Heavy-Traffic Extreme-Value Limits for Queues

P. W. Glynn and W.Whitt

Operations Research Letters, Vol. 18, 107-111 (1995)

• GW95.pdf

We consider the maximum waiting time among the first n customers in the GI/G/1 queue. We use strong approximations to prove, under regularity conditions, convergence of the normalized maximum wait to the Gumbel extreme-value distribution when the traffic intensity ρ approaches 1 from below and n approaches infinity at a suitable rate. The normalization depends on the interarrival-time and service-time distributions only through their first two moments, corresponding to the iterated limit in which first ρ approaches 1 and then n approaches infinity. We need n to approach infinity sufficiently fast so that $n(1-\rho)^{2}-\infty$. We also need n to approach infinity sufficiently slowly: If the service time has a p^{th} moment for $\rho>2$, then it suffices to have $(1-\rho)\log n > 0$. This limit can hold even when the normalized maximum waiting time fails to converge to the Gumbel distribution as $n - \infty$ for each fixed ρ . Similar limits hold for the queue length process.