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Abstract. This paper sets new speed records for high-security constant-
time variable-base-point Diffie–Hellman software: 305395 Cortex-A8-slow
cycles; 273349 Cortex-A8-fast cycles; 88916 Sandy Bridge cycles; 88448
Ivy Bridge cycles; 54389 Haswell cycles. There are no higher speeds in
the literature for any of these platforms.

The new speeds rely on a synergy between (1) state-of-the-art formulas
for genus-2 hyperelliptic curves and (2) a modern trend towards vector-
ization in CPUs. The paper introduces several new techniques for efficient
vectorization of Kummer-surface computations.
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1 Introduction

The Eurocrypt 2013 paper “Fast cryptography in genus 2” by Bos, Costello,
Hisil, and Lauter [17] reported 117000 cycles on Intel’s Ivy Bridge microarchi-
tecture for high-security constant-time scalar multiplication on a genus-2 Kum-
mer surface. The eBACS site for publicly verifiable benchmarks [13] confirms
119032 “cycles to compute a shared secret” (quartiles: 118904 and 119232) for
the kumfp127g software from [17] measured on a single core of h9ivy, a 2012
Intel Core i5-3210M running at 2.5GHz. The software is not much slower on
Intel’s previous microarchitecture, Sandy Bridge: eBACS reports 122716 cycles
(quartiles: 122576 and 122836) for kumfp127g on h6sandy, a 2011 Intel Core
i3-2310M running at 2.1GHz. (The quartiles demonstrate that rounding to a
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multiple of 1000 cycles, as in [17], loses statistically significant information; we
follow eBACS in reporting medians of exact cycle counts.)

The paper reported that this was a “new software speed record” (“breaking
the 120k cycle barrier”) compared to “all previous genus 1 and genus 2 imple-
mentations” of high-security constant-time scalar multiplication. Obviously the
genus-2 cycle counts shown above are better than the (unverified) claim of 137000
Sandy Bridge cycles by Longa and Sica in [40] (Asiacrypt 2012) for constant-
time elliptic-curve scalar multiplication; the (unverified) claim of 153000 Sandy
Bridge cycles by Hamburg in [34] for constant-time elliptic-curve scalar mul-
tiplication; the 182708 cycles reported by eBACS on h9ivy for curve25519, a
constant-time implementation by Bernstein, Duif, Lange, Schwabe, and Yang
[11] (CHES 2011) of Bernstein’s Curve25519 elliptic curve [9]; and the 194036
cycles reported by eBACS on h6sandy for curve25519.

One might conclude from these figures that genus-2 hyperelliptic-curve cryp-
tography (HECC) solidly outperforms elliptic-curve cryptography (ECC). How-
ever, two newer papers claim better speeds for ECC, and a closer look reveals a
strong argument that HECC should have trouble competing with ECC.

The first paper, [44] by Oliveira, López, Aranha, and Rodŕıguez-Henŕıquez
(CHES 2013 best-paper award), is the new speed leader in eBACS for non-
constant-time scalar multiplication; the paper reports a new Sandy Bridge speed
record of 69500 cycles. Much more interesting for us is that the paper claims
114800 Sandy Bridge cycles for constant-time scalar multiplication, beating [17].
eBACS reports 119904 cycles, but this is still faster than [17].

The second paper, [24] by Faz-Hernández, Longa, and Sánchez, claims 92000
Ivy Bridge cycles or 96000 Sandy Bridge cycles for constant-time scalar mul-
tiplication; a July 2014 update of the paper claims 89000 Ivy Bridge cycles or
92000 Sandy Bridge cycles. These claims are not publicly verifiable, but if they
are even close to correct then they are faster than [17].

Both of these new papers, like [40], rely heavily on curve endomorphisms to
eliminate many doublings, as proposed by Gallant, Lambert, and Vanstone [27]
(Crypto 2001), patented by the same authors in [28] and [29], and expanded by
Galbraith, Lin, and Scott [26] (Eurocrypt 2009). Specifically, [44] uses a GLS
curve over a binary field to eliminate 50% of the doublings, while also taking
advantage of Intel’s new pclmulqdq instruction to multiply binary polynomials;
[24] uses a GLV+GLS curve over a prime field to eliminate 75% of the doublings.

One can also use the GLV and GLS ideas in genus 2, as explored by Bos,
Costello, Hisil, and Lauter starting in [17] and continuing in [18] (CHES 2013).
However, the best GLV/GLS speed reported in [18], 92000 Ivy Bridge cycles,
provides only 2105 security and is not constant time. This is less impressive than
the 119032 cycles from [17] for constant-time DH at a 2125 security level, and
less impressive than the reports in [44] and [24].

The underlying problem for HECC is easy to explain. All known HECC ad-
dition formulas are considerably slower than the state-of-the-art ECC addition
formulas at the same security level. Almost all of the HECC options explored in
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[17] are bottlenecked by additions, so they were doomed from the outset, clearly
incapable of beating ECC.

The one exception is that HECC provides an extremely fast ladder (see Sec-
tion 2), built from extremely fast differential additions and doublings, consider-
ably faster than the Montgomery ladder frequently used for ECC. This is why
[17] was able to set DH speed records.

Unfortunately, differential additions do not allow arbitrary addition chains.
Differential additions are incompatible with standard techniques for removing
most or all doublings from fixed-base-point single-scalar multiplication, and
with standard techniques for removing many doublings from multi-scalar mul-
tiplication. As a consequence, differential additions are incompatible with the
GLV+GLS approach mentioned above for removing many doublings from single-
scalar multiplication. This is why the DH speeds from [17] were quickly super-
seded by DH speeds using GLV+GLS. A recent paper [22] (Eurocrypt 2014) by
Costello, Hisil, and Smith shows feasibility of combining differential additions
and use of endomorphisms but reports 145000 Ivy Bridge cycles for constant-
time software, much slower than the papers mentioned above.

1.1. Contributions of this paper. We show that HECC has an important
compensating advantage, and we exploit this advantage to achieve new DH speed
records. The advantage is that we are able to heavily vectorize the HECC ladder.

CPUs are evolving towards larger and larger vector units. A low-cost low-
power ARM Cortex-A8 CPU core contains a 128-bit vector unit that every two
cycles can compute two vector additions, each producing four sums of 32-bit
integers, or one vector multiply-add, producing two results of the form ab + c
where a, b are 32-bit integers and c is a 64-bit integer. Every cycle a Sandy
Bridge CPU core can compute a 256-bit vector floating-point addition, producing
four double-precision sums, and at the same time a 256-bit vector floating-point
multiplication, producing four double-precision products. A new Intel Haswell
CPU core can carry out two 256-bit vector multiply-add instructions every cycle.
Intel has announced future support for 512-bit vectors (“AVX-512”).

Vectorization has an obvious attraction for a chip manufacturer: the costs
of decoding an instruction are amortized across many arithmetic operations.
The challenge for the algorithm designer is to efficiently vectorize higher-level
computations so that the available circuitry is performing useful work during
these computations rather than sitting idle. What we show here is how to fit
HECC with surprisingly small overhead into commonly available vector units.
This poses several algorithmic challenges, notably to minimize the permutations
required for the Hadamard transform (see Section 4). We claim broad applica-
bility of our techniques to modern CPUs, and to illustrate this we analyze all
three of the microarchitectures mentioned in the previous paragraph.

Beware that different microarchitectures often have quite different perfor-
mance. A paper that advertises a “better” algorithmic idea by reporting new
record cycle counts on a new microarchitecture, not considered in the previ-
ous literature, might actually be reporting an idea that loses performance on
all microarchitectures. We instead emphasize HECC performance on the widely
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deployed Sandy Bridge microarchitecture, since Sandy Bridge was shared as a
target by the recent ECC speed-record papers listed above. We have now set
a new Sandy Bridge DH speed record, demonstrating the value of vectorized
HECC. We have also set DH speed records for Ivy Bridge, Haswell, and Cortex-
A8.

1.2. Constant time: importance and difficulty. Before stating our perfor-
mance results we emphasize that our software is truly constant time: the time
that we use to compute nP is the same for every 251-bit scalar n and every
point P . We strictly follow the rules stated by Bernstein in [9] (PKC 2006):
we avoid “all input-dependent branches, all input-dependent array indices, and
other instructions with input-dependent timings”. The importance of these data-
flow requirements should be clear from, e.g., the Tromer–Osvik–Shamir attack
[49] (J. Cryptology 2010) recovering disk-encryption keys from the Linux kernel
via cache timings, the Brumley–Tuveri attack [19] (ESORICS 2011) recovering
ECDSA keys from OpenSSL via branch timings, and the recent “Lucky Thir-
teen” AlFardan–Paterson attack [4] (S&P 2013) recovering HTTPS plaintext
via decryption timings.

Unfortunately, many of the speed reports in the literature are for crypto-
graphic software that does not meet the same requirements. Sometimes the soft-
ware is clearly labeled as taking variable time (for example, the ECC speed
records from [44] state this quite explicitly), so it is arguably the user’s fault
for deploying the software in applications that handle secret data; but in other
cases non-constant-time software is incorrectly advertised as “constant time”.

Consider, for example, the scalar-multiplication algorithm stated in [17, Al-
gorithm 7], which includes a conditional branch for each bit of the scalar n.
The “Side-channel resistance” section of the paper states “The main branch,
i.e. checking if the bit is set (or not), can be converted into straight-line code by
masking (pointers to) the in- and output. Since no lookup tables are used, and
all modern cache sizes are large enough to hold the intermediate values . . . the
algorithm (and runtime) becomes independent of input almost for free.”

Unfortunately, the argument in [17] regarding cache sizes is erroneous, and
this pointer-swapping strategy does not actually produce constant-time software.
An operating-system interrupt can occur at any moment (for example, triggered
by a network packet), knocking some or all data out of the cache (presumably
at addresses predictable to, or controllable by, an attacker—it is helpful for
the attacker that, for cost reasons, cache associativity is limited); see also the
“flush+reload” attack from [51] and other local-spy attacks cited in [51]. If P0 is
knocked out of cache and the algorithm accesses P0 then it suffers a cache miss;
if both P0 and P1 are subsequently knocked out of cache and the algorithm
accesses P1, P0 then it suffers two more cache misses. If, on the other hand, P0

is knocked out of cache and the algorithm accesses P1 then it does not suffer
a cache miss; if both P0 and P1 are subsequently knocked out of cache and
the algorithm accesses P0, P1 then it suffers two more cache misses. The total
number of cache misses distinguishes these two examples, revealing whether the
algorithm accessed P0, P1, P0 or P1, P0, P1.
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We checked the kumfp127g software from [17], and found that it contained
exactly the branch indicated in [17, Algorithm 7]. This exposes the software not
just to data-cache-timing attacks but also to instruction-cache-timing attacks,
branch-timing attacks, etc.; for background see, e.g., [3] (CHES 2010). Evidently
“can be converted” was a statement regarding possibilities, not a statement
regarding what was actually done in the benchmarked software.

This is not an isolated example. We checked the fastest “constant-time” soft-
ware from [22] and found that it contained key-dependent branches. Specifically,
the secret key sk is passed to a function mon_fp_smul_2e127m1e2_djb, which
calls decompose and then getchain to convert the secret key into a scanned

array and then calls ec_fp_mdbladdadd_2e127m1e2_asm repeatedly using vari-
ous secret bits from that array; ec_fp_mdbladdadd_2e127m1e2_asm uses “jmpq
*(%rsi)” to branch to different instructions depending on those bits. This ex-
poses the software to instruction-cache-timing attacks.

The correct response to timing attacks is to use constant-time arithmetic in-
structions to simulate data-dependent branches, data-dependent table indices,
etc.; see, e.g., Section 4.5. It is essential for “constant-time” cryptographic soft-
ware to go to this effort. The time required for this simulation is often highly
algorithm-dependent, and must be included in speed reports so that users are
not misled regarding the costs of security.

Of course, the security assessment above was aided by the availability of the
source code from [17] and [22]. For comparison, the public has no easy way to
check the “constant time” claims for the software in [24], so for users the only safe
assumption is that the claims are not correct. If that software is deployed some-
where then an attacker can be expected to do the necessary reverse-engineering
work to discover and exploit the timing variability.

Our comparisons below are limited to software that has been advertised in the
literature to be constant-time. Some of this software is not actually constant-
time, as illustrated by the analysis above, and would become slower if it were
fixed.

The authors of [17] and [22] have now updated their software, with credit to
us. Their new (slower) software is not yet integrated into eBACS; our comparison
table below shows the older software.

1.3. Performance results. eBACS shows that on a single core of h6sandy our
DH software (“kummer”) uses just 88916 Sandy Bridge cycles (quartiles: 88868
and 89184). On a single core of h9ivy our software uses 88448 cycles (quartiles:
88424 and 88476).

On a single core of titan0, an Intel Xeon E3-1275 V3 (Haswell), our software
uses 54389 cycles (quartiles: 54341 and 54454). See Section 1.4 for previous
Haswell results.

For Cortex-A8 there is a difference in L1-cache performance between Cortex-
A8-“fast” CPUs and Cortex-A8-“slow” CPUs. On h7beagle, a TI Sitara AM3359
(Cortex-A8-slow), our software uses 305395 cycles (quartiles: 305380 and 305413).
On h4mx515e, a Freescale i.MX515 (Cortex-A8-fast), our software uses 273349
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arch cycles ladder open g field source of software

A8-slow 497389 yes yes 1 2255 − 19 [15] CHES 2012
A8-slow 305395 yes yes 2 2127 − 1 new (this paper)

A8-fast 460200 yes yes 1 2255 − 19 [15] CHES 2012
A8-fast 273349 yes yes 2 2127 − 1 new (this paper)

Sandy 194036 yes yes 1 2255 − 19 [11] CHES 2011
Sandy 153000? yes no 1 2252 − 2232 − 1 [34]
Sandy 137000? no no 1 (2127 − 5997)2 [40] Asiacrypt 2012
Sandy 122716 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Sandy 119904 no yes 1 2254 [44] CHES 2013
Sandy 96000? no no 1 (2127 − 5997)2 [24] CT-RSA 2014
Sandy 92000? no no 1 (2127 − 5997)2 [24] July 2014
Sandy 88916 yes yes 2 2127 − 1 new (this paper)

Ivy 182708 yes yes 1 2255 − 19 [11] CHES 2011
Ivy 145000? yes yes 1 (2127 − 1)2 [22] Eurocrypt 2014
Ivy 119032 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Ivy 114036 no yes 1 2254 [44] CHES 2013
Ivy 92000? no no 1 (2127 − 5997)2 [24] CT-RSA 2014
Ivy 89000? no no 1 (2127 − 5997)2 [24] July 2014
Ivy 88448 yes yes 2 2127 − 1 new (this paper)

Haswell 145907 yes yes 1 2255 − 19 [11] CHES 2011
Haswell 100895 yes yes 2 2127 − 1 [17] Eurocrypt 2013
Haswell 55595 no yes 1 2254 [44] CHES 2013
Haswell 54389 yes yes 2 2127 − 1 new (this paper)

Table 1.5. Reported high-security DH speeds for Cortex-A8, Sandy Bridge, Ivy Bridge,
and Haswell. Cycle counts from eBACS are for curve25519, kumfp127g, gls254prot,
and our kummer on h7beagle (Cortex-A8-slow), h4mx515e (Cortex-A8-fast), h6sandy
(Sandy Bridge), h9ivy (Ivy Bridge), and titan0 (Haswell). Cycle counts not from
SUPERCOP are marked “?”. ECC has g = 1; genus-2 HECC has g = 2. See text for
security requirements.

cycles (quartiles: 273337 and 273387). See Section 1.4 for previous Cortex-A8
results.

These cycle counts are the complete time for constant-time variable-scalar
variable-base-point single-scalar multiplication using SUPERCOP’s crypto_dh

API. Our inputs and outputs are canonical representations of points as 48-byte
strings and scalars as 32-byte strings. Our timings include more than just scalar
multiplication on an internal representation of field elements; they also include
the costs of parsing strings, all other necessary setup, the costs of conversion
to inverted-affine form (x/y, x/z, x/t) in the notation of Section 2, the costs of
converting lazily reduced field elements to unique representatives, and the costs
of converting to strings.

1.4. Cycle-count comparison. Table 1.5 summarizes reported high-security
DH speeds for Cortex-A8, Sandy Bridge, Ivy Bridge, and Haswell.
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This table is limited to software that claims to be constant time, and that
claims a security level close to 2128. This is the reason that the table does not
include, e.g., the 767000 Cortex-A8 cycles and 108000 Ivy Bridge cycles claimed
in [18] for constant-time scalar multiplication on a Kummer surface; the authors
claim only 103 bits of security for that surface. This is also the reason that the
table does not include, e.g., the 69500 Sandy Bridge cycles claimed in [44] for
non-constant-time scalar multiplication.

The table does not attempt to report whether the listed cycle counts are
from software that actually meets the above security requirements. In some cases
inspection of the software has shown that the security requirements are violated;
see Section 1.2. “Open” means that the software is reported to be open source,
allowing third-party inspection.

Our speeds, on the same platform targeted in [17], solidly beat the HECC
speeds from [17]. Our speeds also solidly beat the Cortex-A8, Sandy Bridge, and
Ivy Bridge speeds from all available ECC software, including [11], [15], [22],
and [44]; solidly beat the speeds claimed in [34] and [40]; and are even faster
than the July 2014 Sandy Bridge/Ivy Bridge DH record claimed in [24], namely
92000/89000 cycles using unpublished software for GLV+GLS ECC. For Haswell,
despite Haswell’s exceptionally fast binary-field multiplier, our speeds beat the
55595 cycles from [44] for a GLS curve over a binary field. We set our new speed
records using an HECC ladder that is conceptually much simpler than GLV and
GLS, avoiding all the complications of scalar-dependent precomputations, lattice
size issues, multi-scalar addition chains, endomorphism-rho security analysis,
Weil-descent security analysis, and patents.

2 Fast scalar multiplication on the Kummer surface

This section reviews the smallest number of field operations known for genus-2
scalar multiplication. Sections 3 and 4 optimize the performance of those field
operations using 4-way vector instructions.

Vectorization changes the interface between this section and subsequent sec-
tions. What we actually optimize is not individual field operations, but rather
pairs of operations, pairs of pairs, etc., depending on the amount of vectorization
available from the CPU. Our optimization also takes advantage of sequences of
operations such as the output of a squaring being multiplied by a small con-
stant. What matters in this section is therefore not merely the number of field
multiplications, squarings, etc., but also the pattern of those operations.

2.1. Only 25 multiplications. Almost thirty years ago Chudnovsky and Chud-
novsky wrote a classic paper [21] optimizing scalar multiplication inside the
elliptic-curve method of integer factorization. At the end of the paper they
also considered the performance of scalar multiplication on Jacobian varieties
of genus-2 hyperelliptic curves. After mentioning various options they gave some
details of one option, namely scalar multiplication on a Kummer surface.

A Kummer surface is related to the Jacobian of a genus-2 hyperelliptic curve in
the same way that x-coordinates are related to a Weierstrass elliptic curve. There
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Fig. 2.2. Ladder formulas for the Kummer surface. Inputs are X(Q − P ) = (x1 :
y1 : z1 : t1), X(P ) = (x2 : y2 : z2 : t2), and X(Q) = (x3 : y3 : z3 : t3); outputs are
X(2P ) = (x4 : y4 : z4 : t4) and X(P +Q) = (x5 : y5 : z5 : t5). Formulas in (a) are from
Gaudry [30]; diagrams are copied from Bernstein [10].

is a standard rational map X from the Jacobian to the Kummer surface; this map
satisfies X(P ) = X(−P ) for points P on the Jacobian and is almost everywhere
exactly 2-to-1. Addition on the Jacobian does not induce an operation on the
Kummer surface (unless the number of points on the surface is extremely small),
but scalar multiplication P 7→ nP on the Jacobian induces scalar multiplication
X(P ) 7→ X(nP ) on the Kummer surface. Not every genus-2 hyperelliptic curve
can have its Jacobian mapped to the standard type of Kummer surface over the
base field, but a noticeable fraction of curves can; see [31].

Chudnovsky and Chudnovsky reported 14M for doubling a Kummer-surface
point, where M is the cost of field multiplication; and 23M for “general addi-
tion”, presumably differential addition, computing X(Q+P ) given X(P ), X(Q),
X(Q−P ). They presented their formulas for doubling, commenting on a “pretty
symmetry” in the formulas and on the number of multiplications that were ac-
tually squarings. They did not present their formulas for differential addition.

Two decades later, in [30], Gaudry reduced the total cost of differential addi-
tion and doubling, computing X(2P ), X(Q+ P ) given X(P ), X(Q), X(Q− P ),
to 25M, more precisely 16M + 9S, more precisely 10M + 9S + 6m, where S is
the cost of field squaring and m is the cost of multiplication by a curve constant.
An `-bit scalar-multiplication ladder therefore costs just 10`M + 9`S + 6`m.

Gaudry’s formulas are shown in Figure 2.2(a). Each point on the Kummer
surface is expressed projectively as four field elements (x : y : z : t); one is free
to replace (x : y : z : t) with (rx : ry : rz : rt) for any nonzero r. The “H”
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Fig. 2.4. Ladder formulas for the squared Kummer surface. Compare to Figure 2.2.

boxes are Hadamard transforms, each using 4 additions and 4 subtractions; see
Section 4. The Kummer surface is parametrized by various constants (a : b : c : d)
and related constants (A2 : B2 : C2 : D2) = H(a2 : b2 : c2 : d2). The doubling
part of the diagram, from (x2 : y2 : z2 : t2) down to (x4 : y4 : z4 : t4), uses
3M + 5S + 6m, matching the 14M reported by Chudnovsky and Chudnovsky;
but the rest of the picture uses just 7M + 4S extra, making remarkable reuse
of the intermediate results of doubling. Figure 2.2(b) replaces 10M + 9S + 6m
with 7M + 12S + 9m, as suggested by Bernstein in [10]; this saves time if m is
smaller than the difference M− S.

2.3. The original Kummer surface vs. the squared Kummer surface.
Chudnovsky and Chudnovsky had actually used slightly different formulas for
a slightly different surface, which we call the “squared Kummer surface”. Each
point (x : y : z : t) on the original Kummer surface corresponds to a point
(x2 : y2 : z2 : t2) on the squared Kummer surface. Figure 2.4 presents the
equivalent of Gaudry’s formulas for the squared Kummer surface, relabeling
(x2 : y2 : z2 : t2) as (x : y : z : t); the squarings at the top of Figure 2.2 have
moved close to the bottom of Figure 2.4.

The number of field operations is the same either way, as stated in [10] with
credit to André Augustyniak. However, the squared Kummer surface has a com-
putational advantage over the original Kummer surface, as pointed out by Bern-
stein in [10]: constructing surfaces in which all of a2, b2, c2, d2, A2, B2, C2, D2 are
small, producing fast multiplications by constants in Figure 2.4, is easier than
constructing surfaces in which all of a, b, c, d, A2, B2, C2, D2 are small, producing
fast multiplications by constants in Figure 2.2.
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2.5. Preliminary comparison to ECC. A Montgomery ladder step for ECC
costs 5M+4S+1m, while a ladder step on the Kummer surface costs 10M+9S+
6m or 7M+12S+9m. Evidently ECC uses only about half as many operations.
However, for security ECC needs primes around 256 bits (such as the convenient
prime 2255 − 19), while the Kummer surface can use primes around 128 bits
(such as the even more convenient prime 2127 − 1), and presumably this saves
more than a factor of 2.

Several years ago, in [10], Bernstein introduced 32-bit Intel Pentium M soft-
ware for generic Kummer surfaces (i.e., m = M) taking about 10% fewer cycles
than his Curve25519 software, which at the time was the speed leader for ECC.
Gaudry, Houtmann, and Thomé, as reported in [32, comparison table], intro-
duced 64-bit software for Curve25519 and for a Kummer surface; the second
option was slightly faster on AMD Opteron K8 but the first option was slightly
faster on Intel Core 2. It is not at all clear that one can reasonably extrapolate
to today’s CPUs.

Bernstein’s cost analysis concluded that HECC could be as much as 1.5×
faster than ECC on a Pentium M (cost 1355 vs. cost 1998 in [10, page 31]),
depending on the exact size of the constants a2, b2, c2, d2, A2, B2, C2, D2. This
motivated a systematic search through small constants to find a Kummer surface
providing high security and high twist security. But this was more easily said
than done: genus-2 point counting was much more expensive than elliptic-curve
point counting.

2.6. The Gaudry–Schost Kummer surface. Years later, after a 1000000-
CPU-hour computation relying on various algorithmic improvements to genus-2
point counting, Gaudry and Schost announced in [33] that they had found a
secure Kummer surface (a2 : b2 : c2 : d2) = (11 : −22 : −19 : −3) over Fp with
p = 2127 − 1, with Jacobian order and twisted Jacobian order equal to

16·1809251394333065553571917326471206521441306174399683558571672623546356726339,

16·1809251394333065553414675955050290598923508843635941313077767297801179626051

respectively. This is exactly the surface that was used for the HECC speed
records in [17]. We obtain even better speeds for the same surface.

Note that, as mentioned by Bos, Costello, Hisil, and Lauter in [17], the con-
stants (1 : a2/b2 : a2/c2 : a2/d2) = (1 : −1/2 : −11/19 : −11/3) in Figure 2.4
are projectively the same as (−114 : 57 : 66 : 418). The common factor 11
between a2 = 11 and b2 = −22 helps keep these integers small. The constants
(1 : A2/B2 : A2/C2 : A2/D2) = (1 : −3 : −33/17 : −33/49) are projectively the
same as (−833 : 2499 : 1617 : 561).

3 Decomposing field multiplication

The only operations in Figures 2.2 and 2.4 are the H boxes, which we analyze
in Section 4, and field multiplications, which we analyze in this section. Our
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goal here is to obtain the smallest possible number of CPU cycles for M, S,
etc. modulo p = 2127 − 1.

This prime has been considered before, for example in [8] and [10]. What is
new here is fitting arithmetic modulo this prime, for the pattern of operations
shown in Figure 2.4, into the vector abilities of modern CPUs. There are four
obvious dimensions of vectorizability:

• Vectorizing across the “limbs” that represent a field element such as x2. The
most obvious problem with this approach is that, when f is multiplied by
g, each limb of f needs to communicate with each limb of g and each limb
of output. A less obvious problem is that the optimal number of limbs is
CPU-dependent and is usually nonzero modulo the vector length. Each of
these problems poses a challenge in organizing and reshuffling data inside
multiplications.

• Vectorizing across the four field elements that represent a point. All of the
multiplications in Figure 2.4 are visually organized into 4-way vectors, except
that in some cases the vectors have been scaled to create a multiplication
by 1. Even without vectorization, most of this scaling is undesirable for
any surface with small a2, b2, c2, d2: e.g., for the Gaudry–Schost surface we
replace (1 : a2/b2 : a2/c2 : a2/d2) with (−114 : 57 : 66 : 418). The only
remaining exception is the multiplication by 1 in (1 : x1/y1 : x1/z1 : x1/t1)
where X(Q − P ) = (x1 : y1 : z1 : t1). Vectorizing across the four field
elements means that this multiplication costs 1M, increasing the cost of a
ladder step from 7M + 12S + 12m to 8M + 12S + 12m.

• Vectorizing between doubling and differential addition. For example, in Fig-
ure 2.4(b), squarings are imperfectly paired with multiplications on the third
line; multiplications by constants are perfectly paired with multiplications
by the same constants on the fourth line; squarings are perfectly paired with
squarings on the sixth line; and multiplications by constants are imperfectly
paired with multiplications by inputs on the seventh line. There is some loss
of efficiency in, e.g., pairing the squaring with the multiplication, since this
prohibits using faster squaring methods.

• Vectorizing across a batch of independent scalar-multiplication inputs, in ap-
plications where a suitably sized batch is available. This is relatively straight-
forward but increases cache traffic, often to problematic levels. In this paper
we focus on the traditional case of a single input.

The second dimension of vectorizability is, as far as we know, a unique feature
of HECC, and one that we heavily exploit for high performance.

For comparison, one can try to vectorize the well-known Montgomery ladder
for ECC [42] across the field elements that represent a point, but (1) this provides
only two-way vectorization (x and z), not four-way vectorization; and (2) many of
the resulting pairings are imperfect. The Montgomery ladder for Curve25519 was
vectorized by Costigan and Schwabe in [23] for the Cell, and then by Bernstein
and Schwabe in [15] for the Cortex-A8, but both of those vectorizations had
substantially higher overhead than our new vectorization of the HECC ladder.
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3.1. Sandy Bridge floating-point units. The only fast multiplier available
on Intel’s 32-bit platforms for many years, from the original Pentium twenty
years ago through the Pentium M, was the floating-point multiplier. This was
exploited by Bernstein for cryptographic computations in [8], [9], etc.

The conventional wisdom is that this use of floating-point arithmetic was
rendered obsolete by the advent of 64-bit platforms: in particular, Intel now
provides a reasonably fast 64-bit integer multiplier. However, floating-point units
have also become more powerful; evidently Intel sees many applications that rely
critically upon fast floating-point arithmetic. We therefore revisit Bernstein’s
approach, with the added challenge of vectorization.

We next describe the relevant features of the Sandy Bridge; see [25] for more
information. Our optimization of HECC for the Sandy Bridge occupies the rest of
Sections 3 and 4. The Ivy Bridge has the same features and should be expected to
produce essentially identical performance for this type of code. The Haswell has
important differences and is analyzed in Appendix B; the Cortex-A8 is analyzed
in Section 5.

Each Sandy Bridge core has several 256-bit vector units operating in parallel
on vectors of 4 double-precision floating-point numbers:

• “Port 0” handles one vector multiplication each cycle, with latency 5.
• Port 1 handles one vector addition each cycle, with latency 3.
• Port 5 handles one permutation instruction each cycle. The selection of per-

mutation instructions is limited and is analyzed in detail in Section 4.
• Ports 2, 3, and 4 handle vector loads and stores, with latency 4 from L1

cache and latency 3 to L1 cache. Load/store throughput is limited in various
ways, never exceeding one 256-bit load per cycle.

Recall that a double-precision floating-point number occupies 64 bits, including
a sign bit, a power of 2, and a “mantissa”. Every integer between −253 and 253

can be represented exactly as a double-precision floating-point number. More
generally, every real number of the form 2ei, where e is a small integer and i is an
integer between −253 and 253, can be represented exactly as a double-precision
floating-point number. The computations discussed here do not approach the
lower or upper limits on e, so we do not review the details of the limits.

Our final software uses fewer multiplications than additions, and fewer per-
mutations than multiplications. This does not mean that we were free to use
extra multiplications and permutations: if multiplications and permutations are
not finished quickly enough then the addition unit will sit idle waiting for input.
In many cases, noted below, we have the flexibility to convert multiplications to
additions, reducing latency; we found that in some cases this saved time despite
the obvious addition bottleneck.

3.2. Optimizing M (field multiplication). We decompose an integer f mod-
ulo 2127−1 into six floating-point limbs in (non-integer) radix 2127/6. This means
that we write f as f0 + f1 + f2 + f3 + f4 + f5 where f0 is a small multiple of 20,
f1 is a small multiple of 222, f2 is a small multiple of 243, f3 is a small multiple
of 264, f4 is a small multiple of 285, and f5 is a small multiple of 2106. (The exact
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meaning of “small” is defined by a rather tedious, but verifiable, collection of
bounds on the floating-point numbers appearing in each step of the program. It
should be obvious that a simpler definition of “small” would compromise effi-
ciency; for example, H cannot be efficient unless the bounds on H intermediate
results and outputs are allowed to be larger than the bounds on H inputs.)

If g is another integer similarly decomposed as g0 + g1 + g2 + g3 + g4 + g5
then f0g0 is a multiple of 20, f0g1 + f1g0 is a multiple of 222, f0g2 + f1g1 + f2g0
is a multiple of 243, etc. Each of these sums is small enough to fit exactly in a
double-precision floating-point number, and the total of these sums is exactly
fg. What we actually compute are the sums

h0 = f0g0 + 2−127f1g5 + 2−127f2g4 + 2−127f3g3 + 2−127f4g2 + 2−127f5g1,

h1 = f0g1 + f1g0 + 2−127f2g5 + 2−127f3g4 + 2−127f4g3 + 2−127f5g2,

h2 = f0g2 + f1g1 + f2g0 + 2−127f3g5 + 2−127f4g4 + 2−127f5g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + 2−127f4g5 + 2−127f5g4,

h4 = f0g4 + f1g3 + f2g2 + f3g1 + f4g0 + 2−127f5g5,

h5 = f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0,

whose total h is congruent to fg modulo 2127 − 1.
There are 36 multiplications figj here, and 30 additions. (This operation

count does not include carries; we analyze carries below.) One can collect the
multiplications by 2−127 into 5 multiplications such as 2−127(f4g5 + f5g4). We
use another approach, precomputing 2−127f1, 2

−127f2, 2
−127f3, 2

−127f4, 2
−127f5,

for two reasons: first, this reduces the latency of each hi computation, giving
us more flexibility in scheduling; second, this gives us an opportunity to share
precomputations when the input f is reused for another multiplication.

3.3. Optimizing S (field squaring) and m (constant field multiplica-
tion). For S, i.e., for f = g, we have

h0 = f0f0 + 2−1272f1f5 + 2−1272f2f4 + 2−127f3f3,

h1 = 2f0f1 + 2−1272f2f5 + 2−1272f3f4,

h2 = 2f0f2 + f1f1 + 2−1272f3f5 + 2−127f4f4,

h3 = 2f0f3 + 2f1f2 + 2−1272f4f5,

h4 = 2f0f4 + 2f1f3 + f2f2 + 2−127f5f5,

h5 = 2f0f5 + 2f1f4 + 2f2f3.

We precompute 2f1, 2f2, 2f3, 2f4, 2f5 and 2−127f3, 2
−127f4, 2

−127f5; this costs 8
multiplications, where 5 of the multiplications can be freely replaced by addi-
tions. The rest of S, after this precomputation, takes 21 multiplications and 15
additions, plus the cost of carries.

For m we have simply h0 = cf0, h1 = cf1, etc., costing 6 multiplications plus
the cost of carries. This does not work for arbitrary field constants, but it does
work for the small constants stated in Section 2.6.
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3.4. Carries. The output limbs hi from M are too large to be used in a
subsequent multiplication. We carry h0 → h1 by rounding 2−22h0 to an integer
c0, adding 222c0 to h1, and subtracting 222c0 from h0. This takes 3 additions
(the CPU has a rounding instruction, vroundpd, that costs just 1 addition) and
2 multiplications. The resulting h0 is guaranteed to be between −221 and 221.

We could similarly carry h1 → h2 → h3 → h4 → h5, and carry h5 → h0
as follows: round 2−127h5 to an integer c5, add c5 to h0, and subtract 2127c5
from h5. One final carry h0 → h1, for a total of 7 carries (21 additions and 14
multiplications), would then guarantee that all of h0, h1, h2, h3, h4, h5 are small
enough to be input to a subsequent multiplication.

The problem with this carry chain is that it has extremely high latency: 5
cycles for 2−22h0, 3 more cycles for c0, 5 more cycles for 222c0, and 3 more
cycles to add to h1, all repeated 7 times, for a total of 112 cycles, plus the
latency of obtaining h0 in the first place. The ladder step in Figure 2.4 has a
serial chain of H → M → m → H → S → M, for a total latency above 500
cycles, i.e., above 125500 cycles for a 251-bit ladder.

We do better in six ways. First, we use only 6 carries in M rather than 7, if the
output will be used only for m. Even if the output h0 is several bits larger than
222, it will not overflow the small-constant multiplication, since our constants
are all bounded by 212.

Second, pushing the same idea further, we do these 6 carries in parallel. First
we round in parallel to obtain c0, c1, c2, c3, c4, c5, then we subtract in parallel,
then we add in parallel, allowing all of h0, h1, h2, h3, h4, h5 to end up several bits
larger than they would have been with full carries.

Third, we also use 6 parallel carries for a multiplication that is an m. There
is no need for a chain, since the initial h0, h1, h2, h3, h4, h5 cannot be very large.

Fourth, we also use 6 parallel carries for each S. This allows the S output
to be somewhat larger than the input, but this still does not create overflows
in the subsequent M. At this point the only remaining block of 7 carries is in
the M4 by (1 : x1/y1 : x1/z1 : x1/t1), where M4 means a vector of four field
multiplications.

Fifth, for that M4, we run two carry chains in parallel, carrying h0 → h1 and
h3 → h4, then h1 → h2 and h4 → h5, then h2 → h3 and h5 → h0, then h3 → h4
and h0 → h1. This costs 8 carries rather than 7 but chops latency in half.

Finally, for that M4, we use the carry approach from [8]: add the constant
α22 = 222(252+251) to h0, and subtract α22 from the result, obtaining the closest
multiple of 222 to h0; add this multiple to h1 and subtract it from h0. This costs
4 additions rather than 3, but reduces carry latency from 16 to 9, and also saves
two multiplications.

4 Permutations: vectorizing the Hadamard transform

The Hadamard transform H in Section 2 is defined as follows: H(x, y, z, t) =
(x+ y+ z+ t, x+ y− z− t, x− y+ z− t, x− y− z+ t). Evaluating this as written
would use 12 field additions (counting subtraction as addition), but a standard
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“fast Hadamard transform” reduces the 12 to 8:
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We copied this diagram from Bernstein [10].
Our representation of field elements for the Sandy Bridge (see Section 3)

requires 6 limb additions for each field addition. There is no need to carry before
the subsequent multiplications; this is the main reason that we use 6 limbs rather
than 5.

In a ladder step there are 4 copies of H, each requiring 8 field additions,
each requiring 6 limb additions, for a total of 192 limb additions. This operation
count suggests that 48 vector instructions suffice. Sandy Bridge has a helpful
vaddsubpd instruction that computes (a− e, b+ f, c− g, d+ h) given (a, b, c, d)
and (e, f, g, h), obviously useful inside H.

However, we cannot simply vectorize across x, y, z, t. In Section 3 we were
multiplying one x by another, at the same time multiplying one y by another,
etc., with no permutations required; in this section we need to add x to y, and
this requires permutations.

The Sandy Bridge has a vector permutation unit acting in parallel with the
adder and the multiplier, as noted in Section 3. But this does not mean that the
cost of permutations can be ignored. A long sequence of permutations inside H
will force the adder and the multiplier to remain idle, since only a small fraction
of the work inside M can begin before H is complete.

Our original software used 48 vector additions and 144 vector permutations
for the 4 copies of H. We then tackled the challenge of minimizing the number
of permutations. We ended up reducing this number from 144 to just 36. This
section presents the details; analyzes conditional swaps, which end up consum-
ing further time in the permutation unit; and concludes by analyzing the total
number of operations used in our Sandy Bridge software.

4.1. Limitations of the Sandy Bridge permutations. There is a latency-1
permutation instruction vpermilpd that computes (y, x, t, z) given (x, y, z, t).
vaddsubpd then produces (x − y, y + x, z − t, t + z), which for the moment we
abbreviate as (e, f, g, h). At this point we seem to be halfway done: the desired
output is simply (f + h, f − h, e+ g, e− g).

If we had (f, h, e, g) at this point, rather than (e, f, g, h), then we could apply
vpermilpd and vaddsubpd again, obtaining (f − h, h + f, e − g, g + e). One
final vpermilpd would then produce the desired (f + h, f − h, e+ g, e− g). The
remaining problem is the middle permutation of (e, f, g, h) into (f, h, e, g).

Unfortunately, Sandy Bridge has very few options for moving data between
the left half of a vector, in this case (e, f), and the right half of a vector, in this
case (g, h). There is a vperm2f128 instruction (1-cycle throughput but latency



16 Bernstein, Chuengsatiansup, Lange, Schwabe

2) that produces (g, h, e, f), but it cannot even produce (h, g, f, e), never mind a
combination such as (f, h, e, g). (Haswell has more permutation instructions, but
Ivy Bridge does not. This is not a surprising restriction: n-bit vector units are
often designed as n/2-bit vector units operating on the left half of a vector in one
cycle and the right half in the next cycle, but this means that any communication
between left and right requires careful attention in the circuitry. A similar left-
right separation is even more obvious for the Cortex-A8.) We could shift some
permutation work to the load/store unit, but this would have very little benefit,
since simulating a typical permutation requires quite a few loads and stores.

The vpermilpd instruction (x, y, z, t) 7→ (y, x, t, z) mentioned above is one of
a family of 16 vpermilpd instructions that produce (x or y, x or y, z or t, z or t).
There is an even more general family of 16 vshufpd instructions that pro-
duce (a or b, x or y, c or d, z or t) given (a, b, c, d) and (x, y, z, t). In the first ver-
sions of our software we applied vshufpd to (e, f, g, h) and (g, h, e, f), obtaining
(f, h, g, e), and then applied vpermilpd to obtain (f, h, e, g).

Overall a single H handled in this way uses, for each limb, 2 vaddsubpd

instructions and 6 permutation instructions, half of which are handling the per-
mutation of (e, f, g, h) into (f, h, e, g). The total for all limbs is 12 additions and
36 permutations, and the large “bubble” of permutations ends up forcing many
idle cycles for the addition unit. This occurs four times in each ladder step.

4.2. Changing the input/output format. There are two obvious sources of
inefficiency in the computation described above. First, we need a final permuta-
tion to convert (f −h, f +h, e− g, e+ g) into (f +h, f −h, e+ g, e− g). Second,
the middle permutation of (e, f, g, h) into (f, h, e, g) costs three permutation
instructions, whereas (g, h, e, f) would cost only one.

The first problem arises from a tension between Intel’s vaddsubpd, which al-
ways subtracts in the first position, and the definition of H, which always adds in
the first position. A simple way to resolve this tension is to store (t, z, y, x) instead
of (x, y, z, t) for the input, and (t′, z′, y′, x′) instead of (x′, y′, z′, t′) for the output;
the final permutation then naturally disappears. It is easy to adjust the other
permutations accordingly, along with constants such as (1, a2/b2, a2/c2, a2/d2).

However, this does nothing to address the second problem. Different per-
mutations of (x, y, z, t) as input and output end up requiring different middle
permutations, but these middle permutations are never exactly the left-right
swap provided by vperm2f128.

We do better by generalizing the input/output format to allow negations.
For example, if we start with (x,−y, z, t), permute into (−y, x, t, z), and apply
vaddsubpd, we obtain (x+y, x−y, z− t, t+z). Observe that this is not the same
as the (x − y, x + y, z − t, t + z) that we obtained earlier: the first two entries
have been exchanged.

It turns out to be best to negate z, i.e., to start from (x, y,−z, t). Then
vpermilpd gives (y, x, t,−z), and vaddsubpd gives (x − y, x + y,−z − t, t − z),
which we now abbreviate as (e, f, g, h). Next vperm2f128 gives (g, h, e, f), and
independently vpermilpd gives (f, e, h, g). Finally, vaddsubpd gives (f − g, h+
e, h− e, f + g). This is exactly (x′, t′,−z′, y′) where (x′, y′, z′, t′) = H(x, y, z, t).
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Fig. 4.3. Output format that we use for each operation in the right side of Figure 2.4
on Sandy Bridge, including permutations and negations to accelerate H.

The output format here is not the same as the input format: the positions of
t and y have been exchanged. Fortunately, Figure 2.4 is partitioned by the H
rows into two separate universes, and there is no need for the universes to use
the same format. We use the (x, y,−z, t) format at the top and bottom, and the
(x, t,−z, y) format between the two H rows. It is easy to see that exactly the
same sequence of instructions works for all the copies of H, either producing
(x, y,−z, t) format from (x, t,−z, y) format or vice versa.

S4 and M4 do not preserve negations: in effect, they switch from (x, t,−z, y)
format to (x, t, z, y) format. This is not a big problem, since we can reinsert
the negation at any moment using a single multiplication or low-latency logic
instruction (floating-point numbers use a sign bit rather than twos-complement,
so negation is simply xor with a 1 in the sign bit). Even better, in Figure 2.4(b),
the problem disappears entirely: each S4 and M4 is followed immediately by a
constant multiplication, and so we simply negate the appropriate constants. The
resulting sequence of formats is summarized in Figure 4.3.

Each H now costs 12 additions and just 18 permutations. The number of
non-addition cycles that need to be overlapped with operations before and after
H has dropped from the original 24 to just 6.

4.4. Exploiting double precision. We gain a further factor of 2 by temporarily
converting from radix 2127/6 to radix 2127/3 during the computation of H. This
means that, just before starting H, we replace the six limbs (h0, h1, h2, h3, h4, h5)
representing h0 +h1 +h2 +h3 +h4 +h5 by three limbs (h0 +h1, h2 +h3, h4 +h5).
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These three sums, and the intermediate H results, still fit into double-precision
floating-point numbers.

It is essential to switch each output integer back to radix 2127/6 so that each
output limb is small enough for the subsequent multiplication. Converting three
limbs into six is slightly less expensive than three carries; in fact, converting from
six to three and back to six uses exactly the same operations as three carries,
although in a different order.

We further reduce the conversion cost by the following observation. Except
for the M4 by (1 : x1/y1 : x1/z1 : x1/t1), each of our multiplication results uses
six carries, as explained in Section 3.4. However, if we are about to add h0 to h1
for input to H, then there is no reason to carry h0 → h1, so we simply skip that
carry; we similarly skip h2 → h3 and h4 → h5. These skipped carries exactly
cancel the conversion cost.

For the M4 by (1 : x1/y1 : x1/z1 : x1/t1) the analysis is different: h0 is large
enough to affect h2, and if we skipped carrying h0 → h1 → h2 then the output
of H would no longer be safe as input to a subsequent multiplication. We thus
carry h0 → h1, h2 → h3, and h4 → h5 in parallel; and then h1 → h2, h3 → h4,
and h5 → h0 in parallel. In effect this M4 uses 9 carries, counting the cost of
conversion, whereas in Section 3.4 it used only 8.

To summarize, all of these conversions for all four H cost just one extra
carry, while reducing 48 additions and 72 permutations to 24 additions and 36
permutations.

4.5. Conditional swaps. A ladder step starts from an input (X(nP ), X((n+
1)P )), which we abbreviate as L(n), and produces L(2n) as output. Swapping
the two halves of the input, applying the same ladder step, and swapping the
two halves of the output produces L(2n + 1) instead; one way to see this is to
observe that L(−n− 1) is exactly the swap of L(n).

Consequently one can reach L(2n + ε) for ε ∈ {0, 1} by starting from L(n),
conditionally swapping, applying the ladder step, and conditionally swapping
again, where the condition bit is exactly ε. A standard ladder reaches L(n) by
applying this idea recursively. A standard constant-time ladder reaches L(n) by
applying this idea for exactly ` steps, starting from L(0), where n is known
in advance to be between 0 and 2` − 1. An alternate approach is to first add
to n an appropriate multiple of the order of P , producing an integer known
to be between (e.g.) 2`+1 and 2`+2 − 1, and then start from L(1). We use a
standard optimization, merging the conditional swap after a ladder step into
the conditional swap before the next ladder step, so that there are just ` + 1
conditional swaps rather than 2`.

One way to conditionally swap field elements x and x′ using floating-point
arithmetic is to replace (x, x′) with (x+ b(x′ − x), x′ − b(x′ − x)) where b is the
condition bit, either 0 or 1. This takes three additions and one multiplication
(times 6 limbs, times 4 field elements to swap). It is better to use logic instruc-
tions: replace each addition with xor, replace each multiplication with and, and
replace b with an all-1 or all-0 mask computed from b. On the Sandy Bridge,
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logic instructions have low latency and are handled by the permutation unit,
which is much less of a bottleneck for us than the addition unit.

We further improve the performance of the conditional swap as follows. The
M4 on the right side of Figure 4.3 is multiplying H of the left input by H of
the right input. This is commutative: it does not depend on whether the inputs
are swapped. We therefore put the conditional swap after the first row of H
computations, and multiply the H outputs directly, rather than multiplying the
swap outputs. This trick has several minor effects and one important effect.

A minor advantage is that this trick removes all use of the right half of the
swap output; i.e., it replaces the conditional swap with a conditional move. This
reduces the original 24 logic instructions to just 18.

Another minor advantage is as follows. The Sandy Bridge has a vectorized
conditional-select instruction vblendvpd. This instruction occupies the permu-
tation unit for 2 cycles, so it is no better than the 4 traditional logic instructions
for a conditional swap: a conditional swap requires two conditional selects. How-
ever, this instruction is better than the 3 traditional logic instructions for a
conditional move: a conditional move requires only one conditional select. This
replaces the original logic instructions with 6 conditional-select instructions, con-
suming just 12 cycles.

A minor disadvantage is that the first M4 and S4 are no longer able to
share precomputations of multiplications by 2−127. This costs us 3 multiplication
instructions.

The important effect is that this trick reduces latency, allowing the M4 to
start much sooner. Adding this trick immediately produced a 5% reduction in
our cycle counts.

4.6. Total operations. We treat Figure 2.4(b) as 2M4 + 3S4 + 3m4 + 4H.
The main computations of hi, not counting precomputations and carries, cost

30 additions and 36 multiplications for each M4, 15 additions and 21 multiplica-
tions for each S4, and 0 additions and 6 multiplications for each m4. The total
here is 105 additions and 153 multiplications.

The M4 by (1 : x1/y1 : x1/z1 : x1/t1) allows precomputations outside the
loop. The other M4 consumes 5 multiplications for precomputations, and each S4

consumes 8 multiplications for precomputations; the total here is 29 multiplica-
tions. We had originally saved a few multiplications by sharing precomputations
between the first S4 and the first M4, but this is incompatible with the more
important trick described in Section 4.5.

There are a total of 24 additions in the four H, as explained in Section 4.4.
There are also 51 carries (counting the conversions described in Section 4.4 as
carries), each consuming 3 additions and 2 multiplications, for a total of 153
additions and 102 multiplications.

The grand total is 282 additions and 284 multiplications, evidently requiring
at least 284 cycles for each iteration of the main loop. Recall that there are
various options to trade multiplications for additions: each S4 has 5 precomputed
doublings that can each be converted from 1 multiplication to 1 addition, and
each carry can be converted from 3 additions and 2 multiplications to 4 additions
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and 0 multiplications (or 4 additions and 1 multiplication for h5 → h0). We could
use either of these options to eliminate one multiplication, reducing the 284-cycle
lower bound to 283 cycles, but to reduce latency we ended up instead using the
first option to eliminate 10 multiplications and the second option to eliminate 35
multiplications, obtaining a final total of 310 additions and 239 multiplications.
These totals have been computer-verified.

We wrote functions in assembly for M4, S4, etc., but were still over 500
cycles. Given the Sandy Bridge floating-point latencies, and the requirement to
keep two floating-point units constantly busy, we were already expecting instruc-
tion scheduling to be much more of an issue for this software than for typical
integer-arithmetic software. We used various standard optimization techniques
that were already used in several previous DH speed records: we merged the
functions into a single loop, reorganized many computations to save registers,
and eliminated many loads and stores. After building a new Sandy Bridge sim-
ulator and experimenting with different instruction schedules we ended up with
our current loop, just 338 cycles, and a total of 88916 Sandy Bridge cycles for
scalar multiplication. The main loop explains 84838 of these cycles; the remain-
ing cycles are spent outside the ladder, mostly on converting (x : y : z : t) to
(x/y : x/z : x/t) for output.

5 Cortex-A8

The low-power ARM Cortex-A8 core is the CPU core in the iPad 1, iPhone 4,
Samsung Galaxy S, Motorola Droid X, Amazon Kindle 4, etc. Today a Cortex-
A8 CPU, the Allwinner A10, costs just $5 in bulk and is widely used in low-cost
tablets, set-top boxes, etc. Like Sandy Bridge, Cortex-A8 is not the most recent
microarchitecture, but its very wide deployment and use make it a sensible choice
of platform for optimization and performance comparisons.

Bernstein and Schwabe in [15] (CHES 2012) analyzed the vector capabilities
of the Cortex-A8 for various cryptographic primitives, and in particular set a
new speed record for high-security DH, namely 460200 Cortex-A8 cycles. We do
much better, just 274593 Cortex-A8 cycles, measured on a Freescale i.MX515.
Our basic vectorization approach is the same for Cortex-A8 as for Sandy Bridge,
and many techniques are reused, but there are also many differences. The rest
of this section explains the details.

5.1. Cortex-A8 vector units. Each Cortex-A8 core has two 128-bit vector
units operating in parallel on vectors of four 32-bit integers or two 64-bit integers:

• The arithmetic port takes one cycle for vector addition, with latency 2; or
two cycles for vector multiplication (two 64-bit products ac, bd given 32-bit
inputs a, b and c, d), with latency 7. Logic operations also use the arithmetic
port.

• The load/store port handles loads, stores, and permutations. ARM’s Cortex-
A8 documentation [5] indicates that the load/store port can carry out one
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128-bit load every cycle. Beware, however, that there are throughput lim-
its on the L1 cache. We have found experimentally that the common TI
Sitara Cortex-A8 CPU (used, e.g., in the Beaglebone Black development
board) needs three cycles from one load until the next (this is what we
call “Cortex-A8-slow”), while other Cortex-A8 CPUs (“Cortex-A8-fast”) can
handle seven consecutive cycles of loads without penalty.

There are three obvious reasons for Cortex-A8 cycle counts to be much larger
than Sandy Bridge cycle counts: registers are only 128 bits, not 256 bits; there
are only 2 ports, not 6; and multiplication throughput is 1 every 2 cycles, not
1 every cycle. However, there are also speedups on Cortex-A8. There is (as in
Haswell’s floating-point units—see Appendix B) a vector multiply-accumulate
instruction with the same throughput as vector multiplication. A sequence of m
consecutive multiply-accumulate instructions that all accumulate into the same
register executes in 2m cycles (unlike Haswell), effectively reducing multiplica-
tion latency from 7 to 1. Furthermore, Cortex-A8 multiplication produces 64-bit
integer products, while Sandy Bridge gives only 53-bit-mantissa products.

5.2. Representation. We decompose an integer f modulo 2127 − 1 into five
integer pieces in radix 2127/5: i.e., we write f as f0+226f1+251f2+277f3+2102f4.
Compared to Sandy Bridge, having 20% more room in 64-bit integers than in
53-bit floating-point mantissas allows us to reduce the number of limbs from 6
to 5. We require the small integers f0, f1, f2, f3, f4 to be unsigned because this
reduces carry cost from 4 integer instructions to 3.

We arrange four integers x, y, z, t modulo 2127 − 1 in five 128-bit vectors:
(x0, y0, x1, y1); (x2, y2, x3, y3); (x4, y4, z4, t4); (z0, t0, z1, t1); (z2, t2, z3, t3). This
representation is designed to minimize permutations in M, S, and H. For exam-
ple, computing (x0 + z0, y0 + t0, x1 + z1, y1 + t1) takes just one addition without
any permutations. The Cortex-A8 multiplications take two pairs of inputs at a
time, rather than four as on Sandy Bridge, so there is little motivation to put
(x0, y0, z0, t0) into a vector.

5.3. Optimizing M. Given an integer f as above and an integer g = g0 +
226g1 + 251g2 + 277g3 + 2102g4, the product fg modulo 2127 − 1 is h = h0 +
226h1 + 251h2 + 277h3 + 2102h4, with

h0 = f0g0 + 2f1g4 + 2f2g3 + 2f3g2 + 2f4g1,

h1 = f0g1 + f1g0 + f2g4 + 2f3g3 + f4g2,

h2 = f0g2 + 2f1g1 + f2g0 + 2f3g4 + 2f4g3,

h3 = f0g3 + f1g2 + f2g1 + f3g0 + f4g4,

h4 = f0g4 + 2f1g3 + f2g2 + 2f3g1 + f4g0.

There are 25 multiplications figj ; additions are free as part of multiply-
accumulate instructions. We precompute 2f1, 2f2, 2f3, 2f4 so that these values
can be reused for another multiplication. These precomputations can be done
by using either 4 shift or 4 addition instructions. Both shift and addition use 1
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cycle per instruction, but addition has a lower latency. See Section 5.6 for the
cost of carries.

5.4. Optimizing S. The idea of optimizing S in Cortex-A8 is quite similar
to Sandy Bridge; for details see Section 3.3. We state here only the operation
count. Besides precomputation and carry, we use 15 multiplication instructions;
some of those are actually multiply-accumulate instructions. From now on we
describe both multiplication instructions and multiply-accumulate instructions
as “multiplications” without further comment.

5.5. Optimizing m. For m we compute only h0 = cf0, h1 = cf1, h2 = cf2,
h3 = cf3, and h4 = cf4, again exploiting the small constants stated in Section 2.6.

Recall that we use unsigned representation. We always multiply absolute
values, then negate results as necessary by subtracting from 2129 − 4: n0 =
228−4−h0, n1 = 227−4−h1, n2 = 228−4−h2, n3 = 227−4−h3, n4 = 227−4−h4.

Negating any subsequence of x, y, z, t costs at most 5 vector subtractions.
Negating only x or y, or both x and y, costs only 3 subtractions, because our
representation keeps x, y within 3 vectors. The same comment applies to z and
t. The specific m in Section 2.6 end up requiring a total of 13 subtractions with
the same cost as 13 additions.

5.6. Carries. Each multiplication uses at worst 6 serial carries h1 → h2 → h3 →
h4 → h0 → h1, each costing 3 additions. Various carries are eliminated by the
ideas of Section 3.4.

5.7. Hadamard transform. See Appendix A.

5.8. Total arithmetic. We view Figure 2.4(b) as 4M2 +6S2 +6m2 +4H. Here
we combine x multiplications and y multiplications into a vectorized M2, and
similarly combine z multiplications and t multiplications; this fits well with the
Cortex-A8 vector multiplication instruction, which outputs two products.

The main computations of hi, not counting precomputations and carries, cost
0 additions and 25 multiplications for each M, 0 additions and 15 multiplications
for each S, 0 additions and 5 multiplications for each m, and 15 additions for
each H block. The total here is 60 additions and 220 multiplications.

Each M costs 4 additions for precomputations, and each S also costs 4 ad-
ditions for precomputations. Some precomputations can be reused. The cost of
precomputations is 20 additions.

There are 10 carry blocks using 6 carries each, and 6 carry blocks using 5
carries each. Each carry consists of 1 shift, 1 addition, and 1 logical and. This
cost is equivalent to 3 additions. There are another 13 additions needed to handle
negation. Overall the carries cost 283 additions. Two conditional swaps, each
costing 9 additions, sum up to 18 additions.

In total we have 381 additions and 220 multiplications in our inner loop. This
means that the inner loop takes at least 821 cycles.

We scheduled instructions carefully but ended up with some overhead beyond
arithmetic: even though the arithmetic and the load/store unit can operate in
parallel, latencies and the limited number of registers leave the arithmetic unit
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idle for some cycles. Sobole’s simulator at [48], which we found very helpful,
reports 966 cycles. Actual measurements report 986 cycles; the 251 ladder steps
thus account for 247486 of our 273349 cycles.
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A Cortex-A8 Hadamard transform

This appendix explains the details of how we compute H on the Cortex-A8.
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Each of the 8 field additions in H requires 5 additions of limbs. One ladder
step has four H, for a total of 160 limb additions, i.e., at least 40 vector additions.

Four of the field additions in H are actually subtractions. We handle subtrac-
tions by the same strategy as Section 5.6. The extra constants cost another 5
vector additions per H.

The detailed sequence of operations that we use on the Cortex-A8 is as follows.
The Hadamard transform receives as input

r0 = (x0, y0, x1, y1);

r1 = (x2, y2, x3, y3);

r2 = (x4, y4, z4, t4);

r3 = (z0, t0, z1, t1);

r4 = (z2, t2, z3, t3).

The output will be 5 registers s0, . . . , s4 with

s0=((x0+y0)+(z0+t0), (x0+y0)−(z0+t0), (x1+y1)+(z1+t1), (x1+y1)−(z1+t1)),

s1=((x0−y0)+(z0−t0), (x0−y0)−(z0−t0), (x1−y1)+(z1−t1), (x1−y1)−(z1−t1)),

s2=((x4+y4)+(z4+t4), (x4+y4)−(z4+t4), (x4−y4)+(z4−t4), (x4−y4)−(z4−t4)),

s3=((x2+y2)+(z2+t2), (x2+y2)−(z2+t2), (x3+y3)+(z3+t3), (x3+y3)−(x3+y3)),

s4=((x2−y2)+(z2−t2), (x2−y2)−(z2−t2), (x3−y3)+(z3−t3), (x3−y3)−(x3−y3)).

We begin with vector addition and subtraction to produce

t0 = (x0 + z0, y0 + t0, x1 + z1, y1 + t1),

t1 = (x0 − z0, y0 − t0, x1 − z1, y1 − t1),

t2 = (x2 + z2, y2 + t2, x3 + z3, y3 + t3),

t3 = (x2 − z2, y2 − t2, x3 − z3, y3 − t3).

We would next like to add/subtract x0 + z0 with y0 + t0, also x1 + z1 with
y1 + t1, and so on. Unfortunately, there are no instructions to add/subtract
among or between left/right halves of vectors. There is a Cortex-A8 instruc-
tion vtrn which allows permuting two vectors (a, b, c, d) (e, f, g, h) to produce
(a, e, c, g) (b, f, d, h), and can also permute two vectors (a, b, c, d) (e, f, g, h) to
produce (a, b, c, g) (e, f, d, h). Another helpful instruction is vswp which swaps
left and right halves of two vectors in various ways such as (a, b, c, d) (e, f, g, h)
→ (a, b, e, f) (c, d, g, h), and (a, b, c, d) (e, f, g, h) → (a, b, g, h) (e, f, c, d).

We apply vtrn to t0 and t1 to produce

t4 = (x0 + z0, x0 − z0, x1 + z1, x1 − z1),

t5 = (y0 + t0, y0 − t0, y1 + t1, y1 − t1).

We then add and subtract to produce

t6 = (x0 + z0 + y0 + t0, x0 − z0 + y0 − t0, x1 + z1 + y1 + t1, x1 − z1 + y1 − t1),

t7 = (x0 + z0 − y0 − t0, x0 − z0 − y0 + t0, x1 + z1 − y1 − t1, x1 − z1 − y1 + t1).
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These are two of the desired output vectors from the Hadamard transform.
We could repeat similar steps for t2 and t3, but then there would be con-

siderable overhead in handling the one remaining vector. To avoid arithmetic
overhead we we permute three vectors together while performing arithmetic on
two at a time. Specifically, we apply vtrn to t2 and t3 to produce

t8 = (x2 + z2, x2 − z2, x3 + z3, x3 − z3),

t9 = (y2 + t2, y2 − t2, y3 + t3, y3 − t3);

next use vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t8, r2 to produce

t10 = (x2 + z2, x2 − z2, x4, y4),

t11 = (x3 + z3, x3 − z3, z4, t4);

and then use vswp (a, b, c, d) (e, f, g, h) → (a, b, g, h) (e, f, c, d) to t9, t11 to pro-
duce

t12 = (y2 + t2, y2 − t2, z4, t4),

t13 = (x3 + z3, x3 − z3, y3 + t3, y3 − t3).

We then add and subtract t10 and t12 to produce

t14 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, x4 + z4, y4 + t4),

t15 = (x2 + z2 − y2 − t2, x2 − z2 − y2 + t2, x4 − z4, y4 − t4).

Next, we perform another sequence of permutations as follows: starting with
using vswp (a, b, c, d) (e, f, g, h)→ (e, f, c, d) (a, d, g, h) to t14 and t13 to produce

t16 = (x3 + z3, x3 − z3, x4 + z4, y4 + t4),

t17 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, y3 + t3, y3 − t3);

then using vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t17 and t15 to
produce

t18 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, x2 + z2 − y2 − t2, x2 − z2 − y2 + t2),

t19 = (y3 + t3, y3 − t3, x4 − z4, y4 − t4);

and then using vtrn (a, b, c, d) (e, f, g, h) → (a, b, c, g) (e, f, d, h) to t16 and t19
to produce

t20 = (x3 + z3, x3 − z3, x4 + z4, x4 − z4),

t21 = (y3 + t3, y3 − t3, y4 + t4, y4 − t4).

Now we are ready to add and subtract t20 with t21 to produce

t22 = (x3 + z3 + y3 + t3, x3 − z3 + y3 − t3, x4 + z4 + y4 + t4, x4 − z4 + y4 − t4),

t23 = (x3 + z3 − y3 − t3, x3 − z3 − y3 + t3, x4 + z4 − y4 − t4, x4 − z4 − y4 + t4).
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Finally, we use vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t22 and
t23 to produce

t24 = (x3 + z3 + y3 + t3, x3 − z3 + y3 − t3, x3 + z3 − y3 − t3, x3 − z3 − y3 + t3),

t25 = (x4 + z4 + y4 + t4, x4 − z4 + y4 − t4, x4 + z4 − y4 − t4, x4 − z4 − y4 + t4);

and vswp (a, b, c, d) (e, f, g, h) → (a, b, e, f) (c, d, g, h) to t18 and t24 to produce

t26 = (x2 + z2 + y2 + t2, x2 − z2 + y2 − t2, x3 + z3 + y3 + t3, x3 − z3 + y3 − t3),

t27 = (x2 + z2 − y2 − t2, x2 − z2 − y2 + t2, x3 + z3 − y3 − t3, x3 − z3 − y3 + t3).

The vectors t6, t7, t25, t26, t27 are the final results of the Hadamard transform.

B Haswell

Compared to Sandy Bridge (and Ivy Bridge), Haswell devotes considerably more
transistors to multiplication. This appendix analyzes the impact of Haswell’s new
multipliers, and in particular explains how we achieved 54389 Haswell cycles for
HECC.

B.1. Binary-polynomial multipliers. Haswell has an unusual level of hard-
ware support for fast binary-polynomial multiplication. One should expect this
to make binary-field ECC much faster on Haswell than on other CPUs, as illus-
trated by the impressive 55595 Haswell cycles in [44] for constant-time binary-
field GLV+GLS ECC. (Note that recent advances in index-calculus discrete-
logarithm algorithms for multiplicative groups of binary fields do not threaten
the binary-field curves used in [44].)

Our HECC speeds are nevertheless faster. Perhaps there are further improve-
ments in the approach of [44], but it is clear that HECC is an excellent cross-
platform option and will continue to benefit from increased CPU support for
vectorization, while it is not at all clear whether Intel will continue to expand
the circuit area devoted to binary-field arithmetic, or whether other CPU man-
ufacturers will follow. Note also that there are formulas in [32] for Kummer
surfaces of binary hyperelliptic curves, opening up the possibility of a unifica-
tion of these techniques.

B.2. Vectorized floating-point multipliers. Each Haswell core has two vec-
torized floating-point multiplication units: port 0 and port 1 each handle one
256-bit vector multiplication each cycle. Even better, these multipliers include
integrated adders, so in one cycle a Haswell core can compute ab+ c and de+ f ,
while in one cycle a Sandy Bridge core can compute at best ab and d+ f . One
should not think that this trivially reduces our cycle counts by a factor of 2:

• Multiplication latency is still 5 cycles, so to keep both multipliers busy one
needs 10 independent multiplications. For comparison, keeping the Sandy
Bridge multiplier busy needs only 5 independent multiplications.
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• The integrated adders are useful only for additions (or subtractions) of prod-
ucts. There is no improvement to the performance of other addition instruc-
tions: each 256-bit vector addition consumes port 1 for one cycle. Obviously
one can also take advantage of port 0 by rewriting b + c as 1b + c, but this
still costs 1 arithmetic instruction rather than 0.5 arithmetic instructions,
and it also increases latency from 3 to 5.

A further detail of importance for us is that the vroundpd instruction on the
Haswell costs as much as two additions, whereas on Sandy Bridge it costs just
one. We therefore switched to the carry approach from [8] described in Sec-
tion 3.4. This reduced our starting 284 multiplications on Sandy Bridge to 190
multiplications: it eliminated 2 multiplications in each of 51 carries, except that
the 8 carries h5 → h0 (see Section 3.4) still require 1 multiplication each. Mean-
while this increased the original 282 additions to 333 additions.

Most of the additions in Sections 3.4 and 4 cannot be integrated into multi-
plications but the additions in Sections 3.2 and 3.3 naturally have the form “add
ab into c”. After integrating additions into multiplications we were left with 220
additions and 190 multiplications. These numbers have been computer-verified.

This arithmetic consumes at least 205 arithmetic cycles, i.e., at least 51455
cycles for 251 iterations of the main loop. The actual performance of our main
loop at this point was much worse, 333 cycles. After initial rescheduling our
eBACS-verified total cost was 72276 cycles; the main loop consumed 272 cycles,
explaining 68272 cycles. We then switched to exploring a different approach
described below.

B.3. Vectorized integer multipliers. Each Haswell core has one 4-way vec-
torized 32× 32→ 64 integer multiplier (port 0) and two 4-way vectorized 64-bit
integer adders (port 5, competing with permutations, and port 1). Compared to
floating-point vectors, Haswell’s integer vectors have the obvious disadvantage
of producing only 4 products per cycle instead of 8; on the other hand, integer
vectors provide a noticeably better spread of operations across ports, the ability
to efficiently use 5 limbs rather than 6, and a much lower addition latency.

We split each field element x into 5 unsigned limbs x0, x1, x2, x3, x4; we use
unsigned limbs here because Haswell’s vectorized 64-bit right-shift instruction
handles only unsigned integers. Each limb fits into 32 bits. We arrange four field
elements (x, y, z, t) as five 256-bit vectors (xi, 0, yi, 0, zi, 0, ti, 0), matching the
input format used by the vectorized integer-multiplication instruction.

M involves 25 32-bit multiplications, 20 64-bit additions, and 6 carries, after
a precomputation involving 4 32-bit doublings. Each carry consists of 1 shift, 1
addition, and 1 mask. For the precomputation we (1) use additions rather than
shifts, because shift instructions compete with the multiplier on port 0, and (2)
use 64-bit additions rather than 32-bit additions, because the extra efficiency of
32-bit additions is outweighed by the cost of extra permutations.

M4 thus uses 25 (vectorized) multiplication instructions, 26 or 30 addition
instructions depending on whether precomputation is included, 6 shift instruc-
tions, and 6 mask instructions. Similarly, S4 uses 15 multiplication instructions,
20 addition instructions, 6 shift instructions, and 6 mask instructions; m4 uses
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5 multiplication instructions, 5 addition instructions, 5 shift instructions, and
5 mask instructions. We use absolute values of all constants in m4; this means
that we are implicitly negating x as output of m4, but we compensate for this
in the H steps, as discussed in a moment.

We apply H to two inputs (x, y, z, t) and (x′, y′, z′, t′) at once. These two
inputs actually consist of five vectors (−xi, 0, yi, 0, zi, 0, ti, 0) and five vectors
(−x′i, 0, y′i, 0, z′i, 0, t′i, 0). For each i we build (−xi,−x′i, yi, y′i, zi, z′i, ti, t′i) at the
expense of a shift and a xor. (We could alternatively apply the same format
conversions to four out of the five vectors in one H input, reducing the data
flow between the left and right halves of Figure 2.4(b).) Undoing this format
conversion at the end of H2 might seem to involve a shift and a mask, but we
actually skip the mask: each H output is used solely for multiplication, and the
multiplication instructions implicitly mask their inputs.

The input to the core of H2 is thus (−xi,−x′i, yi, y′i, zi, z′i, ti, t′i), which for this
paragraph we abbreviate as (−x, y, z, t). For the first Hadamard level we obtain

• (x− 1, y, z,−t− 1) by a xor of (−x, y, z, t) with (−1, 0, 0,−1), exploiting the
twos-complement representation of integers;

• (y,−x, t, z) by a permutation; and
• (x+ y − 1, y − x, z + t, z − t− 1) by an addition.

We then obtain (x+ y − 1, z + t, y − x, z − t− 1) by a (latency-3) permutation.
For the second Hadamard level we obtain

• (x+ y − 1,−z − t− 1, x− y − 1, z − t− 1) by a xor with (0,−1,−1, 0);
• (z + t, x+ y − 1, z − t− 1, y − x) by a permutation; and
• (x+ y + z + t− 1, x+ y − z − t− 2, x− y + z − t− 2,−(x− y − z + t)− 1)

by an addition.

A final addition of (1, 2, 2, 1) would produce (x+ y+ z+ t, x+ y− z− t, x− y+
z − t,−(x − y − z + t)). We actually add something larger (equal to (1, 2, 2, 1)
modulo 2255 − 19) to produce unsigned results, as in Section 5. The negation of
x− y − z + t disappears as in Figure 4.3.

Overall H2 uses 11 vector instructions — 3 additions, 2 shifts, 3 permutations,
and 3 logic instructions — for each of the 5 limbs. There are also 5 conditional-
select instructions after the first H2, as in Section 4.

We treat Figure 2.4(b) as 2M4 + 3S4 + 3m4 + 2H2, for a total of 110 mul-
tiplications, 161 additions, 65 shifts, 75 logic instructions, and 30 permutations,
plus the 5 conditional-select instructions, each of which is as expensive as 2
permutations. These totals have been computer-verified.

The 175 multiplications and shifts use port 0; the 161 additions use port 1;
the 30 + 5 · 2 permutations use port 5; and the 75 logic instructions can use any
of these ports. The most obvious bottleneck is 175 cycles for port 0. The most
obvious scheduling challenge is to avoid having port 0 distracted by the logic
operations. Our current software uses 197 cycles for the main loop.
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C Lattice techniques

The maximum possible speedup from the following idea is small and as far as
we can tell is outweighed by overhead, so we do not use it in our software, but
we briefly describe the idea because it might be useful in other contexts.

One could scale (1 : x1/y1 : x1/z1 : x1/t1) so that each limb is smaller, hope-
fully small enough to eliminate the need for carry chains in the relevant M.
There are 24 limbs (on Sandy Bridge) and approximately 2127 possible scalings,
so one would expect a scaling to exist that makes all the limbs 5 bits smaller.
However, finding this scaling appears to be a medium-dimensional lattice prob-
lem that would cost more to solve than it could possibly save. Scaling to four
integers below 296 would be a much easier lattice computation and would save
the multiplications by top coefficients, but still does not appear to be worthwhile.

For comparison, scaling (x1 : y1 : z1 : t1) to (1 : x1/y1 : x1/z1 : x1/t1)
is a one-dimensional lattice problem. The potential advantage of the higher-
dimensional lattices in the previous paragraph is that they are compatible with
our vectorization across the four coefficients.

D Fixed-base scalar multiplication

There is no doubt that the ‘grail’ of efficiency leads to abuse. Program-
mers waste enormous amounts of time thinking about, or worrying about,
the speed of noncritical parts of their programs, and these attempts at
efficiency actually have a strong negative impact when debugging and
maintenance are considered. We should forget about small efficiencies,
say about 97% of the time: premature optimization is the root of all evil.

—Donald E. Knuth, 1974 [39]

The simplest way to generate a DH key is to apply our variable-base-point
scalar-multiplication software to the fixed base point

(x/y : x/z : x/t) = (6 : 142514137003289508520683013813888233576 : 1)

of prime order (the prime ending 339). The software takes constant time, and in
particular takes the same time for DH key generation as it does for DH shared-
secret computation.

D.1. Optimizing fixed-base scalar multiplication. The simplest approach
is not the fastest approach. It is well known that fixed-base scalar multiplication,
and in particular DH key generation, can be made much faster than variable-base
scalar multiplication.

The standard way to speed up fixed-base scalar multiplication in genus 2 is
to precompute various multiples of the base point on the Jacobian. For Jacobian
addition formulas see, e.g., [17] and [35]. An alternate “hyper-and-elliptic” ap-
proach proposed recently in [14] is to carry out fixed-base scalar multiplication
using precomputed points on an auxiliary elliptic curve, taking advantage of the
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speed of elliptic-curve additions, and then map from the elliptic curve to the
Jacobian; this does not work with the Kummer surface that we used, but it does
work with other small-coefficient Kummer surfaces constructed in [14]. Mapping
from Jacobian to Kummer takes a few dozen additional multiplications.

For memory-limited platforms there are still significant speedups from a small
number of precomputed points. For example, precomputing just 4 points reduces
the number of doublings by a factor of 4. When the number of precomputed
points is sufficiently small we could also carry out lattice precomputations as
in Appendix C to noticeably reduce the size of the projective representations of
those points; alternatively, we could generate new base points meeting various
size criteria.

D.2. Reusing DH keys. There are two major types of DH keys: long-term (or
“static”) DH keys used as traditional identifiers, and ephemeral DH keys that are
erased to provide forward secrecy. For example, HTTPS supports certified long-
term “ECDH” SSL keys assigned to web servers, and it also supports ephemeral
“ECDHE” SSL keys that provide forward secrecy.

A long-term DH key involves just one fixed-base scalar multiplication (for
key generation) and is then bottlenecked by variable-base scalar multiplications
using public keys of other parties. In this context it is obvious that there is
negligible benefit in speeding up fixed-base scalar multiplication.

The same optimization applies to ephemeral DH: an implementor who finds
that key-generation time is a bottleneck can simply reuse ephemeral DH keys.
If a DH key is reused just 1000 times, and key generation is implemented in
the simplest way as variable-base scalar multiplication, then key generation is
below 0.1% of the total DH cost. Of course, standard fixed-base speedups (see
above) make DH key generation another few times faster, but this has negligible
benefit. The critical speedup comes from key reuse.

As a concrete example, Microsoft’s SSL library (SChannel) reuses ephemeral
DH keys for 2 hours, according to [20, page 8]. Even if the reuse intervals were
drastically shortened, and keys were discarded after just 2 seconds, the ephemeral
key-generation time (a small fraction of a millisecond using ECC or HECC)
would be completely unnoticeable.

These are not new observations: they are the reason that the cost of variable-
base scalar multiplication is the primary metric used in the DH literature. For
example, [9] (“new Diffie–Hellman speed records”) mentions that fixed-base
speedups exist and then says that these speedups are “negligible in the Diffie–
Hellman context . . . since each key is used many times”. As another exam-
ple, when [17] (“Fast cryptography”) advertises a “new software speed record”
for “constant-time scalar multiplication”, it is referring to variable-base scalar
multiplication; [17] says far less about fixed-base performance. As yet another
example, when [22] (“Faster compact Diffie–Hellman”) advertises “fast elliptic
curve scalar multiplication, optimized for Diffie–Hellman Key Exchange”, it is
referring to variable-base scalar multiplication.

Of course, in contexts where it is important for every key to be erased as
quickly as possible, or where any key reuse would give away valuable metadata,
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one should switch to the simplest form of ephemeral DH. This means carrying out
one fixed-base scalar multiplication to generate a single-use key, and one variable-
base scalar multiplication to generate a shared secret. Even in this (arguably
important) corner of the DH universe, fixed-base scalar multiplication (with the
standard optimizations) consumes relatively little time, so making variable-base
scalar multiplication N% faster is more important than making fixed-base scalar
multiplication N% faster.

Fixed-base scalar multiplication is far more important outside the DH context:
for example, it is the primary bottleneck in signature generation. See, e.g., [11].
We do not discuss this further: this paper focuses on DH.


