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ABSTRACT This research is based on an analysis of golf course tee-time reservation practice.
Specifically, this article presents a unique linear model that can be used to assign the demand to the available
tee-times, and thus, maximize their utilization and the total revenue. The model is solved by using the SAS-
OR built-in branch and bound (B&B) algorithm. To reduce the computational time, we propose a heuristic to
find an initial feasible solution to the model. This initial solution reduces the CPU time substantially and
enabled us to solve the larger-scale problem by using the SAS-OR.
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INTRODUCTION
Today, many industries including airlines, car

rentals, hotel chains and golf courses consider

the revenue management (RM) system as a

critical determinant of their future success. The

history of (RM) goes back to the major airlines

in the United States in the late 1980s; for more

information about the origin of this system, see

Belobaba (1987) and Talluri and Van Ryzin (2005).

Golf course tee-time assignment is a typical

RM problem. Golf course operations are iden-

tified with perishable inventory, predictable

demand, limited capacity and varying costumer

price sensitivity (Kimes and Schruben, 2002).

With respect to this revenue problem, a set of

tee-times are predetermined for each golf course.

The maximum capacity for each tee-time is

four, and the number of demand for each tee-

time can be forecasted. Each demand type has a

potential revenue for the golf course. Demand

is assumed to come from groups or individuals,

the size of which ranges from 1 to 4. The

objective in solving this problem is to assign the

demand to tee-times so to maximize the total

revenue.

The goal of the golf course RM system is

to maximize the profits by developing the best

reservation policy. In this article, we assume

such a reservation policy, for which the value or

bid price of a particular tee-time is periodically

evaluated. Each time a new reservation occurs,

the algorithm is applied once assuming the

demand forecast is made ready at that moment.

The reservation is accepted if the expected
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revenue from this reservation is at least as high

as the predetermined bid price. The algorithm

we introduce is based on a linear deterministic

model that balances the supply and demand.

This linear model is repeatedly applied over

time, and provides an update of bid prices as

demand is being realized. This model is a

typical RM method used in practice by the

airlines and other industries, the essence of

which is to compare the future expected

revenue with a current offered price. There-

fore, the fundamental RM decision would be

to accept or reject a reservation.

An additional explanation may help to better

articulate the problem. Optimization is con-

ducted by using the forecasted demand – the

demand for each tee-time interval between 0730

hours and 1500 hours. Three rate categories are

available for the tee-times, depending on the

time of the day, for example, early morning tee-

times are more expensive. The prices in each

rate category include discount and regular

prices, which are used to differentiate the

demand with different profit potentials.

LITERATURE REVIEW
Currently, RM is applied extensively to

transportation, hotel, media and hospital man-

agement. Generally speaking, the methodolo-

gies can be classified into two classes according

to dynamic (Feng and Xiao, 2000) versus static

(Bertsimas and Popescu, 2003) or single leg

(Liang, 1999) versus network of two or more

legs (Barnhart et al, 2002; Wang and Meng,

2008; Barnhart et al, 2009). Usually, static

models treat demand deterministically and

resort to a repeated application of a static

capacity allocation model called ‘out rollout

policy’ (Bertsimas and Popescu, 2003). Optimal

models are generally dynamic and dictate the

threshold price change whenever the remain-

ing inventory changes or a substantial amount

of time elapses. An interesting paper by Gallego

and van Ryzin (1997) shows that a repeated

application of a simple linear programming

(LP) model gives an asymptotically optimal

policy on a network. Bertsimas and Popescu

(2003) also discuss the performance of repeat-

edly using the LP model in the airlines’

network seat inventory control. We follow a

similar process to develop LP models for

golf course RM. Particularly, for the first time,

our models address the special features of this

RM problem in the golf course industry.

Similar approaches to the early practices used

for RM in the airline industry were also

developed for hotel RM to balance the expected

revenue from sold rooms and the cost of

‘walking away’ customers who fail to honor

their reservations (Bitran and Mondschein,

1995; Bitran and Gilbert, 1996). The manage-

ment of golf course tee-time reservations

through assigning a set of sequential reservations,

shares similarities with the problem of vehicle

routing using time windows. Vehicle routing

and scheduling problems with time windows are

time-constrained network optimization pro-

blems in which a set of trips satisfying demand

requirements are assigned to a set of vehicles.

The cost of assignment is the total cost on all the

routes. The objective is to minimize the assign-

ment cost (Hadjer et al, 2006). Similarly, in the

golf course assignment problem, a set of sequen-

tial reservations – each covering the entire time

period of a service day – are assigned to a set of

tee-times. Each golf course serves a sequence of

reservations in a day. The objective is to maxi-

mize the assignment revenue. In this sense, the

golf course RM problem shares great similarity

with the vehicle routing and scheduling pro-

blem. In a general sense, the golf course RM

falls into a large class of assignment problems,

such as the assignment of jobs to machines. The

assignment problem can address complex pro-

blems from the traveling salesman problem

(Held and Karp, 1970) to vehicle routing

problems (Li and Wang, 2005; Li et al, 2009).

The remainder of the present article is

organized as follows: next section describes

the problem formulation for the golf course

assignment problem; subsequent section pre-

sents the numerical results; and the last section

is devoted to our concluding remarks.
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PROBLEM FORMULATION
As the demand increases, the golf course

management must make decisions about how

to optimally allocate their resources for future

demand. The Golf Revenue Optimization

(GRO) model is an assignment problem to

optimally allocate the reservations for tee-

times. GRO is a revenue maximization pro-

blem that takes into account the business rules

and constraints defined by regular golf courses.

In this problem, a set of tee-times is

deterministic at each golf course. The maxi-

mum capacity for each tee-time is four, and the

number of reservations (demands) for each tee-

time each day is forecastable. Each demand

type has a deterministic potential with respect

to the revenue of the golf course. Demand is

assumed to come as groups or individuals, the

size of which ranges from 1 to 4. The objective

in this problem is to assign the reservations to

tee-times so to maximize the total revenue.

Here xij is defined as a binary variable where

xij¼ 1 if reservation i is assigned to tee-time j;

0, otherwise. Similarly zj¼ 1 if there is at least

one reservation assigned to tee-time j; 0,

otherwise. The variable zj is defined so that

the model assigns as many reservations to a tee-

time as possible. For example, this strategy

forces three parties of size 1 to reserve one tee-

time instead of three different tee-times. The

variables yi
þ and yi

� are integer variables

indicating the time deviation from the costu-

mer’s requested tee-time Ti. Therefore, the

mathematical model for the GRO can be

formulated as:

½GRO� Maximize
X

i2I

X

j2T

rij xij�
X

j2T

cjzj

�
X

i2I

pþi yþi �
X

i2I

p�i y�i

subject to:
X

j2T

xijp1 8i 2 I ð1Þ

X

i2I

sixijp4 8j 2 T ð2Þ

tj � xijXtis 8i 2 I ; 8j 2 T ð3Þ

tj � xijptie 8i 2 I ; 8j 2 T ð4Þ

zjXxij 8j 2 T ð5Þ

tj � xij þ yþi � y�i ¼ Ti 8i 2 I ; 8j 2 T ð6Þ

xij; zj ¼ 0; 1 8i 2 I ; 8j 2 T ð7Þ

yþi ; y
�
i X0; Integer 8i 2 I ; 8j 2 T ð8Þ

where

I is the set of all reservations

(Parties)

T is the set of all tee-time intervals

in a day

si is the size of party

rij is a revenue associated with

booking i assigned to tee-time j

pi
þ and pi

� are the penalties associated with

the time deviation from the

costumer’s requested tee-time

cj is the cost associated with

tee-time j, if there is any assign-

ment to this tee-time

tj is the time at tee-time j

party i is allowed to be assigned to a tee-

time j in a time window between

tis and tie
Ti is the tee-time requested by a

costumer

xij¼ 1 if reservation i is assigned to tee-

time j; otherwise, the value¼ 0

zj¼ 1 if at least one reservation is

assigned to tee-time j; otherwise,

the value¼ 0

yi
þ is time deviation up to 1 hour after

the customer’s requested tee-time

yi
� is time deviation up to 1 hour

before the customer’s requested

tee-time

In GRO, constraint (1) specifies that each party

can be covered at most once. Constraint (2) refers

to the capacity constraint for each tee-time. The

Golf course revenue management
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constraints (3) and (4) specify that a reservation

for a requested tee-time must occur within a

specified time window. Constraints (5) enforce

the model to have as many reservations as

possible in one tee-time. Note that constraint

(5) forces variable zj to be one if there is an

assignment to tee-time j. Constraint (6) mini-

mizes the time deviation from the costumer’s

requested tee-time Ti by penalizing the devia-

tion in the objective function. In our experi-

ments, we considered 2 hours as the time

window for a reservation, which is up to

1 hour before or 1 hour after the requested

time. For example, if a customer asks for an

0848 hours tee-time, GRO allows the assign-

ment of this request to occur at a tee-time

between 0748 hours to 0948 hours. Meanwhile

constraint (6) guarantees a minimum time

deviation from requested 0848 hours tee-time.

The objective function in GRO maximizes

the total revenue from the assignment of parties

to a tee-time, and minimizes the number of

tee-times that are not at full capacity. More-

over, it minimizes the time deviation from the

costumer’s requested tee-time. The minimiza-

tion is a secondary priority for this objective

function of GRO. Therefore, the value of

parameter cj, pi
þ and pi

� should be very small

compared to rij. This cost can be an arbitrarily

small value associated with variable zj, yi
þ and

yi
�. In our test, the value of cj is empirically set

at $5. Similarly, pi
þ and pi

� are set to $3.

Three rate categories exist for the tee-times,

depending on the time of the day, for example,

early morning tee-times are more expensive.

The prices in each rate category include

discount and regular prices, which are used to

differentiate the demand with different profit

potentials. Therefore, the 2 hours time window

allows the GRO to move the discount category

to the tee-times with a lower rate or a lower

demand.

SOLUTION APPROACH
The GRO model is a linear model. This

model can be directly solved by the B&B

algorithm. However, our empirical results

show that the direct application of B&B to

this problem takes about 10 hours for each

run – due to the large size of the problem –

using a built-in algorithm of the B&B in the

SAS-OR software. To reduce the computa-

tional time, we propose a heuristic to find

an initial feasible solution to the GRO. The

rationale is that the computational efficiency

of the B&B algorithms can be greatly impro-

ved by having a quality initial solution

(Geoffrion and Marsten, 1972).

In the following algorithm, we introduce the

proposed heuristic in the form of a pseudo

code. Its solution is used in the B&B method as

a lower bound called Algorithm 1.

Algorithm 1: Golf Tee-Time Assignment

Initialization

Sort reservations in a non-decreasing

order of arrival for tee-time and a

decreasing order of party size;

Set all xij¼ 0. (xij¼ 1 if booking i is

assigned to tee time j; otherwise the

value¼ 0).

Iterations

Step1 Find a feasible assignment, xij,

with the maximum revenue; if

a feasible assignment is not iden-

tified, go to Step 2; and then go

to Step 3.

Step 2 Set xij¼ 1 and go back to Step 1.

Step 3 Stop when an integer-feasible solu-

tion of the assignment is found.

Step 4 Enter the solution as a low bounder

to an MIP solver to obtain an

optimal solution for the problem.

The resulting solution obtained from Algorithm

1 is used as a lower bound to GRO during the

B&B process. This lower bound reduces the

CPU time from hours to a few minutes.
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COMPUTATIONAL RESULTS
For the computational experiments, we imple-

mented the GRO on SAS Enterprise Guide

4.0 software. We conducted the experiments

using forecasted demand for a typical golf

course with 9 min tee-time intervals, which

allows for approximately 60 different tee-times

between 0730 hours and 1500 hours. The one-

day problem size for this particular golf course

contains 46 500 variables and 1081 constraints.

Our empirical results show that the direct

application of B&B to this problem takes about

10 hours for each run (due to the large problem

size) using a built-in algorithm of B&B in the

SAS-OR software. For the 60-day forecast, we

performed the assignments daily for 60 days

in the advance base. Therefore, the 10-hour

optimization is impractical for the industry.

Later, we used the heuristic explained in

Algorithm 1 to find the initial integer-feasible

solution to the GRO. This initial solution

improved the performance of the algorithm

and cut the CPU time to a few minutes. Table 1

shows that for a particular set of data, the

heuristic solution assigned 69 reservations to

the tee-times and generated a $15 857 revenue.

By using this lower bound in the GRO, Table 2

presents the optimal solution with 88 assign-

ment and $17 267 of revenue.

The demand data of different-sized parties

are established from the simulated historical

data. The demand is forecast for all incremental

time intervals (tee-time intervals) of 9 min,

according to the party size as shown in Table 3.

The first row of Table 3 shows that the demand

forecast for a party of size 1 at 0736 hours is 1.

Similarly, the forecast for a party of size 2 at

0736 hours is 2.

Table 1: Heuristic solution

Total revenue Assigned demand

$15 857 69

Table 2: Optimal solution

Total revenue Assigned demand

$17 267 88

Table 3: Forecasted demands

Index no Party size Forecasted demand Capacity Tee-time

1 1 1 4 7:36

2 2 2 4 7:36

3 1 1 4 7:45

4 2 2 4 7:45

5 1 1 4 7:54

6 2 2 4 7:54

7 1 1 4 8:03

8 2 2 4 8:03

9 1 1 4 8:12

10 2 2 4 8:12

11 1 1 4 8:21

12 2 2 4 8:21

13 1 1 4 8:30

14 2 2 4 8:30

15 2 3 4 8:39

16 2 3 4 8:48

y y y y y

456 4 1 4 13:54
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Table 4 shows the assigned reservations for

the tee-times. The capacity for each tee-time is

a maximum of four reservations. Therefore, for

each tee-time, we are able to take up to four

reservations as is shown in Table 4. For

example, this means that at 0736 hours, three

reservations are assigned – one with ID

B001D1S2 and the other two with reservation

ID B003D1S2.

CONCLUSION
As a research project, we studied a special RM

problem in the golf course industry, as

compared to the RM problems in the airline

and hotel industries. A unique feature of this

golf reservation problem is that the resources

are provided in blocks, for example, a golf tee-

time with a capacity of maximum four. This

resource block can accommodate up to four

reservations (if all the reservations are of size 1).

These unique features distinguish this problem

from those in the hotel and airlines industries.

We propose an mixed integer programming

(MIP) model to solve this problem.

With respect to the methodologies adopted

in this study, the linear models in the GRO can

be implemented directly and solve the problem

with the B&B algorithm. To overcome the

complexity of the algorithm and to solve the

problem more efficiently, we propose a heur-

istic algorithm to find a quality-feasible solu-

tion that can serve as a lower bound in the

B&B algorithm. This heuristic solution sub-

stantially reduces the CPU time for solving the

problem.
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