Minimum impact and immediacy of citations to physics open archives of arXiv.org: *Science Citation Index* based reports

E. R. Prakasan, Anil Sagar, V. L. Kalyane, Anil Kumar and Stevan Harnad

Abstract

The present work has calculated the minimum Open Archive Impact Factors and Open Archive Immediacy Index for the Physics Classes of arXiv.org as calculated for traditional journals in Journal Citation Reports of Institute of Scientific Information using Science Citation Index without the citation by the classes itself. The calculated Impact Factors reveal that High-Energy Physics classes of arXiv.org ('hep-th', 'hep-lat', 'hep-ex', and 'hep-ph') have made more impact on scientific community than any other classes except for the class 'nucl-ex'. The Impact Factors for the year 2003 are: 'hep-th' (0.999), 'nucl-ex' (0.806), 'hep-lat' (0.766), 'hep-ex' (0.73), 'hep-ph' (0.719), 'nucl-th' (0.338), 'quant-ph' (0.334), 'cond-mat' (0.313), 'astro-ph' (0.195), 'math-ph' (0.162), 'physics' (0.061), and 'gr-qc' (0.002). It has been found that if the period for getting the citations to the open archive classes is considered one year as against two years for journal articles the rank of the classes are same. The immediacy of citing the Open Archives is also high for the High-Energy Physics classes. The Immediacy Indexes for the year 2003 are: 'hep-ex' (0.619), 'hep-th' (0.454), 'hep-ph' (0.44), 'hep-lat' (0.263), 'nucl-ex' (0.238), 'quant-ph' (0.202), 'nucl-th' (0.185), 'cond-mat' (0.168), 'astro-ph' (0.094), 'math-ph' (0.075), 'physics' (0.03), and 'gr-qc' (0.002). Definitely, the impact is much more than what is concluded from the calculated factors as the self-citations are not taken into the study. Use of web-tools like 'Citebase', 'Citeseer' etc. may strengthen the above argument.

Keywords: Open Archives; Citation Impact; Immediacy in Citing; Impact Factor; Immediacy Index; Physics Open Archives; arXiv.org; Open Archive Impact Factor; Open Archive Immediacy Index; Minimum Impact

Introduction

'Open access' (OA) means that a reader of a scientific publication can read it over the Internet, download and even further distribute it for non-commercial purposes without any payments or restrictions. The four most important OA channels are electronic-refereed-scientific periodicals, research-area-specific archive (e-print) servers (in this paper called subject-specific repositories), institutional repositories of individual universities, and self-posting on authors'

home pages [Björk, 2004]. R&D policy makers around the world have recommended mandating that researchers provide Open Access (OA) to their research articles by self-archiving them free for all on the Web [Harnad, 2001]. OA is now firmly on the agenda for funding agencies, universities, libraries and publishers. What is needed now is objective, quantitative evidence of the benefits of OA to research authors, their institutions, their funders and to research itself. OA articles have significantly higher citation impact than non-OA articles [Harnad et al., 2004]. Brody [2004] is also supported in a web-based analysis of usage and citation patterns. One universally important factor for all authors is impact made by their research papers, typically measured by the number of times a paper is cited.

Now the Open Archives (OA) era has revolutionized with new ideas about starting a global database for finding the number of citations received to the OA submissions. Citebase [Brody, 2003] and Citeseer are two such webtools, which serve this partially. Studies have begun to show that open access increases impact, although more studies and more substantial investigations are needed to confirm the effect. Hitchcock [2004] has given the progress in these directions in the form of a chronological bibliography with some explanation.

The citation analysis in the fields of high-energy physics and astrophysics, indicates that the number of citations to traditional preprints has gradually declined over the past 10 years, and that citations to electronic preprints have nearly doubled every year since 1992 [Youngen, 1998a, 1998b]. The electronic preprint servers are often the first choice of physicists and astronomers for finding information on current research, breaking scientific discoveries, and keeping up with colleagues (and competitors) at other institutions [Prakasan, 2004a; 2004b]. In addition to these benefits, electronic preprints allow the free, unrestricted access to scientific information without concern for international, institutional, or political barriers.

Recently Laurence [2001] and Brody, et al. [2004] have demonstrated that articles which are available on-line at no charge are cited at substantially higher rates than those which are not. Kurtz [2004] has shown that restrictive access policies can cut article downloads to half the free access rate [Kurtz et al., 2004].

A new measure that becomes possible with online publication is the number of downloads or 'hits', opening a new line of investigation. Brody *et al.* [2004] have been prominent in showing there is a correlation between higher downloads and higher impact, particularly for high impact papers, holding out the promise not just for higher impact resulting from open access but for the ability to predict high impact papers much earlier, not waiting years for those citations to materialise [e.g. Brody and Harnad, 2004]. The effect can be verified with the Correlation Generator.

Citation analysis can be used to find emerging fields, to map the time-course and direction of research progress, and to identify synergies between different disciplines [Brody, 2004]. Citation analysis is being mainly used for measuring the impact made by journal articles. But Rousseau [1997] has attempted to compare the impact made by the 'first and second international conferences on bibliometrics, scientometrics and informetrics' with some top journals in the field. Information scientists are already computing web impact factors [Bjorneborn and Ingwersen, 2001].

Garfield, probably the world's foremost proponent of citation analysis through two measures: impact factor and immediacy index, first mentioned the ideas in 1955. The analysis of citations is among the means by which policy-makers, scientists, and information professionals seek to achieve a greater understanding of the qualitative forces that affect communications in science [Tomer, 1986]. Like nuclear energy, the two measures have become a mixed blessing, expected that it would be used constructively while recognizing that

in the wrong hands it might be abused [Garfield, 1999a]. As long as scientists publish articles containing lists of cited references, it will be possible to calculate impact factors [Garfield, 2001]. Garfield [2004] has also stated that "it has been demonstrated that on line access improves both readership and citation impact". The same impact factor can indicate the 'influence' and 'performance' of e-print archives they make among scientists.

According to Institute of Scientific Information (ISI), the 'Impact Factor' and 'Immediacy Index' of a journal are calculated as follows:

Impact Factor = No. of citations to the previous two years articles in the calculating year

No. of citable articles published in the previous two years

Immediacy Index = $\frac{\text{No. of citations to the articles published in the calculating year}}{\text{No. of citable articles published in the calculating year}}$

Sen et al. [1989] had calculated Impact Factors of non-Science Citation Index (SCI) journals. The calculation is based on three factors:

- 1. the number of citable items published in the journal during years (Y-1) and (Y-2), say y_1 and y_2 respectively;
- 2. the number of times those items are cited in year Y in SCI journals, say x_1 ;
- 3. the number of times those items are cited in year Y in the journal X itself, say x_2 ;

Impact Factor is calculated as:

$$IF_{Y} = \frac{x_{1} + x_{2}}{y_{1} + y_{2}}$$

The present paper attempts to calculate the minimum Impact Factor and Immediacy Index for Open Archives as calculated for journals by Institute of Scientific Information (ISI) without the first factor x_2 . The Science Citation

Index data is used for computing the Impact Factors and Immediacy Index for Open Archives. Then the Open Archive Classes are compared with the journals included in the *Science Citation Index*.

Refining the computation of topic based impact factors can be done through the computation of impact factors for individual research papers [Garfield, 1999b]. Citation and publication patterns differ between disciplines, so the Impact Factor is only meaningful when it is used to compare journals within a discipline [Testa and McVeigh, 2004]. For this reason, the comparisons in this study are done for only the physics sub-class e-print archives of arXiv.org.

Materials & Methods

Open archive initiatives have for the first time started by Los Alamos National Laboratory arXiv.org in 1991 and it was the brainchild of Paul Ginsparg, a physicist. It receives about 10,000 downloads per hour on the main site alone (there are a dozen mirror sites), is an essential resource for research physicists. ArXiv's high level of usage by both authors and readers makes it an excellent database for analysing research trends as well as an important test-case for the OA literature [Brody and Harnad, 2004]. The categorised services of the present arXiv.org have helped scientists to look in to items of his/her interest. The categories are divided into five main categories, viz. Physics, Mathematics, Nonlinear Sciences, Computer Science, and Quantitative Biology. The physics category is again categorised in to 12 sub-classes as follows:

- Astrophysics (astro-ph)
- Condensed Matter (cond-mat)
- General Relativity and Quantum Cosmology (gr-qc)
- High Energy Physics Experiment (hep-ex)
- High Energy Physics Lattice (hep-lat)
- High Energy Physics Phenomenology (hep-ph)
- High Energy Physics Theory (hep-th)
- Mathematical Physics (math-ph)
- Nuclear Experiment (nucl-ex)
- Nuclear Theory (nucl-th)
- Physics (physics)
- Quantum Physics (quant-ph)

The calculation with out the third factor for the sub-classes of physics by treating them as journal titles is experimented here. The formulae for calculating the minimum Open Archive Impact Factor (OAIF) and Open Archive Immediacy Index (OAII) will be as follows:

- OAIF = The ratio of the number of citations received to the previous two years submissions in the calculating year (without self citations) with the number of submissions in the previous two years.
- OAII = The ratio of the number of citations received to the submissions in the calculating year (without self citations) with the number of submissions in the same year.

The citations received in *Science Citation Database* (1996 - 2003) are used as the base data for calculating the above parameters. There is no direct search mechanism for citations received for these categories. Search mechanism and analysis are somewhat different from the direct search in *Web of Sciences* or *Web of Knowledge*. For eg. The search query used for retrieving the citations received to the 'Condensed Matter (cond-mat)' category of physics for the year 1997 in the 'cited author/reference' field is as follows.

A*-COND-MAT97-* OR B*-COND-MAT97-* OR C*-COND-MAT97-* OR D*-COND-MAT97-* OR E*-COND-MAT97-* OR F*-COND-MAT97-* OR G*-COND-MAT97-* OR H*-COND-MAT97-* OR I*-COND-MAT97-* OR J*-COND-MAT97-* OR K*-COND-MAT97-* OR L*-COND-MAT97-* OR M*-COND-MAT97-* OR N*-COND-MAT97-* OR O*-COND-MAT97-* OR P*-COND-MAT97-* OR Q*-COND-MAT97-* OR R*-COND-MAT97-* OR S*-COND-MAT97-* OR T*-COND-MAT97-* OR U*-COND-MAT97-* OR V*-COND-MAT97-* OR V*-COND-MAT97-* OR V*-COND-MAT97-* OR V*-COND-MAT97-* OR COND-MAT97-* OR V*-COND-MAT97-* OR COND-MAT97-* OR V*-COND-MAT97-* OR COND-MAT97-* OR COND-MAT97-*

JCR-2003 was made use of to elicit the latest Impact Factors of some journals.

Results and Discussion

The minimum Open Archive Impact Factor (OAIF) and Open Archive Immediacy Index (OAII) for the physics classes of arXiv.org are computed and documented in Tables 1 for the years 1998-2003. The High-Energy Physics classes of physics have the highest Open Archive Impact Factors, followed by 'nucl-ex', 'nucl-th',

'quant-ph', 'cond-mat', 'astro-ph', 'math-ph', and 'physics' categories. The subfield of physics with hardly any impact was for the category 'gr-qc'.

Table 1: Open Archive Impact Factors (by considering citations to previous two years submissions) for the Physics Classes of arXiv.org as per Science Citation Index

arXiv Class	OAIFana	OAIF ₂₀₀₃ OAIF ₂₀₀₂ O		OAIF2001 OAIF2000		OAIF ₁₀₀₉	
divit oldoo	2003	2002	2001	2000	7 111 1999	1998	
hep-th	0.999	1.068	1.097	1.149	1.053	1.407	
nucl-ex	0.806	0.601	0.319	0.387	0.335	0.452	
hep-lat	0.766	0.743	0.748	0.656	0.614	0.571	
hep-ex	0.730	0.661	0.527	0.679	0.376	0.360	
hep-ph	0.719	0.730	0.728	0.864	0.630	0.471	
nucl-th	0.338	0.396	0.383	0.406	0.326	0.242	
quant-ph	0.334	0.496	0.453	0.430	0.299	0.463	
cond-mat	0.313	0.420	0.345	0.342	0.276	0.253	
astro-ph	0.195	0.223	0.217	0.228	0.215	0.203	
math-ph	0.162	0.203	0.147	0.136	0.147	0.000	
physics	0.061	0.058	0.065	0.050	0.042	0.025	
gr-qc	0.002	0.000	0.002	0.001	0.001	0.000	

Open archives are increasingly and immediately accessed through the Web and instantly get cited than the traditional journal articles. For researchers, the time of accessibility to the open archives has drastically reduced. The phenomena have caused the time for citing the open archives. The study has also taken citations received in the previous one year as against two years for the calculation of Impact Factors for traditional journal articles. Table 2 presented the corresponding Impact Factors. In this case also, high-energy physics classes are leading and the rank of the classes are almost same. The Impact Factors have gone up for almost all classes. The quotient has increased only because the growth in numerator has increased. That means, the number of citations are increasing every year, but the number of submissions are not growing in that pace.

The study suggest that one year may be sufficient for the citing the Open Archives and so the application of Impact Factors should be the one with the calculation based on previous year citations. Also, delayed impact is very less for e-print archives as they get published in formal sources later on.

Table 2: Open Archive Impact Factors (by considering citations to previous year submissions) for the Physics Classes of arXiv.org as per Science Citation Index

arXiv Class	OAIF ₂₀₀₃	OAIF ₂₀₀₂	OAIF ₂₀₀₁	OAIF ₂₀₀₀	OAIF ₁₉₉₉	OAIF ₁₉₉₈	
hep-th	1.507	1.469	1.482	1.546	1.472	2.064	
hep-lat	1.262	1.099	1.183	0.976	0.989	0.964	
nucl-ex	1.214	0.845	0.448	0.534	0.264	0.739	
hep-ph	1.024	1.072 0.951	0.994 0.670	1.195 0.855	0.946 0.501	0.723 0.468	
hep-ex	0.881						
nucl-th	0.437	0.517	0.528	0.569	0.494	0.356	
cond-mat	0.415	0.609	0.481	0.471	0.361	0.363	
quant-ph	0.401	0.585	0.571	0.545	0.362	0.424	
astro-ph	0.278	0.294 0.303		0.287	0.280	0.258	
math-ph	0.195	0.192	0.154	0.172	0.147	0.000	
physics	0.082	0.064	0.073	0.059	0.049	0.027	
gr-qc	0.001	0.000	0.003	0.002	0.002	0.000	

Table 3 is the list of Immediacy Indexes calculated for the Physics classes of arXiv.org for the years 1998-2003. As the Impact Factors of High-Energy Physics classes of physics, they are cited more immediately after their submission than any other classes. 'gr-qc' class has very low immediacy index.

Table 3: Open Archive Immediacy Index for the Physics Classes of arXiv.org as per Science Citation Index

as per beience chanon thatex								
arXiv Class	OAIF ₂₀₀₃	OAIF ₂₀₀₂	OAIF ₂₀₀₁	OAIF ₂₀₀₀	OAIF ₁₉₉₉	OAIF ₁₉₉₈		
hep-ex	0.619	0.312	0.301	0.216	0.106	0.061		
hep-th	0.454	0.625	0.593	0.657	0.590	0.696		
hep-ph	0.440	0.368	0.443	0.470	0.263	0.171		
hep-lat	0.263	0.297	0.381	0.433	0.175	0.165		
nucl-ex	0.238 0.153 0.135 0.098		0.178 0.055					
quant-ph	0.202	0.268	0.209	0.192	0.111	0.237		
nucl-th	0.185	0.260	0.270	0.234	0.096	0.068		
cond-mat	0.168	0.155	0.153	0.147	0.106	0.054		
astro-ph	0.094	0.132	0.100	0.118	0.082	0.062		
math-ph	0.075	0.158	0.114	0.033	0.000	0.000		
physics	0.030	0.049	0.032	0.020	0.019	0.002		
gr-qc	0.002	0.001	0.000	0.000	0.000	0.000		

If ISI had treated the arXiv physics classes as individual journals the position of the classes in JCR-2003 would be as in Figures 2a-2f. The ranks will certainly will go up if the study could have taken the self-citations to the classes.

☑ Microsoft Excel - Journal Citation Reports - 2003								_	
Elle Edit View Insert Format Iools Data Window Help 2↓ Subtotals Text to Columns Acrobat								_ B ×	
	😅 🖫	- 		▼ 1	• 10 • B I <u>U</u> ≣ ≣				• <u>A</u> •
	1254 ▼ =								
	Α	В	С	D	Е	F	G	Н	I
1	Rank	Journal Abbreviation	ISSN	2003 Total Cites	Factor		articles	Cited Half-life	
197	196	NONLINEARITY	0951-7715		1.054	0.238	126	6.7	
198		NEW ASTRON REV	1387-6473		1.049	0.023	177	3	
199		MODEL SIMUL MATER SC	0965-0393		1.046	0.203	59	5.7	
200	199	NUCL INSTRUM METH B	0168-583X	11071	1.041	0.153	1321	6.4	
201	200	FEW-BODY SYST	0177-7963		1.034	0.632	19	6.1	
202	201	ANN GEOPHYS-GERMANY	0992-7689		1.031			6.2	
203	202	J PHYS CHEM SOLIDS	0022-3697	6730	1.026	0.223	364	99.9	
204	203	INTERFACE SCI	0927-7056		1.014	0.359	39	4.3	
205		SOLID STATE ELECTRON	0038-1101	3869	1.008	0.251	366	7.3	
206	205	IEEE T MAGN	0018-9464		1.006	0.129	860	6.8	
207	206	ANN PHYS-PARIS	0003-4169		1	0	5	99.9	
208		APPL SPECTROSC REV	0570-4928	294	7	0.467	15	99.9	
209	208	HEP-TH	- 4454 4464	220	0.999	0.454	3276		
210	209	J OPTOELECTRON ADV M	1454-4164		0.996	0.088	194	2.3	
211 212	210 211	NUCL PHYS B-PROC SUP PHYS STATUS SOLIDI B	0920-5632 0370-1972		0.99 0.987	0.148 0.154	947 521	3.2 6.7	
212		METROLOGIA	0026-1394		0.983	0.154	115	6.7	
214		CRYST ENG	1463-0184		0.963	0.591	9	4	
215		ASTRON LETT+	1063-7737	685	0.968	0.111	105	4.5	
216		PHYS WORLD	0953-8585		0.956	0.230	43	4.5	
217	216	ASTRON REP+	1063-7729		0.95	0.349	108	99.9	
218		PHYS STATUS SOLIDI A	0031-8965		0.95	0.263	536	8.2	
219		RADIAT MEAS	1350-4487		0.33			4.5	-
	I(()) JCRanks								
Rea	Ready								

Figure 2a: Rank of 'hep-th' class among the physics related journals in JCR-2003

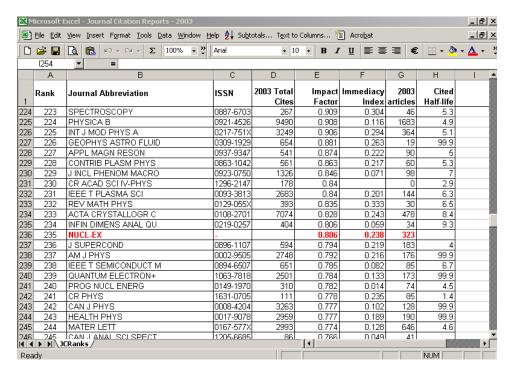


Figure 2b: Rank of 'nucl-ex' class among the physics related journals in JCR-2003

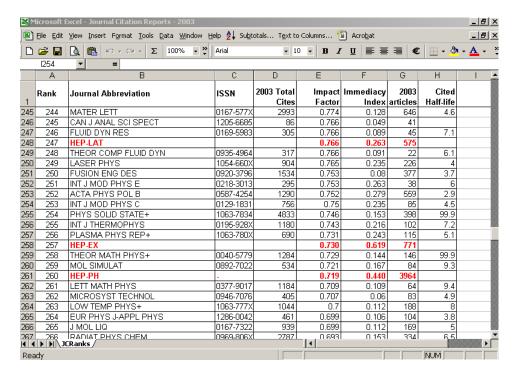


Figure 2c: Ranks of 'hep-lat', 'hep-ex', and 'hep-ph' classes among the physics related journals in *JCR-2003*

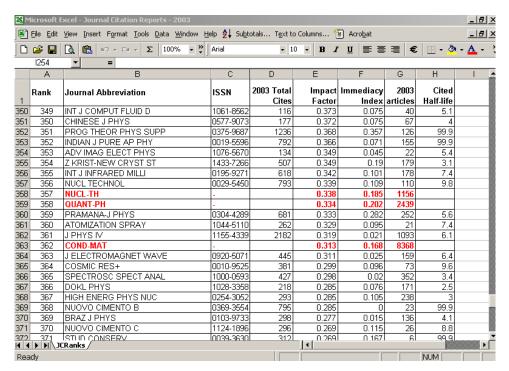


Figure 2d: Ranks of 'nucl-th', 'quant-ph', and 'cond-mat' classes among the physics related journals in *JCR-2003*

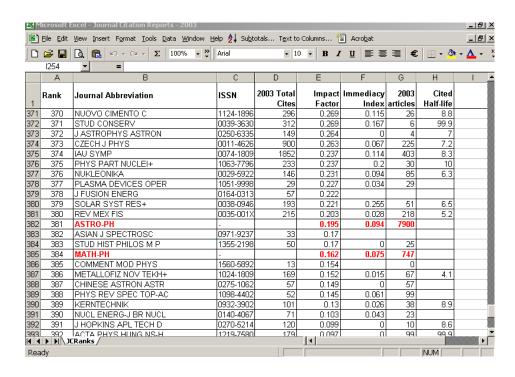


Figure 2e: Ranks of 'astro-ph', and 'math-ph' classes among the physics related journals in *JCR-2003*

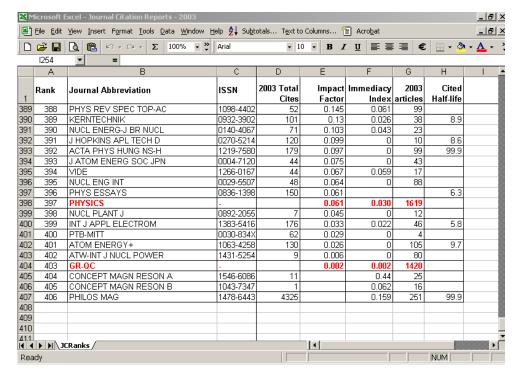


Figure 2f: Ranks of 'physics', and 'gr-qc' classes among the physics related journals in *JCR-2003*

The study has given a typical example of the comparison of numerators (number of citations to the previous two years submissions in the calculating year) and denominators (number of submissions in the previous years of the calculating year) for the calculation of Impact Factors of 2000 to 2203 for the arXiv class 'hep-th' and the traditional journal 'Plant Ecology', both have almost same Impact Factors (0.999 and 1.000 respectively) through Figure 3. The close observation to the figure reveals that the numerators i.e. the number of citations have the fluctuations in a horizontal way but the denominators i.e. the number of articles are going almost parallel in all calculated years for the journal 'Plant Ecology'. But for 'hep-th', the number of citations increased with time, and also with the number of submissions to the category.

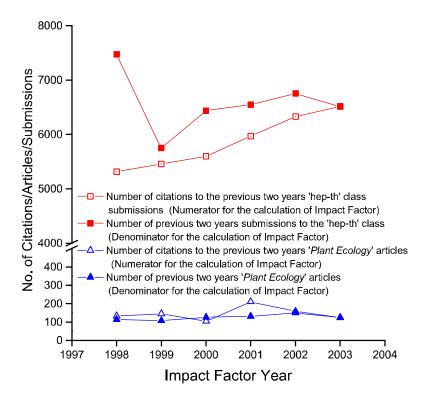


Figure 3: Comparison of numerators and denominators for the calculation of Impact Factors of arXiv 'hep-th' class and the 'Plant Ecology' journal for the period 1998-2003

Conclusion

The High-Energy Physics open archives are making much impact among scientists. The immediacy factor is higher in High-Energy Physics open archives as compared to other classes. If the study incorporates the citations received for these e-print archives in the e-print archives itself, definitely the categories may compete with the science journals with impact factors of more than one. Again the impact made by the categories studied may go up if the study is also based on the new autonomous Open Archive web tools like 'Citebase', 'Citeseer', etc.

Since the e-print archives are instant information feeding mechanism with an ephemeral effect, the OAIF can be a divergent idea rather than OAII. This connotation can be complemented if half-life of e-print archives has been calculated.

Although many authors believe that their work has a greater research impact if it is freely available, studies to demonstrate that impact are few [Antelman, 2004].

Once the impact and immediacy in citations of subject open archives are compared, scientists will submit their research documents in the open archive categories with high impact factors and immediacy index. In that case, the continued emphasis on 'Impact Factors' will not be misguided the readers as stated by Brunstein [2000]. Wherever the readers can make a comparison of sources they want to publish considering impact factors as the criteria, they may slant towards the high impact side.

References

1. Antelman, Kristin (2004) Do Open-Access Articles Have a Greater Research Impact?, *College & Research Libraries*, September 2004: 372-382.

- 2. Björk, B.C. (2004) Open access to scientific publications an analysis of the barriers to change, *Information Research*, 9(2) paper 170, http://informationr.net/ir/9-2/paper170.html.
- 3. Bjorneborn, L. and Ingwersen, P. (2001) Perspectives of webometrics, *Scientometrics*, 50(1): 65-82.
- 4. Brody, T. (2003) Citebase Search: Autonomous Citation Database for e-Print Archives, SINN 03 conference on Worldwide Coherent Workforce, Satisfied Users New Services For Scientific Information, Oldenburg, Germany, September 2003, http://physnet.physik.uni-oldenburg.de/projects/SINN/sinn03/proceedings/brody.
- 5. Brody, T. (2004) Citation Analysis in the Open Access World, http://eprints.ecs.soton.ac.uk/10000/01/tim_oa.pdf, To appear in: Interactive Media International http://www.epsltd.com/clients/imi.asp.
- 6. Brody, T. and Harnad, S. (2004, in prep.) Earlier Web Usage Statistics as Predictors of Later Citation Impact, http://www.ecs.soton.ac.uk/~harnad/Temp/timcorr.doc.
- 7. Brody, T. and Harnad, S. (2004) Using Web Statistics as a Predictor of Citation Impact Author eprint (in prep.) http://www.ecs.soton.ac.uk/~harnad/Temp/timcorr.doc.
- 8. Brody, T.; Stamerjohanns, H.; Harnad, S.; Gingras, Y.; Vallieres, F. and Oppenheim, C. (2004) The effect of Open Access on Citation Impact, *National Policies on Open Access (OA) Provision for University Research Output: an International meeting*. Southampton University, Southampton UK. 19 February 2004. http://opcit.eprints.org/feb19oa/brody-impact.pdf.
- 9. Brunstein, J. (2000) End of Impact Factors, *Nature*, 403(6769): 478-478.
- 10. Correlation Generator http://citebase.eprints.org/analysis/correlation.php
 Generates a graph (or table) of the correlation between citation impact and usage impact from the Citebase database.
- 11. Garfield, E. (1999a) Journal Impact Factor A Brief Review, *Canadian Medical Association Journal*, 161(8): 979-980.
- 12. Garfield, E. (1999b) Refining the Computation of Topic Based Impact Factors: Some Suggestions, *Occupational Medicine (Oxford)*, 49(8), 571, http://www.garfield.library.upenn.edu/papers/occupmed49(8)p571y1999.html.
- 13. Garfield, E. (2001) Impact Factors, and Why They Wont Go Away, *Nature*, 411(6837): 522-522.
- 14. Garfield, E. (2004) post to American Scientist Open Access Forum listserv, 18 January 2004. http://listserver.sigmaxi.org/sc/wa.exe?A2=ind04&L=american-scientistopen-access-forum&F=l&S=&P=9766.
- 15. Harnad, S. (2001) Research access, impact and assessment, *Times Higher Education Supplement*, 1487: 16.
- 16. Harnad, S.; Brody, T.; Vallieres, F.; Carr, L.; Hitchcock, S.; Gingras, Y; Oppenheim, C.; Stamerjohanns, H. and Hilf, E. (2004) The Access/Impact Problem and the Green and Gold Roads to Open Access, *Serials Review*, 30. http://www.ecs.soton.ac.uk/~harnad/Temp/impact.html.

- 17. Hitchcock, S. (2004) The effect of open access and downloads ('hits') on citation impact: a bibliography of studies, http://opcit.eprints.org/oacitation-biblio.html.
- 18. Kurtz, M.J. (2004) Restrictive access policies cut readership of electronic research journal articles by a factor of two, *National Policies on Open Access (OA) Provision for University Research Output: an International meeting.* Southampton University, Southampton UK. 19 February 2004. http://opcit.eprints.org/feb190a/kurtz.pdf.
- Kurtz, M. J.; Eichhorn, G.; Accomazzi, A.; Grant, C. S.; Demleitner, M. and Murray, S. S. (2004) Worldwide Use and Impact of the Nasa Astrophysics Data System Digital Library, Author eprint, January 28, 2004, http://cfa-www.harvard.edu/~kurtz/jasist1-abstract.html, Journal of the American Society for Information Science and Technology, accepted for publication.
- 20. Lawrence, S. (2001) Online or Invisible?, *Nature*, 411: 521.
- 21. Prakasan, E.R.; Anil Sagar; Anil Kumar; Lalit Mohan; Gaderao, C. R.; Surwase, Ganesh; Kadam, Sandeep; Kalyane, V. L. and Vijai Kumar (2004a) Nuclear Theory and Nuclear Experiment E-print Archives: Science Citation Index based Analysis, Proc. of the 22nd Annual Convention & Conference on Digital Information Exchange: Pathways to Build Global Information Society (SIS 2004), IIT Madras, Chennai, 22-23 January 2004, pp. 172-183. http://eprints.rclis.org/archive/00001244/
- 22. Prakasan, E. R. and Kalyane, V. L. (2004) <u>Citation analysis of LANL High-Energy Physics E-Prints through Science Citation Index (1991-2002)</u> Author eprint, E-LIS, 26 August 2004.
- 23. Rousseau, Ronald (1997) The proceedings of the first and second international conferences on bibliometrics, scientometrics and informetrics: A data analysis, *Proceedings of the Sixth Conference of the International Society for Scientometrics and Informetrics*, Jerusalem, Israel, 1997.
- 24. Sen, B.K.; Karanjai, A.; and Munshi, U.M. (1989) A method for determining the impact factor of a non-SCI journal, *Journal of Documentation*, 45(2): 139-141.
- 25. Testa, J. and McVeigh, M. E. (2004) The Impact of Open Access Journals: A Citation Study from Thomson ISI, Author eprint, 14 April 2004, http://www.isinet.com/media/presentrep/acropdf/impact-oa-journals.pdf.
- 26. Tomer, C. (1986) A statistical assessment of two measures of citation: the impact factor and the immediacy index, *Information Processing and Management*, 22 (3): 251-258.
- 27. Youngen, G.K. (1998a). Citation Patterns to Electronic Preprints in the Astronomy and Astrophysics Literature. *Library and Information Services in Astronomy*, 153.
- 28. Youngen, G.K. (1998b) Citation Patterns of the Physics Preprint Literature with Special Emphasis on the Preprints Available Electronically, Author eprint, UIUC Physics and Astronomy library, c. 5 November 1998, presented at ACRL/STS on 6/29/97, http://gateway.library.uiuc.edu/phx/preprint.html