
BIT 37:1(1997), 96-104.

COMPUTING PROJECTIONS WITH LSQR*

MICHAEL A. SAUNDERS t

Systems Optimization Laboratory, Department of EES ~4 OR
Stanford University, Stanford, CA 94305-4023, USA.

email: mike@SOL-michael.stanford.edu

Abstrac t .

LSQR uses the Golub-Kahan bidiagonalization process to solve sparse least-squares
problems with and without regularization. In some cases, projections of the right-hand
side vector are required, rather than the least-squares solution itself. We show that
projections may be obtained from the bidiagonalization as linear combinations of (the-
oretically) orthogonal vectors. Even the least-squares solution may be obtained from
orthogonal vectors, perhaps more accurately than the usual LSQR solution. (However,
LSQR has proved equally good in all examples so far.)

AMS subject classification: 65F10, 65F20, 65F50, 65F05.

Key words: Least squares, conjugate-gradient method, Golub-Kahan process, regu-
larization.

1 In troduc t ion .

LSQR [11, 12] is a conjugate-gradient- l ike me thod for solving linear least-
squares problems

(1.1) min lib - Axll2 ,
X

where A is a real m x n ma t r ix and b is a real vector. Typical ly m > n and
rank(A) = n, though not necessarily. LSQR uses the Go lub -Kahan bidiagonal-
ization of A [6] with s ta r t ing vector b, forming a sequence of i terates (x k } to
approximate x.

For p rob lem (1.1), let us define the following items:

(1.2) P = A (A T A) - I A T

(1.3) x -- (A T A) - I A T b ,

(1.4) p = P b - - A x ,

(1.5) r = (I - P)b = b - A x ,

*Received July 1996. Revised December 1996. Presented at the Cornelius Lanczos In-
ternational Centenary Conference, North Carolina State University, Raleigh, NC, December
1993.

?Partially supported by Department of Energy grant DE-FG03-92ER25117, National Sci-
ence Foundation grants DMI-9204208 and DMI-9500668, and Office of Naval Research grants
N00014-90-J-1242 and N00014-96-1-0274.

COMPUTING PROJECTIONS WITH LSQR 97

where P and (I - P) axe both projection operators. Since some applications
need p or r rather than x itself, and since these projections are less sensitive
than x to perturbations in the data [7], it seems reasonable to compute the
projections directly from the Golub-Kahan process, rather than from LSQR's
final approximation to x.

Section 3.1 shows how to compute p and r for problem (1.1). Section 4.1 does
the same for regularized or damped least-squares problems, and suggests some
unexpected new ways for computing x.

1.1 Orthogonal steps�9

If a sequence of approximations {xk} is computed in the form

(1�9 x k = VkYk = X k - 1 + ~kVk ,

where the columns of Vk are (at least theoretically) orthonormal (vTvk = I),
we say that x is computed by orthogonal steps. For example, Craig's method
[4, 5, 11] solves unsymmetric equations Ax = b using orthogonal steps (1�9 to
update each Xk. In contrast, the normal LSQR iterates have the form

(1.7) zk = (VkRkl)Zk -- Wkzk = Xk-1 + ~kWk,

where Vk is orthonormal but Wk is not. If the triangular matrix Rk is ill-
conditioned, we would expect a certain loss of precision (via cancellation) in
forming xk that way.

A contribution of this paper is to show that for least-squaxes problems with
and without damping, x, p and r can all be computed by orthogonal steps.

2 Bidiagonal izat ion.

Given a general matrix A and a starting vector b, the Golub-Kahan process
generates two sequences of vectors {uk}, {Vk} and positive scalars {ak}, {~k}
such that after k steps,

AVk = Uk+lBk,
ATuk+I T T = V k B k -}- C ~ k + l V k + l e k + l ,

(2.1) Bk =
vk = (u l . . . u k) ,

Vk ~- (Vl v2 . . . Vk),

(.1)
~2 " "

"" ~k

~k+l

where Bk is (k+ 1) x k and lower bidiagonal. The starting condition is] ~ l U 1 = b,
so that U k ~ l e l = b exactly for all k, and with exact arithmetic the columns of
Uk and Vk would be orthonormal.

3 Least squares.

To solve problem (1.1), LSQR defines a sequence of approximations Xk = VkYk ,

where each Yk is defined by a subproblem, minIl131e1 - BkYkll [11, 13]. The

98 M. A. SAUNDERS

subproblem is reliably solved via a QR factorization of Bk:

Qk(Bk ~ 1 e l) = (R k Z k) ~k ' Rkyk = Zk,

where Rk is k x k and upper bidiagonal. The matrix Qk is nominally a product
of k plane rotations, requiring little work. In LSQR we work with symmetric
transformations for simplicity. The kth transformation is of the form

8k --Ok /~k-{-1 O~k-t-1 0 Pk ~k '
where Ck later becomes ~k+l (and similarly for other barred items). To keep
storage to a minimum, Yk is eliminated and xk is formed as in (1.7).

3.1 Projections.

As approximations to the projections p = Pb and r -- (I - P)b, we use the
vectors Pk = Axk and rk = b - Axk. Let us write the (theoretically orthonormal)
matrix Uk + i Q [as
(3.1) Uk+IQ [= (Ulk (~k),

in which the kth transformation has the form

(?~k--1 Ukwi) (CkSk --ck8k) = (71"1k ?~k).

It follows that

and

Pk = Axk = AVkyk = Uk+lBkyk

T B = Uk+lQkQk kYk

= (Ulk ~2k)(Rok)yk

= (Ulk ~2k) (; k) =Ulkzk

rk = b - Axk

--- Uk+IQTQk(/~lel -- Bkyk)

(0)
= (Ulk ~k) ~k = & u k .

Thus, the sequences {Pk} and {rk} are obtained by orthogonal steps. The main
expense beyond the bidiagonalization lies in forming the columns of Ulk in (3.1).
Note that xk need not be formed.

COMPUTING PROJECTIONS WITH LSQR 99

4 D a m p e d least squares .

The damped least-squares problem is

(~) (A) 2
(4.1) min l ib - Axll 2 + 116xll 2 - min - 61 x ,

where 6 > 0 is a small scalar that regularizes the problem if rank(A) < n or A
is ill-conditioned. For such problems, LSQR uses the same bidiagonalization to
obtain approximations xk = Vkyk, where Yk is defined by the subproblem

min (i l l : l) - (~ ;) y k ,

which is solved via an extended QR factorization [2, 12, 13]:

Qk
6I o ~k ,

qk

R k y k = zk.

The matrix Qk now involves a product of 2k transformations, but the total work
and storage is essentially the same as when 6 -- 0. As before, Yk is eliminated
and Xk is formed as in (1.7).

4.1 Projec t ions .

The damped least-squares solution satisfies (A T A + 6 2 I) x = ATb. With

(;,) , (;)
the definitions analogous to (1.2)-(1.5) are

(4.2) P ~-- A(2~T2~)- 12~T

(4.3) x = (A T A) - I A T b ,

(4.4) = P b = 6x '

(:) (,
where we see that s = - t = 5x. Now define the (theoretically orthonormal)
matrix

Vk V l k ~k V2k '

100 M . A . S A U N D E R S

where the next two transformations defining Qk+l leave Ulk, U2k, Vlk, V2k
unaltered. It follows that

and

(Pk) (Axk~ (Ark) /Vk+lSk'

= (S k + l) T ' B k ~ - . k
Vk Qk Qk ~ 51) Y

= Ulk ~k U2k 0

V1k Vk V2k 0

= ~,VlkZk]'

\ 5xk]

= Ulk ftk U2k ~k -- 0 Yk
Vlk ~k V2k

qk 0

gk V2k qk

(4.11)

(4.12)

(4.13)

(4.14)

Pk = Pk-1 + ~kulk,

~k = Fk-i + Ckuek,

~lk = ~ k - l + (k v l k ,

in the usual way, we form

We see that the "damped" projections have led to two new sequences for ap-
proximating x. We shall denote these by {Xlk} and {X2k}. To use (4.7)-(4.10)

(4.7) Pk = Ulkzk,

(4.8) rk = U2kqk + ~kftk,

(4.9) 5xk = Vlkzk,

(4.10) --hxk = V2kqk + ~kVk.

Thus, the sequences {Pk}, {rk} and {hxk} are obtained by orthogonal steps:

COMPUTING PROJECTIONS WITH LSQR 101

and upon termination at step k we make some final adjustments:

(4.15) rk = r'k +~k~k,

(4.16) x lk = (1 /5)~k ,

(4.17) x2k = --(1/5)(/i~k + ~k~k).

4.2

1.

2.

.

4.

.

.

Discussion.

The approximations Xk, Pk and rk are defined for all 5 > 0, but Xlk and
x2k require 5 > 0.

In (4.16)-(4.17), the divisions by 5 may appear hazardous as (f -+ 0. How-
ever, the norm of each column of Vlk and V2k is of order 5, and I lzk II, I Iqkll
and I~kl are all bounded by Ilbll. Values as small as 5 = 10 - l ~ (say) seem
to be safe in practice. Hence, xlk or X2k may be used to estimate x for
both normal and damped least squares.

The Golub-Kahan process requires work vectors u and v (m + n storage
locations) and 3m + 3n floating-point operations (flops) per step, as well
as the usual products u +-- A v + u, v +-- ATu + v.

Table 4.1 shows the additional storage and work needed to estimate various
vectors. For example, to estimate x, LSQR uses work vectors x and w (2n
storage locations) and 2n flops per step, for all values of 5. The other
quantities are somewhat more expensive.

To implement reliable stopping rules, LSQR uses the vectors wk to estimate
cond(A). When x is being estimated, this involves no additional storage
and 2n additional flops per step. If p, r, x l or x2 are estimated but not x,
the extra cost to estimate cond(A) is n locations and 3n flops per step.

x l is slightly cheaper to compute than x2, and to date the computational
results have not favored one over the other. It is probably sufficient to
consider xl .

In summary, computing all of p, r and x l requires about twice the storage
and work compared to the usual LSQR x. This may not be significant if the
matrix-vector products dominate.

5 Relationship to Craig's method.

Craig's method [4, 5] solves compatible rectangular systems of the form

(5.1) min Ilxll subject to A x -- b,

where we typically have m _< n and rank(A) -- m. As described in [10, 11],
the method may be implemented via Bidiag(A, b), the Golub-Kahan bidiago-
nalization of A with starting vector b. This seems to be a reliable approach,
but an outstanding question has been: What if the right-hand side is of the

102 M.A. SAUNDERS

Table 4.1: Storage and work per step needed (excluding the bidiagonalization)
to estimate the normal LSQR solution x, the projections p and r, and the new
solution estimates xl and x2.

Vectors Storage Work
5 = 0 5 > 0

X X~ W 2 n

p p, (t 2m
r r, ~ 2m

p and r p, r, 5 3m
xl xl , ~ 2n

x2 x2, ~ 2n

2n

3m
2m

4m

2n

5m
4m
6m
4n
5n

form b = Ac? The method is then using Bidiag(A T Ac), which is not a reliable
approach [11, 3].

This curiosity is now resolved by noting that when b = Ac, the solution to
(5.1) is x = A (A A T) - I A c , which is the projection p = P c associated with the
least-squares problem miny IIc- ATylI. The method of Section 3 may be applied.
Similarly, minimum-length problems of the form

(5.2) min IIxll 2 + Ilsll 2 subject to A x + 5s = b,

may be treated by LSQR or by an extension of Craig's method as described in
[13], but if b = Ac, then the method of Section 4 may be applied to compute
(x, s) as a projection.

6 Computational results.

The test problems described in [11] were generalized slightly to include damp-
ing and arbitrary values of m and n. They use a matr ix of the form A = Y D Z ,
where Y and Z are Householder transformations and D is diagonal with pre-
scribed singular values. Preliminary conclusions follow.

Note that when m -- n and 5 = 0, the exact projections are p = b and r -- 0.
Also, when 5 = O, x l and x2 are undefined. These cases were not considered.

For the results obtained, the machine precision was e ~ 10-16; the damping
parameter was in the range 10 -11 < 5 < 10-s; IIAII, Ilbll and Ilxll were all O(1);
and the condition of the "damped" matr ix was in the range 10 6 _~ cond(fi~) _<
1011. The stopping tolerances for LSQR were a t o l = b t o l = c ~ ~ 10 -14.

Below, p, r, x, x l and x2 mean the final computed estimates of p, r and x.

6. I Observations.

1. When m -- n and Ilrll -- O(e), the errors in p and r were O (a t o l) , and the
errors in x, x l and x2 grew in proportion to cond(A). This matches the
sensitivity of the problem itself, indicating stability [7].

COMPUTING PROJECTIONS WITH LSQR 103

2. When m > n or m < n and Ilrll = O(10-6), the same results were observed.

3. When m > n and llr[[> 10 -3, the errors in x , x l and x2 grew in proportion
to cond(.4) 2. Again this matches the sensitivity of least-squares problems.

. In the same cases (HrH large), the errors in p and r grew with cond(A)
in accordance with sensitivity analysis, but they were significantly smaller
than could be expected from the actual size of cond(A).

5. The final p and r closely matched A x and b - A x computed from the final
LSQR estimate of x.

6. Surprisingly, this was true even when x had essentially no digits of preci-
sion.

. More surprisingly, the three estimates x, x l and x2 matched each other very
closely in all cases, even when they all had no correct digits. In extreme
cases, x and x l agreed more closely than x and x2.

Support for Observations 4 and 5 has been given by Bjbrck et al. [1, 3], who
study the "recursive residuals" for various CG methods including CGLS, the
original least-squares algorithm of Hestenes and Stiefel [9]. For updates such as
(1.7), the recursive residuals are defined by

(6.1) x k = x k - 1 + r

rk ---- r k - 1 -- ~ k A w k ,

where we use ?k to distinguish from rk in Sections 3-4. In CGLS the residuals
are an integral part of the iteration. In LSQR they are not normally needed, but
they may be computed for interest.

Following Greenbaum [8], BjSrck et al. [3] prove for CGLS and LSQR that ~k
closely approximates b - A x k for all k. This matches Observation 5.

They also conjecture from experimental evidence that rk is ultimately very
close to the true residual r. This is confirmed by Observation 4; for example,
with cond(_~) = 1011 and Ilrll -- 10, the final value of IIr - rk l l / l l r l l Was 10 - 9

rather than the expected 10 -5 .

7 Conc lus ions .

We have shown how to obtain projections p -- A x and r = b - A x from the
Golub-Kahan process, as well as two different estimates of x, using orthogonal
steps for all quantities. We were motivated by the concern that updates of the
form (6.1) could entail significant cancellation if both (k and Ilwkll are large.

In LSQR, we know that some of the vectors Wk can be large, because IIWkll
is used to estimate cond(A). However, for the present test problems the corre-
sponding multipliers ~k were always small (see [13]). Thus, we have not yet seen
a benefit from obtaining p, r , x l and x2 by orthogonal steps.

104 M.A. SAUNDERS

Since the new approach for comput ing projections involves addit ional work and
storage, it is probably best to compute x via the s tandard CGLS or LSQR itera-
tions and then form p or r directly. We recommend this even in ill-conditioned
cases where the computed x has no accuracy. If cases arise in which the errors
in p, r or x exceed whatever can be expected from cond(A), the methods of this
paper should be reconsidered.

Acknowledgements.
As in the past, I am grateful to Chris Paige for showing how to work with

the Lanczos and Golub-Kahan processes. I am also grateful t o /~ke Bj5rck for
bringing [3] to my a t tent ion and causing a closer look at the computed residuals
(cf. Observation 4).

R E F E R E N C E S

1..~. Bj6rck, Conjugate gradient methods for sparse least squares problems, unpub-
lished notes, Stanford University, 1979.

2. /~. BjSrck, A bidiagonalization algorithm for solving ill-posed systems of linear equa-
tions, Report LITH-MAT-R-80-33, Dept. of Mathematics, LinkSping University,
Link5ping, Sweden, 1980.

3. ,~. BjSrck, T. Elfving, and Z. Strako~, Stability of conjugate gradient and Lanczos
methods for linear least squares problems, SIAM J. Matrix Anal. Appl., to appear.

4. J. E. Craig, The N-step iteration procedures, J. Math. and Phys., 34, 1 (1955), pp.
64-73.

5. D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra,
Freeman, London, 1963.

6. G. H. Golub and W. Kahan, Calculating the singular values and pseudoinverse of
a matrix, SIAM J. Numer. Anal., 2 (1965), pp. 205-224.

7. G. H. Golub and C. F. Van Loan, Matrix Computations, Second Edition, The Johns
Hopkins University Press, Baltimore and London, 1989.

8. A. Greenbaum, Estimating the attainable accuracy of recursively computed residual
methods, SIAM J. Matrix Anal. Appl., to appear.

9. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Stds., B49 (1952), pp. 409-436.

10. C. C. Paige, Bidiagonalization of matrices and solution of linear equations, SIAM
J. Numer. Anal., 11 (1974), pp. 197-209.

11. C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations
and sparse least squares, ACM Trans. Math. Software, 8(1) (1982), pp. 43-71.

12. C. C. Paige and M. A. Saunders, Algorithm 583. LSQR: Sparse linear equations
and least squares problems, ACM Trans. Math. Software, 8(2) (1982), pp. 195-209.

13. M. A. Saunders, Solution of sparse rectangular systems using LSQR and CRAIG,
BIT, 35 (1995), pp. 588-604.

