
Elligator Squared

Uniform Points on Elliptic Curves of Prime Order
as Uniform Random Strings

Mehdi Tibouchi

NTT Secure Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp

Abstract. When represented as a bit string in a standard way, even using point compression, an
elliptic curve point is easily distinguished from a random bit string. This property potentially allows
an adversary to tell apart network traffic that makes use of elliptic curve cryptography from random
traffic, and then intercept, block or otherwise tamper with such traffic.

Recently, Bernstein, Hamburg, Krasnova and Lange proposed a partial solution to this problem in the
form of Elligator: an algorithm for representing around half of the points on a large class of elliptic
curves as close to uniform random strings. Their proposal has the advantage of being very efficient, but
suffers from several limitations:

– Since only a subset of all elliptic curve points can be encoded as a string, their approach only applies
to cryptographic protocols transmitting points that are rerandomizable in some sense.

– Supported curves all have non-trivial 2-torsion, so that Elligator cannot be used with prime-order
curves, ruling out standard ECC parameters and many other cryptographically interesting curves
such as BN curves.

– For indistinguishability to hold, transmitted points have to be uniform in the whole set of repre-
sentable points; in particular, they cannot be taken from a prime order subgroup, which, in conjunc-
tion with the non-trivial 2-torsion, rules out protocols that require groups of prime order.

In this paper, we propose an approach to overcome all of these limitations. The general idea is as
follows: whereas Bernstein et al. represent an elliptic curve point P as the bit string ι−1(P), where ι is
an injective encoding to the curve (which is only known to exist for some curve families, and reaches only
half of all possible points), we propose to use a randomly sampled preimage of P under an admissible
encoding of the form f⊗2 : (u, v) 7→ f(u) + f(v), where f is essentially any algebraic encoding. Such
encodings f exist for all elliptic curves, and the corresponding admissible encodings f⊗2 are essentially
surjective, inducing a close to uniform distribution on the curve.

As a result, our bit string representation is somewhat less compact (about twice as long as Elligator),
but it has none of the limitations above, and can be computed quite efficiently when the function f is
suitably chosen.

Keywords: Elliptic curve cryptography, Point encoding, Circumvention technology, Anonymity and
privacy

1 Introduction

Elliptic curves, whose use in public-key cryptography was first suggested by Koblitz and Miller in the mid-
1980s [18,20], offer numerous advantages over more traditional settings like RSA and finite field discrete
logarithms, particularly higher efficiency and a much smaller key size that scales gracefully with security
requirements. Moreover, they possess a rich geometric structure that enables the construction of additional
primitives such as bilinear pairings, which have opened up avenues for novel cryptographic protocols over
the past decade, starting with Joux’s tripartite key agreement [17] and Boneh and Franklin’s construction
of an identity-based encryption scheme [5].

On the Internet, adoption of elliptic curve cryptography is growing in general-purpose protocols like
TLS, SSH and S/MIME, as well as anonymity and privacy-enhancing tools like Tor (which favors ECDH
key exchange in recent versions) and Bitcoin (which is based on ECDSA).

For circumvention applications, however, ECC presents a weakness: points on a given elliptic curve,
when represented in a usual way (even in compressed form) are easy to distinguish from random bit strings.
For example, the usual compressed bit string representation of an elliptic curve point is essentially the x-
coordinate of the point, and only about half of all possible x-coordinates correspond to valid points (the
other half being x-coordinates of points of the quadratic twist). This makes it relatively easy for an attacker
to distinguish ECC traffic (the transcripts of multiple ECDH key exchanges, say) from random traffic, and
then proceed to intercept, block or otherwise tamper with such traffic.

Note that while RSA presents a similar weakness, it is both less severe and easier to mitigate. Namely,
an RSA ciphertext or signature with respect to a public modulus N is usually represented as a bit string
of length n = dlog2Ne corresponding to an integer between 1 and N − 1. This can be distinguished from a
random bit string with advantage ≈ (1−N/2n), which is usually less than 1/2, and possibly much less for an
appropriate choice of N . Moreover, even when N isn’t close to 2n, it is possible to thwart the distinguishing
attack by using redundant representations, i.e. transmitting representatives of the classes modulo N chosen
in [0, 2n+t) (see §3.4).

Countering the distinguishers for elliptic curve points is more difficult. One possible approach is to modify
protocols so that transmitted points randomly lie either on the given elliptic curve or on its quadratic twist
(and the curve parameters must therefore be chosen to be twist-secure). This is the approach taken by
Möller [21], who constructed a CCA-secure KEM and a corresponding hybrid public-key encryption scheme
based on elliptic curves, using a binary (to avoid modulus based distinguishers like in RSA) elliptic curve
and its twist. Similarly, Young and Yung constructed secure key exchange [26] and encryption [27] without
random oracles based on the hardness of DDH in an elliptic curve and its twist.

Möller’s approach has already been deployed in circumvention tools, including StegoTorus [24], a camou-
flage proxy for Tor, and Telex [25], an anticensorship technology that uses a covert channel in TLS handshakes
to securely communicate with friendly proxy servers. However, since protocols and security proofs have to
be adapted to work on both a curve and its twist, this approach is not particularly versatile, and it imposes
additional security requirements (twist-security) on the choice of curve parameters.

Elligator. A different approach was recently proposed by Bernstein, Hamburg, Krasnova and Lange [4].
Their idea is to leverage an efficiently computable, efficiently invertible algebraic function that maps the
integer interval S = {0, . . . , (p− 1)/2}, p prime, injectively to the group E(Fp) where E is an elliptic curve
over Fp (subject to some conditions on the choice of p and E). Bernstein et al. observe that, since ι is
injective, a uniformly random point P in ι(S) ⊂ E(Fp) has a uniformly random preimage ι−1(P) in S, and
use that observation to represent an elliptic curve point P as the bit string representation of the unique
integer ι−1(P) if it exists. If the prime p is close to a power of 2, a uniform point in ι(S) will have a close to
uniform bit string representation.

This method, which they call Elligator, has numerous advantages over Möller’s twisted curve method: it
is easier to adapt to existing protocols using elliptic curves, since there is no need to modify them to also
deal with the quadratic twist; it avoids the need to publish a twisted curve counterpart of each public key
element, hence allowing a more compact public key; and it doesn’t impose additional security requirements
like twist-security. But it also has some significant limitations:

– The set ι(S) of elliptic curve points that can be represented as bit strings using Elligator is of cardinality
≈ p/2, and hence contains only about half of all points on the curve. As a result, the approach only
applies to cryptographic protocols transmitting points that are rerandomizable in some sense. For example,
Elligator cannot be used in conjunction with a deterministic signature scheme like BLS [6] (short of using
e.g. additional padding).

– Not all elliptic curves are known to admit an injective encoding ι as used in the construction of Elligator,
and all of those curves have order divisible by a small prime. Bernstein et al. use the injective encoding
proposed by Fouque, Joux and Tibouchi [13], which only exists for curves of order divisible by 4 over

2

fields with p ≡ 3 (mod 4), and another new injective encoding which exists for curves of even order.
The only other known injective encoding to ordinary curves is due to Farashahi [10] and applies to
curves of order divisible by 3. The Elligator construction cannot be used with any other elliptic curve,
and in particular does not apply to prime-order curves, which make up essentially all standardized ECC
parameters (including NIST [12], SEC 2 [9], Brainpool [19] and ANSSI [1] curves), or to many other
cryptographically interesting curves such as Barreto–Naehrig curves [2].

– For indistinguishability to hold, transmitted points have to be uniform in ι(S); in particular, they cannot
be taken from a strict subgroup, which rules out protocols that require groups of prime order, since none of
the supported curves has prime order. In particular, many protocols with standard model security cannot
be used with Elligator. For example, Bernstein et al. describe a hybrid encryption scheme constructed from
a slightly modified version of the ElGamal key encapsulation mechanism in the whole group of points of
their elliptic curve [4, §2.3]. The overall hybrid scheme is secure if the key derivation function is modeled
as a random oracle, but the existence of small divisors of the group order breaks the semantic security
of the underlying standard model KEM, even though the usual ElGamal KEM is IND-CPA secure in the
standard model.

Our contributions. In this paper, we propose a new approach to overcome all of these limitations. The
general idea is as follows: whereas Bernstein et al. represent an elliptic curve point P as the bit string ι−1(P),
where ι is an injective encoding to the curve (which is only known to exist for some curve families, and reaches
only half of all possible points, we propose to use a randomly sampled preimage of P under an admissible
encoding of the form:

f⊗2 : (u, v) 7→ f(u) + f(v),

where f is essentially any algebraic encoding. Such encodings f exist for all elliptic curves, and the corre-
sponding admissible encodings f⊗2 are essentially surjective, inducing a close to uniform distribution on the
curve.

As a result, using our approach, all elliptic curve points are representable, and the bit string represen-
tation of a random point on the whole elliptic curve (rather than just a special subset of it) is statistically
indistinguishable from a random bit string. This eliminates the need for repeatedly restarting the protocol
until a representable point is found, and for rerandomizability in general (for example, full domain hash-
like deterministic signatures such as BLS signatures [6], which we mentioned are not directly usable with
Elligator, can be used with our representation algorithm without problem).

In addition, since the kind of encoding functions f we use exist for essentially all elliptic curves, including
curves of prime as well as composite order, pairing-friendly curves and so on, our method lifts all the
limitations that Elligator sets on curve parameters. In particular, protocols requiring curves of prime order
can be used in our setting.

We also recommend specific choices of the function f that are well-suited to various elliptic curve pa-
rameters, and propose optimizations of the corresponding algorithms for representing points as bit strings
and back. We find that in most setting, our approach is in fact more efficient than Elligator for representing
generated points as bit strings. It is, however, less compact, since a curve point is represented as two base
field elements instead of one.

Organization of the paper. In §2, we introduce notation, definitions and useful results related to discrete
probability distributions, regularity and so-called well-distributed encodings to elliptic curves. In §3, we
introduce our main construction, and state and establish the theorem on which it is based. Finally, in §4,
we present concrete choices of functions f which are well-suited to our approach, working for large families
of curves, and also offer a performance comparison to Elligator.

3

2 Preliminaries

2.1 Statistical distance and regularity

For D a probability distribution on a finite set S, we write Pr[s ← D] for the probability assigned to the
singleton {s} ⊂ S by D . The uniform distribution on S is denoted by US (or just U if the context is clear).

Definition 1 (Statistical distance). Let D and D ′ be two probability distributions on a finite set S. The
statistical distance between them is defined as the `1 norm:1

∆1(D ,D ′) =
∑
s∈S

∣∣Pr[s← D]− Pr[s← D ′]
∣∣.

We simply denote by ∆1(D) the statistical distance between D and US:

∆1(D) =
∑
s∈S

∣∣∣Pr[s← D]− 1

|S|

∣∣∣,
and say that D is ε-statistically close to uniform when ∆1(D) ≤ ε. When ∆1(D) is negligible, we simply say
than D is statistically close to uniform.2

The squared Euclidean imbalance ∆2
2(D) of D is the square of the `2 norm between D and US:

∆2
2(D) =

∑
s∈S

∣∣∣Pr[s← D]− 1/|S|
∣∣∣2.

Definition 2 (Pushforward and pullback). Let S, T be two finite sets and F any mapping from S to T .
For any probability distribution DS on S, we can define the pushforward F∗DS of DS by F as the probability
distribution on T such that sampling from F∗DS is equivalent to sampling a value s ← DS and returning
F (s). In other words:

Pr
[
t← F∗DS

]
= Pr

[
s← DS ; t = F (s)

]
= µS

(
F−1(t)

)
=

∑
s∈F−1(t)

Pr[s← DS],

where µS is the probability measure defined by DS. Similarly, for any probability distribution DT on T that
assigns a nonzero weight µT

(
F (S)

)
to the image of F , we can define the pullback F ∗DT of DT by F as

the probability distribution on S such that sampling from F ∗DT is equivalent to sampling a value t ← DT ,
returning a uniformly random preimage s ∈ F−1(t) if one exists, and restarting otherwise. In other words:

Pr
[
s← F ∗DT

]
=

1

µT
(
F (S)

) · Pr[t← DT]

#F−1(t)
where t = F (s).

Definition 3 (Regularity). Let S, T be two finite sets and F any mapping from S to T . We say that F
is ε-regular (resp. ε-antiregular) when F∗US (resp. F ∗UT) is ε-close to the uniform distribution. We may
omit ε if it is negligible.

Lemma 1. Let S, T be two finite sets and F an ε-regular mapping from S to T . Then F satisfies:

1− #F (S)

#T
≤ ε,

and is also a 2ε-antiregular mapping.

1 An alternate definition frequently found in the literature differs from this one by a constant factor 1/2. That
constant factor is irrelevant for our purposes.

2 For this to be well-defined, we of course need a family of random variables on increasingly large sets S. Usual
abuses of language apply.

4

Proof. This result is similar to [7, Lemma 3]. Since F is ε-regular, we have:

∆1(F∗US) =
∑
t∈T

∣∣∣Pr[t← F∗US]− 1

#T

∣∣∣ =
∑
t∈T

∣∣∣#F−1(t)

#S
− 1

#T

∣∣∣ ≤ ε.
On the other hand, that sum is larger than the same sum restricted to T \ F (S), which is:

∑
t/∈F (S)

∣∣∣#F−1(t)

#S
− 1

#T

∣∣∣ = #
(
T \ F (S)

)
·
∣∣∣0− 1

#T

∣∣∣ = 1− #F (S)

#T
.

Hence the first assertion that 1−#F (S)/#T ≤ ε. Turning to the second assertion, we compute ∆1(F ∗UT):

∆1(F ∗UT) =
∑
s∈S

∣∣∣Pr[s← F ∗UT]− 1

#S

∣∣∣
=
∑
s∈S

∣∣∣ #T

#F (S)
· Pr[F (s)← UT]

#F−1
(
F (s)

) − 1

#S

∣∣∣
=
∑
s∈S

∣∣∣ 1

#F (S) ·#F−1
(
F (s)

) − 1

#S

∣∣∣
=

∑
t∈F (S)

#F−1(t) ·
∣∣∣ 1

#F (S) ·#F−1(t)
− 1

#S

∣∣∣
≤

∑
t∈F (S)

∣∣∣ 1

#F (S)
− 1

#T

∣∣∣+
∣∣∣ 1

#T
− #F−1(t)

#S

∣∣∣
≤
∣∣∣1− #F (S)

#T

∣∣∣+∆1(F∗US) ≤ 2ε

as required. ut

2.2 Well-distributed encodings

Let E be an elliptic curve over a finite field Fq, and f : Fq → E(Fq) any function. Farashahi et al., in [11],
show that regularity properties of the tensor square f⊗2 defined by:

f⊗2 : F2
q → E(Fq)

(u, v) 7→ f(u) + f(v)

can be derived formally from the behavior of f with respect to characters of the group E(Fq). More precisely,
they call the function f a well-distributed encoding when it satisfies good bounds with respect to character
sums of the form

∑
u∈Fq

χ(f(u)), for nontrivial characters χ of E(Fq).

Definition 4. A function f : Fq → E(Fq) is said to be a B-well-distributed encoding for a certain constant
B > 0 if for any nontrivial character χ of E(Fq), the following holds:∣∣∣ ∑

u∈Fq

χ(f(u))
∣∣∣ ≤ B√q.

Farashahi et al. then show that if f is a well-distributed encoding, then f⊗2 is regular. They also provide
a bound on the Euclidean imbalance of (f⊗2)∗U .

5

Lemma 2 ([11, Theorem 3 & Corollary 4]). Let f : Fq → E(Fq) be a B-well-distributed encoding, and
D = (f⊗2)∗UF2

q
the distribution on E(Fq) induced by f⊗2. Then, we have:

∆1(D) ≤ B2

q

√
#E(Fq) and ∆2

2(D) ≤ B4

q2
.

Note that since #E(Fq) = q + O(q1/2) by the Hasse–Weil bound, this implies ∆1(D) = O(q−1/2), so the
distribution induced by f⊗2 on E(Fq) is indeed statistically close to uniform.

We also mention a special case of the general geometric result that Farashahi et al. use to show that
concrete maps are well-distributed encodings.

Lemma 3 ([11, Theorem 7]). Let h : C → E a morphism over Fq from a curve C of genus g to the elliptic
curve E. Assume that h does not factor through a nontrivial unramified morphism Z → E. Then, for all
nontrivial characters χ of E(Fq), we have:∣∣∣ ∑

P∈Fq

χ
(
h(P)

)∣∣∣ ≤ (2g − 2)
√
q.

3 Our construction

3.1 Elligator Squared

As explained in the introduction, our new approach to representing Fq-points on an elliptic curve E as bit
strings is to fix a suitable point encoding function f : Fq → E(Fq), and to use the tensor square function:

f⊗2 : F2
q → E(Fq)

(u, v) 7→ f(u) + f(v).

A point P ∈ E(Fq) is then represented as (a bit string representation of) a uniformly random preimage
(u, v) ∈ (f⊗2)−1(P) ⊂ F2

q, and a pair (u, v) is converted back to a point by applying f⊗2.
Leaving aside the question of how elements of F2

q are represented as bit string for now (we discuss it in
§3.4), we now describe the type of function f we will consider, formally define our construction, and state
the corresponding main results. In what follows, we fix a finite field Fq and an elliptic curve E over Fq. When
stating asymptotic results, we implicitly assume as usual that q, E, and functions depending on them fit in
infinite families indexed by a security parameter λ.

Definition 5. We call a function f : Fq → E(Fq) a (d,B)-well-bounded encoding, for positive constants
d,B, when f is B-well-distributed and all points in E(Fq) have at most d preimages under f . We may
occasionally omit the constant B or both d and B as appropriate.

Our main result pertaining to well-bounded encodings says that, on the one hand, if we sample a uniformly
random preimage under f⊗2 of a uniformly random point P on the curve, we get a pair (u, v) ∈ F2

q which is
statistically close to uniform; and on the other hand, that sampling uniformly random preimages under f⊗2

can be done efficiently for all points P ∈ E(Fq) except possibly a negligible fraction of them.

Theorem 1. Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding. Then, the distribution on F2
q obtained

by picking a uniformly random point P in E(Fq), and then a uniformly random preimage (u, v) ∈ F2
q of P

under f⊗2 if one exists is ε-statistically close to uniform for ε = 2B2
√

#E(Fq)/q = O(q−1/2). Moreover,
there exists a probabilistic algorithm which, on input of any point P ∈ E(Fq), returns a uniformly random
preimage of P under f⊗2 if it exists, and whose average running time T (P) on input P satisfies:

T (P) ≤ Tf−1 +
(
1 + εT (P)

)
· d · (Tf + T	 + T#f−1)

6

where Tf , T	, T#f−1 and Tf−1 are the respective running times of the algorithms computing f , a subtraction
in E(Fq), the number of preimages of a point under f , and all the preimages of a point under f , and the
coefficient εT (P) is bounded, for all P except possibly a fraction of ≤ q−1/2 of them, as:

εT (P) ≤ 2B2 + 2

q1/4 − 2B2
= O(q−1/4). (1)

In other words, for all P ∈ E(Fq) except possibly a negligible fraction of them, the time it takes to sample a
uniformly random preimage of P under f⊗2 is one evaluation of f−1 and about d evaluations of f , of point
subtractions on E(Fq) and of the function that counts preimages under f .

Proof. The first assertion says that f⊗2 is ε-antiregular, which is a direct consequence of Lemma 1 and
Lemma 2. We describe the preimage sampling algorithm in §3.3 below. The assertion on the running time is
an immediate consequence of Lemmas 4 and 5 from that subsection.

Definition 6. For a given well-bounded encoding f : Fq → E(Fq), the Elligator Squared construction for f
is the pair formed by a randomized algorithm E(Fq) → F2

q as in Theorem 1, called the Elligator Squared
representation algorithm, which samples uniform preimages under f⊗2, and the deterministic algorithm,
called the Elligator Squared recombination algorithm, which computes the function f⊗2.

3.2 Example: ECDH using Elligator Squared

As an example of how this construction can be used in practice, we describe a standard elliptic curve Diffie–
Hellman key exchange protected with Elligator Squared. Let P be a generator of E(Fq) (which we assume
is a cyclic group of order N), f : Fq → E(Fq) a well-bounded encoding, and KDF: E(Fq) → {0, 1}λ a key
derivation function. To derive a common secret, Alice and Bob proceed as follows.

1. Alice and Bob generate short term secrets (the values computed by Alice, resp. Bob, are indicated with
indices A, resp. B, below):

(a) Pick a uniformly random r
$← {0, . . . , N − 1}.

(b) Compute the point R = rP .

(c) Sample a random preimage (u, v)
$← (f⊗2)−1(R) under f⊗2 using the Elligator Squared representa-

tion algorithm.
2. Alice sends (uA, vA) to Bob; Bob sends (uB , vB) to Alice.
3. Alice uses the Elligator Squared recombination algorithm to compute RB = f⊗2(uB , vB). Similarly, Bob

computes RA = f⊗2(uA, vA).
4. Alice computes the shared secret as kAB = KDF(rARB), and similarly, Bob computes it as kAB =

KDF(rBRA).

The transmitted values (uA, vA) and (uB , vB) are elements of F2
q that are statistically close to uniform,

as shown by Theorem 1, so a transcript of this protocol cannot be distinguished from random messages.3

Moreover, in contrast with the same protocol implemented with Bernstein et al.’s Elligator [4, §2.3], our
approach doesn’t require any kind of rejection sampling during the computation of the pairs (u, v), and
therefore only one elliptic curve scalar multiplication is needed to generate the short term secrets, compared
to an average of two, and possibly more, with Elligator. Indeed, Theorem 1 ensures that with overwhelming
probability on the choice of r, the representation algorithm samples a random preimage of R = rP efficiently.

3.3 The sampling algorithm

Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding. We now turn to the sampling algorithm for preimages
of f⊗2 whose existence was asserted as Theorem 1. It is described as Algorithm 1. This algorithm generalizes
the sampling algorithm proposed, but not thoroughly analyzed, by Brier et al. [7, Algorithm 1] for the tensor
square of Icart’s encoding [16].

3 With the caveat that an actual implementation transmits bit strings rather than field elements, but this is addressed
in §3.4.

7

Algorithm 1 Preimage sampling algorithm for f⊗2.

1: function SamplePreimage(P)
2: repeat

3: u
$← Fq

4: Q← P − f(u)
5: t← #f−1(Q)

6: j
$← {1, . . . , d}

7: until j ≤ t
8: {v1, . . . , vt} ← f−1(Q)
9: return (u, vj)

10: end function

Lemma 4. On all inputs P ∈ E(Fq) in the image of f⊗2, Algorithm 1 terminates almost surely, and
returns a uniformly random preimage of P under f⊗2, after an average of N(P) iterations of the main loop
(Steps 2–7), where:

N(P) = d · q

#(f⊗2)−1(P)
.

On inputs P that have no preimage under f⊗2, Algorithm 1 does not terminate.

Proof. The probability to exit the main loop after Step 7 for a given random choice of u ∈ Fq is t/d, where
t = #f−1

(
P − f(u)

)
(note that since f is d-well bounded, we know that t is always less or equal to d). As a

result, taking all possible choices of u into account, the overall probability $(P) to exit the main loop for a
given input P is:

$(P) =
1

q

∑
u∈Fq

#f−1
(
P − f(u)

)
d

=
1

d · q
∑
u∈Fq

∑
v∈Fq

[
f(v) = P − f(u)

]
=

1

d · q
∑

(u,v)∈F2
q

[
f⊗2(u, v) = P

]
=

1

d · q
#(f⊗2)−1(P),

where [·] is the usual Iverson bracket notation: for a statement U , [U] = 1 if U is true and 0 otherwise. As
a result, we see that Algorithm 1 does not terminate when #(f⊗2)−1(P) = 0, and terminates almost surely
otherwise, after an average of N(P) = 1/$(P) = d · q/#(f⊗2)−1(P) iterations of the main loop as required.
Moreover, all outputs are clearly preimages of P under f⊗2, so all it remains to prove is that each preimage
is output with equal probability.

Fix a preimage (u0, v0) of P in F2
q. The probability that Algorithm 1 outputs (u0, v0) on input P con-

ditionally to the first coordinate being u0 is clearly 1/t0 where t0 = #f−1
(
P − f(u0)

)
. Furthermore, the

rejection sampling in the main loop ensures that any given first coordinate u is chosen with probability
proportional to t = #f−1

(
P − f(u)

)
. As a result, we obtain, using the previous computation, that the

probability of Algorithm 1 returning (u0, v0) on input P is exactly:

1

t0
· t0∑

u∈Fq
#f−1

(
P − f(u)

) =
1

d · q ·$(P)
=

1

#(f⊗2)−1(P)

as required. ut

Lemma 5. With the same notation as in Lemma 4, write, for all P ∈ E(Fq), εT (P) = N(P)/d − 1 =
q/#(f⊗2)−1(P)− 1. Then, for all P ∈ E(Fq) except possibly a fraction of ≤ q−1/2 of them, we have:

εT (P) ≤ 2B2 + 2

q1/4 − 2B2
= O(q−1/4).

(This is the same bound as (1) above).

8

Proof. Define δ = B2q5/4/
√

#E(Fq) (in particular, δ ∼ B2q3/4), and let α be the fraction of all points in
E(Fq) such that: ∣∣∣#(f⊗2)−1(P)− q2

#E(Fq)

∣∣∣ > δ.

Now, according to Lemma 2, we have:

∆2
2

(
(f⊗2)∗UF2

q

)
=

∑
P∈E(Fq)

∣∣∣#(f⊗2)−1(P)

q2
− 1

#E(Fq)

∣∣∣2 ≤ B4

q2
.

On the other hand, by definition of α:

∆2
2

(
(f⊗2)∗UF2

q

)
=

1

q4

∑
P∈E(Fq)

∣∣∣#(f⊗2)−1(P)− q2

#E(Fq)

∣∣∣2 ≥ 1

q4
· α#E(Fq) · δ2.

Putting both inequalities together, we get:

α ≤ B4q2

#E(Fq) · δ2
= q−1/2.

Hence, for all P ∈ E(Fq) except a fraction α ≤ q−1/2, the number #(f⊗2)−1(P) of preimages of P under
f⊗2 is within δ of q2/#E(Fq). For all such P , we get:

εT (P) =
q

#(f⊗2)−1(P)
− 1 ≤ q

q2

#E(Fq)
− δ
− 1 =

(q + δ)#E(Fq)− q2

q2 − δ#E(Fq)
.

The Hasse–Weil bound gives #E(Fq) ≤ q + 2
√
q + 1 = (

√
q + 1)2, and hence δ#E(Fq) = B2q5/4#E(Fq) ≤

2B2q7/4. As a result, again for all P except a fraction ≤ q−1/2:

εT (P) ≤ q2 + 2q3/2 + q + 2B2q7/4 − q2

q2 − 2B2q7/4

≤ 2B2

q1/4
·

1 + 1
B2 q

−1/4 + 1
2B2 q

−3/4

1− 2B2q−1/4
≤ 2B2 + 2

q1/4 − 2B2

as required. ut
With these lemmas, the proof of Theorem 1 is now complete. We also note that we can deduce the

following result of independent interest as an easy corollary. This result is hinted to in [11], but not formally
stated, let alone proven, although it is quite important if the results of that paper are to be applied to hash
function constructions.

Corollary 1. Let f : Fq → E(Fq) be a (d,B)-well-bounded encoding such that both f and f−1 are com-
putable in polynomial time. Then f⊗2 is 2q−1/2-samplable in the sense of [7, Definition 2], i.e. there exists
a randomized algorithm I taking points P ∈ E(Fq) as inputs, running in polynomial time on all inputs,
and such that I (P) is an element of (f⊗2)−1(P) ∪ {⊥} whose distribution is 2q−1/2-statistically close to
the uniform distribution on (f⊗2)−1(P). In particular, if h is a random oracle with values in F2

q, (f⊗2) ◦ h
is indifferentiable from a random oracle with values in E(Fq).

Proof. The only subtle point is that Algorithm 1 samples exactly uniform preimages under (f⊗2), but may
run in superpolynomial time, or even fail to terminate, on a negligibly small fraction of possible inputs. We
can convert it to an algorithm that terminates in polynomial time on all inputs but induces a sampling that
is only statistically close to uniform using early termination: for example, modify Algorithm 1 to return ⊥
if more than log q/ log(d/(1 − d)) iterations of the main loop are executed. Then, by Lemma 5, we obtain
the algorithm returns a uniform preimage with probability ≥ 1− q−1/2 and ⊥ otherwise on all inputs except
possibly a fraction ≤ q−1/2 of them, which gives the stated samplability result. The indifferentiability of the
corresponding hash function construction in then a consequence of [7, Theorem 1], since f is also regular
and efficiently computable. ut

9

3.4 Bit-string representation

The Elligator Squared construction represents uniform elliptic curve points as close to uniform elements
(u, v) of F2

q, but in practice, one wants to transmit bit strings rather than field elements. Can we obtain close
to uniform bit strings instead?

Let us say for simplicity’s sake that q = p is a large prime (the prime power setting can be treated
similarly). Then, the simplest way to represent an element in Fp is as the basic n-bit representation of the
corresponding integer in {0, . . . , p−1}, where n = dlog2 pe. Then, it is easy to see that the statistical distance
between a uniform element of Fp in that representation and a uniform bit string of the same length is given
by 2 · (1− p/2n).

If p is very close to 2n, which is often the case for standardized curve parameters (including most NIST
and SEC 2 curves [12,9], as well as Edwards curves such as Curve25519 and Curve1174 [3,4]) as such special
primes offer efficient modular reduction, then we can simply transmit the basic n-bit representations of u
and v directly, since they are close to uniform bit strings.

In some cases, however (like Brainpool curves [19], most families of pairing-friendly curves, etc.), p is
not close to 2n. Then, one possible approach to get close to uniform bit strings is to use a redundant
representation as a bit string of length n+ t for some suitable t, i.e. represent u ∈ Fp as the basic (n+ t)-bit

representation of a randomly chosen integer of the form u + kp with k ∈
{

0, . . . ,
⌊
2n+t−u

p

⌋}
. For a uniform

u ∈ Fp, the statistical distance to uniform of the corresponding distribution on (n + t)-bit strings is given
by: ∑

u∈Fp

∣∣∣∣∣
⌊
2n+t−u

p

⌋
+ 1

2n+t
− 1

p

∣∣∣∣∣ ≤ p

2n+t
≤ 2−t.

Therefore, taking t ≈ n/2 is sufficient. In fact, we can represent the whole pair (u, v) ∈ F2
p as a close to

uniform bit string of length ≈ 2n + n/2 by first packing u and v as an integer in {0, . . . , p2 − 1} and then
using the same technique.

4 Application to specific curve families

One drawback of the Elligator Squared construction when applied to general well-bounded encodings f is
that the representation algorithm involves the computation of f−1, which usually amounts to finding the
roots of a possibly complicated polynomial over Fq.

For example, Icart’s encoding [16], defined for an elliptic curve E : y2 = x3 + ax+ b over a field Fq with
q ≡ 2 (mod 2) and ab 6= 0, is a (4, 14)-well-bounded encoding by [11, Theorem 8], so we can use it with
Elligator Squared. In particular, many curves of prime order are of that form and are thus supported by
our construction. But computing the preimages of a point (x, y), or even counting those preimages, involves
solving quartic equation u4 − 6xu2 + 6yu − 3a = 0 over Fq, which would probably be done using a rather
costly algorithm such as Berlekamp or Cantor–Zassenhaus.

However, in many cases, we can choose a well-bounded encoding f such that f−1 is much easier to
compute (it might take a couple of base field exponentiations, say), and counting the number of preimages of
a point is even faster. We present several large classes of curves that admit such a convenient well-bounded
encoding below. The curves considered here will be defined over a field Fq with q ≡ 3 (mod 4). In such a field
Fq, we denote by χq(·) : Fq → {−1, 0, 1} the nontrivial quadratic character (which is the Legendre symbol
when q is prime), and by

√
· the standard square root, defined by

√
u = u(q+1)/4 when χq(u) 6= −1.

4.1 Ordinary curves with q ≡ 3 (mod 4)

Let E : y2 = x3 +ax+b be an elliptic curve over Fq, q ≡ 3 (mod 4), with ab 6= 0, and let g be the polynomial
X3 + aX + b ∈ Fq[X]. Based on earlier constructions by Shallue and van de Woestijne [22] and Ulas [23],
Brier et al. [7] define the simplified SWU encoding to E(Fq) as follows (we follow the slightly modified
presentation from [14,11]).

10

Definition 7. Define rational functions X0, X1 ∈ Fq(u) as:

X0(u) = − b
a

(
1 +

1

u4 − u2
)

and X1(u) = −u2X0(u).

The simplified SWU encoding to E(Fq) is the following mapping, which is well-defined (where we denote by
O the point at infinity on E).

f : Fq → E(Fq)

u 7→

O if u ∈ {−1, 0, 1};(
X0(u),

√
g
(
X0(u)

))
if u /∈ {−1, 0, 1} and g

(
X0(u)

)
is a square;(

X1(u),−
√
g
(
X1(u)

))
otherwise.

It is shown in [11, §5.3] that f is a (52 + O(q−1/2))-well-distributed encoding, and that for all u ∈
Fq \ {−1, 0, 1}:

x = X0(u)⇐⇒ u4 − u2 +
1

ω
= 0

x = X1(u)⇐⇒ u4 − ωu2 + ω = 0

where ω = a
bx+1. Since these are equations of degree 4 in u, it follows that any point P = (x, y) ∈ E(Fq) has

at most 4 preimages under f (which must come from X0 if χq(y) ≥ 0 and from X1 otherwise). Therefore, f
is a 4-well-bounded encoding. Moreover, the equations are biquadratic: therefore, f−1 can be computed with
at most two square root computations on any input. And we can often compute the number of preimages
under f with only quadratic character evaluations.

Indeed, to compute the number of preimages of (x, y) under f where, without loss of generality, χq(y) ≥ 0,
we have to count the number N = #f−1(x, y) of roots of the biquadratic equation u4−u2 + 1/ω = 0, where
ω = a

bx+ 1. Let ∆ = 1− 4/ω be the discriminant of the corresponding quadratic equation v2− v+ 1/ω = 0.
Clearly, if χq(∆) = −1, we have N = 0, and if ∆ = 0, the equation becomes u2 = v = 1/2, hence N = 0 or 2
depending on whether 1/2 is a square in Fq. Finally, suppose χq(∆) = 1. Then, the equation v2−v+1/ω = 0
has two simple roots whose product is 1/ω. Therefore, if χq(1/ω) = −1, exactly one of those roots is a square,
and we get its two square roots as solutions for u, hence N = 2. If, however, χq(1/ω) = 1, we compute one

of the roots, say v0 = (1 +
√
∆)/2, and we get N = 0 or 4 depending on whether χq(v0) = ±1.

Thus, as we can see, we can compute N with at most one exponentiation, and no exponentiation at
all (only quadratic character evaluations) most of the time. This makes the Elligator Square construction
quite efficient: the representation algorithm has an average total cost of 6.5 field exponentiations, while the
recombination algorithm costs 2 field exponentiations (ignoring faster operations like field arithmetic and
quadratic character evaluations).

4.2 Elligator 1 curves

Consider now an Elligator 1 curve E over Fq in the sense of [4, §3]. It is associated with a map φ : Fq → E(Fq)
such that each point in E(Fq) has either 0 or 2 preimages under φ (except one special point, which has a
single preimage). Bernstein et al. show that computing and inverting φ both cost about one exponentiation
in the base field, while counting the number of preimages of a given point can be done with only a quadratic
character evaluation and a few multiplications.

Moreover, one can prove that φ is well-distributed. This is because φ can be expressed in terms of a degree
2 covering h : H → E of E by a certain elliptic curve H of genus 2, as described by Fouque et al. in [13]. As
a result, character sums of the form

∑
u∈Fq

χ(φ(u)) can be rewritten up to a constant as
∑
P∈H(Fq)

χ(h(P)).
Moreover, the covering h : H → E is of prime degree, so does not factor nontrivially, and it cannot be
unramified since H is not elliptic. Therefore, Lemma 3 ensures that:∣∣∣ ∑

P∈H(Fq)

χ
(
h(P)

)∣∣∣ ≤ (2g − 2)
√
q = 2

√
q

11

for all nontrivial characters χ of E(Fq). Therefore, we get that φ is (2+O(q−1/2))-well-distributed, and hence
also (2, 2 +O(q−1/2))-well-bounded.

This allows us to apply the Square Elligator construction to φ. It is even more efficient that for the
simplified SWU encoding: the representation algorithm has an average total cost of 2 × 1 + 1 = 3 field
exponentiations, while the recombination algorithm costs 2 field exponentiations (ignoring faster operations
again).

4.3 BN curves

In [15], Fouque and Tibouchi have analyzed the Shallue–van de Woestijne encoding [22] in the particular case
of Barreto–Naehrig curves [2], and found that it was a (62+O(q−1/2))-well-distributed. Moreover, preimages
under this encoding are of three types, and the analysis in [15] makes it clear that each curve point can
have at most one preimage of type 1, one preimage of type 2 and 2 preimages of type 3. As a result, the
Shallue–van de Woestijne encoding f to any BN curve is a 4-well-bounded encoding.

Moreover, since the equations satisfied by preimages are quadratic for type 1 and 2 and biquadratic for
type 3, f−1 can be computed with at most 4 square root computations, and the number of preimages of a
given point can again be estimated with at most one square root computations and none at all most of the
time. Therefore, even for BN curves, the Elligator Square construction is quite efficient.

4.4 Performance comparison with Elligator

Consider again a protocol such as the ECDH key exchange described in §3.2. The ephemeral key generation
involves a single elliptic curve scalar multiplication, as well as one evaluation of the Elligator Squared
representation algorithm, which costs an average of 6.5 base fields exponentiations with a general elliptic
curve as in §4.1, or 3 base fields exponentiations with an Elligator 1 curve as in §4.2. In contrast, the
corresponding algorithm implemented using Elligator [4, §2.4] costs an average of two scalar multiplications,
plus one base field exponentiation for computing the representation. This is likely to make this phase of
the protocol significantly faster with Elligator Squared compared to Elligator (certainly so at least when
comparing implementations on the same curve). This is on top of the other advantages of Elligator Squared,
including much more freedom in terms of supported curve parameters (prime order curves, BN curves, etc.),
support for non-rerandomizable protocols and encoding of all curve points.

On the other hand, the transmitted data with Elligator Squared is twice as large, and the recombination
algorithm about twice as slow (although for both Elligator and Elligator Squared this recombination time is
usually dwarfed by a subsequent scalar multiplication on the curve).

References

1. ANSSI. Publication d’un paramétrage de courbe elliptique visant des applications de passeport électronique et
de l’administration électronique française. http://www.ssi.gouv.fr/fr/anssi/publications/publications-

scientifiques/autres-publications/publication-d-un-parametrage-de-courbe-elliptique-visant-

des-applications-de.html, Nov. 2011.
2. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In B. Preneel and S. E.

Tavares, editors, Selected Areas in Cryptography, volume 3897 of Lecture Notes in Computer Science, pages
319–331. Springer, 2005.

3. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In M. Yung, Y. Dodis, A. Kiayias, and T. Malkin,
editors, Public Key Cryptography, volume 3958 of Lecture Notes in Computer Science, pages 207–228. Springer,
2006.

4. D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange. Elligator: Elliptic-curve points indistinguishable from
uniform random strings. In V. Gligor and M. Yung, editors, ACM CCS, 2013.

5. D. Boneh and M. K. Franklin. Identity-based encryption from the Weil pairing. In J. Kilian, editor, CRYPTO,
volume 2139 of Lecture Notes in Computer Science, pages 213–229. Springer, 2001.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. J. Cryptology, 17(4):297–319, 2004.

12

7. E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient indifferentiable hashing into
ordinary elliptic curves. Cryptology ePrint Archive, Report 2009/340, 2009. http://eprint.iacr.org/. Full
version of [8].

8. E. Brier, J.-S. Coron, T. Icart, D. Madore, H. Randriam, and M. Tibouchi. Efficient indifferentiable hashing
into ordinary elliptic curves. In T. Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer Science,
pages 237–254. Springer, 2010.

9. Certicom Research. SEC 2: Recommended elliptic curve domain parameters, Version 2.0, Jan. 2010.
10. R. R. Farashahi. Hashing into Hessian curves. In A. Nitaj and D. Pointcheval, editors, AFRICACRYPT, volume

6737 of Lecture Notes in Computer Science, pages 278–289. Springer, 2011.
11. R. R. Farashahi, P.-A. Fouque, I. Shparlinski, M. Tibouchi, and J. F. Voloch. Indifferentiable deterministic

hashing to elliptic and hyperelliptic curves. Math. Comp., 82(281), 2013.
12. FIPS PUB 186-3. Digital Signature Standard (DSS). NIST, USA, 2009.
13. P.-A. Fouque, A. Joux, and M. Tibouchi. Injective encodings to elliptic curves. In C. Boyd and L. Simpson,

editors, ACISP, volume 7959 of Lecture Notes in Computer Science, pages 203–218. Springer, 2013.
14. P.-A. Fouque and M. Tibouchi. Estimating the size of the image of deterministic hash functions to elliptic curves.

In M. Abdalla and P. S. L. M. Barreto, editors, LATINCRYPT, volume 6212 of Lecture Notes in Computer
Science, pages 81–91. Springer, 2010.

15. P.-A. Fouque and M. Tibouchi. Indifferentiable hashing to barreto-naehrig curves. In A. Hevia and G. Neven,
editors, LATINCRYPT, volume 7533 of Lecture Notes in Computer Science, pages 1–17. Springer, 2012.

16. T. Icart. How to hash into elliptic curves. In S. Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in
Computer Science, pages 303–316. Springer, 2009.

17. A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor, ANTS, volume 1838 of Lecture
Notes in Computer Science, pages 385–394. Springer, 2000.

18. N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48:203–209, 1987.
19. M. Lochter and J. Merkle. Elliptic curve cryptography (ECC) Brainpool standard curves and curve generation.

RFC 5639 (Informational), Mar. 2010.
20. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, CRYPTO, volume 218 of Lecture

Notes in Computer Science, pages 417–426. Springer, 1985.
21. B. Möller. A public-key encryption scheme with pseudo-random ciphertexts. In P. Samarati, P. Y. A. Ryan,

D. Gollmann, and R. Molva, editors, ESORICS, volume 3193 of Lecture Notes in Computer Science, pages
335–351. Springer, 2004.

22. A. Shallue and C. van de Woestijne. Construction of rational points on elliptic curves over finite fields. In F. Hess,
S. Pauli, and M. E. Pohst, editors, ANTS, volume 4076 of Lecture Notes in Computer Science, pages 510–524.
Springer, 2006.

23. M. Ulas. Rational points on certain hyperelliptic curves over finite fields. Bull. Pol. Acad. Sci. Math., 55(2):97–
104, 2007.

24. Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung, F. Wang, and D. Boneh. StegoTorus: a
camouflage proxy for the Tor anonymity system. In T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS,
pages 109–120. ACM, 2012.

25. E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman. Telex: Anticensorship in the network infrastructure.
In USENIX Security Symposium. USENIX Association, 2011.

26. A. L. Young and M. Yung. Space-efficient kleptography without random oracles. In T. Furon, F. Cayre, G. J.
Doërr, and P. Bas, editors, Information Hiding, volume 4567 of Lecture Notes in Computer Science, pages 112–129.
Springer, 2007.

27. A. L. Young and M. Yung. Kleptography from standard assumptions and applications. In J. A. Garay and R. D.
Prisco, editors, SCN, volume 6280 of Lecture Notes in Computer Science, pages 271–290. Springer, 2010.

13

