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Abstract

To distinguish between purely fractionally integratgd/) processes, we propose in this article
a new and appropriate fractional Dickey-Fulléf { DF) test. This new test extends the familiar
Dickey-Fuller (1979) type tests for unit root/(1) against/(0)) by embedding the casé= 0 and
d = 1 in continuum of memory properties. The new F-DF test is easynplement and is based
on two time domains properties @f/(d) processes. First, if a time series follo#d (d) process,
than the(—1+ d)th differenced series follows af(1) process. Second, the pureiyf (d) processes
are non explosive forl € R. These two properties will allow us to draw a bridge betwedesa t
process/ (0) and I(1) by testing the general hypotheses t&st: d > d, againstH, : d < dy, with
de]-1,3[andd, € [0, 1].
Keywords: First autoregression, fractional integration, explegwocesses, unit root, fractional unit

root.

INTRODUCTION

Recently, extensively worked area in time series analyassdoncerned to the design of appro-

priate test statistics to distinguish betwegi), /(d) d € ]0,1[ and /(1) behavior. Some recent
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contributions on this topic include Dolado, Gonzalo and btay (2002), Nilsen and Johansen
(2010), Lobato and Velasc©2007). The fractional unit root distributions was first considetzy
Sowell (1990), who analyzed the behavior of the usual Dickey-Fuller typgression, when the

errors are fractional. Specifically, Sow¢ll990) considered the regression
yt:yt—l+€t7 fort: 1727"' , 1,

wherey, = 0 and ¢, is a stationary fractionally integrated process that/ig),) process with
—0.5 < § < 0.5. He showed that the ordinary least squares (OLS) estimatap {coefficient on
Yi—1, hereafterqASn) has a nonzero density over the whole real line for the speaie ofs = 0, i.e.,
a unit root. For other values of $n has different normalized constant depending on the madmitu
of 6, i.e. nminlL1+23(5 1) = 0,(1) and his asymptotic is function of two distributions which
both depend on fractional Brownian motion. Furthermore, standard statistic of$n (hereafter

t- ) converges to the well defined density whén= 0, for other values ofy, the asymptotic

7)
distribution of ¢; ~diverges to infinity. Sowell(1990) concluded that if his distributional theory
is used to test the presence of unit roots in fractional ARMAdels the implementation would
requires tabulations of the percentiles of fractional Bn@m motion conditionally or, for the
statistic n™®1:1429 (¢, — 1), and thus might suffer from misspecification. He concludadp,he
statistict; are not useful.

Diebold and Rudebusfi991) examined the properties of Dickey-Fuller test under faawily
integrated alternatives and showed by Monte Carlo simariatthat this test has quite low power
and can lead to the incorrect conclusion that a time serigghanit root also when this is not true.
They pointed out that a more appropriate testing procedureeeded to draw conclusions about
the presence of the unit root. The lack of power of Dickeyéfulest to distinguish between the
I(1) null hypothesis and the fractional integrated of orddir'/(d)) alternative, has motivated the

development of new testing procedures that take this typdt@fative explicitly into consideration.

One approach for testing against fractional alternativesrigs to the Lagrange-multiplier (LM)



framework studied in Robinsofl1991,1994), Agiakloglou and Newbold1994), Tanaka(1999),
Breitung and Hassle€r2002) and Nielsen2004). The aim of this approach is adapting time domain
procedures and embedding the models of interest in gerfef&d) framework, instead of the
autoregressive alternatives typically considered in ifeedture. Robinsori1994) has developed a
test for unit roots, that unlike the familiar Dickey-Fullgst, was not embedded in AR structures
of form:

(1—o¢L)zy =u, t=1,2,..., (1.1)

where L is the lag operatofi.e. Lz, = z;, 1) andu, is stationaryl(0) process, and with, the unit

root null corresponds to:

but based on fractional alternatives of form:
Ay =y, t=1,2, ..., (1.2)

whered can be any real numbef\? = (1 — L)¢ is the fractional difference operator defined by its

Maclaurin series (by its binomial expansiondifis an integer):

d __ [ T'(—d+y)
(1= L) =Y orary

where

f0+°° s*~te=2ds, if 2 >0,

I'(z) =
00 if =0,

if 2 <0, '(z) is defined in terms of the above expressions and the recerfenqulazI" (z) =

I'(z 4+ 1) andu, is stationary/(0) processand where the unit root null corresponds to:
HO d=1.
Robinson(1994) has also proposed a Lagrange Multiplier (LM) test where thié iypothesis is:

H(]Id:d(]



in model given by(1.2) for any given real value.

The major consequence of this change, in the set of alteenatbdels considered, is that the
the asymptotic distributions are standard. Nonetheld®s atlvantage of having a standard limit
distribution, Tanakd1999), showed with simulation experiments that the LM tests haeeserious
size distortion (see Tanaked99 fore more detail). Another critic addressed for the LM tasts
that, by working under the null hypothesis, it does yield aingct information about the correct
long-memory parametet, when the null is rejected (Dolado, Gonzalo and Mayarsl2, Bertrand
candelon, Gil Alana2003). In order to overcome the drawback, researches are dirécteards a
global procedure test, which embedded the AR structure fdri) and the fractional forn{1.2)
in the same model. The aim of this approach is to extends thHekmewn Dickey and Fuller
approach, originally designed for thié, : d = 1 againstH, : d = 0, to the more general setup
Hy : d = dy againstHy : d < dy, with 0 < dy < 1.

The fractional Dickey-Fuller (FD-F) unit root test was figinsidered by Dolado, Gonzalo and
Mayoral (2002), (hereafter DGM). The (DGM) test for the null hypothesis- d, against a simple

alternatived = d;, with d; < dy, is based on the OLS estimation of the following model
AYg, = pAY x| 4wy, (1.3)
whereu, is 1(0) stationary process. Whefy = 1, the model(1.3) becomes
Axy = pAdlxt_l + uy,

whered; < 1. Whend; is not taken to be known a priory, a pre-estimation of it isdeskto
implement the test. Lobato and Velas¢2006) show that the DGM test is inefficient and the
regression mode(1.3) is misspecified because it does not include the data gemgrptocess
defined by(1.1) and (1.2) like a particular case. The regression equation, propoged®M, is
used only to suggest a test statistic, and we can not coesideas a generalization of familiar

Dickey-Fuller test for unit root.



To design the appropriate test statistics to distinguistwéen /(d) process, we propose in
this article more flexible and more appropriate regressi@deh for fractional unit root test. By
using the non explosive feature BRFIMA(O,d,0)processes, our testing procedure generalize the
familiar unit root test in the most adequate way. Indeediethe a significant difference between
the autoregressive (AR) models of foifh1) and the fractional alternatives of for(.2). As noted
by Gil-Alana and Robinsori1997) and Gil-Alana(2004), "fractional departures fronil.1) and
(1.2) have very different long run implication. Ifi.1) for |¢| > 1, z; is explosive, for|¢p| < 1
x; IS covariance stationary, and fgr = 1 it is nonstationary but not explosive. Ifi.2), x; is
nonstationary but non explosive for all> 0.5. As d decreases beyori5 and throughl, z; can
be viewed as becoming "more nonstationary” (in the sengeeXample, that the variance of partial
sums increases in magnitude) but it does so gradually, eitilcase of(1.1) around¢ = 1."

The non explosive feature of RFIM A(0,d, 0), often quoted in the literature, has neither been
studied theoretically nor been used in practice, for thelaée statistical inference on the fractional
unit root test. Intuitively, the non explosive feature oé throcessARFIM A(0, d,0) for all d > 0.5
means that if a first order autoregression model is fitted tanapse of sizen generated according
(1.2) then the OLS estimator of the first order autoregressionnpater will not exceed. Figure

1 below illustrates this fact in an obvious way.
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This figure was made as follows: For a fixed sample_,,, - ,ug, - ,u,} generated from



i.1.d.N(0, 1), with n = 1000, samples ofARF' 1M A(0, d,0) processes were generated forarying
betweer).5 and2, with step of0.01. For each sampléz,,t = 1,--- ,n} a first order autoregression
model

Ty = anxt—l +& (1.5)

is fitted and estimate af (hereafterggn) are calculated. By plotting the paramet?e{ against the
fractional differencing parametef, one obtains the figuré. This figure indicates that if the value
of the parametet is lower thanl, then the value of the paramet%,[ is lower thanl. While, when
the parametetl is greater or equal to one, the value of the param@;econverges tol. Based

on the relation betweeaﬁn andd highlighted by figurel, the non explosive feature of the process
ARFIMA(0,d,0) will allow us to build a unified theoretical framework for tluit root test and
fractional unit root test. More precisely, to distinguisetlweenF'I(d), d € |—3, [ processes, we
present a new and appropriate Fractional Dickey-Fulldritesme domain that extends the familiar
Dickey-Fuller(1979) type tests for unit root/((1) against/(0)), by embedding thé = 0 andd = 1

in continuum of memory properties. The proposed statilstest is based on the following idea:
to test if a given procesg, is integrated of orded (y, ~~ I(d)), it is enough to test if the process
r; = (1 — L)1y, is integrated of ordeit. This simple idea associated with the non explosive
feature of theARFIM A(0, d,0) processes will allow us to draw up a bridge between the psoces
I(0) and I(1), by using a new fractional autoregression model (see se&)p which includes
process(1.1) and (1.2) like particular case and which makes it possible to test tilviing
general testing problem

Hy:d>dy againstH; : d < d, (1.6)

with d € | -3, 2[ andd, € [0, 1].
The rest of the paper is organized as follows. The next secmtains an introduction to some
standard results and concepts of both fractional intedra¢gies and the fractional spa¥0, 1],

that we need for this study. In section 3, to explain the itm1abetween$n andd, highlighted by
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figure 1, we will study the behavior of the asymptotic distributioh¢, whend € [1,00[. In the
same section, we discuss the consequences of the nonerpless ofARFIM A(0,d,0) process

to deal with the unit root test and fractional unit root tdatsection 4, by using a new auxiliary
fractional autoregression model, we provide the main tesoh asymptotic null and alternative
distributions for the testing probleifi.6). In section 5, through Monte-Carlo study, we show that
the proposed test fare very well both in terms of power and gsihen we use thé—statistic. In

section 6, we give some concluding remarks.

|. PRELIMINARIES

In this section, the expressioR [0, 1] denotes the space of functions ¢h 1] in which all
elements are right continuous and have left-hand limitdpemd with the Skorohod topology (see
Billingsley, 1968, p.111). Weak convergence of probability measures/of0, 1] and convergence
in probability are denoted by= and -, respectively.

The main technical tool, that we need for this study is in Sbw&990) and Liu (1998). To
begin with, we briefly outline some results, which will be dsextensively, concerning the limit
behavior of sample moments of long memory processesylet(1 — L) u,, with § € ]—0.5,0.5]
andu;, t = 0,£1,---, arei.i.d. random variables with¥' (u;) = 0 and E |u;|* < oo for a >
max {4, —86/ (1 + 20)}. Since

2
n O,(n*logn), for §=0.5
t=1 O,(n'*2), for —05<§ <05

from the invariance principle of Davydou {70) it follows, asn — oo

nr] rB(1), if § =

: 1
1 L
P CRTIEED e | -
t=1 Bso(r), if —0.5<d<0.5,
where
202 . 1
= logn, if 6 =1
K (6,n) = ™ 3 03
o2T(1-268 .
(1+25)F(§+5)1")(1_5), |f (S 7& %7



andB;,(r) is the typel fractional Brownian motion orD [0, 1] defined as follows,
5 o [(t—s)‘s—(—s)ﬂ dB(s) + [y (t—s)’ dB(s) if 6€]-3.1[,

A(S
Bio(r) = ()
rB(1) if 6=0.5
whereB(s) is standard Brownian motion and

A(6) = (ﬁ+/ooo [(1+8)5—35rd3>

(1 — L) ™, with m > 1 and§ € |-1, 1] by combining the

1/2

For the time serieg; =
continuous mapping theorem, the results from SoWEIb0) and Theorem 2.2 of Li|1998) we

have the following useful results

1
0.y Yl = Bam(r), 2.5)
1 [nr} r ™m 9
. B drodrs -+ - dry,, 9
£(0, n)n1 /240 Zy :>/o / / so(r)dradry - dr (2.6)
1 [nr] - )
K2(8, n)n2(m+9) D_v = / [Bom(s)]" ds, 2.7)
) =1 0
wherex?(d,n) is defined by(2.3) and
Bio(r) if m=1
(2.8)

B(;,m(’r’) =
for ormi1 T forz B570(7’1)d7"1d7“2d7"3 coodrpy ifm > 2.

II. CONSEQUENCES OF NONEXPLOSIVENESS OF THERFIM A(0,d,0) PROCESSES

Consider a purely fractionally integrated procdgs} defined by

(1—L)" "y, =u, fort=1,2,---n, (3.1)

with y, = 0, and wherem > 0 andJd € }—%, %} L is a lag operator and, is defined as in the

section 2. We denote: + 6 = d.
Theorem 1. Let {y,} satisfy(3.1). If the first autoregression modél .4) is fitted to a sample of

sizen then
-2
(3.2)

fol [B%,O(T)] i dr |

(logn) (ggn — 1) =



whend = 0.5 and m = 0.

- 3 +9] tats
nl+2s . )
(5r=1)= Jy Bio(r)dr &

when—-0.5<d <0andm = 1.

~ 5{B*(1) -1}
n — 2 - V7 7 .
(60-1) = B (3.4)
if 6=0andm = 1.
< %Bgm (1)
on—1)= : ; (3.5)
! ( ) fOl Bg,m (T) dT)

if (m=1and0 <0 <0.5)o0r (—0.5<0<0.5andm > 2). Here B;,,(r) is defined by2.8).

Proof. See Appendix

Theorem1 indicates that the least squares estimate is super camsiste ¢ > 1. The rate
of convergence depends on the order of integration. It id kedwn that if 2, is 7(0), the OLS
estimate converges at the rate?, and if 7, is I(1) i.e.§ = 0 andm = 1, convergence is at the rate
n. This may suggest that the rate of convergence increasbhshdatorder of integration. However,
this is not the case. If a seriesigm +¢) for m > 1 and0 < ¢§ < 1/2, ¢, converges at the rate
the same for altn andd. If a series isl/(1+4) for —1/2 < § < 0, ¢, converges at the rate+29,
So for —1/2 < § < —1/4 the rate of convergence is slower thah?. The figure?2 illustrates this
fact clearly. Furtheremore, when = 1, the rate at whichy™»[1+2d] (gEn - 1) converges to its
limiting distribution is slow for nonpositive values 6f This implies thatgn converges very slowly
towards1 for d < 1. Moreover, ford < 1 the limiting distribution of (@ — 1) has nonpositive
support and then

1imP<$n—1<0>:1.

n—oo
Whend > 1, n@inll1+24] (gb — 1) converges to its limiting distribution at a faster rate thhay
do in standard first autoregressions with stationary vegbrhis implies that;ASn has high speed

convergence towards for d > 1. Moreover, ford > 1 the limiting distribution of @n — 1) has
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nonnegative support and then

1imp($n—1<0>=0.

n—o0
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The relation between the first autoregressive paraniebtemd the fractional parametér high-
lighted by the results of Theoreimand illustrated by the figurg, in the context ofARF' 1M A(0, d, 0)
process, suggests that when we deal with unit root test, we fia= 1 or ¢ < 1, according to

wetherd > 1 or d < 1. In other words, the testing problem

Hy:¢=1againstH; : ¢ < 1 (3.6)
is equivalent to the testing problem

Hy:d>1againstH; :d <1 (3.7)

It is obvious that the classical testing hypothesis of thekBy-Fuller test ig(3.6). If one would
test the hypothes€g$.6), then in the familiar Dickey-Fuller test we have

Hy:¢=1impliesd =1,

H,:¢ <1 impliesd =0,
whereas in the context ARFIM A(0,d,0) processes we have

Hy:¢=1impliesd > 1,

Hy:¢ < 1impliesd < 1.
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Now, we can expose our simple idea associated with the ndosxe feature of thel RF' 1M A(0, d, 0)
process which will allow us to draw up a bridge between thecgse/(0) and I(1), by using a
new fractional autoregression model. The new fractionatl@hdncludes procestl.1) and (1.2)
like a particular case. For the testing probléi6), we propose to test the null hypothesis by
means of the-statistic of the coefficient ofl — L)~!*9y, , in the ordinary least squares (OLS)
autoregression

A_1+d0yt — ¢A_1+d0yt—1 + €, t = 17 27 ceen, (38)

or equivalently

Adoyt = PA_HdOyt—l +ent= 17 27 2 (39)

wherep = ¢ — 1 ande¢; the residuals. Ifd = dy ande; = u; (recall thatd is the true value of
integration parameter andg} is the value specified under the null), in the fractional eegoessive
model (3.8) and (3.9), according to wether

dy=0and¢p=11ie.(p=0)

do€1]0,1] andg =1 i.e. (p =0)
dy=1and¢p=11ie.(p=0)
we have respectively
Yy = uy ..y, ~ 1(0)
(1 — L)%y, = uy, dy €10,1] i.e. yp ~ FI(dyp)

(1= L)y, = ug €.y, ~ I(1)

In order to grasp the intuition behind the fractional auipessive model3.9), suppose that
ys ~ FI(dy) and let us consider the relation betweaffy, and A='*%qy, ;. Note that, it is easy
to check, thatA%y, = (1 — L) [A~*y,] and A~'Toy, ~ [(1). Putting A='*%y, = 1, we can
rewrite (3.9) as follows

(I1—L)zy=pry1+e,t=1,2-- n. (3.10)
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The regression modés.10) is the simple Dickey-Fuller framework to deal with the tagtproblem
(3.6). Furthermore, suppose that~~ FI(d) thenz; ~~ FI(1+d—dy) and we have the following
(because of nonexplosiveness oRFIM A(0,d,0) processes)
p=1ie.p=0,
p<lie p<O0,
according to wether
l+d—dy>1ie.d>d,
1+d—dy<1lie.d<d.
In other words, by using the regression mo¢&b), the testing probleni1.6) is equivalent to
the testing probleng3.6).
The simple fractional autoregression mog@eb) can be easily implemented for practical settings
and is flexible enough to account for broad family of long meyrepecification of the fractional

parameterl. The OLS estimator op (hereafterp,, and itst-ratio (hereaftett;,) for the regression

model (3.9), are given by the usual squares expressions

s [y [Ay,
! Sy [A ey, ]t
T [ty (At )

Pn n 9 1/2 ’
{2500, [arvoy, 7}

where the variance of the residualg, is given by

&2 Sy [Adoy, — pATIdoy, ]

n

We call the testing procedure based both on the regressiatelni®9) and the hypothesis test

(1.6) the "Fractional Dickey and Fuller’{ — DF) test.

[1l. ASYMPTOTIC NULL AND ALTERNATIVE DISTRIBUTION AND CONSISTENCY OF F-DF TEST
A. Asymptotic null and alternative distribution

The asymptotic distribution of the statistics (appropriately standardized) arg],, under the

hypothesist, : d > dy and H; : d < dy, is given in the following theorems.
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Theorem 2. Lety, satisfy(3.1). For § = d —d, € | -3, 1], if the regression modéB.9) is fitted

to a sample of size then, asn — oo

[ +9] Fity

n 205, = 2T if 05 <5 <0, (4.1)
fo Bg(r)dr
Azﬁé{B%U_l} if §=0 (4.2)
Oy Br)dr o '
s{B3(1
npn -%Lﬂll,ﬁ05zé>a (4.3)
fo Bg(r)dr

where Bs(r) and B(r) are respectively the typé fractional Brownian Motion and the standard
Brownian Motion.

Theoren? indicates that the rate of convergence depends on theahfferbetween the unknown
true value of the parametdrand the value specified under the ndyli.e. 6 = d — dy. The rate of
convergence increases withfor —% < ¢ < 0 until the raten, and converges at the same ratéor
all 6 > 0 (See figure 2 above). The asymptotic distributiong,ptdepends also on the= d — d,.
If 9 =0 i.e.(d=dp), then the asymptotic distribution @f, is reduced to that deduced by Dickey
and Fuller(1979) for the particular casél, : d = 1. In the case # 0, then the distribution op,,
are reduced to those deduced by Sow&lo0) for particular cased, : d = 1 andd — 1 = § with
§ #0.

Theorem 3. Let y, satisfy(3.1). For § = d —d, € | -1, 1], if the regression modeB.9) is fitted

to a sample of size then, asn — oo

t5, 4 —oo, if —0.5<8<0, (4.5)
- H{B2(1)-1} — 4.6
ts, = 7“01 STRYSLEL if =0, (4.6)
ts, 2 400, if 0.5>8>0, (4.7)

where B(r) is the standard Brownian Motion.
Theorem3 indicates that the asymptotic distribution#f depends also ofi=d —d,. If 6 =0

the asymptotic distribution of;, is reduced to that deduced by Dickey and Full&979) for the
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particular cased, : d = 1. In the case) > 0 and¢ < 0 the distribution oft;, diverge respectively
to (+o00) and (—oo). Similar results, for the particular cagé, : d = 1 with d — 1 = § # 0 are
derived by Sowel(1990).

Corollary. Let {y;} be generated by3.1). Foré =d — dy € | -1, 1[. If regression mode(3.9)

is fitted to a sample of size then, asn — oo, we have for the-statistic

3[B3(1)]

W (15,) = Core s 1 020
and
TR
whereCs = | misrie 5)] v andwhere Bs(r) and B(r) are respectively the type | fractional

Brownian Motion and the standard Brownian Motion.

The limiting distribution ofn =19l (¢;, ) has nonnegative supportif> 0 and a nonpositive support
if 0 <O.

The standardized least squares estimgtend the correspondingstatistic,¢;, will be noted
hereafter respectively by, andr;. By using these notations, we explain now, how one can exploi
the results of theoreni3) to statistical inference in time series. Our interest is liovs that the
F-DF tests, based on statistics are consistent whereas the F-DF tests baseq statistics are

not consistent.

B. Consistency of F-DF test based onstatistic

Consider the problem of hypothesis t¢$t6) in sample of size:. It is convenient to introduce
the nonrandomized test defined by a functtbp on the sample space of the observationawvith

critical regionC'. The ®,, test for a regionC' is its indicator function

1if T € C

0if 7, ¢ C



15

Let o and 3 respectively the typd error and the typd [ error of the test®,,. Since H, and H;

are composite, we have

a = Supgsd,mo(d)
5 = Infd<do7rl (d)

where my(d) = Ppg,(reject Hy) and m(d) = Py, (acceptH,). Practically, this entails computing
a statisticr; from a sample, whose distributioR;, when the null hypothesig#/, is true can be
tabulated, and used to fix the probability of rejection wliénis true (a Typel error) not exceed a
chosen valuev. Since, the alternative hypothesishs : d < dy, it is natural to consider one sided
critical regions of the form

C={n<c,(a)}, (4.9)

wherea is the level of the test. With these settings, the power fonobf the test®,,, denoted by
s, (d) IS :

W@n(d) =1- Infd<do7T1(d)-

Theorem 4. A sequence of testsb,, } defined by(4.8), with critical region (4.9) each of given
sizea is consistent i.e.

lim g, (d) — 1 for d < dy.

n—oo

Proof. If § < 0, from theorem3 and corollary1 it follows

lim Py, (1, < ¢, () = lim Py, (n’n < n’c, (a))
n—-ao0 n—-—ao0

. 140)T(144)
— lim Py, (—C; — 7 <0
ninoo H ( 0 F(l—é)(fol B%(r)dr)l/2 )

= 1, because’r, has nonpositive support.

As n becomes infiniterg, (d) tends tol, if 6 < 0. Moreover, for each, 7¢, (d) is an increasing
function, with larger absolute value on< 0 thané = 0. Hence, for testingl > d, againstd < dy,

the regionr; < ¢, («) is unbiased (for any:) and defines a consistent family of tests.
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We have also

lim Py, (7p > ¢ () =1 —«a, if § =0,

n—oo
and

lim Py, (7: > ¢, () =1, if § > 0.

n—o0

For the case wheré = 0, the exact critical pointg,, («) are given by Fuller (1976, pp. 373
and 375). These critical points are also asymptoticallydvédith in the case where the,’s are
not normal). This implies that the proposed test can be wboled and implemented exactly as the
Dickey and Fuller test for unit root by using the usual talikgistics.

In practice, the statistician or econometrician, wouldhais know the answer to the following
guestion : Is the series, under study, stationary or not ?riBwer this question, we propose the
following downward testing procedures where the highetgration level is tested first.

1) RejectH, :d > 1 (againstH; : d < 1) and go to step 2 if; < ¢, («); otherwise, conclude

that Hy : d > 1 is true.

2) RejectH, : d > 0.5 (againstH; : d < 0.5) if 7, < ¢, («); otherwise, conclude that; : d >

0.5 is true and0.b <d < 1.

IV. POWER OFF-DF TEST IN FINITE SAMPLE

After the theoretical analysis of the F-DF test basedrostatistic, we now conduct a Monte-
Carlo experiment to examine the finite sample performande-Df test based on, and the F-DF
test based on,.

We consider the data generating processes,

(1= L)%y = w. (5.1)
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The regression model will be used for estimation and infeeetio deal with the hypothesis test

Hy : d > dy againstHy : d < d, (1)

(1= L)%y, = pa(1 = L)%y 1 + €. (5.2)

Before giving the main results of these experiments, we @xamitially, the two following simple
hypothesis tests

Hy : d = dy againstH; : d < d, (I1)

and

Hy : d = dy againstH; : d > dy (I11)

In the experiments reported in this section, a general piwweefor generating a stationary frac-

tionally integrated series of lengthis to apply, fort = 1,--- ,n and some fixedn, the formula
m+4t—1 .
I'(d+j)
= — Uy 5.3
B ;0 T(d)T(G+1) (5:3)
where{u;_,, -+ ,u,} is a random sequence af.d.N(0, 1). This simulation strategie for type |

fractional Brownian processes has suggested by DavidsdrHashimzadg2008). They argued
that, by choosingn large we should be able to approximate the type | processasytalesired
degree of accuracy. For the non-stationary parameter gardtionsd = 0.6, 0.7, 0.8, 0.9, 1, 1.1,

1.2, 1.3 and 1.4, we use the following:

m—+t—1

6+
Ty = Ty_q1 + Z ] ) Ut—j, (54)

whered € |—1 1[. For the particular casé = 0.5 we can usg?5.3) or (5.4) and the value of

m = 500. All computations were done in Eviews 4.0.
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A. The size of the hypothesis te§ig) and (/11).

Trough Monte Carlo study we show that the F-DF test, baseti®fractional first autoregression
model(5.2), fare very well in terms of size when we usgor 7; statistics. To investigate the size of
the hypothesis tegt/ /) and(/11), 10000 samples off'I(d) Gaussian processés.1) are generated
and the regression modé}.2) is used for estimate, and 7,. The samples sizes considered are
n = 50; 100; 150; 200 and250. Samples of observations were generated for five valueg ob);
0.2; 0.5; 0.8; 1 and for each valuég, we specify under the null only one valug equal tod.

For the case where,’s are normal, the exact critical points fey and ,, under the null are
given by Fuller (1976, pp. 373 and 375: Table 8.5.1 fpiand Table 8.5.2 for;). For the testing
problem (/7) we consider one-sided critical regions of the forpn< b, («) and 7 < ¢,(a). For
the testing problent//7) we consider one sided critical regions of the forpn> b,,(1 — «) and
7, > c,(1 — «), wherea is the level of the test.

Table 1 reports the acceptation frequencies at, respectivelynthe 1%, 5%, 10% significance
level, for the testing problent/7) when we use the dickey Fulldrstatisticr;. It is noted that
the estimated frequencies are very close to the theordtegliencies { — o = 0.99, 0.95, 0.90).
Similar results, not reported here, are found for the tegbtiyesis(//7) when we use the dickey
Fuller t-statistic 7, and for the tests hypothesig/) and (/11) when we use the Dickey-Fuller

'normalized biais’ statistic,.
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Table 1.

T\ d 0 0.2 0.5 0.8 1

50 98.96  98.93  98.91 9890  99.12
100 98.94 9891  98.96 9893  99.12
a=001 150  99.05 9898 98.96 98.81  99.04
200 99.05 9890  99.11  99.01  99.08

250 99.01 98.83 99.18 99.11 98.89

50 9405 9522 9522 9510  95.13
100 9448  95.05 9497 9495  95.17
a=005 150 9509 95.09  94.79 9459  94.91
200 95.04 9520  95.32  94.83  94.88

250 94.68 94.90 95.44 94.93 94.87

50  90.34  89.79  90.00  90.25  90.02
100 89.73  99.76  90.21  89.97  90.24
=010 150  90.17 90.34  89.86  89.72  89.95
200 90.39 9023  89.84  89.66  89.99

250 89.49 90.04 90.49 90.11 90.15

Although these results are very significant we have alsaj tise samples 0of0000 observations

to estimate the densities (following Sow¢lb90)) of 7, andr, underé = 0 by the kernel estimator

N 1 10000 r— /9\
_ J
fla) = IOOOOh;\P< h > !

where@- are the estimated values of under(6 = 0) or 7, under(é = 0) for the 10000 samples

and U (y) is the density defined by:2) <(1 — y2)2> for —1 < y < 1 and zero elsewhere. The
value of h was chosen to minimize the integrated mean square errorTggg@a and Thompson
(1978, pp 67)). The estimated densities are presented in3Fiand Fig.4.

For each statistics, or 7, underd = 0 (i.e. d = dy) and for a given size of sample, the



20

25 4
d=0 d=028

20 - d=0.2 d=1
d=0.5

A5 -

10 -

05 4

00 4

-40 -3-5 30 25 20 -15 10 5 0 5 10

estimated densities for different valuesdfire represented on the same graph. The figures 3 and
4 shows that by fitting the regression mod&l2) to the sample generated accordifigl), one

obtains the same distribution that those used by DickeleF(@979,1981).

B. The power of the hypothesis tesig) and (I/17)

To study the power of fractional unit root test, we have gateet 10000 samples ofF'I(d)
Gaussian process accordifg 1) for d = 1. To evaluate the power of the tegt/) we specify
different values ofd, under the null :1, 1.1, 1.2, 1.3 and 1.4. The figure below represent the
different densities ofr, under (6 < 0) for the case where the true value @éfis equall and

de{-04; —0.3; —0.2; —0.1; 0}. Let b, («) the critical point at the significance levelfor 7,
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under(é < 0), we have

Plr,>by(a) |0 <0] =75

If the test(//) has good performance in terms of power then the probabilitghould decrease
when § decreases (i.ely increases) and moves away from zef.should be always less than
B. The figure 5 below show the opposite i/#. increases whern decreases, because, as noted
by Sowell (1990), the density appears to be converging to unit mass at zerm whepproaches

(—0.5). Consequently, we can not use the statistidor the hypotheses te¢f /).

20 4
16
12
08

04 -

0.0

T T T T T T T T T
-30 -25 -20 -15 -10 -5 0 5 10

Now considering the test//7) in the case wherd = dy + § is the true value of fractional
integration of the procesg, with § € {0;0.1;0.2;0.3;0.4}. The figure below represents the
estimated densities of, under (6 > 0) for a size of sample: = 250, if the true value of the
fractional parameter of integration is equal towhereas the values specified under the null are
do € {1;0.9;0.8;0.7;0.6}. The two graphs show that the various densitigsinder (6 > 0), with
o € {0;0.1;0.2;0.3;0.4} are all to fit together. In other terms, whety, : d > d, is true, the
distribution of 7, under(é > 0) does not make it possible to have a powerful test. Contratjeo
preceding test, the reason of disappointing results oflilrd test is not in the distribution of,,
but in the parametes. Indeed, the parametertakes the valu@ if the null is true, i.e.d = d, and

it takes also valu® if the alternative is true i.ed > d,.
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C. Size and power of the F-DF test based on hypothesig i¢sind 7

In this subsection, in Monte Carlo study we show that the pseg hypotheses tegt) based on
the DGP(5.1) and in the auxiliary regression modgl.2) fare very well both in terms of power
and size when we use the statistic. To investigate the size and power of the hypahesst(/),
10000 samples ofF'I(d) Gaussian processés.1) are generated and the regression mddel)
is used to estimate;. The sample size consideredrsis= 50 andn = 250. We will use, as true
values of the fractional parameter of integration of thecpssy,, three valuesl : 0; 0.5; 1 and for
each value, we specify various values it If the set of the values af, for a given value ofd

is denotes by5,(dy) then the sets which will be used for the three valued afe respectively
So(dg) ={-0.4; —0.3; —0.2; —0.1; 0; 0.1; 0.2; 0.3; 0.4},
So.s(do) = {0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9},
Si(do) = {0.5; 0.6; 0.7; 0.8; 0.9; 1; 1.1; 1.2; 1.3; 1.4} .
The tables 2 and 3 contains the simulations results on teeo$ithe F-DF test for the hypotheses
test(7). The tables 2 and 3 shows that the testing probléirhas good performances in terms of

size, since we have

P> cp(a)]6>0)>1—a.

The table 5 and Table 6 contains the simulations results erptiwer of the F-DF test for the
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hypotheses test/). There are some conclusions to be drawn from it. First, thveepof the F-DF
test increases with the increase of sample sizedandl — d,. For examples, forv = 5%, d = 1
andd = —0.1, power is12.36% for n = 50, 20.76% for n = 250and fora = 5%, d = 1 and

0 = —0.3, power is48.5% for n = 50, 86.05% for n = 250. Second, as shown in table 5 and 6,
for n = 250, the power of F-DF test is belo®0% for (6§ = —0.1) and for @ = 1%, § = —0.2).
Third, for a givenn, o andd, the power ford = 0, d = 0.5 andd = 1 are approximately similar
because the asymptotic under the alternative does not depes but depend o = d — d,.

Table 2. Size of the hypotheses tedt) when we user; (n = 50)

a\é 04 0.3 0.2 0.1 0

1% 100 99.99  99.93  99.73  98.96
do =0 5% 99.98  99.85 99.39  98.17  94.05

10% 99.85 99.48 98.26 95.78 90.34

1% 99.98 99.97 9990 99.74  98.91
dy =05 5% 99.91  99.78 9928 9814  95.22

10% 99.78 99.42 98.25 95.63 90.00

1% 100 99.99  99.97  99.79  99.12
dop =1 5% 99.95  99.92 9955 9834  95.13

10% 99.83 99.54 98.72 96.03 90.02




Table 3. Size of the hypotheses tegt) when we user; (n = 250)

al\d 0.4 0.3 0.2 0.1 0

1% 100 100 99.99  99.92  99.01
d=0 5% 100 99.99  99.95  99.29  94.68

10% 100 99.97 99.73 97.87 89.49

1% 100 99.98  99.8 99.91  99.18
d=05 5% 100 100 99.97 9927  95.44

10% 100 100 100 97.66 90.49

1% 100 100 100 99.92 98.89
d=1 5% 100 100 99.96 99.32 94.87

10% 99.98 99.97 99.80 98.00 90.15

Table 5. power of the hypotheses tegt) when we user; (n = 50)

a\s —01 -02 -03 —04

1% 3.61 9.53 22.23 45.82
d=0 5% 12.66 26.68 47.16 73.03

10% 21.97 39.56 62.14 84.92

1% 2.87 9.36 2259  45.16
d=05 5% 11.9 2517 4834  72.74

10% 21.17 39.58 63.23 84.39

1% 3.2 9.39 2291  46.23
d=1 5% 12.36 26.1 4850  73.47

10% 21.63 39.24 63.69 84.99
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Table 6. Power of the hypotheses tegdt) when we user; (n = 250)

a\s -01 —02 —03 —04

1% 7.59 30.07  68.00 95.48
d=0 5% 19.98 5253 8590  99;16

10% 30.62 64.77 92.95 99.87

1% 7.3 30.06  68.54 95.60
d=05 5% 20.35 5240  85.80 99.39

10% 31.44 65.10 92.50 99.89

1% 7.71 29.90 68.36 95.39
d=1 5% 20.76 51.77 86.05 99.35

10% 31.71 64.29 92.41 99.87

V. DISCUSSION AND CONCLUDINGREMARKS

In this paper, to distinguish betwedfV (d) processes witll € }—%, % [ we have proposed a new
and appropriate testing procedure in time domain that esteéhe familiar Dickey-Fuller1979)
types tests for unit root/(1) against/(0)), by embedding the casé= 0 andd = 1 in continuum
of memory properties. The main idea of our test procedurbasfallowing: in order to test if the
processy, is fractionally integrated of ordet,, it suffices to test if the process = (1 — L)~1*doy,
is integrated of ordet. We have referred to the test based on this original ideae$-tactional
Dickey-Fuller (FD-F) test. The proposed test is based onQh& estimator §,,) or its ¢-ratio in

the autoregression model
Adoyt — pA_1+d0yt—1 + €, t = 1’ 27 RN )

With this regression model associated with the non expéofgature ofF'/(d) processes, we have
showed that the testing probleH : d > dy againstt; : d < dy with d € | -1, 2[ andd, € [0,1], is

equivalent toH, : p = 0 againstH; : p < 0. We have also, showed that the asymptotic distributions
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for ordinary least squares (OLS) and itsatio under the null simple hypothesig, : d = dy
are identical to those derived by Dickey and Fuller (19781)%or the simple case (without drift
and trend). This implies that the proposed test can be utdetsand implemented exactly as the
Dickey-Fuller test for unit root by using the usual tableatistics. It worthnoting that the new
F-DF test proposed in this paper is a generalization of thiéicpdar caseH, : d = 1 against
Hy:d <1 (ord > 1) studied by Sowel(1990) for d € |1,2[, to the general cas#, : d > dy
againstH; : d < dy with d € |—1,2[ andd, € [0, 1]. For the particular case, Sowgll990) have
concluded that the asymptotic distributionsf and¢;, can not be used to test the presence of
unit root in fractional ARMA models, since the implementatiof the test require tabulations of
the percentiles of fractional Brownian motion conditidpadn 6 = d — 1 and thus suffer from
misspecification. These disappointing conclusions oagrfrom an ill defined statistical problem
and from an inappropriate use of asymptotic distributiahelory. In fact, Sowell have focused
his attention on the parameterby considering the test/, : p = 0 againstH; : p < 0 and
considered that under the null there are three asymptdaicdlalitions conditionally ord = d — 1

(6 < 0,0 =0,6 > 0). In this paper, by using the non explosiveness\&fF I M A(0, d,0) processes,
we have showed, for the general case, that under thefllp = 0 there are only two possible
asymptotic distributions conditionally ah= d — d, (6 = 0, § > 0) and under the alternative there
is only one asymptotic distribution (< 0).

The theoretical framework above, is the unified framewonktf® unit root test and fractional
unit root test. Furthermore, in order to test if a given psscg is stationary we can perform the
downward F-DF testing procedures where the highest intiegréevel is tested first (in our case
dy = 1). We can easily extend our results, by using the same framkewm the sequential testing
procedure advocate by Dickey and Pantula, allowing theyaisato cover the casé € |—1.5, 2.5]
andd, € [0, 2].

Further research is currently being undertaken towardergéning the F-DF testing approach
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along similar directions as the D-F test has been extend#tkimnnit root literature accounting for

time series which may exhibit a trending behavior and foregghARFIMA case.

VI. APPENDIX

Proof of Theorem 1. If {z,} satisfy(2.1) and if the first autoregression model= ¢x; 1 + w,
or equivalentlyAz, = (¢ — 1) z;,_1 + w; is fitted to a sample of size then, the least squares slope

estimate have the following expression:

5 _ Z?:l Tt—1T¢ -1+ Zt 1 Tt— 1A$t (Al)
Zt:l ‘T%—l Zt 1'Tt 1

Whend=m+ 4§ =0.5ie.m =0, =0.5 andAx, ~ FI (—0.5) it follows from (2.7), that
n 1 9
nt fo_l = / [B%,o (T)] dr. (A.2)
t=1 0
Whenm =1 for —1/2 < § < 1/2 and Az, ~ F1I (), it follows from (2.7), that
n 1
-2 (0,n) n 202 Z xf_l = / Bﬁ’o (r)dr, (A.3)
t=1 0
and when(m > 1 for 0 < § < 1/2) andAz; ~ FI (m — 1+ ), it follows from (2.7), that
K2(0)n 2072 g2 | = / B;,, (r)dr. (A.4)

As regards the ) | =, Az, term, we can rewrite it as

Z{xt— a xt—xtl Zx ——Z Axt)z.

Whenm = 0 for 6 = 0.5 and Az; ~ FI(—0.5), the first term when multiplied by:=2 (6,n) =
204 -« log n converges in distribution té ? because relatio(®.5), whilst the limiting distribution
of the second term follows from Lemn®al of Ming Liu (1998) result2, we have

2
4o
T

nTIS L (Axy)? (A.5)

Whenm = 1for —1/2 < § < 0 andAxz; ~ FI (9), the first term when multiplied by =2 (§, n) n=1-2

converges in distribution t§ [B;(1 (1))° because of th¢2.5), whilst the limiting distribution of the
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second term follows by using the ergodic theorem

2
— n 2 P Uur(l B 25)
n 121521 (Aaj‘t) — m (AG)
Therefore, wher = 0, i.e.,whend = 1, x?(§) = 02, Bs(r) = B(r) for r € [0,1] and
/ﬁ_z(én)n_lzn:x A 1IB*(1) -
) t—18T = 3 [B (1) 1} ) (A.7)
t=1
whereas whe = m + § for (im >2and —1/2<d<1/2)or (m=1and0 < <1/2)
- 1
-2 1-2m—26 A _B2 1 A
52 (8,m)n 2 mahn = 5B, (1), (4.8)
and whend =1+6 for —1/2 <§ <0
n 2
. . o (1 —26)
K2 (d,n)n ;xt_let - 7211%1 —5) (A.9)
and whend = 0.5
k2(8,n)n"" Z Ti_1Axy = —2. (A.10)
t=1
Hence, using A2) — (A10) and the continuous mapping theorem, we obtain that
~ k2(0,n)n togn S " 21 Az -2
logn <¢" B 1) - (/f‘2>(5 n) n%l Zznt_lx; — = 1 2 (4.11)
WL ]
whend = 0.5.
—~ -2 -1 n |1 + 5 I(1+9)
120 (¢n B 1) _ K 2(5, n)n 2523;:1 «ft—l%l’t N [12 } 1“(1—5)7 (4.12)
K72 (0,n)n2072 3 00wy Jo B3, (r)dr
whend =146 for —1/2 <6 <0.
~ -2 Y ma A 5[B*(1) -1
n <¢n o 1) _ R _(267 n)n _;t:%xt ; Ty — 2 [1 ( ) ] (A13)
K2 (6,n)n=2 Y L xf fo B2 (r)dr
ifd=1,ie.,m=1and)=0.
~ K72(8,n)nt=272m N g Az 5B3,, (1)
n (@L — 1) = EQ ) _25_2m2t—; . — , (A.14)
A2 () n By ] Jy B3, (1) dr)

if d=m+dfor(m>2and —1/2<§<1/2)or (m=1and0 < <1/2).
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Proof of Theorem 2. The proof is omitted because of its similarity with Theoremirideed
if we denoteA~!*dy, = 7, then we can rewrite the regression mo@&b) as Az, = pz,_; + w,
with z; ~ FI(1+¢§) and—0.5 < § < 0.5.

Proof of Theorem 3. If y, satisfy (3.1) with d € |—1,2[ andd — dy = 6 with —0.5 < § < 0.5
and if the regression mode}.0) is fitted to sample of size then, by denoting\—!*d

yt = xt ~Y
(14 6), thet student statistic have the following expression

pn /2"
Sn {Z?zl x?—l}

We can rewritet;, as follows

po_ K () ' n S A
S -2 _9_ n 1/2
Sn {’% (0) "n=272 Zt:l xt2—1}

(@) 0 (2,)? = 1k (0) T (Axy)?
5o {k(8) 22y a2 V12 |

2

First notice that
1 n R 1 n R n
DO = LY (A S e = 2 Y A
n t=1 n t=1 t=1
Hence, by usingd3, A6, A7, A9, Theorem 2 and the continuous mapping theorem, it follovas th

y T0=2)

for all § € |—0.5,0.5].

Consider now, the numerata¥, of thet;, statistic, which can rewrite as

N = 2w (0 [ (6) 07 ()] - !

5" (6)"'n? [n_l Z (Az,)?

By using(2.5) and(2.7) and A.7 we obtains

—00 if 6§ <0

HBA)2-1)} ifo=0 (A.12)

\ 400 if &>0.
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Hence, usingA.3, A.11 and A.12 and the continuous mapping theorem, we obtain that

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]
9]

[10]

[11]

[12]

ts, & —oco if —0.5<6<0,

L By
5

2T 5 =,
" [fol B2(’“)d7”] vz

t5, - +oo if 0.5>8>0 -

Proof: Proof of Corollary 1. Direct consequence of Theorem 3. [ |
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