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Abstrac t .  

LSQR uses the Golub-Kahan bidiagonalization process to solve sparse least-squares 
problems with and without regularization. In some cases, projections of the right-hand 
side vector are required, rather than the least-squares solution itself. We show that 
projections may be obtained from the bidiagonalization as linear combinations of (the- 
oretically) orthogonal vectors. Even the least-squares solution may be obtained from 
orthogonal vectors, perhaps more accurately than the usual LSQR solution. (However, 
LSQR has proved equally good in all examples so far.) 
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1 In troduc t ion .  

LSQR [11, 12] is a conjugate-gradient- l ike me thod  for solving linear least- 
squares problems 

(1.1) min  lib - Axll2 , 
X 

where A is a real m x n ma t r ix  and b is a real vector.  Typical ly  m > n and 
rank(A) = n, though  not necessarily. LSQR uses the  Go lub -Kahan  bidiagonal-  
ization of A [6] with s ta r t ing  vector  b, forming a sequence of i terates  ( x k }  to 
approximate  x. 

For p rob lem (1.1), let us define the following items: 

(1.2) P = A ( A T A ) - I A  T 

(1.3) x -- ( A T A ) - I A T b ,  

(1.4) p = P b - -  A x ,  

(1.5) r = ( I -  P)b  = b -  A x ,  
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where P and (I  - P)  axe both projection operators. Since some applications 
need p or r rather than x itself, and since these projections are less sensitive 
than x to perturbations in the data [7], it seems reasonable to compute the 
projections directly from the Golub-Kahan process, rather than from LSQR's 
final approximation to x. 

Section 3.1 shows how to compute p and r for problem (1.1). Section 4.1 does 
the same for regularized or damped least-squares problems, and suggests some 
unexpected new ways for computing x. 

1.1 Orthogonal steps�9 

If a sequence of approximations {xk} is computed in the form 

(1�9 x k  = VkYk  = X k - 1  + ~kVk ,  

where the columns of Vk are (at least theoretically) orthonormal ( vTvk  = I), 
we say that  x is computed by orthogonal steps. For example, Craig's method 
[4, 5, 11] solves unsymmetric equations Ax = b using orthogonal steps (1�9 to 
update each Xk. In contrast, the normal LSQR iterates have the form 

(1.7) zk = (VkRkl)Zk -- Wkzk = Xk-1 + ~kWk, 

where Vk is orthonormal but Wk is not. If the triangular matrix Rk is ill- 
conditioned, we would expect a certain loss of precision (via cancellation) in 
forming xk that  way. 

A contribution of this paper is to show that for least-squaxes problems with 
and without damping, x, p and r can all be computed by orthogonal steps. 

2 Bidiagonal izat ion.  

Given a general matrix A and a starting vector b, the Golub-Kahan process 
generates two sequences of vectors {uk}, {Vk} and positive scalars {ak}, {~k} 
such that after k steps, 

AVk = Uk+lBk, 
ATuk+I T T = V k B  k -}- C ~ k + l V k + l e k + l ,  

(2.1) Bk  = 
vk  = ( u l  . . .  u k ) ,  

Vk ~- (Vl v2 . . .  Vk ), 

(.1 ) 
~2 " "  

"" ~k 

~k+l  

where Bk is ( k+  1) x k and lower bidiagonal. The starting condition is ] ~ l U  1 = b, 
so that  U k ~ l e l  = b exactly for all k, and with exact arithmetic the columns of 
Uk and Vk would be orthonormal. 

3 Least squares. 

To solve problem (1.1), LSQR defines a sequence of approximations Xk = VkYk ,  

where each Yk is defined by a subproblem, minIl131e1 - BkYkll [11, 13]. The 
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subproblem is reliably solved via a QR factorization of Bk: 

Qk(Bk  ~ 1 e l ) =  ( R k  Z k )  ~k ' Rkyk = Zk, 

where Rk is k x k and upper bidiagonal. The matrix Qk is nominally a product 
of k plane rotations, requiring little work. In LSQR we work with symmetric 
transformations for simplicity. The kth transformation is of the form 

8k --Ok /~k-{-1 O~k-t-1 0 Pk ~k ' 
where Ck later becomes ~k+l (and similarly for other barred items). To keep 
storage to a minimum, Yk is eliminated and xk is formed as in (1.7). 

3.1 Projections. 

As approximations to the projections p = Pb and r -- (I - P)b, we use the 
vectors Pk = Axk and rk = b -  Axk. Let us write the (theoretically orthonormal) 
matrix Uk + i Q [ as 
(3.1) Uk+IQ [ = (Ulk (~k ), 

in which the kth transformation has the form 

(?~k--1 Ukwi) ( CkSk --ck8k ) =  (71"1k ?~k). 

It follows that 

and 

Pk = Axk = AVkyk = Uk+lBkyk 

T B = Uk+lQkQk kYk 

= (Ulk ~2k)(Rok)yk 

= (Ulk ~2k ) ( ; k )  =Ulkzk  

rk = b -  Axk 

--- Uk+IQTQk(/~lel -- Bkyk) 

(0) 
= (Ulk ~k) ~k = & u k .  

Thus, the sequences {Pk} and {rk} are obtained by orthogonal steps. The main 
expense beyond the bidiagonalization lies in forming the columns of Ulk in (3.1). 
Note that xk need not be formed. 
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4 D a m p e d  least  squares .  

The damped least-squares problem is 

( ~ )  ( A )  2 
(4.1) min l ib -  Axll 2 + 116xll 2 - min - 61 x , 

where 6 > 0 is a small scalar that regularizes the problem if rank(A) < n or A 
is ill-conditioned. For such problems, LSQR uses the same bidiagonalization to 
obtain approximations xk  = Vkyk,  where Yk is defined by the subproblem 

min ( i l l : l )  - ( ~ ; ) y k  , 

which is solved via an extended QR factorization [2, 12, 13]: 

Qk 
6I o ~k , 

qk 

R k y k  = zk.  

The matrix Qk now involves a product of 2k transformations, but the total work 
and storage is essentially the same as when 6 -- 0. As before, Yk is eliminated 
and Xk is formed as in (1.7). 

4.1 Projec t ions .  

The damped least-squares solution satisfies ( A T A  + 6 2 I ) x  = ATb. With 

(;,) , ( ; )  
the definitions analogous to (1.2)-(1.5) are 

(4.2) P ~-- A(2~T2~)- 12~T 

(4.3) x = ( A T A ) - I A T b ,  

(4.4) = P b  = 6x  ' 

(:) (, 
where we see that  s = - t  = 5x.  Now define the (theoretically orthonormal) 
matrix 

Vk V l k  ~k V2k ' 
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where the next two transformations defining Qk+l leave Ulk, U2k, Vlk, V2k 
unaltered. It follows that  

and 

( Pk ) (Axk~ (Ark) /Vk+lSk' 

= ( S k + l ) T ' B k ~ - .  k 
Vk Qk Qk ~ 51 ) Y  

= Ulk ~k U2k 0 

V1k Vk V2k 0 

= ~,VlkZk]' 

\ 5xk ] 

= Ulk ftk U2k ~k -- 0 Yk 
Vlk ~k V2k 

qk 0 

gk V2k qk 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

Pk = Pk-1 + ~kulk, 

~k = Fk-i + Ckuek, 

~lk = ~ k - l + ( k v l k ,  

in the usual way, we form 

We see that the "damped" projections have led to two new sequences for ap- 
proximating x. We shall denote these by {Xlk} and {X2k}. To use (4.7)-(4.10) 

(4.7) Pk = Ulkzk, 

(4.8) rk = U2kqk + ~kftk, 

(4.9) 5xk = Vlkzk, 

(4.10) --hxk = V2kqk + ~kVk. 

Thus, the sequences {Pk}, {rk} and {hxk} are obtained by orthogonal steps: 
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and upon termination at step k we make some final adjustments: 

(4.15) rk = r'k +~k~k,  

(4.16) x lk  = (1 /5)~k ,  

(4.17) x2k = --(1/5)(/i~k + ~k~k). 

4.2 

1. 

2. 

. 

4. 

. 

. 

Discussion. 

The approximations Xk, Pk and rk are defined for all 5 > 0, but Xlk and 
x2k require 5 > 0. 

In (4.16)-(4.17), the divisions by 5 may appear  hazardous as (f -+ 0. How- 
ever, the norm of each column of Vlk  and V2k is of order 5, and I lzk II, I Iqkll 
and I~kl are all bounded by Ilbll. Values as small as 5 = 10 - l ~  (say) seem 
to be safe in practice. Hence, xlk  or X2k may be used to estimate x for 
both normal and damped least squares. 

The Golub-Kahan process requires work vectors u and v (m + n storage 
locations) and 3m + 3n floating-point operations (flops) per step, as well 
as the usual products u +-- A v  + u, v +-- ATu + v. 

Table 4.1 shows the additional storage and work needed to estimate various 
vectors. For example, to estimate x, LSQR uses work vectors x and w (2n 
storage locations) and 2n flops per step, for all values of 5. The other 
quantities are somewhat more expensive. 

To implement reliable stopping rules, LSQR uses the vectors wk to estimate 
cond(A). When x is being estimated, this involves no additional storage 
and 2n additional flops per step. If p, r, x l  or x2 are estimated but not x, 
the extra cost to estimate cond(A) is n locations and 3n flops per step. 

x l  is slightly cheaper to compute than x2, and to date the computational 
results have not favored one over the other. It is probably sufficient to 
consider xl .  

In summary, computing all of p, r and x l  requires about twice the storage 
and work compared to the usual LSQR x. This may not be significant if the 
matrix-vector products dominate. 

5 Relationship to Craig's method.  

Craig's method [4, 5] solves compatible rectangular systems of the form 

(5.1) min Ilxll subject to A x  -- b, 

where we typically have m _< n and rank(A) -- m. As described in [10, 11], 
the method may be implemented via Bidiag(A, b), the Golub-Kahan bidiago- 
nalization of A with starting vector b. This seems to be a reliable approach, 
but an outstanding question has been: What  if the right-hand side is of the 



102 M.A. SAUNDERS 

Table 4.1: Storage and work per step needed (excluding the bidiagonalization) 
to estimate the normal LSQR solution x, the projections p and r, and the new 
solution estimates xl  and x2. 

Vectors Storage Work 
5 = 0  5 > 0  

X X~ W 2 n  

p p, (t 2m 
r r, ~ 2m 

p and r p, r, 5 3m 
xl  xl ,  ~ 2n 

x2 x2, ~ 2n 

2n  

3m 
2m 

4m 

2n 

5m 
4m 
6m 
4n 
5n 

form b = Ac? The method is then using Bidiag(A T Ac), which is not a reliable 
approach [11, 3]. 

This curiosity is now resolved by noting that  when b = Ac, the solution to 
(5.1) is x = A ( A A T ) - I A c ,  which is the projection p = P c  associated with the 
least-squares problem miny IIc-  ATylI. The method of Section 3 may be applied. 
Similarly, minimum-length problems of the form 

(5.2) min IIxll 2 + Ilsll 2 subject to A x +  5s = b, 

may be treated by LSQR or by an extension of Craig's method as described in 
[13], but if b = Ac, then the method of Section 4 may be applied to compute 
(x, s) as a projection. 

6 Computational results. 

The test problems described in [11] were generalized slightly to include damp- 
ing and arbitrary values of m and n. They use a matr ix  of the form A = Y D Z ,  
where Y and Z are Householder transformations and D is diagonal with pre- 
scribed singular values. Preliminary conclusions follow. 

Note that  when m -- n and 5 = 0, the exact projections are p = b and r -- 0. 
Also, when 5 = O, x l  and x2 are undefined. These cases were not considered. 

For the results obtained, the machine precision was e ~ 10-16; the damping 
parameter was in the range 10 -11 < 5 < 10-s; IIAII, Ilbll and Ilxll were all O(1); 
and the condition of the "damped" matr ix  was in the range 10 6 _~ cond(fi~) _< 
1011. The stopping tolerances for LSQR were a t o l  = b t o l  = c ~ ~ 10 -14. 

Below, p, r, x,  x l  and x2 mean the final computed estimates of p, r and x. 

6. I Observations. 

1. When m -- n and Ilrll -- O(e), the errors in p and r were O ( a t o l ) ,  and the 
errors in x, x l  and x2 grew in proportion to cond(A). This matches the 
sensitivity of the problem itself, indicating stability [7]. 
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2. When m > n or m < n and Ilrll = O(10-6), the same results were observed. 

3. When m > n and llr[[ > 10 -3, the errors in x ,  x l  and x2 grew in proportion 
to cond(.4) 2. Again this matches the sensitivity of least-squares problems. 

. In the same cases (HrH large), the errors in p and r grew with cond(A) 
in accordance with sensitivity analysis, but they were significantly smaller 
than could be expected from the actual size of cond(A). 

5. The final p and r closely matched A x  and b - A x  computed from the final 
LSQR estimate of x. 

6. Surprisingly, this was true even when x had essentially no digits of preci- 
sion. 

. More surprisingly, the three estimates x, x l  and x2 matched each other very 
closely in all cases, even when they all had no correct digits. In extreme 
cases, x and x l  agreed more closely than x and x2. 

Support for Observations 4 and 5 has been given by Bjbrck et  al. [1, 3], who 
study the "recursive residuals" for various CG methods including CGLS, the 
original least-squares algorithm of Hestenes and Stiefel [9]. For updates such as 
(1.7), the recursive residuals are defined by 

(6.1) x k  = x k - 1  + r  

rk  ---- r k - 1  -- ~ k A w k ,  

where we use ?k to distinguish from rk in Sections 3-4. In CGLS the residuals 
are an integral part of the iteration. In LSQR they are not normally needed, but 
they may be computed for interest. 

Following Greenbaum [8], BjSrck et  al. [3] prove for CGLS and LSQR that ~k 
closely approximates b - A x k  for all k. This matches Observation 5. 

They also conjecture from experimental evidence that rk is ultimately very 
close to the true residual r. This is confirmed by Observation 4; for example, 
with cond(_~) = 1011 and Ilrll -- 10, the final value of IIr - rk l l / l l r l l  Was 10 - 9  

rather than the expected 10 -5 . 

7 Conc lus ions .  

We have shown how to obtain projections p --  A x  and r = b - A x  from the 
Golub-Kahan process, as well as two different estimates of x, using orthogonal 
steps for all quantities. We were motivated by the concern that updates of the 
form (6.1) could entail significant cancellation if both (k and Ilwkll are large. 

In LSQR, we know that  some of the vectors Wk can be large, because IIWkll 
is used to estimate cond(A). However, for the present test problems the corre- 
sponding multipliers ~k were always small (see [13]). Thus, we have not yet seen 
a benefit from obtaining p,  r ,  x l  and x2 by orthogonal steps. 
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Since the new approach for comput ing  projections involves addit ional  work and 
storage, it is probably best  to compute  x via the s tandard  CGLS or LSQR itera- 
tions and then form p or r directly. We recommend this even in ill-conditioned 
cases where the computed  x has no accuracy. If  cases arise in which the errors 
in p, r or x exceed whatever  can be expected from cond(A),  the methods  of this 
paper should be reconsidered. 
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