
Quantum position verification

in the random oracle model

Dominique Unruh
University of Tartu

February 12, 2014

Abstract. We present a quantum position verification scheme in the random
oracle model. In contrast to prior work, our scheme does not require bounded
storage/retrieval/entanglement assumptions. We also give an efficient position-based
authentication protocol. This enables secret and authenticated communication with
an entity that is only identified by its position in space.

Contents

1 Introduction 1

1.1 Preliminaries 3

2 1D position verification 4

3 Position verification in higher
dimensions 8

3.1 Difficulties 8

3.2 Circuits in spacetime . . . 11

3.3 Achieving higher-
dimensional position veri-
fication 12

3.4 Position verification in flat
spacetime 17

4 Position-based authentica-
tion 20

5 Open problems 25

A Buhrmann et al. and the 3D
case 26

B Random oracles 27

References 32

Symbol index 33

Keyword index 34

1 Introduction

What is position verification? Consider the following setting: A device P wishes
to access a location-based service. This service should only be available to devices in
a certain spacial region P, e.g., within a sports stadium. The service provider wants
to be sure no malicious device outside P accesses the service. In other words, we
need a protocol such that a prover P can prove to a verifier V that P is at certain
location. Such a protocol is called a position verification (PV) scheme. A special case
of position verification is distance bounding : P proves that he is within a distance δ
of V . In its simplest form, this is done by V sending a random message r to P , and
P has to send it back immediately. If r comes back to V in time t, P must be within

1

distance tc/2 where c is the speed of light. In general, however, it may not be practical
to require a device V in the middle of a spherical region P. (E.g., if P might be a
rectangular room.) In general PV, thus, we assume several verifier devices V1, . . . , Vn,
and a prover P somewhere in the convex hull of V1, . . . , Vn. The verifiers should then
interact with P in such a way that based on the response times of P , they can make sure
that P is at the claimed location (a kind of triangulation). Unfortunately, [CGMO09]
showed that position verification based on classical cryptography cannot be secure, even
when using computational assumptions, if the prover has several devices at different
locations (collusion). [BCF+11] showed impossibility in the quantum setting, but only
for information-theoretically secure protocols. Whether a protocol in the computational
setting exists was left open.1 In this work, we close this gap and give a simple protocol
in the random oracle model.

Applications. The simplest application of PV is just for a device to prove that it is
at a particular location to access a service. In a more advanced setting, location can
be used for authentication: a prover can send a message which is guaranteed to have
originated within a particular region (position-based authentication, PBA). Finally, when
combining PBA with quantum key distribution (QKD), an encrypted message can be
sent in such a way that only a recipient at a certain location can decrypt it. (E.g., think
of sending a message to an embassy – you can make sure that it will be received only in
the embassy, even if you do not know the embassy’s public key.) More applications are
position-based multi-party computation and position-based PKIs, see [CGMO09].

Our contribution. We present the first PV and PBA schemes secure against colluding
provers that do not need bounded storage/retrieval/entanglement assumptions. (Cf. “re-
lated work” below.) Our protocols use quantum cryptography and are proven secure
in the (quantum) random oracle model, and they work in the 3D setting. (Actually, in
any number of dimensions, as well as in curved spacetime.2) Using [BCF+11], this also
immediately implies position-based QKD. (And we even get everlasting security , i.e.,
if the adversary breaks the hash function after the protocol run, he cannot break the
secrecy.)

We also introduce a methodology for analyzing quantum circuits in spacetime which
we believe simplifies the rigorous analysis of protocols that are based on the speed of
light (like, e.g., PV or relativistic commitments [Ken12, KTHW13]). And for the first
time (to our knowledge), a security analysis uses adaptive programming of the quantum
random oracle (in our PBA security proof).

1But both [CGMO09, BCF+11] give positive results assuming bounded retrieval/entanglement, see
“related work” below.

2At the first glance, taking curvature of spacetime into account might seem like overkill. But for
example GPS needs to take general relativity into account to ensure precise positioning (see, e.g., [Ash97]).
There is no reason to assume that this would not be the case for long-distance PV.

2

time

V1 P∗2 V2

V 1
’s
m
sg

V
2 ’s

m
sg

P∗1

P∗3

Figure 1: Message flow in [BCF+11, TFKW13]. Security is only guaranteed if no entanglement is
created before the shaded region. The scheme can be attacked if P ∗2 sends EPR pairs to P ∗1 , P

∗
3 who then

can execute the attack from [KMS11, Section I].

Related work. [CGMO09] showed a general impossibility of computationally secure
PV in the classical setting; [BCF+11] showed the impossibility of information-theoretically
secure PV in the quantum setting. [CGMO09] proposed computationally secure protocols
for PV and position-based key exchange in the bounded retrieval model. Their model
assumes that a party can only retrieve part of a large message reaching it. In particular, a
party cannot forward a message (“reflection attacks” in the language of [CGMO09]); this
may be difficult to ensure in practice because a mirror might be such a forwarding device.
[BCF+11, TFKW13] provide a quantum protocol that is secure if the adversary can have
no/limited entanglement before receiving the verifiers’ messages. (I.e., in the message
flow diagram Figure 1, only in the shaded areas.) In particular, using the message flow
drawn in Figure 1, the attack from [KMS11, Section I] can be applied, even though no
entanglement is created before the protocol start (t = 0) and no entanglement needs to
be stored. This makes the assumption difficult to justify. Our protocol is an extension of
theirs, essentially adding one hash function application. [BCF+11] also gives a generic
transformation from PV to PBA; however, their construction is considerably less efficient
than our specialized one and does not achieve concurrent security (see the discussion
after Definition 9 below). Furthermore, the protocols from [BCF+11, TFKW13] only
work in the one-dimensional setting. ([BCF+11] has a construction for the 3D case, but
their proof seems incorrect, see Appendix A.)

Organization. In Section 2 we first explain our scheme in the 1D case. In Section 3.1
we explain the difficulties occurring in the 3D case which we solve in Sections 3.2 and 3.3.
In Section 4 we present our PBA scheme. Section 5 discusses open problems. The
appendix contains supplemental material referenced from the text.

1.1 Preliminaries

ω(x) denotes the Hamming weight of x. h(p) = −p log p − (1 − p) log(1 − p) denotes
the binary entropy. |x| denotes the absolute value or cardinality of x. ‖x‖ denotes the

Euclidean norm. x
$←M means x is uniformly random from M , and x← A() means x is

chosen by algorithm A.

3

For a background in quantum mechanics, see [NC10]. But large parts of this paper
should be comprehensible without detailed knowledge on quantum mechanics. For
x ∈ {0, 1}n, |x〉 denotes the quantum state x encoded in the computational basis, and
|Ψ〉 denotes arbitrary quantum states (not necessarily in the computational basis). 〈Ψ| is
the conjugate transpose of |Ψ〉. For B ∈ {0, 1}n, |x〉B denotes x encoded in the bases
specified by B, more precisely |x〉B = HB1 |x1〉⊗ · · ·⊗HBn |xn〉 where H is the Hadamard
matrix. An EPR pair has state 1√

2
|00〉+ 1√

2
|11〉. TD(ρ, ρ′) denotes the trace distance

between states ρ, ρ′. Given a (quantum) oracle algorithm A and a function H, AH()
means that A has oracle access to H and can query H on different inputs in superposition.
This is important for modeling the quantum random oracle correctly [BDF+11].

2 1D position verification

In this section, we consider the case of one-dimensional PV only. That is, all verifiers and
the honest and malicious provers live on a line. Although this is an unrealistic setting, it
allows us to introduce our construction and proof technique in a simpler setting without
having to consider the additional subtleties arising from the geometry of intersecting
light cones. We also suggest the content of this section for teaching.

We assume the following specific setting: There are two verifiers V1 and V2 at positions
−1 and 1, and an honest prover P at position 0. The verifiers will send messages at
time t = 0 to the prover P , who receives them at time t = 1 (i.e., we assume units in
which the speed of light is c = 1), and his immediate response reaches the verifiers at
time t = 2. In an attack, we assume that the malicious prover has devices P ∗1 and P ∗2 left
and right of position 0, but no device at position 0 where the honest prover is located.
See Figure 2 for a depiction of all message flows in this setting. This setting simplifies
notation and is sufficient to show all techniques needed in the 1D case. The general 1D
case (P not exactly in the middle, more malicious provers, not requiring P ’s responses to
be instantaneous) will be a special case of the higher dimensional theorems in Section 3.3.

In this setting, we use the following PV scheme:

Definition 1 (1D position verification) Let n (number of qubits) and ` (bit length
of classical challenges) be integers, 0 ≤ γ < 1/2 (fraction of allowed errors). Let
H : {0, 1}` → {0, 1}n be a hash function (modeled as a quantum random oracle).
• Before time t = 0, verifier V1 picks uniform x1, x2 ∈ {0, 1}`, ŷ ∈ {0, 1}n and

forwards x2 to V2 over a secure channel.
• At time t = 0, V1 sends |Ψ〉 and x1 to P . Here B := H(x1 ⊕ x2), |Ψ〉 := |ŷ〉B. And
V2 sends x2 to P .
• At time t = 1, P receives |Ψ〉, x1, x2, computes B := H(x1 ⊕ x2), measures |Ψ〉 in

basis B to obtain outcome y1, and sends y1 to V1 and y2 := y1 to V2. (We assume
all these actions are instantaneous, so P sends y1, y2 at time t = 1.)
• At time t = 2, V1 and V2 receive y1, y2. Using secure channels, they check whether
y1 = y2 and ω(y1 − ŷ) ≤ γn. If so (and y1, y2 arrived in time), they accept.

We can now prove security in our simplified setting.

4

time

t = 0

t = 1

t = 2

V1 P ∗1 P P ∗2 V2

|Ψ〉,
x1

st
a
te

o
f
P

∗ 1

y1

x
2

st
a
te

o
f
P

∗ 2

y2

B := H(x1 ⊕ x2)
y := measure |Ψ〉

in basis B

Figure 2: One-dimensional PV protocol. Dotted lines indicate additional message flows of the adversary
P ∗1 , P

∗
2 .

Theorem 2 (1D position verification) Assume P ∗1 and P ∗2 perform at most q queries
to H. Then in an execution of V1, V2, P

∗
1 , P

∗
2 with V1, V2 following the protocol from

Definition 1, the probability that V1, V2 accept is at most 3

2q2−`/2 +
(

2h(γ)
1 +

√
1/2

2

)n
.

Proof. To prove this theorem, we proceed using a sequence of games. The first game is the
original protocol execution, and in the last game, we will be able to show that Pr[Accept]
is small. Here we abbreviate the event “y1 = y2 and ω(y1 − ŷ) ≤ γn” as “Accept”.

Game 1 An execution as described in Theorem 2.

As a first step, we use EPR pairs to delay the choice of the basis B. This is a standard
trick that has been used in QKD proofs and other settings. By choosing B sufficiently
late, we will be able to argue below that B is independent of the state of P ∗1 and P ∗2 .

Game 2 As in Game 1, except that V1 prepares n EPR pairs, with their first qubits
in register X and their second qubits in Y . Then V1 sends X at time t = 0 instead of
sending |Ψ〉. At time t = 2, V1 measures Y in basis B := H(x1 ⊕ x2), the outcome is ŷ.

Note in particular that V1, V2 never query H before time t = 2. (But P ∗1 , P
∗
2 might, of

course.)
It is easy to verify (and well-known) that for any B ∈ {0, 1}, preparing a qubit

X := |y〉B for random y ∈ {0, 1} is perfectly indistinguishable (when given X, y,B) from
producing an EPR pair XY , and then measuring Y in bases B to get outcome y. Thus
Pr[Accept : Game 1] = Pr[Accept : Game 2].

3This probability is negligible if γ ≤ 0.037 and n, ` are superlogarithmic.

5

time

t = 0

t = 1

t = 2

V1 V2

|Ψ〉,
x1

y2

x
2

y1

b
a
rr

ie
r

pick B, program H

no prover
here

AH1

AH2

x1 known here x2 known here

Figure 3: Spacetime diagram depicting various steps of the proof of Theorem 2.

The problem now is that, although we have delayed the time when the basis B is
used, the basis is still chosen early: At time t = 0, the values x1, x2 are chosen, and those
determine B via B = H(x1 ⊕ x2). We have that neither P ∗1 nor P ∗2 individually knows
B, but that does not necessarily exclude an attack. (For example, [KMS11, Section I]
gives an efficient attack for the case that H is the identity, even though in this case B
would still not be known to P ∗1 nor P ∗2 individually before time t = 1.) We can only hope
that H is a sufficiently complex function such that computationally, B is “as good as
unknown” before time t = 1 (where x1 and x2 become known to both P ∗1 , P ∗2). The next
game transformation formalizes this:

Game 3 As in Game 1, except that at time t = 1, the value B
$← {0, 1}n is chosen, and

the random oracle is reprogrammed to return H(x1 ⊕ x2) = B after t = 1.

To clarify this, if H0 : {0, 1}` → {0, 1}n denotes a random function chosen at the very
beginning of the execution, then at time t ≤ 1, H(x) = H0(x) for all x ∈ {0, 1}`, while at
time t > 1, H(x0 ⊕ x1) = B and H(x) = H0(x) for all x 6= x0 ⊕ x1.

Intuitively, the change between Games 2 and 3 cannot be noticed because before time
t = 1, the verifiers never query H(x1 ⊕ x2), and the provers cannot query H(x1 ⊕ x2)
either: before time t, in no spacial location the prover will have access to both x1 and x2.

This is illustrated in Figure 3: The hatched areas represent where x1 and x2 are
known respectively. Note that they do not overlap. The dashed horizontal line represents
where the random oracle is programmed (t = 1).

Purists may object that choosing B and programming the random oracle to return B
at all locations in a single instant in time needs superluminal communication which in
turn is know to violate causality and might thus lead to inconsistent reasoning. Readers
worried about this aspect should wait until we prove the general case of the PV protocol
in Section 3.3, there this issue will not arise because we first transform the whole protocol

6

execution into a non-relativistic quantum circuit and perform the programming of the
random oracle in that circuit.

To prove that Games 2 and 3 are indistinguishable, we use the following lemma which
is a special case of Lemma 15 (Appendix B).

Lemma 3 Let H : {0, 1}` → {0, 1}n be a random oracle. Let (A1, A2) be oracle algo-
rithms sharing state between invocations that perform at most q queries to H. Let C1 be
an oracle algorithm that on input (j, x) does the following: Run AH1 (x) till the j-th query
to H, then measure the argument of that query in the computational basis, and output
the measurement outcome. (Or ⊥ if no j-th query occurs.) Let

P 1
A := Pr[b′ = 1 : H

$← ({0, 1}` → {0, 1}n), x← {0, 1}`, AH1 (x), b′ ← AH2 (x,H(x))]

P 2
A := Pr[b′ = 1 : H

$← ({0, 1}` → {0, 1}n), x← {0, 1}`, B $← {0, 1}n, AH1 (x), H(x) := B, b′ ← AH2 (x,B)]

PC := Pr[x = x′ : H
$← ({0, 1}` → {0, 1}n), x← {0, 1}`, j $← {1, . . . , q}, x′ ← CH1 (j, x)]

Then |P 1
A − P 2

A| ≤ 2q
√
PC .

In other words, an adversary can only notice that the random oracle is reprogrammed at
position x if he can guess x before the reprogramming takes place.

To apply Lemma 3 to Games 2 and 3, let AH1 (x) be the machine that executes verifiers
and provers from Game 2 until time t = 1 (inclusive). When V1 chooses x1, x2, A

H
1 (x)

chooses x1
$← {0, 1}` and x2 := x⊕ x1. And let AH2 (x,B) be the machine that executes

verifiers and provers after time t = 1. When V1 queries H(x1 ⊕ x2), AH2 uses the value
B instead. In the end, AH2 returns 1 iff y1 = y2 and ω(ŷ − y1) ≤ γn. (See Figure 3
for the time intervals handled by AH1 ,AH2 .) Since V1, V2 make no oracle queries except
for H(x1 ⊕ x2), and since P ∗1 , P

∗
2 make at most q oracle queries, we have that AH1 , A

H
2

perform at most q queries.
By construction, P 1

A = Pr[Accept : Game 2]. And P 2
A = Pr[Accept : Game 3]. And

PC = Pr[x′ = x1 ⊕ x2 : Game 4] for the following game:

Game 4 Pick j
$← {1, . . . , q}. Then execute Game 2 till time t = 1 (inclusive), but stop

at the j-th query and measure the query register. Call the outcome x′.

Since Game 4 executes only till time t = 1, and since till time t = 1, no gate can be
reached by both x1, x2 (note: at time t = 1, at position 0 both x1, x2 could be known,
but no malicious prover may be at that location), the probability that x1 ⊕ x2 will be
guessed is bounded by 2−`. Hence Pr[x′ = x1 ⊕ x2 : Game 3] ≤ 2−`. (This argument was
a bit nonrigorous; we will be more precise in the proof of the generic case, in the proof of
Theorem 6.)

Thus by Lemma 3, we have∣∣Pr[Accept : Game 2]− Pr[Accept : Game 3]
∣∣ = |P 1

A − P 2
A| ≤ 2q

√
PC

= 2q
√

Pr[x′ = x1 ⊕ x2 : Game 4] ≤ 2q2−`/2. (1)

We continue to modify Game 3.

7

Game 5 Like Game 3, except that for time t > 1, we install a barrier at position 0 (i.e.,
where the honest prover P would be) that lets no information through.

The barrier is illustrated in Figure 3 with a thick vertical line.
Time t = 1 is latest time at which information from position 0 could reach the verifiers

V1, V2 at time t ≤ 2. Since we install the barrier only for time t > 1, whether the barrier
is there or not cannot influence the measurements of V1, V2 at time t = 2. And Accept
only depends on these measurements. Thus Pr[Accept : Game 3] = Pr[Accept : Game 5].

Let ρ be the state of the execution of Game 5 directly after time t = 1 (i.e., after
the gates at times t ≤ 1 have been executed). Then ρ is a threepartite state consisting
of registers Y , L, R where Y is the register containing the EPR qubits which will be
measured to give ŷ (cf. Game 2), and L and R are the quantum state left and right of the
barrier respectively. Then ŷ is the result of measuring Y in basis B, and y1 is the result
of applying some measurement M1 to L (consisting of all the gates left of the barrier),
and y2 is the result of applying some measurement M2 to R. Notice that due to the
barrier, M1 and M2 operate only on L and R, respectively, without interaction between
those two.

We have thus:

Pr[Accept : Game 5] = Pr[y1 = y2 and ω(ŷ − y1) ≤ γn : B
$← {0, 1}n, Y LR← ρ,

ŷ ←MB(Y), y1 ←M1(L), y2 ←M2(R)]

where Y LR← ρ means initializing Y LR with state ρ. And MB is a measurement in bases
B. And ŷ ←MB(Y) means measuring register Y using measurement MB and assigning
the result to ŷ. And y1 ←M1(L), y2 ←M2(R) analogously.

The rhs of this equation is a so-called monogamy of entanglement game, and

[TFKW13] shows that the rhs is bounded by
(

2h(γ)
1+
√

1/2

2

)n
. Thus Pr[Accept : Game 5] ≤(

2h(γ)
1+
√

1/2

2

)n
. And from (1) and the equalities between games, we have

∣∣Pr[Accept :

Game 1]− Pr[Accept : Game 5]
∣∣ ≤ 2q2−`/2.

Thus altogether Pr[Accept : Game 1] ≤ 2q2−`/2 +
(

2h(γ)
1+
√

1/2

2

)n
. �

3 Position verification in higher dimensions

3.1 Difficulties

Excepting special cases where the honest prover happens to lie on a line between two
verifiers, one-dimensional PV with two verifiers is not very useful. We therefore need
to generalize the approach to three dimensions. It turns out that some non-trivialities
occur here. (See also Appendix A for 3D-problems in prior work.) For n-dimensional
PV we need at least n+ 1 verifiers.4 To illustrate the problems occurring in the higher

4PV (in Euclidean space) can only work if the prover P is in the convex hull C of the verifiers.
Otherwise, if we project P onto the hypersurface H separating C from P , we get a point P ′ that is closer

8

R1

R2 R3

|Ψ〉
x1

x2
x
3P

V1

V2 V3

R1

R2 R3
tδ ≈

1.13√ 3
2
≈

0.
86 δ

V1

V2 V3

(a) (b)

Figure 4: The geometry of space at time tδ (i.e., when B first becomes known). Left for δ = 0, right for

δ =
√

4−
√

12− 1
2
≈ 0.23.

dimensional case, we sketch what happens if we try to generalize the protocol and proof
from Section 2 to the 2D case.

In the 2D case we need at least three verifiers V1, V2, V3. Let’s assume that they are
arranged in a equilateral triangle, each at distance 1 from an honest prover P in the
center. (Cf. Figure 4 (a).) V1 sends a quantum state |Ψ〉, and all Vi send a random xi. At
time t = 1, all xi are received by P who computes B := H(x1 ⊕ x2 ⊕ x3) and measures
|Ψ〉 in basis B, yielding the value y to be sent to V1, V2, V3.

Now as in Section 2 we can argue that before time t = 1, there is no point in space
where all x1, x2, x3 are known. Hence B := H(x1 ⊕ x2 ⊕ x3) will not be queried before
t = 1. Hence by programming the random oracle (using Lemma 3) we can assume that
the basis B is chosen randomly only at time t = 1. In Section 2 we then observed that
space is partitioned into two disjoint regions: Region L from which light can reach V1 by
time t = 2, and region R from which light can reach V2 by time t = 2. The results from
[TFKW13] then imply that the correct y cannot be obtained from two independent (but
possibly entangled) quantum registers L and R simultaneously. What happens if we apply
this reasoning in the 2D case? Figure 4 (a) depicts the three regions R1, R2, R3 of points
that can reach V1, V2, V3 until time t = 2. These regions are not disjoint! We cannot
argue that measuring y in each of these regions violates the monogamy of entanglement,
y does not result from measuring separate quantum registers.

Can we fix this? The most obvious consequence would be to weaken the security
claim: “A malicious prover which has devices anywhere except at point P or distance δ
from P cannot make the verifiers accept.” Then the time tδ when the random oracle is
programmed is the earliest time at which some point at distance δ from P has access to
all x1, x2, x3. We can see that this time is tδ =

√
3/4 + (1/2 + δ)2. 5 Then R1, R2, R3

to any point of C than P . Since the convex hull of n provers can at most be n− 1 dimensional, we need
at least n+ 1 provers to get an n dimensional convex hull.

5To see this, first observe that a point X that gets x1, x2, x3 first must lie on the circle C around P

9

Figure 5: The surface S in spacetime at which B is sampled. The dots floating over S denote when the
verifiers need to receive y (i.e., the dots are at time 2 and space V1, V2, V3). The thick black lines enclose
the areas R1, R2, R3 on S from which the verifiers can be reached in time. (Right: top view. In PDF:
click figures for interaction.)

are the regions from which light can travel to V1, V2, V3 within time 2− tδ. In order for
them to be disjoint, we thus need 2 − tδ < a/2 where a =

√
3 is the distance between

two verifiers. This is achieved iff δ >
√

4−
√

12 − 1
2 ≈ 0.23. (Cf. Figure 4 (b).) This

means that the malicious prover is only guaranteed to be within a circle of diameter 2δ,
which is about 46% of the distance between prover and verifier. In the 3D case, using a
numerical calculation, we even get δ ≈ 0.38.

Can we improve on this bound? Indeed, when we said that the B is sampled at time
t = 1, this was not a tight analysis. At time t = 1, the query B = H(x1 ⊕ x2 ⊕ x3) can
only occur at point P . The farther away from P we get, the later we get all of x1, x2, x3.
Thus, if we plot the earliest time of querying B as a function of space, we get a surface S
in 3D spacetime (Figure 5) which is not a plane. Now, instead of considering the state
of the provers at time t = 1, we consider the state of the prover on S. (I.e., the state
of all devices of the prover at points in spacetime in S.) We ask the reader to take it
on trust for the moment this is actually a well-defined state. And now we can again
ask whether S decomposes into distinct regions R1, R2, R3 if we consider regions that
can reach the verifiers V1, V2, V3 by time t = 2. (See Figure 5.) This approach has the
potential of giving a much tighter security analysis. However, it is quite complicated
to reason about the geometry of S and R1, R2, R3, and in the 3D case things will get
even more complicated. Therefore in the following section we will take an approach that
abstracts away from the precise geometry of spacetime and uses a more generic reasoning.
This has the twofold advantage that we do not need to analyze what S actually looks

with radius δ. And X must have equal distance to at least two of the verifiers. Thus X is a point on the
altitude of the triangle. There are six intersections between C and the altitudes. Those that minimize
the distance to the farthest vertex are the ones closest to a vertex and have distance

√
(a/2)2 + (r + δ)2

from the farthest vertex (a =
√

3 is the side length of the triangle, and r = 1/2 is the inradius).

10

like (although S implicitly occurs in the proof), and that our result will be much more
general: it holds in any number of dimensions, and it even holds if we consider curved
spacetime (general relativity theory). To state and prove our results, we first need to
introduce some (simple) notation from general relativity theory.

3.2 Circuits in spacetime

Spacetime is the set of all locations in space and time. That is, intuitively spacetime
consists of all tuples (t, x1, . . . , xn) where t is the time and x1, . . . , xn is the position in
space. Such a location in spacetime is called an event. Relativity theory predicts that
there is no natural distinction between the time coordinate t and the space coordinates
x1, . . . , xn. (In a similar way as in “normal” space there is no reason why three particular
directions in space are coordinates.) As it turns out, for analyzing our PV protocol,
we do not need to know the structure of spacetime, so in the following spacetime will
just be some set of events, with no particular structure.6 However, the reader may of
course assume throughout the paper that spacetime consists of events (t, x1, . . . , xn) with
t, x1, . . . , xn ∈ R. This is called flat spacetime.

The geometry of spacetime (to the extent needed here) is described by a partial order
on the events: We say x causally precedes y (x ≺ y) iff information originating from event
x can reach event y. Or in other words, if you can get from x to y traveling at most the
speed of light. In flat spacetime, this relation is familiar: (tx, x1, . . . , xn) ≺ (ty, y1, . . . , yn)
iff tx ≤ ty and ‖(x1, . . . , xn)− (y1, . . . , yn)‖ ≤ ty − tx.

Given this relation, we can define the causal future C+(x) of an event x as the set of
all events reachable from x, C+(x) := {y : x ≺ y}. Similarly, we define the causal past
C−(x) := {y : y ≺ x}.

In the case of flat spacetime, the causal future of x = (t, x1, . . . , xn) is an infinite cone
with its point at x and extending towards the future. Thus it is also called a future light
cone. Similarly the causal past of x is an infinite cone with its point at x extending into
the past.

This language allows us to express quantum computations in space that do not
transfer information faster than light. A spacetime circuit is a quantum circuit where
every gate is at a particular event. There can only be a wire from a gate at event x to
a gate at event y if x causally precedes y (x ≺ y). Note that since ≺ is a partial order
and thus antisymmetric, this ensures that a circuit cannot be cyclic. Note further that
there is no limit to how much computation can be performed in an instant since ≺ is
reflexive. We can model malicious provers that are not at the location of an honest prover
by considering circuits with no gates in P, where P is a region in spacetime. (This allows
for more finegrained specifications than, e.g., just saying that the malicious prover is
not within δ distance of the honest prover. For example, P might only consist of events
within a certain time interval; this means that the malicious prover is allowed to be at

6For readers knowledgeable in general relativity: We do assume that spacetime is a Lorentzian manifold
which is time-orientable (otherwise the notions of causal future/past would not make send) without closed
causal curves (at least in the spacetime region where the protocol is executed; otherwise quantum circuits
may end up having loops).

11

any space location outside that time interval.) Notice that a spacetime circuit is also
just a normal quantum circuit if we forget where in spacetime gates are located. Thus
transformations on quantum circuits (such as changing the execution order of commuting
gates) can also be applied to spacetime circuits, the result will be a valid circuit, though
possibly not a spacetime circuit any more.

3.3 Achieving higher-dimensional position verification

We can now formulate the definition of secure PV in higher dimensions using the language
from the previous section.

Definition 4 (Sound position verification) Let P be a region in spacetime. A po-
sition verification protocol is sound for P iff for any non-uniform polynomial-time7

spacetime circuit P ∗ that has no gates in P, the following holds: In an interaction between
the verifiers and P ∗, the probability that the verifiers accept (the soundness error) is
negligible.

The smaller the region P is, the better the protocol localizes the prover. Informally, we
say the protocol has higher precision if P is smaller.

Next, we describe the generalization of the protocol in Section 2. In this generalization,
only two of the verifiers check whether the answers of the prover are correct. Although
we believe that we get higher precision if more verifiers check the answers, it is an open
problem to prove that.

Definition 5 (Position verification protocol) Let P be a prover, and P ◦ an event
in spacetime (P ◦ specifies where and when the honest prover performs its computation).
Let V1, . . . , Vr be verifiers. Let V +

1 , . . . , V
+
r be events in spacetime that causally precede

P ◦. (V +
i specifies where and when the verifier Vi sends its challenge.) Let V −1 , V

−
2 be

events in spacetime such that P ◦ causally precedes V −1 , V
−
2 . (V −i specifies where and when

Vi expects the prover’s response.)
Let n (number of qubits) and ` (bit length of classical challenges) be integers, and

0 ≤ γ < 1
2 (fraction of allowed errors). Let H : {0, 1}` → {0, 1}n be a hash function

(modeled as a quantum random oracle).
• The verifiers choose uniform x1, . . . , xr ∈ {0, 1}`, ŷ ∈ {0, 1}n. (By communicating

over secure channels.)
• At some event that causally precedes P ◦, V0 sends |Ψ〉 to P . Here B := H(x1⊕ x2),
|Ψ〉 := |ŷ〉B.
• For i = 1, . . . , r: Vr sends xr to P at event V +

r .
• At event P ◦, P will have |Ψ〉, x1, . . . , xr. Then P computes B := H(x1 ⊕ · · · ⊕ xr),

measures |Ψ〉 in basis B to obtain outcome y1, and sends y1 to V1 and y2 := y1
to V2.

7Non-uniform polynomial-time means that we are actually considering a family of circuits of polynomial
size in the security parameter, consisting only of standard gates (from some fixed universal set) and oracle
query gates. In addition, we assume that the circuit is given an (arbitrary) initial quantum state that
does not need to be efficiently computable.

12

• At events V −1 , V
−
2 , V1 and V2 receive y1, y2. Using secure channels, the verifiers

check whether y1 = y2 and ω(y1 − ŷ) ≤ γn. If so (and y1, y2 indeed arrived at
V −1 , V

−
2), the verifiers accept.

In the protocol description, for simplicity we assume that V1, V2 are the receiving
verifiers. However, there is no reason not to choose other two verifiers, or even additional
verifiers not used for sending. Similarly, |Ψ〉 could be sent by any verifier, or by an
additional verifier. In the analysis, we only use the events at which different messages
are sent/received, not which verifier device sends which message.

Note that this protocol also allows for realistic provers that cannot perform instanta-
neous computations: In this case, one chooses the events V −1 , V

−
2 such that the prover’s

messages can still reach them even if the prover sends y1, y2 with some delay.
We can now state the main security result:

Theorem 6 Assume that γ ≤ 0.037 and n, ` are superlogarithmic.
Then the PV protocol from Definition 5 is sound for P :=

⋂r
i=1 C

+(V +
i) ∩C−(V −1) ∩

C−(V −2). (In words: There is no event in spacetime outside of P at which one can receive
the messages xi from all Vi, and send messages that will be received in time by V1, V2.)

Concretely, if the malicious prover performs at most q oracle queries,8 then the

soundness error is at most ν :=
(

2h(γ)
1+
√

1/2

2

)n
+ 2q2−`/2.

Notice that the condition on the locations of the provers is tight: If E ∈
⋂r
i=1 C

+(V +
i)∩

C−(V −1) ∩ C−(V −2) \ P 6= ∅, then the protocol could even be broken by a malicious
prover with a single device: P ∗ could be at event E, receive x1, . . . , xr, compute y1, y2
honestly, and send them to V1, V2 in time. The same reasoning applies to any protocol
where only two verifiers receive. Our protocol is thus optimal in terms of precision under
all such protocols.

Proof of Theorem 6. In the following, we write short C+
i for C+(V +

i) and C−i for
C−(V −i). We also write

⋂
instead of

⋂r
i=1. The precondition of the theorem then

becomes:
⋂
C+
i ∩ C

−
1 ∩ C

−
2 ⊆ P. Let Ω denote all of spacetime.

We now partition the gates in the spacetime circuit P ∗ into several disjoint sets
of gates (subcircuits), depending on where they are located in spacetime. For each
subcircuit, we also give an rough intuitive meaning; those meanings are not precisely
what the subcircuits do but help to guide the intuition in the proof.

Subcircuit Region in spacetime Intuition

P ∗pre (C−1 ∪ C
−
2) \

⋂
C+
i Precomputation

P ∗P
⋂
C+
i ∩ C

−
1 ∩ C

−
2 Gates in P (empty)

P ∗1
⋂
C+
i ∩ C

−
1 \ C

−
2 Computing y1

P ∗2
⋂
C+
i ∩ C

−
2 \ C

−
1 Computing y2

P ∗post Ω \ C−1 \ C
−
2 After protocol end

8Actually, it is sufficient if the number of queries performed by gates inside C−1 ∪ C
−
2 is bounded by q.

In particular, oracle queries after both verifiers have received y1, y2 do not count (as expected).

13

Note that all those subcircuits are disjoint, and their union is all of Ω. The subcircuits
have analogues in the proof in the one-dimensional case. P ∗pre corresponds to the gates
below the dashed line in Figure 3; P ∗1 to the gates above the dashed line and left of the
barrier; P ∗2 above the dashed line and right of the barrier; P ∗post to everything that is
above the picture. This correspondance is not exact, because as discussed in Section 3.1,
the dashed line needs to be replaced by a surface S (Figure 5) which is not flat. In our
present notation, S is the border between P ∗pre and the other subcircuits.

In addition, in some abuse of notation, by V1 we denote the circuit at V −1 that
receives y1. Similar for V2.

By definition of spacetime circuits, there can only be a wire from gate G1 to gate
G2 if G1, G2 are at events E1, E2 with E1 ≺ E2 (E1 causally precedes E2). Thus, by
definition of causal futures and the transitivity of ≺, there can be no wire leaving C+

i .
Similarly, there can be no wire entering C−i . These two facts are sufficient to check the
following facts:

P ∗1 , P
∗
2 , P

∗
post 9 P ∗pre, P ∗1 9 P ∗2 , P ∗2 9 P ∗1 , P ∗1 9 V2, P ∗2 9 V1, P ∗post 9 P ∗1 , P

∗
2 , V1, V2.

(2)
Here A9 B means that there is no wire from subcircuit A to subcircuit B.
Given these subcircuits, we can write the execution of the protocol as the following

quantum circuit:

P ∗pre

P ∗1

P ∗2

V1

V2

y1

y2

~x

P ∗post

|x〉B

(3)

Here ~x is short for x1, . . . , xr. And we have omitted wires between subcircuits that
are in the transitive hull of the wires drawn. (E.g., there can be a wire from P ∗pre to
V1, but we did not draw it because we drew wires from P ∗pre to P ∗1 to V1.) Note that
P ∗P does not occur in this circuit, because it contains no gates (it consists of gates in⋂
C+
i ∩ C

−
1 ∩ C

−
2 = P which by assumption contains no gates).

From (2) it follows that no wires are missing in (3). In particular, (2) implies that
the quantum circuit is well-defined. If we did not have, e.g., P ∗1 9 P ∗pre, there might
be wires between P ∗1 and P ∗pre in both directions; the result would not be a quantum
circuit. We added arrow heads in (2), these are only to stress that the wires indeed go in
the right directions, below we will follow the usual left-to-right convention in quantum
circuits and omit the arrow heads.

The circuit (3) now encodes all information dependencies that we will need, we can
forget that (3) is a spacetime circuit and treat it as a normal quantum circuit.

We now proceed to analyze the protocol execution using a sequence of games. The
original execution can be written as follows:

Game 1 (Protocol execution) Pick x1, . . . , xr
$← {0, 1}`, ŷ $← {0, 1}n, H

$← Fun
where Fun is the set of functions {0, 1}` → {0, 1}n. Let B := H(x1 ⊕ · · · ⊕ xr). Execute
circuit (3) resulting in y1, y2. Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

14

To prove the theorem, we need to show that Pr[accept = 1 : Game 1] ≤ ν.
As in the proof of the 1D case, we now delay the choice of ~x by using EPR pairs.

And we remove the subcircuit P ∗post which clearly has no effect on the outputs y1, y2.

Game 2 (Using EPR pairs) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun. Let B := H(x1 ⊕

· · · ⊕ xr). Execute circuit (4) resulting in y1, y2.
Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

P ∗pre

P ∗1

P ∗2

V1

V2

y1

y2

~x

|epr〉

MB ŷ

(4)

Here |epr〉 is the state consisting of n EPR pairs, i.e., |epr〉 = 2−n/2
∑

x∈{0,1}n |x〉 ⊗ |x〉.
The top and bottom wire originating from |epr〉 represent the first and last n qubits,
respectively. And MB is the gate that measures n qubits in bases B ∈ {0, 1}n. The
wiggly line can be ignored for now.

As in the 1D case, we use that preparing a qubit X := |y〉B for random y ∈ {0, 1} is
perfectly indistinguishable (when given X, y,B) from producing an EPR pair XY , and
then measuring Y to get outcome y. Thus Pr[accept = 1 : Game 1] = Pr[accept = 1 :
Game 2].

Again like in the 1D case, we will now reprogram the random oracle. That is, instead

of computing B := H(x1 ⊕ · · · ⊕ xr), we pick B
$← {0, 1}n at some point in the execution

and then program the random oracle via H(x1 ⊕ · · · ⊕ xr) := B. The question is: at
which point shall we program the random oracle? In the 1D case, we used the fact that
before time t = 1 (dashed line in Figure 3), there is no event at which both x1 and x2 are
known. An analogous reasoning can be done in the present setting: since P ∗pre consists

only of gates outside
⋂
C+
i , it means that any gate in P ∗pre is outside some C+

i and thus
does not have access to xi. (We will formally prove this later.) So we expect that left of
the wiggly line in (4), H(x1 ⊕ · · · ⊕ xr) occurs with negligible probability only. In other
words, the wiggly line corresponds to the surface S discussed in Section 3.1. In fact, if
we draw the border between P ∗pre and the remaining gates, we get exactly Figure 5 (in
the 2D case at least). However, the approach of decomposing spacetime into subcircuits
removes the necessity of dealing with the exact geometry of S.

Formally, we will need to apply Lemma 3. Given a function H and values x,B, let
Hx 7→B denote the function identical to H, except that Hx 7→B(x) = B. Let AH1 (x) denote

the oracle machine that picks x1, . . . , xr−1
$← {0, 1}` and sets xr := x⊕ x1 ⊕ · · · ⊕ xr−1

and prepares the state |epr〉 and then executes P ∗pre. Let AH2 (x,B) denote the oracle

machine that, given the state from AH1 , executes P ∗1 , P
∗
2 , V1, V2,M

B with oracle access to
Hx 7→B instead of H, sets accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn, and returns accept.
Let C1, P

1
A, P

2
A, PC be defined as in Lemma 3. Then by construction, P 1

A = Pr[accept =
1 : Game 2] (using the fact that H = Hx 7→H(x)). And P 2

A = Pr[accept = 1 : Game 3] for
the following game:

15

Game 3 (Reprogramming H) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun. Execute cir-

cuit (4) until the wiggly line (with oracle access to H). Pick B
$← {0, 1}n. Execute

circuit (4) after the wiggly line (with oracle access to Hx 7→B) resulting in y1, y2, ŷ. Let
accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

And finally PC = Pr[x′ = x1 ⊕ · · · ⊕ xr : Game 4] for the following game:

Game 4 (Guessing x1 ⊕ · · · ⊕ xr) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun, j

$← {1, . . . , q}.
Prepare |epr〉 and execute circuit P ∗pre until the j-th query to H. Measure the argument x′

of that query.

By Lemma 3, we have |P 1
A − P 2

A| ≤ 2q
√
PC . Thus, abbreviating x = x1 ⊕ · · · ⊕ xr as

guessX, we have∣∣Pr[accept = 1 : Game 2]− Pr[accept = 1 : Game 3]
∣∣ ≤ 2q

√
Pr[guessX : Game 4]. (5)

We now focus on Game 3. Let ρY LR denote the state in circuit (4) at the wiggly line (for
random x1, . . . , xr, H). Let L refer to the part of ρY LR that is on the wires entering P ∗1 ,
and R refer to the part of ρLR on the wires entering P ∗2 . Let Y refer to the lowest wire
(containing EPR qubits). Notice that we have now reproduced the situation from the 1D
case where space is split into two separate registers R and L, and the computation of
y1, y2 is performed solely on R, L, respectively. In fact, we have now also identified the
regions R1, R2 from the discussion in Section 3.1 (Figure 5): R1 is the boundary between
P ∗pre and P ∗1 ; analogously R2. (R3 from Figure 5 has no analogue here because V3 does
not receive here.) For given B, let ML(B) be the POVM operating on L consisting of
P ∗1 and V1. (ML can be modeled as a POVM because P ∗1 and V1 together return only a
classical value and thus constitute a measurement.) Let MR(B) be the POVM operating
on R consisting of P ∗2 and V2. Then we can rewrite Game 3 as:

Game 5 (Monogamy game) Prepare ρY LR. Pick B
$← {0, 1}n. Apply measurement

ML(B) to L, resulting in y1. Apply measurement MR(B) to R, resulting in y2. Measure
Y in basis B, resulting in ŷ. Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

Then Pr[accept = 1 : Game 3] = Pr[accept = 1 : Game 5]. Furthermore, Game 5 is
again a monogamy of entanglement game, and [TFKW13] shows that Pr[accept = 1 :

Game 5] ≤
(

2h(γ)
1+
√

1/2

2

)n
. Combining this with the equalities between games derived

so far, and with (5), we get

Pr[accept = 1 : Game 1] ≤
(

2h(γ)
1 +

√
1/2

2

)n
+ 2q

√
Pr[guessX : Game 4]. (6)

It remains to analyze Game 4. The intuition is that each oracle query performed by P ∗pre
will be out of reach of one of the xi, and thus unable to query H(x1 ⊕ · · · ⊕ xr). To
formalize this, consider the j-th oracle query gate in P ∗pre, and denote with Ej the event
at which that gate is located. Since P ∗pre is contained in the complement of the spacetime

16

region
⋂
C+
i , for any j ∈ {1, . . . , q}, there is an i such that Ej /∈ C+

i . (This formalizes
the fact that Ej cannot be reached by xi.) Thus we can partition {1, . . . , q} into disjoint
sets Ji (i = 1, . . . , r) such that for all j ∈ Ji we have Ej /∈ C+

i . Let Game 4i denote
Game 4 with the only difference that we pick j ← Ji instead of j ← {1, . . . , q}. Then

Pr[guessX : Game 4] =

r∑
i=1

|Ji|
q

Pr[guessX : Game 4i]. (7)

Let P ilow be the subcircuit of P ∗pre not contained in C+
i , and P ihigh the subcircuit of P ∗pre

contained in C+
i . Intuitively, P ilow has no access to xi, but P ihigh has. Since no wire can

leave C+
i , there is no wire from P ihigh to P ilow. That is, executing P ∗pre is equivalent to

first executing P ilow and then P ihigh. Furthermore, for any j ∈ Ji, the j-th query gate is

outside C+
i and thus in P ilow. Hence, executing P ∗pre until the j-th query (for j ∈ Ji) is

equivalent to executing P ilow until the j-th query, P ihigh will never be executed. Thus we
can rewrite Game 4i as:

Game 6i (Executing P ilow only) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun, j

$← Ji. Pre-
pare |epr〉 and execute circuit P ilow until the j-th query to H. Measure the argument x′ of
that query.

Then Pr[guessX : Game 4i] = Pr[guessX : Game 6i]. Finally, note that xi is sent by Vi at
event V +

i ∈ C
+
i . So xi may be accessed in P ihigh, but not in P ilow. Thus in Game 6i, xi is

chosen uniformly random from {0, 1}` but never accessed. Thus Pr[guessX : Game 6i] =
Pr[x′ = x1 ⊕ · · · ⊕ xr : Game 6i] ≤ 2−`. Hence

Pr[guessX : Game 4]
(7)
=

r∑
i=1

|Ei|
q Pr[guessX : Game 4i] ≤ 2−`

r∑
i=1

|Ei|
q = 2−`.

With (6) we get

Pr[accept = 1 : Game 1] ≤
(

2h(γ)
1 +

√
1/2

2

)n
+ 2q2−`/2 = ν.

Numerically, we can verify that for γ ≤ 0.037, we have 2h(γ)
1+
√

1/2

2 < 1 and thus ν is
negligible (for superlogarithmic n, ` and polynomially bounded q). �

In flat spacetime. Theorem 6 tells us where in spacetime a prover can be that passes
verification. (Region P.) However, the theorem is quite general; it is not immediate what
this means in the concrete setting of flat spacetime. In Section 3.4 we derive specialized
criteria for flat spacetime and show that Theorem 6 implies that a prover can be precisely
localized by verifiers arranged as a tetrahedron.

3.4 Position verification in flat spacetime

By Theorem 6, our PV scheme guarantees that the prover is within spacetime region
P :=

⋂r
i=1 C

+(V +
i)∩C−(V −1)∩C−(V −2). Or in words: the prover is at a point where he

17

time

t=0

t=1

t=2+ε

V1

C+(V+
1)

V2

C+(V+
2)

P

C−(V−1) C−(V−2)

t=1+ε

t=1P

Figure 6: Precision in the 1D case

can receive x1, . . . , xr and send y1, y2 in time to be received by V1, V2. (In other words,
even with several devices, the prover cannot do better than with a single device.) But
what does this mean concretely? What is the precision (i.e., the size of P) in concrete
use cases?

For the 1D case discussed in Section 2, it is easy to compute P. V1, V2 are located at
positions −1, 1 and send x1, x2 at time t = 0, and expect y1, y2 at time t = 2. We assume
flat spacetime, thus C+((x0, t0)) = {(x, t) : |x− x0| ≤ t− t0} and C−((x0, t0)) = {(x, t) :
|x−x0| ≤ t0−t}. Hence P = C+((−1, 0))∩C+((1, 0))∩C−((−1, 2))∩C−((1, 2)) = {(0, 1)}.
I.e., in the 1D case we guarantee that the prover is at position 0 (at time t = 1), this
gives an alternate proof of Theorem 2. We can also easily consider the case where the
verifiers give the honest prover additional response time ε to account for the fact that a
real prover cannot respond instantaneously. In this case the verifiers expect the answer at
time 2 + ε, and P = {(x, t) : |x| ≤ (t− 1) ∧ |x| ≤ (1 + ε− t)}, thus the protocol verifiers
that the prover is in the space interval [−ε, ε]. (Cf. Figure 6.)

In the 3D case, computing P is more complicated. The following corollary gives a
characterization in flat spacetime.

Corollary 7 (Soundness in flat spacetime) Assume flat spacetime (any dimension).
Assume that γ ≤ 0.037 and n, ` are superlogarithmic.

Given two points x, y in space and a real number d, let E(x, y, d) := {z : ‖z − x‖+
‖z − y‖ ≤ d}. (I.e., E denotes an ellipsoid with foci x, y.).

Assume that Vi sends at time t+i and space x+i , and expects the response at time t−i
and space x−i in the PV scheme from Definition 5. Then that PV scheme is sound for
P := Pspace ×R with Pspace =

⋂
i=1,...,r
j=1,2

E(x+i , x
−
j , t
−
j − t

+
j). (That is, the scheme proves

that the prover is in the spacial region Pspace.)

This corollary simplifies the computation of the location of the prover. For example,
in 3D-space, with r = 4, we just need to compute the intersection of 8 ellipsoids (e.g.,
numerically).

Proof of Corollary 7. In the following, let i always range over 1, . . . , r and j over 1, 2.
Let Pspace := {x : (x, t) ∈ P} where P is as in Theorem 6. That is, Pspace is the projection

18

of P from spacetime into space. To show the corollary, by Theorem 6 it is then sufficient
to show that Pspace =

⋂
E(x+i , x

−
j , t
−
j − t

+
j). For any z we have:

z ∈ Pspace

iff ∃t : (z, t) ∈ P =
⋂

i
C+
(
(x+i , t

+
i)
)
∩
⋂

j
C−
(
(x−j , t

−
j)
)

iff ∃t :
(
∀i : ‖x+i − z‖ ≤ t− t

+
i

)
∧
(
∀j : ‖x−j − z‖ ≤ t

−
j − t

)
iff ∃t :

(
maxi‖x+i − z‖+ t+i ≤ t

)
∧
(
maxj‖x−j − z‖ − t

−
j ≤ −t

)
iff

(
maxi‖x+i − z‖+ t+i

)
+
(
maxj‖x−j − z‖ − t

−
j

)
≤ 0

iff maxi,j‖x+i − z‖+ t+i + ‖x−j − z‖ − t
−
j ≤ 0

iff ∀i, j : ‖x+i − z‖+ ‖x−j − z‖ ≤ t
−
j − t

+
i

iff z ∈
⋂

i,j
E(x+i , x

−
j , t
−
j − t

+
i). �

This corollary allows us to analyze particular settings, but it does not give any immediate
insight as to whether we get nontrivial Pspace when doing so. For example, it might be
that Pspace is no smaller than the ball of radius δ ≈ 0.38 from the naive approach in
Section 3.1. The following lemma shows that, at least for a specific setup and for provers
who answer instantaneously, this is not the case: the prover is localized perfectly.

Corollary 8 Assume flat spacetime. Assume that the verifiers V1, . . . , V4 are on the
vertices of a regular tetrahedron, and that the honest prover P is in the center of that
tetrahedron. V1, . . . , V4 send x1, . . . , x4 at the same time t+, and V1, V2 expect the answers
at time t− := t+ + 2R where R is the distance between Vi and P . (That is, V1, V2 expect
instantaneous responses.)

Then the PV scheme from Definition 5 is sound for P := {P} ×R, i.e., the prover is
indeed guaranteed to be at location P .

Proof. Without loss of generality, we can assume that P = 0 and R = 1. Let V1, . . . , V4
be the vertices of the tetrahedron (and therefore the locations of the verifiers). By
Corollary 7, all we need to show is then Pspace :=

⋂
i=1,...,4
j=1,2

E(Vi, Vj , 2) = {0}. Assume

this is not the case. Let P ∗ ∈ Pspace \ {0}. Since Pspace is convex, εP ∗ ∈ Pspace for all
ε ∈ [0, 1].

Let fij(z) := ‖z − Vi‖+ ‖z − Vj‖ − 2. Then z ∈ E(Vi, Vj , 2) iff fij(z) ≤ 0. We have
fij(0) = 0 for all i, j.

Since fij is differentiable at 0, we have
∂fij(εP

∗)
∂ε |ε=0 = ∇fij · P ∗ where · is the inner

product, and ∇fij the gradient of fij . Furthermore, by symmetry (or direct calculation),
we have that ∇fij ∝ −(Vi + Vj)/2 =: −Vij . (Here x ∝ y means x = αy for some α > 0.)
For all i = 1, . . . , 4, j = 1, 2, and ε ∈ [0, 1], we have εP ∗ ∈ E(Vi, Vj , 2) and thus fij(εP

∗) ≤
0. Together with fij(0) = 0 this implies that 0 ≥ ∂fij(εP

∗)
∂ε |ε=0 = ∇fij · P ∗ ∝ −Vij · P ∗.

Thus Vij · P ∗ ≥ 0 for all i = 1, . . . , 4, j = 1, 2. V31, V41, V32, V42 form a square (they are

19

the midpoints of four edges of the tetrahedron). And (V31 +V41 +V32 +V42)/4 = 0, hence
0 is in the center of this square. Since Vij · P ∗ ≥ 0 for ij = 31, 41, 32, 42 and V31 = −V42
and V32 = −V41, we have V31 · P ∗ = V32 · P ∗ = 0. Thus P ∗ is orthogonal to the plane
containing that square, i.e., P ∗ ∝ ±V12. P ∗ ∝ −V12 is excluded because P ∗ · V12 ≥ 0.
Thus P ∗ ∝ V12.

We have f31(0) = 0. And by symbolically computing the differentials, we verify

that ∂f31(εP ∗)
∂ε |ε=0 ∝ ∂f31(εV12)

∂ε |ε=0 = 0 and ∂2f31(εP ∗)
∂ε2

|ε=0 ∝ ∂2f31(εV12)
∂ε2

|ε=0 = 4
9 > 0. This

implies that f31(εP
∗) > 0 for sufficiently small ε ∈ [0, 1]. Hence εP ∗ /∈ E(V3, V1, 2), in

contradiction to εP ∗ ∈ Pspace for all ε ∈ [0, 1]. Thus our assumption that Pspace 6= {0}
was wrong. By Corollary 7, the PV scheme is sound for P = Pspace ×R = {0} ×R. �

4 Position-based authentication

Position verification is, in itself, a primitive of somewhat limited use. It guarantees that
no prover outside the region P can pass the verification. Yet nothing forbids a prover
to just wait until some other honest party has successfully passed position verification,
and then to impersonate that honest party. To realize the applications described in the
introduction, we need a stronger primitive that not only proves that a prover is at a
specific location, but also allows him to bind this proof to specific data. (The difference
is a bit like that between identification schemes and message authentication schemes.)
Such a primitive is be position-based authentication. This guarantees that the malicious
prover cannot authenticate a message m unless he is in region P (or some honest party
at location m wishes to authenticate that message).

Definition 9 (Secure position-based authentication) A position-based authentica-
tion (PBA) scheme is a PV scheme where provers and verifiers get an additional argument
m, a message to be authenticated.

Let P be a region in spacetime. A position-based authentication (PBA) protocol is
sound for P iff for any non-uniform polynomial-time spacetime circuit P ∗ that has no
gates in P, the probability that the challenge verifiers (soundness error) accept is negligible
in the following execution:

P ∗ picks a message m∗ and then interacts with honest verifiers (called the challenge
verifiers) on input m∗. Before, during, and after that interaction, P ∗ may spawn instances
of the honest prover and honest verifiers, running on inputs m 6= m∗. These instances
run concurrently with P ∗ and the challenge verifiers and P ∗ may arbitrarily interact with
them. Note that the honest prover/honest verifier instances may have gates in P.

PBA was already studied in [BCF+11]. They give a generic transformation to convert a
PV protocol into a PBA. The generic solution has two drawbacks, though:
• It needs Ω(`µ) invocations of the PV protocol for
ell-bit messages and 2−µ security level. (Our protocol below will need only one
invocation.)

20

• It is only secure if a single instance of the honest prover runs concurrently. If the
malicious prover can suitably interleave several instances of the honest prover, he
can authenticate arbitrary messages.

(We do not know whether their solution gives adaptive security, i.e., whether the adversary
can choose m∗ and the honest provers’ inputs m depending on communication he has
seen before.) Although we do not have a generic transformation from PV to PBA that
solves these issues, a small modification of our PV protocol leads to an efficient PBA
secure against concurrent executions of the honest prover:

Definition 10 (Position-based authentication protocol) The protocol is the same
as in Definition 5, with the following modification only: Whenever in Definition 5, the
verifier or prover queries B := H(x1⊕ · · ·⊕xr), here he queries B := H(x1⊕ · · ·⊕xr‖m)
instead. (Where m is the message to be authenticated.) We also require that the verifiers
do not start sending the messages xi or expect y1, y2 before all Vi got m, and that V +

1 6= V +
2

(i.e., V1, V2 do not send x1, x2 from the same location in space at the same time, a natural
assumption).

Theorem 11 Assume that γ ≤ 0.037 and n, ` are superlogarithmic.
Then the PBA protocol from Definition 10 is sound for P :=

⋂r
i=1 C

+(V +
i)∩C−(V −1)∩

C−(V −2). (In words: There is no event in spacetime outside of P at which one can receive
the messages xi from all Vi, and send messages that will be received in time by V1, V2.)

Concretely, if the malicious prover performs at most q oracle queries,9 then the

soundness error is at most
(

2h(γ)
1+
√

1/2

2

)n
+ 6q2−`/2.

The main difference to Theorem 6 is that now oracle queries are performed even
within P (by the honest provers). We thus need to show that these queries do not help
the adversary. The main technical challenge is that the message m∗ is chosen adaptively
by the adversary.

The specialized criteria for flat spacetime from Section 3.4 apply also for the PBA
protocol, with identical proofs.

Proof of Theorem 11. We prove a stronger statement, namely that Theorem 11 holds
even if the malicious prover P ∗ may have gates in P, as long as he does not perform any
queries H(x‖m∗) for any x ∈ {0, 1}` where m∗ is the message picked by the malicious
prover (see Definition 9).10 Since the concurrently running honest verifiers and provers
do not perform such queries, we can subsume them into P ∗ and assume that no honest
verifiers or provers run, except for the challenge verifiers for m∗.

The proof now is similar to that of Theorem 6. We will heavily rely on the notation
from that proof, and we will not reiterate the intuitive explanations behind the individual
proof steps, unless new ideas are used.

9Actually, it is sufficient if the number of queries performed by gates inside C−1 ∪ C
−
2 is bounded by q.

In particular, oracle queries after both verifiers have received y1, y2 do not count (as expected).
10For this to be well-defined we need that at any oracle query in P, m∗ is already defined. This is the

case because by assumption m∗ must be picked before the verifiers send xi, i.e., ∀i.Vi ∈ C+(E) where E
is the event where m∗ is picked. Then P ⊆ C+(E) by transitivity of ≺.

21

Since the adversary’s circuit is finite (though arbitrary large), there is a finite upper
bound on the length of the inputs to the random oracle. (That bound may depend on
the security parameter, of course.) Let domH denote the set of all bitstrings of at most
that length. Then we can assume that H : domH → {0, 1}n. (This ensures that the set
of possible H does not get uncountable, else we would need to work with non-separable
Hilbert spaces.) The subcircuits P ∗P, P

∗
1 , P

∗
2 are defined as in Theorem 6, but we use a

different definition of P ∗pre and add another subcircuit P ∗pickm.

Subcircuit Region in spacetime Intuition

P ∗pickm

(
(C−1 ∪ C

−
2) \

⋂
C+
i

)
∩
(⋂

C−(V +
i) ∩ C−1 ∩ C

−
2

)
Picking m∗

P ∗pre

(
(C−1 ∪ C

−
2) \

⋂
C+
i

)
\
(⋂

C−(V +
i) ∩ C−1 ∩ C

−
2

)
Precomputation

P ∗P
⋂
C+
i ∩ C

−
1 ∩ C

−
2 Gates in P

P ∗1
⋂
C+
i ∩ C

−
1 \ C

−
2 Computing y1

P ∗2
⋂
C+
i ∩ C

−
2 \ C

−
1 Computing y2

P ∗post Ω \ C−1 \ C
−
2 After protocol end

That is, we have split what was P ∗pre in Theorem 6 into two subcircuits P ∗pre and P ∗pickm.
Again, those subcircuits partition the circuit P ∗.

Using the analogous reasoning as in Theorem 6, we get the following facts:

P ∗pre, P
∗
P, P

∗
1 , P

∗
2 , P

∗
post 9 P ∗pickm, P ∗P, P

∗
1 , P

∗
2 9 P ∗pre, P ∗1 , P

∗
2 9 P ∗P,

P ∗1 9 P ∗2 , P ∗2 9 P ∗1 , P ∗1 9 V2, P ∗2 9 V1, P ∗post 9 P ∗pre, P
∗
P, P

∗
1 , P

∗
2 , V1, V2.

(8)
We will now justify the name P ∗pickm, namely we show that the gate G which chooses

m∗ is in P ∗pickm. Let G be at event E. Definition 10 explicitly requires that all verifiers have
the input m∗ before they start the protocol, thus m∗ must be chosen before V1, . . . , Vr send
their values xi and before V1, V2 expect the answers y1, y2. Thus E ∈

⋂
C−(V +

i)∩C−1 ∩C
−
2 .

Thus we immediately have G /∈ P ∗pre, P ∗post. Assume E ∈
⋂
C+
i . Then E ∈ C+

1 ∩C−(V +
1).

By antisymmetry of ≺, we have C+
1 ∩ C−(V +

1) = {V +
1 }. Thus E = V +

1 . Analogously
E = V +

2 . Since V +
1 6= V +

2 , this cannot be, thus the assumption E ∈
⋂
C+
i was false.

Hence E /∈
⋂
C+
i and thus G /∈ P ∗P, P ∗1 , P ∗2 . Therefore G ∈ P ∗pickm.

Furthermore, we have that at least one of the xi is not accessed in P ∗pickm. Assume all
xi are accessed in P ∗pickm. In particular, x1 is accessed, thus there is a gate G in P ∗pickm in

C+
1 . By definition of P ∗pickm, G is in C−(V +

2), too. Thus C+(V +
1) ∩ C−(V +

2) 6= ∅, thus

V +
1 ≺ V +

2 . Analogously V +
2 ≺ V +

1 . By antisymmetry of ≺, V +
1 = V +

2 in contradiction to
V +
1 6= V +

2 . Hence not all xi are accessed in P ∗pickm. For simplicity, assume that it is xr
which is not accessed in P ∗pickm.

We can therefore write the execution of the protocol as the following quantum circuit:

P ∗preP ∗pickm P ∗P

P ∗1

P ∗2

V1

V2

y1

y2

~x
m∗ xr

P ∗post

|x〉B

(9)

22

As before, we omit wires in the transitive hull. ~x denotes x1, . . . , xr−1. Note that in
contrast to Theorem 6, we cannot omit P ∗P here, since it is not empty.

The original protocol execution can be written as follows:

Game 1 (Protocol execution) Pick x1, . . . , xr
$← {0, 1}`, ŷ $← {0, 1}n, H

$← Fun
where Fun is the set of functions domH → {0, 1}n. Let B := H(x1 ⊕ · · · ⊕ xr). Execute
circuit (9) until P ∗pickm resulting in m∗, y1, y2. Let accept := 1 iff y1 = y2 and ω(y1− ŷ) ≤
γn.

Game 2 (Using EPR pairs) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun. Execute circuit

(10) resulting in m∗, ŷ, y1, y2, where MB uses basis B := H(x1 ⊕ · · · ⊕ xr‖m∗).
Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

P ∗preP ∗pickm P ∗P

P ∗1

P ∗2

V1

V2

y1

y2

~x
m∗ xr

|epr〉

MB ŷ

(10)

Exactly as in Theorem 6, Pr[accept = 1 : Game 1] = Pr[accept = 1 : Game 2].
In Theorem 6, we used Lemma 3. In the present setting, Lemma 3 is not sufficient

because it does not handle the fact that the adversary adaptively (i.e., depending on
the random oracle itself) picks m∗ which again determines where the random oracle is
reprogrammed. Instead, we use the stronger Lemma 15 from Appendix B.

Given a function H and values x,m,B, let Hxm 7→B denote the function identical
to H, except that Hxm 7→B(x‖m) = B. Let AH0 () denote the oracle machine that

prepares the state |epr〉, picks x1, . . . , xr−1
$← {0, 1}`, and then executes P ∗pickm and

returns m∗. Let AH1 (x,B) denote the oracle machine that, given the state from AH0 , sets
xr := x⊕x1⊕· · ·⊕xr−1 and then executes P ∗pre and P ∗P. Let AH2 (x,B) denote the oracle

machine that, given the state from AH1 , executes P ∗1 , P
∗
2 , V1, V2,M

B with oracle access to
Hxm∗ 7→B instead of H, sets accept := 1 iff y1 = y2 and ω(y1− ŷ) ≤ γn, and returns accept.
Let C1, P

1
A, P

2
A, PC be defined as in Lemma 15. Then by construction, P 1

A = Pr[accept =
1 : Game 2] (using the fact that H = Hxm 7→H(x‖m)). And P 2

A = Pr[accept = 1 : Game 3]
for the following game:

Game 3 (Reprogramming H) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun. Execute cir-

cuit (10) until the wiggly line (with oracle access to H). Pick B
$← {0, 1}n. Execute

circuit (10) after the wiggly line (with oracle access to Hxm∗ 7→B) resulting in y1, y2, ŷ. Let
accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

And finally PC = Pr[x′ = x1 ⊕ · · · ⊕ xr and m′ = m∗ : Game 4] for the following game:

Game 4 (Guessing x1 ⊕ · · · ⊕ xr) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun, j

$← {1, . . . , q}.
Prepare |epr〉 and execute circuit m∗ ← P ∗pickm. Execute circuit P ∗pre ∪ P ∗P until the j-th
query to H. Measure the argument x′‖m′ of that query.

23

By Lemma 15, we have |P 1
A − P 2

A| ≤ 2q
√
PC + q2−`/2+2. Thus, abbreviating “x =

x1 ⊕ · · · ⊕ xr and m′ = m∗” as guessX, we have∣∣Pr[accept = 1 : Game 2]−Pr[accept = 1 : Game 3]
∣∣ ≤ 2q

√
Pr[guessX : Game 4]+q2−`/2+2.

(11)
We now focus on Game 3. Let ρY LR denote the state in circuit (10) at the wiggly line
(for random x1, . . . , xr, H). Let L refer to the part of ρY LR that is on the wires entering
P ∗1 , and R refer to the part of ρLR on the wires entering P ∗2 . Let Y refer to the lowest
wire (containing EPR qubits). For given B, let ML(B) be the POVM operating on L
consisting of P ∗1 and V1. Let MR(B) be the POVM operating on R consisting of P ∗2
and V2. Then we can rewrite Game 3 as:

Game 5 (Monogamy game) Prepare ρY LR. Pick B
$← {0, 1}n. Apply measurement

ML(B) to L, resulting in y1. Apply measurement MR(B) to R, resulting in y2. Measure
Y in basis B, resulting in ŷ. Let accept := 1 iff y1 = y2 and ω(y1 − ŷ) ≤ γn.

Exactly as in Theorem 6, we then derive Pr[accept = 1 : Game 3] = Pr[accept = 1 :
Game 5] using (11) and [TFKW13]:

Pr[accept = 1 : Game 1] ≤
(

2h(γ)
1 +

√
1/2

2

)n
+ 2q

√
Pr[guessX : Game 4] + q2−`/2+2.

(12)
By assumption, no gate in P queries H(x‖m∗) for any x. Since P ∗P is contained in P,

this means no gate in P ∗P queries H(x‖m∗). Thus in Game 4, guessX (which implies
m′ = m∗) can only occur if the j-th gate is not in P ∗P. Thus Pr[guessX : Game 4] =
Pr[guessX : Game 6] where in Game 6 we remove P ∗P:

Game 6 (Guessing x1 ⊕ · · · ⊕ xr without P ∗P) Pick x1, . . . , xr
$← {0, 1}`, H $← Fun,

j
$← {1, . . . , q}. Prepare |epr〉 and execute circuit m∗ ← P ∗pickm. Execute circuit P ∗pre until

the j-th query to H. Measure the argument x′‖m′ of that query.

P ∗pickm ∪ P ∗pre are contained in (C−1 ∪ C
−
2) \

⋂
C+
i (like P ∗pre was in Theorem 6). Thus,

using the same proof as in the analysis of Game 4 in Theorem 6, we can show that
Pr[x′ = x1⊕· · ·⊕xr : Game 6] ≤ 2−`. Since Pr[guessX : Game 6] ≤ Pr[x′ = x1⊕· · ·⊕xr :
Game 6], with (12) we get

Pr[accept = 1 : Game 1] ≤
(

2h(γ)
1 +

√
1/2

2

)n
+ 2q2−`/2 + q2−`/2+2 = ν.

As in Theorem 6, ν is negligible under the assumptions of the theorem. �

Position-based quantum key distribution. Once we have PBA, we immediately
get position-based quantum key distribution, and thus we can send messages that can
only be decrypted by someone within region P. We refer to [BCF+11] who describe
how to do this, their construction applies to arbitrary PBA schemes. (As long as it has
adaptive security, since in the QKD protocol, the adversary can influence the messages
to be authenticated.)

24

5 Open problems

We list a number of open problems in the area of PV which, in our opinion, constitute
interesting future work:

• We prove security if the verifiers allow the prover’s answers to have an error rate up
to 3.7% (Theorems 6 and 11), which may be challenging for implementations. For
higher error rates, the results from [TFKW13] about monogamy of entanglement
games do not give any guarantees. However, the best known attack is to measure
each qubit in the Breidbart basis [BCF+11], leading to a much higher error rate of
1− cos(π/8)2 ≈ 14.6%. Can we improve the bound of 3.7%?

• We analyzed the case that the prover sends his measurement result y to two verifiers.
We expect to get a much higher precision (especially when the prover’s computation
is not instantaneous) if more than two verifiers check his answers. But our proof
does not cover that case. (We would at least need some generalization of the
monogamy of entanglement games that handles more than two malicious parties.)

• Our analysis is in the random oracle model. Can we base the security of this or
another protocol on computational assumptions in the standard model, e.g., the
existence of quantum one-way functions?

• [BCF+11] gives general impossibility for information-theoretical PV, if the adversary
has doubly exponential entanglement. [BK11] improves this to adversaries using only
exponential entanglement. This leaves open whether there are PV schemes secure
against all (even computationally unlimited) adversaries that have a polynomial
amount of entanglement. Finding such a protocol would be highly interesting even
beyond PV, because it would be (to our knowledge) the first protocol that has
security against polynomial-time adversaries but not against unlimited adversaries,
yet without using any computational hardness assumptions. Note that such a
protocol would also circumvent our criticism concerning the protocols from [BCF+11,
TFKW13] (Figure 1) because a polynomial-time prover P ∗2 cannot produce the
required amount of entanglement.

Acknowledgements. We thank Serge Fehr and Andris Ambainis for valuable dis-
cussions. Dominique Unruh was supported by the Estonian ICT program 2011-2015
(3.2.1201.13-0022), the European Union through the European Regional Development
Fund through the sub-measure “Supporting the development of R&D of info and commu-
nication technology”, by the European Social Fund’s Doctoral Studies and International-
isation Programme DoRa, by the Estonian Centre of Excellence in Computer Science,
EXCS. We also used Sage [S+14] and PPL [BHZ08] for calculations and experiments,
and the Sage Cluster funded by National Science Foundation Grant No. DMS-0821725.

25

A Buhrmann et al. and the 3D case

In the introduction, we claimed that the position verification protocol from [BCF+11] is
not known to be secure in the 3D case. In this section, we explain why we believe that
their security proof is incorrect. [BCF+11, full version] shows security of the 3D protocol
by reduction to the security of the 1D protocol. On a very high level, the steps of their
argument are as follows (for details, see [BCF+11, full version]):

1. In their 3D protocol, one verifier V0 sends a quantum state |Ψ〉, and the other
verifiers V1, . . . , V3 send values θ1, . . . , θ3 such that θ := θ1 ⊕ θ2 ⊕ θ3 indicates in
which basis |Ψ〉 is to be measured.

2. They identify the malicious prover P ∗0 which is closest to V0, as well as a verifier
(w.l.o.g. V1) who is far away from P ∗0 .

3. P ∗0 cannot keep the state |Ψ〉 until he gets θ1 from V1 because then he could not
send his response in time.

4. Thus P ∗0 needs to apply a transformation on |Ψ〉, leading to two quantum registers
E0, E1 which are kept at P ∗0 and forwarded to another prover P ∗1 , respectively. This
needs to happen before P ∗0 knows θ1 (and thus θ).

5. Thus now the responses sent to V0 and V1 need to be computed from two separate
quantum registers E0, E1 when θ becomes known. This is the same situation as in
the 1D case and shown to succeed only with negligible probability.

There are several issues with this proof: In step 2 we choose the prover P ∗0 closest to V0.
However, this prover does not need to play a relevant role in the protocol. For example,
P ∗0 might not be involved in the attack at all, or P ∗0 could just forward |Ψ〉 immediately
to some other prover P ∗2 who does the real attacking, but who is not close to V ∗0 . Thus
being close to V0 is not something that in any way singles out a prover in a special way.
(You could assume, e.g., that there is always one prover at the same location as V0 who
just forwards |Ψ〉 to wherever V0 would have sent it anyway.)

In step 3, it is argued that P ∗0 cannot keep the state |Ψ〉. That is true, strictly
speaking. But stating it like this seems to suggest that P ∗0 actually is the one who gets
|Ψ〉. This is not necessarily true. (Or P ∗0 might get |Ψ〉 but forward it immediately to
another prover who then does something nontrivial with |Ψ〉.)

In step 4, even if we assume that P ∗0 is indeed the prover that operates non-trivially
on |Ψ〉, there is no reason to assume that P ∗0 splits |Ψ〉 into two parts E0, E1. He could
send parts of |Ψ〉 to two or more other provers. The situation becomes particularly
challenging if some of these other provers are located close to two verifiers simultaneously
(e.g., in the intersection of two Ri in Figure 4 (a)).

Solving these problems does not seem trivial. Although we do not have an attack on
the protocol in higher dimensions, it seems that a proof would need to be considerably
more involved than the 1D case. We believe that a proof will at least have to deal with
difficulties similar to those described in Section 3.1. It seems that the protocol from
[BCF+11] is secure in the 2D case (using a different proof) [Feh14], but it is unclear how
to generalize that to the 3D case.

[TFKW13] (which analyses a very similar protocol) only addresses the 1D case.

26

In summary, we believe that the security of the 3D-protocol from [BCF+11] is an
open problem.

B Random oracles

In this section, we derive a number of results for working with quantum random oracles.
We first restate an auxiliary lemma from [Unr14, full version, Lemma 7]:

Lemma 12 Let |Ψ1〉, |Ψ2〉 be quantum states that can be written as |Ψi〉 = |Ψ∗i 〉+ |Φ∗〉
where both |Ψ∗i 〉 are orthogonal to |Φ∗〉. Then TD(|Ψ1〉, |Ψ2〉) ≤ 2‖|Ψ∗2〉‖.

Our first lemma is a slight generalization of the hardness of unstructured search
[BBHT98] to an indistinguishability result. It states that it is hard to even decide
whether a search problem (given as an oracle) has a solution, even if the claimed solution
is provided after the last query to the oracle. We do not claim that the lemma is novel,
but we are not aware of any writeup in the literature.

Lemma 13 Let A be an oracle machine making at most q queries. Let δx(x) := 1 and
δx(y) := 0 for x 6= y. Let 0 denote the all-zero function (0(y) = 0 for all y). Let ρ0 denote

the final state of A together with x in the following experiment: Pick x
$← {0, 1}`. Run

Aδx(). Let ρ1 denote the final state state of A together with x in the following experiment:

Pick x
$← {0, 1}n. Run A0().11 Then TD(ρ0, ρ1) ≤ q2−`/2+1.

Proof. We can assume that A uses three quantum registers A,K, V for its state, oracle
inputs, and oracle outputs. For a function f , let Of |a, k, v〉 = |a, k, v ⊕ f(k)〉. Then the
final state of Af () is (UOf)q|Ψ0〉 for some unitary U and some initial state |Ψ0〉.

Let |Ψi
x〉 := (UOδx)i|Ψ0〉 and |Ψi〉 := (UO0)i|Ψ0〉 = U i|Ψ0〉. Then ρ0 =

∑
x 2−`|x〉〈x|⊗

|Ψq
x〉〈Ψq

x| and ρ1 =
∑

x 2−`|x〉〈x| ⊗ |Ψq〉〈Ψq|. Abbreviating TD(|Ψ〉〈Ψ|, |Φ〉〈Φ|) with
TD(|Ψ〉, |Φ〉), we compute:

Dx
i := TD(|Ψi

x〉, |Ψi〉) = TD(Oδx |Ψi−1
x 〉, |Ψi−1〉)

≤ TD(Oδx |Ψi−1
x 〉, Oδx |Ψi−1〉) + TD(Oδx |Ψi−1〉, |Ψi−1〉)

= Dx
i−1 + TD(Oδx |Ψi−1〉, |Ψi−1〉).

11Formally, ρ0 =
∑
x∈{0,1}` 2−`|x〉〈x| ⊗ ρx where ρx is the final state of Aδx(). And ρ1 =∑

x∈{0,1}` 2−`|x〉〈x| ⊗ ρ′ where ρ′ is the final state of A0().

27

Furthermore Dx
0 = TD(|Ψ0〉, |Ψ0〉) = 0, thus Dx

q ≤
∑q−1

i=0 TD(Oδx |Ψi〉, |Ψi〉). We then
have ∑

x∈{0,1}`
2−`TD(|Ψq

x〉, |Ψq〉) ≤
∑
x,i

2−`TD(Oδx |Ψi〉, |Ψi〉)

≤
∑
x,i

2−`TD
(
OδxQx|Ψi〉+ (1−Qx)|Ψi〉, Qx|Ψi〉+ (1−Qx)|Ψi〉

)
(∗)
≤
∑
x,i

2−`2‖Qx|Ψi〉‖
(∗∗)
≤ 2

∑
i

√∑
x

2−`‖Qx|Ψi〉‖2

= 2
∑
i

√
2−` · 1 = q2−`/2+1

where Qx is a projector projecting K onto |x〉 (i.e., Qx = I ⊗ |x〉〈x| ⊗ I). And (∗) uses
Lemma 12. And (∗∗) uses Jensen’s inequality. Finally,

TD(ρ0, ρ1) = TD
(∑

x

2−`|x〉〈x| ⊗ |Ψq
x〉〈Ψq

x|,
∑
x

2−`|x〉〈x| ⊗ |Ψq〉〈Ψq|
)

=
∑
x

2−`TD
(
|Ψq

x〉, |Ψq〉
)
≤ q2−`/2+1. �

The following lemma is a generalization of a lemma from [Unr14]. That lemma states
that distinguishing a value H(x) from random is as hard as finding x, for uniform x. In
our generalization, instead of H(x), we consider H(x‖m), where m is chosen adaptively
based on earlier random oracle queries.

Lemma 14 (One-way to hiding, adaptive) Let H : {0, 1}∗ → {0, 1}n be a random
oracle. Consider an oracle algorithm A0 that makes at most q0 queries to H. Consider
an oracle algorithm A1 that uses the final state of A0 and makes at most q1 queries to H.
Let C1 be an oracle algorithm that on input (j,B, x) does the following: run AH1 (x,B)
until (just before) the j-th query, measure the argument of the query in the computational
basis, output the measurement outcome. (When A makes less than j queries, C1 outputs
⊥ /∈ {0, 1}`.)

Let

P 1
A := Pr[b′ = 1 : H

$← ({0, 1}∗ → {0, 1}n),m
$← AH0 (), x← {0, 1}`, b′ ← AH1 (x,H(x‖m))]

P 2
A := Pr[b′ = 1 : H

$← ({0, 1}∗ → {0, 1}n),m
$← AH0 (), x← {0, 1}`, B $← {0, 1}n, b′ ← AH1 (x,B)]

PC := Pr[x = x′ ∧m = m′ : H
$← ({0, 1}∗ → {0, 1}n),m

$← AH0 (), x← {0, 1}`, B $← {0, 1}n,

j
$← {1, . . . , q1}, x′‖m′ ← CH1 (j, B, x)]

Then |P 1
A − P 2

A| ≤ 2q1
√
PC + q02

−`/2+2.

Proof. The proof follows the lines of [Unr14], but with many changes due to the additional
adaptive choice of m.

28

Like in the proof of Theorem 11, we can assume the domain of H to be a finite (but
large) set domH to avoid dealing with non-separable Hilbert spaces.

We first rewrite the probability P 1
A:

P 1
A = Pr[b′ = 1 : H

$← (domH → {0, 1}n), x← {0, 1}`,m $← AH0 (), B
$← {0, 1}n, b′ ← AH1 (x,H(x‖m))]

ε
≈ Pr[b′ = 1 : H

$← (domH → {0, 1}n), x← {0, 1}`,m $← A
H\x
0 (), B

$← {0, 1}n, b′ ← AH1 (x,H(x‖m))]
(∗)
= Pr[b′ = 1 : H

$← (domH → {0, 1}n), x← {0, 1}`,m $← A
H\x
0 (), B

$← {0, 1}n, b′ ← AHxm 7→B1 (x,B)]
ε
≈ Pr[b′ = 1 : H

$← (domH → {0, 1}n), x← {0, 1}`,m $← AH0 (), B
$← {0, 1}n, b′ ← AHxm 7→B1 (x,B)] =: P̂ 1

A

Here H\x denotes the function identical to H, except that H\x(x‖m̂) := 0 for all m̂. And

a
ε
≈ b means that |a − b| ≤ ε := q02

−`/2+1. Here (∗) uses the fact that Hxm 7→B and
H are identically distributed for an adversary that did not query H(x‖m̂) for any m̂.

And the first
ε
≈ is shown by reduction to Lemma 13: Let Af () be the algorithm that

picks H
$← (domH → {0, 1}n) and then runs m

$← AH
′

0 () where H ′(x̂‖m̂) := H(x̂‖m̂) if
f(x) = 0 and H ′(x̂‖m̂) := 0 otherwise. Af performs at most q0 queries to f . Then for
uniform x ∈ {0, 1}`, the final state of A0() together with x is the state of the game on

the lhs of
ε
≈ before choosing B, and the final state of Aδx() together with x is the state

of the game in the rhs before choosing B. By Lemma 13, those two states have trace
distance at most ε = q02

−`/2+1. Thus the probabilities on the lhs and rhs of the first
ε
≈

have distance at most ε, as claimed. The second
ε
≈ is shown in the same way. Thus

|P 1
A − P̂ 1

A| ≤ 2ε = q02
−`/2+2. (13)

We proceed to bound |P̂ 1
A − P 2

A|. We assume without loss of generality that A0, A1

perform only unitary operations (except for a final projective measurement that returns
their classical output). For a given B,H, let |ΦHBm〉 denote the final state of AH0 (B),
conditioned on classical output m. Let αHBm be the probability that AH0 (B) outputs m.

We can assume that A1 uses three quantum registers A,K, V for its state, oracle inputs,
and oracle outputs. The initial state of A1 is the final state |ΦHBm〉 of AH0 (B). For an or-
acle H, let OH |a, k, v〉 = |a, k, v⊕H(k)〉. Let U denote the unitary transformation applied
by AH1 between queries to H. Let UxB be an initial unitary transformation that depends
on the inputs (x,B) of AH1 . Then the final state of AH1 (x,B) running after m← AH0 (B)
is |Ψq1

HBmx〉 with |Ψi
HBmx〉 := (UOH)iUxB|ΦHBm〉. And the final state of AHxm 7→B1 (x,B)

running after m← AH0 (B) is |Ψ̃q1
HBmx〉 with |Ψ̃i

HBmx〉 := (UOHxm 7→B)iUxB|ΦHBm〉. (Note:

in the last sentence, we use AH0 , not AHxm 7→B0 .)
Thus

|P̂ 1
A − P 2

A| ≤ TD
(∑
H,B,x,m

β αHBm|Ψq1
HBmx〉〈Ψ

q1
HBmx|,

∑
H,B,x,m

β αHBm|Ψ̃q1
HBmx〉〈Ψ̃

q1
HBmx|

)
(14)

where β := 2−n |domH | · 2−n · 2−` is the probability of each tuple (H,B, x).
In order to bound the rhs of (14), we will first bound TD(|Ψq1

HBmx〉, |Ψ̃
q1
HBmx〉). (Here

TD(|Ψ〉, |Φ〉) abbreviates TD(|Ψ〉〈Ψ|, |Φ〉〈Φ|).) For this, we fix H,B,m, x and omit

29

those values from the indices until further notice. Let Dj := TD(|Ψj〉, |Ψ̃j〉). Then
D0 = TD(UxB|ΦHBm〉, UxB|ΦHBm〉) = 0.

Let V |a, k, v〉 := |a, k, v ⊕B〉, and let Qxm project K onto
∣∣x‖m〉. (Formally, Qxm =

I ⊗
∣∣x‖m〉〈x‖m∣∣⊗ I.) Then OHxm 7→B = V Qxm +OH(1−Qxm). (This is easily verified

on basis vectors |a, k, v〉.) Then for j ≥ 1,

Dj = TD
(
UOH |Ψj−1〉, UOHxm 7→B |Ψ̃

j−1〉
)

= TD
(
OH |Ψj−1〉, OHxm 7→B |Ψ̃

j−1〉
)

≤ TD
(
OH |Ψj−1〉, OHxm 7→B |Ψ

j−1〉
)

+ TD
(
OHxm7→B |Ψ

j−1〉, OHxm 7→B |Ψ̃
j−1〉

)
= TD

(
OH |Ψj−1〉, OHxm 7→B |Ψ

j−1〉
)

+Dj−1

= TD
(
OHQxm|Ψj−1〉+OH(1−Qxm)|Ψj−1〉, V Qxm|Ψj−1〉+OH(1−Qxm)|Ψj−1〉

)
+Dj−1

(∗)
≤ 2‖V Qxm|Ψj−1〉‖+Dj−1 ≤ 2‖Qxm|Ψj−1〉‖+Dj−1.

Here (∗) uses Lemma 12. (Lemma 12 can be applied because OH(1−Qxm)|Ψj−1〉 is in
the image of (1−Qxm) while OHQxm|Ψj−1〉 and VQxm|Ψj−1〉 are in the image of Qxm
which is orthogonal to that of (1−Qxm).)

Thus

TD(|Ψq1
HBmx〉, |Ψ̃

q1
HBmx〉) = Dq1 ≤

q1∑
j=1

2
∥∥Qxm|Ψj−1〉

∥∥. (15)

From now on, we again write the indices H,B,m, x. We then have

|P̂ 1
A − P 2

A|
(14),(∗)
≤

∑
H,B,x,m

β αHBm TD
(
|Ψq1

HBmx〉, |Ψ̃
q1
HBmx〉

)
(15)

≤ 2q1
∑

H,B,x,m

q1∑
j=1

β αHBm
q1

∥∥Qxm|Ψj−1
HBmx〉

∥∥
(∗∗)
≤ 2q1

√√√√ ∑
H,B,x,m

q1∑
j=1

β αHBm
q1

∥∥Qxm|Ψj−1
HBmx〉

∥∥2 (16)

Here (∗) uses the convexity of the trace distance (e.g., [NC10, eq. (9.50)]). And (∗∗) uses
Jensen’s inequality.

When starting with the final state |ΦHBm〉 from m ← AH0 (B), the final state of
CH1 (j, B, x) is |Ψj−1

HBmx〉 by definition of C1. Thus the probability that C1(j, B, x) outputs

a given value x′‖m′ is
∥∥Qx′m′ |Ψj−1

HBmx〉
∥∥. Thus

PC =
∑

H,B,x,m

q1∑
j=1

β αHBm
q1

∥∥Qxm|Ψj−1
HBmx〉

∥∥2.
With (16) we get |P̂ 1

A − P 2
A| ≤ 2q1

√
PC and hence

|P 1
A − P 2

A| ≤ |P̂ 1
A − P 2

A|+ |P 1
A − P̂ 1

A|
(13)

≤ 2q1
√
PC + q02

−`/2+2. �

30

The following lemma is a general case of the random oracle programming lemma from
Section 2 (Lemma 3). The lemma here additionally allows the adversary to adaptively
select the part of the domain of the random oracle in which the reprogramming will take
place. We only consider the specific case where this part is of the form ·‖m for some m
chosen by the adversary, but we believe that our proof may also give guidance for proofs
for similar settings with adaptive programming.

Lemma 15 (Random oracle programming, adaptive) Let H : {0, 1}∗ → {0, 1}n
be a random oracle. Let (A0, A1, A2) be oracle algorithms such that A0 performs at most
q0 queries, and A1, A2 together perform at most q12 queries to H. Let C1 be an oracle
algorithm that on input (j,B, x) does the following: Run AH1 (x,B) till the j-th query
to H, then measure the argument of that query in the computational basis, and output
the measurement outcome. (Or ⊥ if no j-th query occurs.) Let

P 1
A := Pr[b′ = 1 : H

$← ({0, 1}∗ → {0, 1}n),m
$← AH0 (), x

$← {0, 1}`, AH1 (x,H(x‖m)), b′ ← AH2 (x,H(x‖m))]

P 2
A := Pr[b′ = 1 : H

$← ({0, 1}∗ → {0, 1}n),m
$← AH0 (), x

$← {0, 1}`, B $← {0, 1}n,
AH1 (x,B), H(x‖m) := B, b′ ← AH2 (x,B)]

PC := Pr[x = x′ ∧m = m′ : H
$← ({0, 1}∗ → {0, 1}n),m

$← AH0 (), x
$← {0, 1}`,

B
$← {0, 1}n, j $← {1, . . . , q12}, x′‖m′ ← CH1 (j, B, x)]

Then |P 1
A − P 2

A| ≤ 2q12
√
PC + q02

−`/2+2.

Proof. We will use Lemma 14 to prove Lemma 15. To keep the variable names apart, we
decorate all variables from Lemma 14 with an overline. E.g., ĀH1 , q̄0, P̄

1
A etc. instead of

AH1 , q0, P
1
A etc.

Let ĀH0 () := AH0 (), q̄0 := q0, q̄1 := q12. The algorithm ĀH1 , upon input (x,B), runs
AH1 (x,B), then runs b′ ← AHxm7→B2 (x,B), and returns b′. Here Hxm 7→B denotes the
function identical to H, except that Hxm 7→B(x‖m) = B.

We have

P 1
A = Pr[b′ = 1 : H

$← ({0, 1}∗ → {0, 1}n),m
$← AH0 (), x

$← {0, 1}`,
AH1 (x,H(x‖m)), b′ ← AH2 (x,H(x‖m))]

(∗)
= Pr[b′ = 1 : H

$← ({0, 1}∗ → {0, 1}n),m
$← AH0 (), x

$← {0, 1}`,

AH1 (x,H(x‖m)), b′ ← A
Hxm 7→H(x‖m)

2 (x,H(x‖m))]

= Pr[b′ = 1 : H
$← ({0, 1}∗ → {0, 1}n),m

$← ĀH0 (), x
$← {0, 1}`,

b′ ← ĀH1 (x,H(x‖m))] = P̄ 1
A.

Here (∗) follows from the fact that H and Hxm 7→H(x‖m) are identical functions. Similarly,
we get P 2

A = P̄ 2
A.

31

Furthermore,

PC = Pr[x = x′ ∧m = m′ : H
$← ({0, 1}∗ → {0, 1}n),m

$← AH0 (), x
$← {0, 1}n,

B
$← {0, 1}n, j $← {1, . . . , q12}, x′‖m′ ← CH1 (j, B, x)]

(∗)
≤ Pr[x = x′ ∧m = m′ : H

$← ({0, 1}∗ → {0, 1}n),m
$← AH0 (), x

$← {0, 1}n,
B

$← {0, 1}n, j $← {1, . . . , q12}, x′‖m′ ← C̄H1 (j, B, x)]

= Pr[x = x′ ∧m = m′ : H
$← ({0, 1}∗ → {0, 1}n),m

$← ĀH0 (), x
$← {0, 1}n,

B
$← {0, 1}n, j $← {1, . . . , q̄1}, x′‖m′ ← C̄H1 (j, B, x)] = P̄C .

For (∗), note that CH1 by definition simulates AH1 , aborting at the j-th query. While C̄H1
simulates AH1 followed by AHxm 7→B2 , aborting at the j-th query. Thus C̄H1 is at least as
likely to return the correct x′,m′ as CH

1 . The latter will return x′ = ⊥ when the j-th
query would be made by AHxm7→B2 .

Hence

|P 1
A − P 2

A| = |P̄ 1
A − P̄ 2

A|
(∗)
≤ 2q̄1

√
P̄C + q̄02

−`/2+2 ≤ 2q12
√
PC + q02

−`/2+2.

Here (∗) uses Lemma 14. �

References

[Ash97] Neil Ashby. General relativity in the global positioning system. Matters of
gravity (newsletter of the Topical Group in Gravitation of the APS), 9, 1997.
http://www.phys.lsu.edu/mog/mog9/node9.html, accessed: 2014-02-07.
(Archived by WebCitëı¿1

2 at http://www.webcitation.org/6ND19QXJ3).

[BBHT98] Michel Boyer, Gilles Brassard, Peter Ḧı¿1
2yer, and Alain Tapp. Tight bounds

on quantum searching. Fortschritte der Physik, 46(4-5):493–505, June 1998.
Full version is arXiv:quant-ph/9605034.

[BCF+11] Harry Buhrman, Nishanth Chandran, Serge Fehr, Ran Gelles, Vipul Goyal,
Rafail Ostrovsky, and Christian Schaffner. Position-based quantum cryptog-
raphy: Impossibility and constructions. In Phillip Rogaway, editor, CRYPTO
2011, volume 6841 of Lecture Notes in Computer Science, pages 429–446.
Springer, 2011. Full version is arXiv:1009.2490v4 [quant-ph].

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
ASIACRYPT 2011, pages 41–69, Berlin, Heidelberg, 2011. Springer-Verlag.

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and verifica-
tion of hardware and software systems. Science of Computer Programming,
72(1–2):3–21, 2008. http://bugseng.com/products/ppl/.

32

[BK11] Salman Beigi and Robert Koenig. Simplified instantaneous non-local quantum
computation with applications to position-based cryptography. New Journal
of Physics, 13(9):093036, 2011. Full version on arXiv:1101.1065 [quant-ph].

[CGMO09] Nishanth Chandran, Vipul Goyal, Ryan Moriarty, and Rafail Ostrovsky.
Position based cryptography. In Shai Halevi, editor, CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 391–407. Springer, 2009.
Full version on http://eprint.iacr.org/2009/364.

[Feh14] Serge Fehr. Personal communication., January 2014. (Co-author of
[BCF+11]).

[Ken12] Adrian Kent. Unconditionally secure bit commitment by transmitting mea-
surement outcomes. Phys. Rev. Lett., 109(13):130501, September 2012. Full
version arXiv:1108.2879 [quant-ph].

[KMS11] Adrian Kent, William J. Munro, and Timothy P. Spiller. Quantum tag-
ging: Authenticating location via quantum information and relativistic
signaling constraints. Phys. Rev. A, 84:012326, Jul 2011. Full version on
arXiv:1008.2147v6 [quant-ph].

[KTHW13] J ↪edrzej Kaniewski, Marco Tomamichel, Esther Hı̈¿1
2nggi, and Stephanie

Wehner. Secure bit commitment from relativistic constraints. IEEE Trans.
on Inf. Theory, 59(7):4687–4699, July 2013. Full version arXiv:1206.1740
[quant-ph].

[NC10] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge, 10th anniversary edition, 2010.

[S+14] W. A. Stein et al. Sage Mathematics Software (Version 5.12). The Sage
Development Team, 2014. http://www.sagemath.org.

[TFKW13] Marco Tomamichel, Serge Fehr, J ↪edrzej Kaniewski, and Stephanie Wehner.
One-sided device-independent qkd and position-based cryptography from
monogamy games. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science,
pages 609–625. Springer, 2013. Full version at http://arxiv.org/abs/1210.
4359.

[Unr14] Dominique Unruh. Revocable quantum timed-release encryption. In Eu-
rocrypt 2014, LNCS. Springer, 2014. To appear, full version is http:

//eprint.iacr.org/2013/606/20130923:033730.

Symbol index

P ∗pre Precomputation done by P ∗ 13, 22

33

P ∗1 Subcircuit of P ∗ computing y1 13
P ∗2 Subcircuit of P ∗ computing y2 13
P ∗P Subcircuit of P ∗ in forbidden region P 13
V −i Event when Vi expects to receive 12
Ω All of spacetime 13
P Region in spacetime in which the prover is verified to be 12
Pspace Region in space in which the prover is verified to be 18
P ∗post Postcomputation done by P ∗ 13

A9 B No wire from subcircuit A to subcircuit B 14
MB Measurement in bases B 8
x← A x is assigned output of algorithm A 3
h(γ) Binary entropy 3

x
$← S x chosen uniformly from set S/according to distribution S 3

{0, 1}n Bitstrings of length n
ω(x) Hamming weight of x 3
〈Ψ| Conjugate transpose of |Ψ〉 4
|Ψ〉 Vector in a Hilbert space (usually a quantum state) 4
TD(ρ, ρ′) Trace distance between ρ and ρ′ 4
|x〉B Bitstring x encoded in basis B 4
domH Domain of the random oracle 22
H\x Like function H, but returns 0 given x‖· 29

‖x‖ Euclidean norm of x 3
|x| Absolute value / cardinality of x 3
R Real numbers
Accept Event that the verifiers accept 5
C+(x) Causal future of event x 11
x ≺ y x causally precedes y 11
C+
i Short for C+(V +

i) 13
C−(x) Causal past of event x 11
V +
i Event when Vi sends 12
C−i Short for C−(V −i) 13
accept accept = 1 iff verifiers accept 14, 23
Fun Functions {0, 1}` → {0, 1}n 14, 23
P ∗pickm Subcircuit of P ∗ that picks m∗ 22

P ihigh Part of P ∗pre in C+
i 17

P ilow Part of P ∗pre not in C+
i 17

guessX Abbreviation for x = x1 ⊕ · · · ⊕ xr 16, 24
Hx 7→B Like function H, but returns B given x 15
|epr〉 n EPR pairs 15

Keyword index

34

authentication
position-based, 2, 20
position-based, soundness, 20

bounding
distance, 1

causal future, 11
causal past, 11
causally precede, 11
circuit

spacetime, 11

distance bounding, 1

EPR pair, 4
everlasting security, 2

flat spacetime, 11
future

causal, 11

light cone, 11

past

causal, 11

PBA, see position-based authentication

position verification, 1

soundness, 12

position-based authentication, 2, 20

soundness, 20

precede

causally, 11

precision, 12

PV, see position verification

security

everlasting, 2

sound position verification, 12

sound position-based authentication, 20

soundness error, 12, 20

spacetime, 11

flat, 11

spacetime circuit, 11

verification

position, 1

35

