≥ x2, then x3 = x1 · x−12 ≥ 1, and b = 1. Thus, y1 = x1 and y2 = x2. Second, if

x1 < x2, then x3 = x1 · x−12 = 0, and b = 0. Thus, y1 = x2 and y2 = x1.

14

10 15 20 25 30

2

4

6

8

10

12

10 15 20 25 30

2

4

6

8

10

12

Log number of parties

Lo
g

nu
m

be
r

of
 K

ilo
by

te
s

se
nt

Number of Kilobytes sent per party per sorted element

10 15 20 25 30

2.5

3

3.5

4

4.5

5

5.5

6

Log number of parties

Lo
g

nu
m

be
r

of
K

ilo
by

te
s

se
nt

Number of Kilobytes sent per party per sorted element (online phase)

Figure 3: Communication cost for multiparty sorting

The circuit is computed in Zp for a 160-bit prime p, with about 80-bit security. We set

parameters to ensure error probability of at most 10−5 for the quorum formation algorithm. We

ran the setup protocol once and then used the setup information to sort 100 vectors of random

values, i.e., the online protocol was repeated 100 times with the same setup parameters. Consider

n parties each with an arbitrary input from Zp. Let s be the total number of bits sent in the

setup phase, and c be the total number of bits sent in the online phase for sorting 100 vectors.

Let an be the average number of bits sent by each party for each sorted element received, in a

network of size n. This is calculated from an =
(
s+ c

)
/100n2.

We repeated the experiment for network sizes ranging from n = 210 to n = 230. Figure 3

depicts the log-log plot for an as n varies. In both plots, we give the average number of kilobytes

sent per party for each sorted element. In the left plot, we give an average that includes the entire

setup phase (Section 4.1). In the right plot, we give an average that does not include this the

setup phase.

For example, for sorting a vector of 225 elements of Zp in a network of size n = 225 (over

33 million parties), each party sends an average of 5 kilobytes10 per each element of the sorted

vector, as the left plot shows. The one-time setup for such a network requires an average of 21

kilobytes of communication per party. After this setup, the communication for the sorting of one

vector is an average of 5 kilobytes per party.

6 Conclusion and Open Problems

We have described a MPC protocol that is communication efficient even when the number of

parties is very large. Our protocol is robust against a static active adversary in the synchronous

communication model. The protocol requires a total communication of O(m log3 n) messages

and a total computation O(m log4 n) operations to evaluate a circuit with m gates and n in-

puts. There is also an initial setup phase with communication and computation complexity of

Õ(nκ2). We reduce communication and computation costs by performing local communication in

polylogarithmic-size groups of parties called quorums.

10i.e., 267 bits per each bit of the sorted vector

15

To examine performance of our protocol in practice, we performed microbenchmarks for the

problem of multiparty sorting (MPS) in large networks. The results indicate that even for very

large networks, it may be possible to jointly and securely sort. In particular, consider the situation

where the input and network sizes are 225 (over 33 million), and each input is 20 bytes in size. In

such a scenario, our protocol requires each party to send on average 5 kilobytes per item sorted.

Several open problems remain. First, can we improve performance even further by detecting

and blacklisting parties that exhibit adversarial behavior? We believe that such an approach could

lead to significant practical improvements. Second, can we adopt our results to the asynchronous

model of communication? We believe that this is possible for a suitably chosen upper bound on

the fraction of faulty parties. Finally, can we adopt our results to a model that is more in line with

fully-distributed peer-to-peer networks? In such networks, it is unlikely that each party knows

the identities of every other party (which is a standard assumption in the MPC model).

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combinatorica,
3(1):1–19, Jan. 1983.

[2] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Mul-
tiparty computation with low communication, computation and interaction via threshold
FHE. In D. Pointcheval and T. Johansson, editors, Advances in Cryptology – EUROCRYPT
2012, volume 7237 of Lecture Notes in Computer Science, pages 483–501. Springer Berlin
Heidelberg, 2012.

[3] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–May
2, 1968, spring joint computer conference, AFIPS ’68 (Spring), pages 307–314, New York,
NY, USA, 1968. ACM.

[4] D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum,
editor, Advances in Cryptology – CRYPTO ’91, volume 576 of Lecture Notes in Computer
Science, pages 420–432. Springer Berlin Heidelberg, 1991.

[5] Z. Beerliova and M. Hirt. Efficient multi-party computation with dispute control. In Theory
of Cryptography Conference, 2006.

[6] M. Ben-Or, R. Canetti, and O. Goldreich. Asynchronous secure computation. In Proceedings
of the Twenty-Fifth ACM Symposium on the Theory of Computing (STOC), 1993.

[7] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computing. In Proceedings of the Twentieth ACM Symposium on
the Theory of Computing (STOC), pages 1–10, 1988.

[8] E. Berlekamp and L. Welch. Error correction for algebraic block codes, US Patent 4,633,470,
Dec. 1986.

[9] R. Berman, A. Fiat, and A. Ta-Shma. Provable unlinkability against traffic analysis. In
A. Juels, editor, Financial Cryptography, volume 3110 of Lecture Notes in Computer Science,
pages 266–280. Springer Berlin Heidelberg, 2004.

16

[10] D. Boneh and X. Boyen. Short signatures without random oracles. In C. Cachin and J. Ca-
menisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture
Notes in Computer Science, pages 56–73. Springer Berlin Heidelberg, 2004.

[11] E. Boyle, S. Goldwasser, and S. Tessaro. Communication locality in secure multi-party
computation: how to run sublinear algorithms in a distributed setting. In Proceedings of the
10th theory of cryptography conference on Theory of Cryptography, TCC’13, pages 356–376,
Berlin, Heidelberg, 2013. Springer-Verlag.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic encryption without
bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, ITCS ’12, pages 309–325, New York, NY, USA, 2012. ACM.

[13] N. Braud-Santoni, R. Guerraoui, and F. Huc. Fast Byzantine agreement. In Proceedings of
the 2013 ACM Symposium on Principles of Distributed Computing, PODC ’13, pages 57–64,
New York, NY, USA, 2013. ACM.

[14] M. Burkhart and X. Dimitropoulos. Fast privacy-preserving top-k queries using secret shar-
ing. In Computer Communications and Networks (ICCCN), 2010 Proceedings of 19th Inter-
national Conference on, pages 1–7, Aug. 2010.

[15] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC),
pages 11–19, 1988.

[16] D. Chaum, I. Damg̊ard, and J. v. d. Graaf. Multiparty computations ensuring privacy of each
party’s input and correctness of the result. In A Conference on the Theory and Applications of
Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87, pages 87–119, London,
UK, UK, 1988. Springer-Verlag.

[17] I. Damg̊ard and Y. Ishai. Scalable secure multiparty computation. Advances in Cryptology
- CRYPTO 2006, pages 501–520, 2006.

[18] I. Damg̊ard, Y. Ishai, M. Krøigaard, J. Nielsen, and A. Smith. Scalable multiparty compu-
tation with nearly optimal work and resilience. Advances in Cryptology – CRYPTO 2008,
pages 241–261, 2008.

[19] I. Damg̊ard and J. Nielsen. Scalable and unconditionally secure multiparty computation. In
Proceedings of the 27th annual international cryptology conference on Advances in cryptology,
pages 572–590. Springer-Verlag, 2007.

[20] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat
homomorphic encryption. In Advances in Cryptology – CRYPTO 2012, volume 7417 of
Lecture Notes in Computer Science, pages 643–662. Springer, 2012.

[21] V. Dani, V. King, M. Movahedi, and J. Saia. Quorums quicken queries: Efficient asyn-
chronous secure multiparty computation. In M. Chatterjee, J.-n. Cao, K. Kothapalli, and
S. Rajsbaum, editors, Distributed Computing and Networking, volume 8314 of Lecture Notes
in Computer Science, pages 242–256. Springer Berlin Heidelberg, 2014.

17

[22] W. Du and M. J. Atallah. Secure multi-party computation problems and their applications: A
review and open problems. In Proceedings of the 2001 Workshop on New Security Paradigms,
NSPW ’01, pages 13–22, New York, NY, USA, 2001. ACM.

[23] K. Frikken. Secure multiparty computation. In Algorithms and theory of computation hand-
book, pages 14–14. Chapman & Hall/CRC, 2010.

[24] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure faut-tolerant protocols
and the public-key model. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, CRYPTO ’87, pages 135–155, London, UK, UK,
1988. Springer-Verlag.

[25] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st

annual ACM symposium on Theory of computing, STOC ’09, pages 169–178, New York, NY,
USA, 2009. ACM.

[26] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog over-
head. In Proceedings of the 31st Annual International Conference on Theory and Applications
of Cryptographic Techniques, EUROCRYPT’12, pages 465–482, Berlin, Heidelberg, 2012.
Springer-Verlag.

[27] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. Cryp-
tology ePrint Archive, Report 2012/099, 2012.

[28] O. Goldreich. Secure multi-party computation. Manuscript. Preliminary version, 1998.

[29] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings of
the nineteenth annual ACM symposium on Theory of computing, STOC ’87, pages 218–229,
New York, NY, USA, 1987. ACM.

[30] M. Hirt and U. Maurer. Robustness for free in unconditional multi-party computation. In
Advances in Cryptology – CRYPTO 2001, pages 101–118. Springer, 2001.

[31] M. Hirt and J. Nielsen. Upper bounds on the communication complexity of optimally resilient
cryptographic multiparty computation. Advances in Cryptology - ASIACRYPT 2005, pages
79–99, 2005.

[32] K. V. Jónsson, G. Kreitz, and M. Uddin. Secure multi-party sorting and applications. Cryp-
tology ePrint Archive, Report 2011/122, 2011.

[33] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials
and their applications. In Advances in Cryptology – ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security, volume
6477 of Lecture Notes in Computer Science, pages 177–194. Springer, 2010.

[34] V. King, S. Lonergan, J. Saia, and A. Trehan. Load balanced scalable Byzantine agreement
through quorum building, with full information. In International Conference on Distributed
Computing and Networking (ICDCN), 2011.

[35] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. In H. Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 1–23. Springer Berlin Heidelberg, 2010.

18

[36] R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes. Commun.
ACM, 24(9):583–584, Sept. 1981.

[37] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
STOC ’89, pages 73–85, New York, NY, USA, 1989. ACM.

[38] C. Rackoff and D. R. Simon. Cryptographic defense against traffic analysis. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing, STOC ’93, pages 672–681,
New York, NY, USA, 1993. ACM.

[39] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society
for Industrial and Applied Mathematics (SIAM), pages 300–304, 1960.

[40] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC
’05, pages 84–93, New York, NY, USA, 2005. ACM.

[41] A. Shamir. How to share a secret. Communications of the ACM (CACM), 22(11):612–613,
1979.

[42] N. Smart and F. Vercauteren. Fully homomorphic SIMD operations. Cryptology ePrint
Archive, Report 2011/133, 2011.

[43] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption
over the integers. In Proceedings of the 29th Annual International Conference on Theory
and Applications of Cryptographic Techniques, EUROCRYPT’10, pages 24–43, Berlin, Hei-
delberg, 2010. Springer-Verlag.

[44] A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, SFCS ’82, pages 160–164, Washington, DC, USA, 1982.
IEEE Computer Society.

[45] B. Zhang. Generic constant-round oblivious sorting algorithm for MPC. In X. Boyen and
X. Chen, editors, Provable Security, volume 6980 of Lecture Notes in Computer Science,
pages 240–256. Springer Berlin Heidelberg, 2011.

19

A Output Propagation Algorithms

Algorithm 8 Reconst

Usage. Initially, parties jointly hold a sharing
〈
u1, ..., uN

〉
τ

of a secret u ∈ Zp, where τ =
(1/3− ε)N . Using this algorithm, parties jointly reconstruct the secret, i.e., all parties learn the
value u.

Reconst(ui):

For all i ∈ [N],

1. Pi sends its share ui to all parties via one-to-one communication.

2. Let u1, ..., uN be the messages Pi receives from the previous step.

3. Pi computes a polynomial φ(x) using the Lagrange interpolation polynomial,

φ(x) =

τ∑
i=1

ui

τ∏
j=1,j 6=i

(x− j)(i− j)−1

4. For all j ∈ [N], if there exists at least one uj such that φ(j) 6= uj , then Pi runs the Welch-
Berlekamp algorithm to recover the correct polynomial φ′(x) of degree τ . For all j ∈ [k], if
φ′(j) 6= uj , then Pi concludes that Pj is dishonest and must be disqualified.

Algorithm 9 Output

Usage. Let {Q1, ..., Qn} be the set of all quorums. Initially, all parties in the quorum Q associated
with output gate G, hold a value z ∈ Zp. Using this algorithm, the parties in Q send z to all
parties in the network.

Output(z):

1. Each party in Q sends z to all parties in Q1.

2. Each party in Q1 considers the message with majority as z and send z to all parties in Q2

and Q3.

3. For all 2 ≤ i ≤ bn/2c, each party in quorum Qi receives z from Qbi/2cvia majority filtering.
Each party in Qi sends z to all parties in Q2i and Q2i+1.

B Correctness and Security Proofs

B.1 Proof of GenRand

Lemma 2. The algorithm GenRand generates a sharing
〈
u1,, uN

〉
τ

such that the distribution

of u is uniform over Zp, and u is independent of all other random numbers generated during

the protocol. Moreover, the distribution of each ui where i ∈ [N], is uniform over Zp, and ui is

independent of all other random numbers generated during the protocol.

20

Proof. Correctness and security of the algorithm are proved as follows.

Correctness. For all i ∈ [N], party Pi commits to ρi ∈ Zp by running VShare(ρi, N, τ). If Pi is

honest, then ρi and its shares are uniform random values, otherwise ρi and its shares can be any

spurious value. However, once Pi commits to ρi, the adversary can change neither ρi, its shares

nor
∑N

i=1 ρi. Let u =
∑N

i=1 ρi. The adversary cannot bias the distribution of u and its shares from

the uniform distribution because there exists at least one ρj such that it is chosen uniformly at

random by an honest party and its shares are also chosen uniformly at random by eVSS sharing

scheme. 11. The value u and its shares are independent of other random values generated during

the protocol because all honest parties choose their values independently. Finally, since eVSS

shares are additively homomorphic, ui =
∑N

j=1 ρji is a valid share of u =
∑N

i=1 ρi.

Security. Although the adversary has access to up to T ≤ τ shares of
〈
u
〉
τ
, based on the security

of eVSS scheme, it does not have enough information to reconstruct u.

Costs. The communication and computation cost of GenRand is equal to the communication and

computation cost of running N different instantiation of VShare(ρi, N, τ) algorithm. Thus, the

communication cost of GenRand is O(N3), and the computation cost of GenRand is O(N2 log p),

where log p is the size of Zp.

B.2 Proof of InitTriple

First, we prove u and v are uniform randoms, and they are common among all parties. By the

correctness of the broadcast protocol, all honest parties receive the pairs
{

(Caj , Cbj)
}N
j=1

. Let

u =
∑N

j=1 aj and v =
∑N

j=1 bj . Since Cai and Cbi are homomorphic ciphertexts,
∑N

j=1 Caj =

C∑N
j=1 aj

= Cu and
∑N

j=1 Cbj = C∑N
j=1 bj

= Cv. For all i ∈ [N], each honest party Pi chooses ai and

bi uniformly at random, so u and v are uniform randoms independent of the ai’s and bi’s sent by

all parties. The correctness of the rest of the algorithm is based on the correctness of CipherShare

and DecPrivate. Since DecPrivate is correct, step 3 of the algorithm reveals ui, vi, and wi only to

Pi. The CipherShare algorithm requires each party to calculate a random polynomial on encrypted

values. Lemma 3 shows how homomorphic properties of Enc can be applied to an eVSS sharing.

Steps 1 and 2 of the algorithm perform communications and computations over encrypted

values only so, they are secure based on the security of the encryption scheme. The security of

step 3 follows by the security of DecPrivate. Finally, although the adversary has access to up to

T ≤ τ shares of each sharing 〈u〉τ , 〈v〉τ , and 〈w〉τ , based on the security of eVSS scheme, it does

not have enough information to reconstruct u, v, and w, respectively. The communication cost

of InitTriple can be computed based on the cost of CipherShare and DecPrivate. Thus, it is equal

to poly(N)polylog(N).

Lemma 3. For any τ < (1/3−ε)N , if
〈
w1, ..., wN

〉
τ

is a sharing of w ∈ Zp, then
〈
Enc(w1), ...,Enc(wN)

〉
τ

is a sharing of Enc(w).

Proof. Let φ(x) ∈ Zp[x] be the polynomial representing the sharing
〈
w1, ..., wN

〉
τ
. This means

that φ(x) passes through the point (0, w), and φ(i) = wi. We define a new polynomial φ′(x) =

11The sum of two or more values from Z∗p is always a uniform random value if at least one of them is chosen
uniformly at random

21

Enc(φ(x)). Using the homomorphic properties of Enc, we have φ′(i) = Enc(wi), thus φ′(0) =

Enc(w).

B.3 Proof of CipherShare

We have already proved the correctness in Section 4.1. Based on the security of GenRand, and

the security of theorem 7, Cw and Cui , and computations on them are secure. Moreover, we need

to prove that the adversary cannot decrypt the ciphertexts. Let φ1(x) ∈ Zp[x] be a random

polynomial of degree τ − 1 such that ri = φ1(i). Using φ1(x), we define a new polynomial

φ2(x) ∈ Zp[x] such that φ2(x) = x.φ1(x). Clearly, φ2(x) has degree τ , and passes through the

origin. Finally, we use φ2(x) to define a new polynomial φ3(x) ∈ Zp[x] such that φ3(x) = γ+φ2(x).

It is clear that φ3(x) passes through the point (0, γ). Using the additive homomorphic property

of eVSS secret sharing, φ3(i) = γi + φ2(i). Thus, for all i ∈ [N], γ′i = φ3(i) is a valid eVSS share

of γ′ = γ.

Based on the correctness and security of GenRand, the value r and its shares are uniformly

random and independent of any value in the protocol, and they generate a random polynomial

φ1(x) of degree τ − 1. φ2(x) = x.φ1(x) is a new polynomial of degree τ. In this case at most

T + 1 < τ/3 of the shares of this new polynomial is revealed to the adversary because dishonest

parties can generate T shares in addition to the known fact that φ2(x) passes through the origin.

Thus, there is absolutely nothing the adversary can learn about φ2(x). The same argument is valid

for φ3(x). The communication cost of CipherShare is equal to the communication cost of GenRand

plus N2 extra messages sent in step 2 of the algorithm. The computation cost of CipherShare is

equal to the computation cost of GenRand plus poly(N) evaluations on encrypted data in step 3.

Thus, the computation cost of CipherShare is equal to Õ(κ+ log p).

B.4 Proofs of DecPrivate and Reconst

Proof. [DecPrivate] Based on the result of [2], DecPrivate is correct and secure, its communication

cost is N , and its computation cost is Õ(κ).

Proof. [Reconst] The correctness and security of Reconst follows from the correctness of Lagrange

interpolation and Welch-Berlekamp decoding algorithm [8, 36]. It is easy to see that the com-

munication cost of Reconst is O(N2), and the communication cost of Reconst is O(N4) based on

Lemma 4.

Lemma 4. [Welch-Berlekamp] Given a set of η points S =
{

(x1, y1) | xi, yi ∈ Fp
}η
i=1

as

input, the Welch-Berlekamp algorithm (Section 3.2) can be represented as an arithmetic circuit

of multiplicative depth poly(η) with computation cost of O(η3).

B.5 Proof of Reshare

We have already proved the correctness of Reshare in Section 4.2. Theorem 8 shows the security

of Reshare. We first describe a few lemmas that are later used in the proof of Theorem 8.

22

Lemma 5. Let φ ∈ Zp[x] and the adversary know c ≤ deg(φ) points on φ. Consider a sharing

Sα =
〈
φ(1), ..., φ(η)

〉
among η parties. Sα has (η, τ)-secrecy if and only if the adversary can learn

at most τ ≤ deg(φ)− c shares via any coalition of malicious parties.

Proof. In order to uniquely reconstruct a polynomial of degree d ≥ τ , at least d+1 ≥ τ +1 points

are required. However, the adversary has access to at most c+ τ ≤ deg(φ) points on φ. Since all

elements of Zp are equally likely to be the missing point, the adversary has at most 1/p chance to

guess the correct point and uniquely reconstruct the polynomial. Therefore based on Definition 5,

Sα does not reveal anything about α = φ(0) to the adversary.

Corollary 1. If Sα is a sharing with (η, τ)-secrecy, then it also has (η, τ ′)-secrecy, where τ ′ < τ .

Lemma 6. If Sα =
〈
α1, ..., αη

〉
and Sβ =

〈
β1, ..., βη

〉
are sharings with (η, τ1)-secrecy and (η, τ2)-

secrecy respectively, then Sγ =
〈
α1 + β1, ..., αη + βη

〉
has (η, τ3)-secrecy, where τ3 = min(τ1, τ2).

Proof. Let φα, φβ, φγ ∈ Zp[x] be the polynomials associated with Sα, Sβ, and Sγ respectively.

From Corollary 1, Sα and Sβ both have (η, τ3)-secrecy. Without loss of generality assume that

the adversary learns a set of at most τ3 points Sφα =
{(
xi, φα(xi)

)}τ3
i=1

on φα as well as a set of

at most τ3 points Sφβ =
{(
xi, φβ(xi)

)}τ3
i=1

on φβ. The only information the adversary is given

about φγ is a set of at most τ3 points Sφγ =
{
φγ(xi) = φα(xi) + φβ(xi)

}τ3
i=1 on φγ . Thus based

on Lemma 5, Sγ has (η, τ3)-secrecy.

Lemma 7. Let φ1, φ2 ∈ Zp[x] be arbitrary polynomials. φ2(x) = x ·φ1(x) if and only if φ2(0) = 0.

Proof. If φ2(x) = x · φ1(x), then φ2(0) = 0. Assuming d = deg(φ2), we write φ2(x) = a0 + a1x+

...+adx
d. If φ2(0) = 0, then a0 = 0 and there exists a polynomial φ1(x) = a1+ ...+adx

d−1 ∈ Zp[x]

such that φ2(x) = x · φ1(x).

Lemma 8. Let φ1 ∈ Zp[x], deg(φ1) ≥ τ , and φ2(x) = x · φ1(x). If
〈
φ1(1), ..., φ1(η)

〉
has (η, τ)-

secrecy, then
〈
φ2(1), ..., φ2(η)

〉
also has (η, τ)-secrecy.

Proof. Clearly, deg(φ2) ≥ τ + 1. Let Sτ be a set of at most τ points of φ1 the adversary learns

via a coalition of at most τ malicious parties. By Lemma 7, the only information the adversary

learns about φ2 is a set of at most τ + 1 points Sτ ∪
{

(0, 0)
}

. Hence, by Lemma 5 the adversary

cannot reconstruct φ2, i.e.,
〈
φ2(1), ..., φ2(η)

〉
has (η, τ)-secrecy.

Theorem 8. [Security of Reshare] Let Q be a quorum of size N that holds a sharing Sγ =〈
γ1, ..., γN

〉
τ

of a secret γ over φ ∈ Zp[x], where deg(φ) = (1/3 − ε)N and τ = (1/3 − ε)N − 1.

Also, let Sγ′ =
〈
γ′1, ..., γ

′
N

〉
τ

be a new sharing of γ correctly generated by Reshare in a quorum Q′

of size N . Algorithm Reshare is secure against an adversary corrupting up to T = (1/6− ε)N − 1

parties in each of Q and Q′.

Proof. Let ρ ∈ Zp[x] be the polynomial associated with Sr =
〈
r1, ..., rN

〉
generated in the first

step of Reshare. Since deg(φ) = (1/3 − ε)N = τ + 1, based on Lemma 5, Sγ has (N, τ)-secrecy.

Since deg(ρ) = deg(φ)−1 = τ , based on Lemma 5, Sr also has (N, τ)-secrecy meaning that at least

τ = (1/3− ε)N − 1 shares are required to reconstruct r. Since at most (1/6− ε)N − 1 < τ parties

are malicious in Q, the adversary learns nothing about r. Using Lemma 8 and Sr, the second

23

step of Reshare constructs a new sharing
〈
o1, ..., oN

〉
τ
, such that oi = i · ri, for all i ∈ [N]. Finally,

using Lemma 6 the algorithm constructs a new sharing Sγ′ = 〈γ′1, ..., γ′N 〉τ such that γ′i = γi + oi,

for all i ∈ [N]. Since Sγ′ has (N, τ)-secrecy, at least τ shares are required to reconstruct γ′. Since

only at most (1/6 − ε)N − 1 < τ parties are malicious in Q, the adversary learns nothing about

γ′ (Lemma 5).

Based on the correctness of Reshare, γ′ = γ. Via a coalition of at most 2T malicious parties in

Q and Q′, the adversary can learn up to 2T shares of γ. Since Sγ has (N, τ)-secrecy, Sγ′ has

(N, τ − 1)-secrecy, and 2T = (1/3 − ε)N − 2 = τ − 2 < τ , the last step of the algorithm reveals

nothing about γ (Lemma 5).

Based on the correctness and security of GenRand invoked in the first step of Reshare, r and its

shares are uniformly random and independent of any other value used in the protocol. For all

i ∈ [N], since ri is independent of γi, we can conclude that γ′i is independent of γi.

Cost. The communication and computation cost of Reshare is equal to the communication and

computation cost of GenRand plus N extra messages/operations.

B.6 Proof of Output

The correctness follows by induction. Based on the correctness of Reconst algorithm, all honest

parties in the quorum associated with the output gate hold the correct value of z. By Lemma 9,

honest parties in Q1 receive z from the output quorum. Consider this as the base case for our

proof. Suppose z has been learned by all honest parties in quorum Qj , for all j < i. Consider the

parties in Qi. By induction hypothesis, all honest parties in quorum bi/2c have learned z. Thus,

all honest parties in quorum bi/2c send z to all parties in Qi. By Lemma 9, all honest parties in

Qi learn z via majority filtering. This completes the induction. It is clear that the communication

and computation costs of Output is O(nN2).

Lemma 9. If all honest parties in Q sends a common message z ∈ Zp to all parties in quorum

Q′, then z is received by all honest parties in Q′.

Proof. The majority of the parties in each quorum are honest. In particular. Thus, the majority

of the parties in Q send z to each party in Q′. It follows that each honest party in Q′ must receive

z from the majority of the parties of Q.

B.7 Proof of Main

In the following, we prove algorithm Main and our main theorem (Theorem 1).

Setup. The correctness and security follows the proof of Theorems 4, 7, and 2, and the InitTriple

algorithm. Since T = (1/6− ε)N − 1 and τ = (1/3− ε)N , we have T < τ .

Input Broadcast. The correctness and security follows the proof of VShare(xi, N, τ) in Qi since

T < τ because T = (1/6 − ε)N − 1 and τ = (1/3 − ε)N . After this phase, each Qi has

a correct sharing of Pi’s input. This is the base case for our proof of circuit computation

phase.

24

Circuit Computation. Correctness. We prove by induction in the real-ideal model. The in-

variant is that if the input shares are correct, then the output of each gate is equal to the

output of the gate if the it is evaluated by a trusted party in the ideal model, and the result

shared between parties correctly. For the base case, note that the invariant is true for input

gates. Induction step is based on the correctness of γi = Multiply(αi, βi) and γi = αi + βi.

Moreover, based on the correctness of Reshare(γi), the third step only refreshes the sharing,

and does not change the value of γ.

Security. We prove by induction that the adversary cannot obtain any information about

the inputs and outputs during the computation of each gate of C . Let Q1, Q2, and Q3 be

the quorums involved in computation of a gate G, where Q1 and Q2 provide the inputs to

Q3, and Q3 computes the functionality of G. Consider any party P in the network. Let S

be the set of all shares P receives during the protocol. We consider two cases. First, if party

P /∈ (Q1 ∪ Q2 ∪ Q3), then elements of S are independent of the shares Q1 and Q2 send to

Q3 as input. Moreover, elements of S are independent of Q3’s output before it sends fresh

shares of the output to the parent quorums. Hence, S reveals no information about the

inputs and outputs of G to dishonest parties.

Second, if party P ∈ (Q1 ∪ Q2 ∪ Q3), then the inductive invariant is that the combination

of the shares held by dishonest parties in Q1, Q2, and Q3 does not give the adversary any

advantage. As the base case, it is clear that the invariant is valid for input gates. Induction

step is as follows. Consider the worst case when inputs and outputs are the same (this

happens for example when G is an identity gate). In this case, the adversary can obtain

at most 3T < (1/3 − ε)N − 3 = τ − 3 shares of any secret value during the computation

phase. By the security of eVSS, at least τ + 1 shares are required for reconstructing the

secret. So, the re-sharing process to feed inputs to Q3 does not reveal any information to the

adversary. Since, eVSS shares are secure under addition and Multiply is secure, the security

of computation phase is proved.

Output Propagation. Once the computation phase of an output gate is finished, each party

Pi of the quorum associated with the gate holds a share γi of the output value 〈γ〉τ , where

i ∈ [N]. Since the number of honest parties in the quorum is N−T = N−(1/6−ε)N+1 > τ ,

honest parties have enough information to reconstruct the output value via Reconst(γi) and

propagate it via Output(z). The correctness and security of output propagation follows from

the proofs of Reconst(γi) and Output(z).

Costs. The communication and computation costs for the setup phase is equal to the cost of

the quorum formation algorithm of Theorem 4 (Õ(1) for each parties) plus the cost of TGen,

VSetup, and InitTriple that are executed for each of the n quorums by their N = O(log n) parties.

TGen communication cost is O(N2polylog(N)Dκ2), and its computation cost is O(N3Dκ2), where

D = poly(N) is the multiplication depth of the circuit corresponding to the Welch-Berlekamp

algorithm. Assuming the CRS model, algorithm VSetup has no communication cost, but the

computation cost is O(N). Based on the costs of InitTriple, the communication cost of the setup

phase is Õ(nκ2), and its computation cost is Õ(nκ2), assuming p = poly(n).

25

The communication cost the Input Broadcast phase is equal to the communication cost of run-

ning n different instantiation of VShare(ρi, N, τ). Therefore, the communication cost is equal

to O(n log2 n), and the communication cost is O(n log2 n). The communication cost for the

Circuit Computation phase is equal to the communication and computation cost of running m

different instantiation of Multiply and Reshare, assuming each gate has constant number of mul-

tiplication operations in its circuit. Hence, the communication complexity is O(m log3 n), and

the computation complexity is O(m log4 n). The communication cost for the Output Propagation

phase is equal to the communication and computation cost of running different instantiation of

Reconstruct and Output for each output gate. Thus, its communication and computation costs

are equal to O(n log2 n) for one output gate. Assuming one output gate and constant number of

multiplication in each gate, the communication cost for the online phase is equal toO(m log3 n),

and the computation cost for online phase is O(m log4(n)).

26

