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Abstract

To distinguish between purely fractionally integrated(FI) processes, we propose in this article

a new and appropriate fractional Dickey-Fuller (F −DF ) test. This new test extends the familiar

Dickey-Fuller(1979) type tests for unit root(I(1) againstI(0)) by embedding the cased = 0 and

d = 1 in continuum of memory properties. The new F-DF test is easy to implement and is based

on two time domains properties ofFI(d) processes. First, if a time series followsFI(d) process,

than the(−1+d)th differenced series follows anI(1) process. Second, the purelyFI(d) processes

are non explosive ford ∈ R. These two properties will allow us to draw a bridge between the

processI(0) andI(1) by testing the general hypotheses testH0 : d ≥ d0 againstH0 : d < d0, with

d ∈
]
−1

2
, 3
2

[
andd0 ∈ [0, 1].

Keywords: First autoregression, fractional integration, explosive processes, unit root, fractional unit

root.

INTRODUCTION

Recently, extensively worked area in time series analysis has concerned to the design of appro-

priate test statistics to distinguish betweenI(0), I(d) d ∈ ]0, 1[ and I(1) behavior. Some recent

http://arxiv.org/abs/1209.1031v1
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contributions on this topic include Dolado, Gonzalo and Mayoral (2002), Nilsen and Johansen

(2010), Lobato and Velasco(2007). The fractional unit root distributions was first considered by

Sowell (1990), who analyzed the behavior of the usual Dickey-Fuller type regression, when the

errors are fractional. Specifically, Sowell(1990) considered the regression

yt = yt−1 + εt, for t = 1, 2, · · · , n,

where y0 = 0 and εt is a stationary fractionally integrated process that is,I(δ) process with

−0.5 < δ < 0.5. He showed that the ordinary least squares (OLS) estimator for φ (coefficient on

yt−1, hereafter̂φn) has a nonzero density over the whole real line for the special case ofδ = 0, i.e.,

a unit root. For other values ofδ, φ̂n has different normalized constant depending on the magnitude

of δ, i.e. nmin[1,1+2δ](φ̂n − 1) = Op(1) and his asymptotic is function of two distributions which

both depend on fractional Brownian motion. Furthermore, the standardt statistic ofφ̂n (hereafter

tφ̂n
) converges to the well defined density whenδ = 0, for other values ofδ, the asymptotic

distribution of tφ̂n
diverges to infinity. Sowell(1990) concluded that if his distributional theory

is used to test the presence of unit roots in fractional ARMA models the implementation would

requires tabulations of the percentiles of fractional Brownian motion conditionally onδ, for the

statisticnmin[1,1+2δ](φ̂n − 1), and thus might suffer from misspecification. He concluded,also,he

statistictφ̂n
are not useful.

Diebold and Rudebush(1991) examined the properties of Dickey-Fuller test under fractionally

integrated alternatives and showed by Monte Carlo simulations that this test has quite low power

and can lead to the incorrect conclusion that a time series has a unit root also when this is not true.

They pointed out that a more appropriate testing procedure is needed to draw conclusions about

the presence of the unit root. The lack of power of Dickey-Fuller test to distinguish between the

I(1) null hypothesis and the fractional integrated of orderd (FI(d)) alternative, has motivated the

development of new testing procedures that take this type ofalternative explicitly into consideration.

One approach for testing against fractional alternatives belongs to the Lagrange-multiplier (LM)
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framework studied in Robinson(1991, 1994), Agiakloglou and Newbold(1994), Tanaka(1999),

Breitung and Hassler(2002) and Nielsen(2004). The aim of this approach is adapting time domain

procedures and embedding the models of interest in generalFI(d) framework, instead of the

autoregressive alternatives typically considered in the literature. Robinson(1994) has developed a

test for unit roots, that unlike the familiar Dickey-Fullertest, was not embedded in AR structures

of form:

(1− φL)xt = ut, t = 1, 2, ..., (1.1)

whereL is the lag operator(i.e. Lxt = xt−1) andut is stationaryI(0) process, and with, the unit

root null corresponds to:

H0 : φ = 1,

but based on fractional alternatives of form:

∆dxt = ut, t = 1, 2, ..., (1.2)

whered can be any real number,∆d = (1−L)d is the fractional difference operator defined by its

Maclaurin series (by its binomial expansion ifd is an integer):

(1− L)d =
∑∞

j=0
Γ(−d+j)

Γ(−d)Γ(j+1)
,

where

Γ (z) =





∫ +∞

0
sz−1e−zds, if z > 0,

∞ if z = 0,

if z < 0, Γ (z) is defined in terms of the above expressions and the recurrence formulazΓ (z) =

Γ (z + 1) andut is stationaryI(0) process, and where the unit root null corresponds to:

H0 : d = 1.

Robinson(1994) has also proposed a Lagrange Multiplier (LM) test where the null hypothesis is:

H0 : d = d0
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in model given by(1.2) for any given real valued0.

The major consequence of this change, in the set of alternative models considered, is that the

the asymptotic distributions are standard. Nonetheless, the advantage of having a standard limit

distribution, Tanaka(1999), showed with simulation experiments that the LM tests have the serious

size distortion (see Tanaka1999 fore more detail). Another critic addressed for the LM testsis

that, by working under the null hypothesis, it does yield anydirect information about the correct

long-memory parameterd, when the null is rejected (Dolado, Gonzalo and Mayoral2002, Bertrand

candelon, Gil Alana2003). In order to overcome the drawback, researches are directed towards a

global procedure test, which embedded the AR structure form(1.1) and the fractional form(1.2)

in the same model. The aim of this approach is to extends the well known Dickey and Fuller

approach, originally designed for theH0 : d = 1 againstH0 : d = 0, to the more general setup

H0 : d = d0 againstH0 : d < d0, with 0 ≤ d0 ≤ 1.

The fractional Dickey-Fuller (FD-F) unit root test was firstconsidered by Dolado, Gonzalo and

Mayoral (2002), (hereafter DGM). The (DGM) test for the null hypothesisd = d0 against a simple

alternatived = d1, with d1 < d0, is based on the OLS estimation of the following model

∆d0xt = ρ∆d1xt−1 + ut, (1.3)

whereut is I(0) stationary process. Whend0 = 1, the model(1.3) becomes

∆xt = ρ∆d1xt−1 + ut,

where d1 < 1. When d1 is not taken to be known a priory, a pre-estimation of it is needed to

implement the test. Lobato and Velasco(2006) show that the DGM test is inefficient and the

regression model(1.3) is misspecified because it does not include the data generating process

defined by(1.1) and (1.2) like a particular case. The regression equation, proposed by DGM, is

used only to suggest a test statistic, and we can not considered it as a generalization of familiar

Dickey-Fuller test for unit root.
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To design the appropriate test statistics to distinguish between I(d) process, we propose in

this article more flexible and more appropriate regression model for fractional unit root test. By

using the non explosive feature ofARFIMA(0,d,0)processes, our testing procedure generalize the

familiar unit root test in the most adequate way. Indeed, there is a significant difference between

the autoregressive (AR) models of form(1.1) and the fractional alternatives of form(1.2). As noted

by Gil-Alana and Robinson(1997) and Gil-Alana(2004), ”fractional departures from(1.1) and

(1.2) have very different long run implication. In(1.1) for |φ| > 1, xt is explosive, for|φ| < 1

xt is covariance stationary, and forφ = 1 it is nonstationary but not explosive. In(1.2), xt is

nonstationary but non explosive for alld ≥ 0.5. As d decreases beyond0.5 and through1, xt can

be viewed as becoming ”more nonstationary” (in the sense, for example, that the variance of partial

sums increases in magnitude) but it does so gradually, unlike in case of(1.1) aroundφ = 1.”

The non explosive feature ofARFIMA(0, d, 0), often quoted in the literature, has neither been

studied theoretically nor been used in practice, for the needs in statistical inference on the fractional

unit root test. Intuitively, the non explosive feature of the processARFIMA(0, d, 0) for all d ≥ 0.5

means that if a first order autoregression model is fitted to a sample of sizen generated according

(1.2) then the OLS estimator of the first order autoregression parameter will not exceed1. Figure

1 below illustrates this fact in an obvious way.

This figure was made as follows: For a fixed sample{u1−n, · · · , u0, · · · , un} generated from
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i.i.d.N(0, 1), with n = 1000, samples ofARFIMA(0, d, 0) processes were generated ford varying

between0.5 and2, with step of0.01. For each sample{xt, t = 1, · · · , n} a first order autoregression

model

xt = φ̂nxt−1 + ǫ̂t (1.5)

is fitted and estimate ofφ (hereafterφ̂n) are calculated. By plotting the parameterφ̂n against the

fractional differencing parameterd, one obtains the figure1. This figure indicates that if the value

of the parameterd is lower than1, then the value of the parameterφ̂n is lower than1. While, when

the parameterd is greater or equal to one, the value of the parameterφ̂n converges to1. Based

on the relation between̂φn andd highlighted by figure1, the non explosive feature of the process

ARFIMA(0, d, 0) will allow us to build a unified theoretical framework for theunit root test and

fractional unit root test. More precisely, to distinguish betweenFI(d), d ∈
]
−1

2
, 3
2

[
processes, we

present a new and appropriate Fractional Dickey-Fuller test in time domain that extends the familiar

Dickey-Fuller(1979) type tests for unit root (I(1) againstI(0)), by embedding thed = 0 andd = 1

in continuum of memory properties. The proposed statistical test is based on the following idea:

to test if a given processyt is integrated of orderd (yt  I(d)), it is enough to test if the process

xt = (1 − L)−1+dyt is integrated of order1. This simple idea associated with the non explosive

feature of theARFIMA(0, d, 0) processes will allow us to draw up a bridge between the process

I(0) and I(1), by using a new fractional autoregression model (see section 3), which includes

process(1.1) and (1.2) like particular case and which makes it possible to test the following

general testing problem

H0 : d ≥ d0 againstH1 : d < d0, (1.6)

with d ∈
]
−1

2
, 3
2

[
andd0 ∈ [0, 1].

The rest of the paper is organized as follows. The next section contains an introduction to some

standard results and concepts of both fractional integrated series and the fractional spaceD [0, 1],

that we need for this study. In section 3, to explain the relation betweenφ̂n andd, highlighted by
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figure 1, we will study the behavior of the asymptotic distribution of φ̂n whend ∈
[
1
2
,∞
[
. In the

same section, we discuss the consequences of the nonexplosiveness ofARFIMA(0, d, 0) process

to deal with the unit root test and fractional unit root test.In section 4, by using a new auxiliary

fractional autoregression model, we provide the main results on asymptotic null and alternative

distributions for the testing problem(1.6). In section 5, through Monte-Carlo study, we show that

the proposed test fare very well both in terms of power and size when we use thet−statistic. In

section 6, we give some concluding remarks.

I. PRELIMINARIES

In this section, the expressionD [0, 1] denotes the space of functions on[0, 1] in which all

elements are right continuous and have left-hand limits, endowed with the Skorohod topology (see

Billingsley, 1968, p.111). Weak convergence of probability measures onD [0, 1] and convergence

in probability are denoted by=⇒ and
p

−→, respectively.

The main technical tool, that we need for this study is in Sowell (1990) and Liu (1998). To

begin with, we briefly outline some results, which will be used extensively, concerning the limit

behavior of sample moments of long memory processes. Letyt = (1−L)−δut, with δ ∈ ]−0.5, 0.5]

and ut, t = 0,±1, · · · , are i.i.d. random variables withE (ut) = 0 and E |ut|
a < ∞ for a ≥

max {4,−8δ/ (1 + 2δ)}. Since

E

(
n∑

t=1

yt

)2

=





Op(n
2 logn), for δ = 0.5

Op(n
1+2δ), for − 0.5 < δ < 0.5

(2.1)

from the invariance principle of Davydov (1970) it follows, asn → ∞

1

κ(δ, n)n1/2+δ

[nr]∑

t=1

yt ⇒





rB (1) , if δ = 1
2
,

Bδ,0(r), if − 0.5 < δ < 0.5,

(2.2)

where

κ2(δ, n) =





2σ2
u

π
log n, if δ = 1

2
,

σ2
uΓ(1−2δ)

(1+2δ)Γ(1+δ)Γ(1−δ)
, if δ 6= 1

2
,

(2.3)
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andBδ,0(r) is the typeI fractional Brownian motion onD [0, 1] defined as follows,

Bδ,0(r) =





1
A(δ)

∫ 0

−∞

[
(t− s)δ − (−s)δ

]
dB(s) +

∫ r

0
(t− s)δ dB(s) if δ ∈

]
−1

2
, 1
2

[
,

rB(1) if δ = 0.5

whereB(s) is standard Brownian motion and

A(δ) =

(
1

2δ+1
+

∫ ∞

0

[
(1 + s)δ − sδ

]2
ds

)1/2

.

For the time seriesyt = (1 − L)−δ−mut, with m ≥ 1 and δ ∈
]
−1

2
, 1
2

]
by combining the

continuous mapping theorem, the results from Sowell(1990) and Theorem 2.2 of Liu(1998) we

have the following useful results

1

κ(δ, n)n−1/2+δ+m
y[nr] ⇒ Bδ,m(r), (2.5)

1

κ(δ, n)n1/2+δ+m

[nr]∑

j=1

yj ⇒

∫ r

0

∫ rm

0

· · ·

∫ r2

0

Bδ,0(r1)dr2dr3 · · · drm, (2.6)

1

κ2(δ, n)n2(m+δ)

[nr]∑

j=1

y2j ⇒

∫ r

0

[Bδ,m(s)]
2 ds, (2.7)

whereκ2(δ, n) is defined by(2.3) and

Bδ,m(r) =





Bδ,0(r) if m = 1

∫ r

0

∫ rm−1

0
· · ·
∫ r2
0

Bδ,0(r1)dr1dr2dr3 · · · drm−1 if m ≥ 2.

(2.8)

II. CONSEQUENCES OF NONEXPLOSIVENESS OF THEARFIMA(0, d, 0) PROCESSES

Consider a purely fractionally integrated process{yt} defined by

(1− L)m+δ yt = ut, for t = 1, 2, · · ·n, (3.1)

with y0 = 0, and wherem ≥ 0 and δ ∈
]
−1

2
, 1
2

]
, L is a lag operator andut is defined as in the

section 2. We denotem+ δ = d.

Theorem 1. Let {yt} satisfy(3.1). If the first autoregression model(1.4) is fitted to a sample of

sizen then

(logn)
(
φ̂n − 1

)
⇒

−2
∫ 1

0

[
B 1

2
,0(r)

]2
dr

, (3.2)
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whenδ = 0.5 and m = 0.

n1+2δ
(
φ̂n − 1

)
⇒

−
[
1
2
+ δ
] Γ(1+δ)

Γ(1−δ)∫ 1

0
B

2
δ,0(r)dr

, (3.3)

when−0.5 < δ < 0 and m = 1.

n
(
φ̂n − 1

)
⇒

1
2
{B2(1)− 1}
∫ 1

0
B2(r)dr

, (3.4)

if δ = 0 and m = 1.

n
(
φ̂n − 1

)
⇒

1
2
B

2
δ,m (1)

∫ 1

0
B2

δ,m (r) dr)
, (3.5)

if (m = 1 and0 < δ ≤ 0.5) or (−0.5 < δ ≤ 0.5 andm ≥ 2). HereBδ,m(r) is defined by(2.8).

Proof. See Appendix

Theorem1 indicates that the least squares estimate is super consistent, for d ≥ 1. The rate

of convergence depends on the order of integration. It is well known that if xt is I(0), the OLS

estimate converges at the raten1/2, and ifxt is I(1) i.e. δ = 0 andm = 1, convergence is at the rate

n. This may suggest that the rate of convergence increases with the order of integration. However,

this is not the case. If a series isI(m+ δ) for m ≥ 1 and0 ≤ δ < 1/2, φ̂n converges at the raten,

the same for allm andδ. If a series isI(1+ δ) for −1/2 < δ ≤ 0, φ̂n converges at the raten1+2δ.

So for−1/2 < δ < −1/4 the rate of convergence is slower thann1/2. The figure2 illustrates this

fact clearly. Furtheremore, whenm = 1, the rate at whichnmin[1,1+2δ]
(
φ̂n − 1

)
converges to its

limiting distribution is slow for nonpositive values ofδ. This implies that̂φn converges very slowly

towards1 for d < 1. Moreover, ford < 1 the limiting distribution of
(
φ̂n − 1

)
has nonpositive

support and then

lim
n→∞

P
(
φ̂n − 1 < 0

)
= 1.

When d ≥ 1, nmin[1,1+2δ]
(
φ̂n − 1

)
converges to its limiting distribution at a faster rate thanthey

do in standard first autoregressions with stationary variables. This implies that̂φn has high speed

convergence towards1 for d ≥ 1. Moreover, ford > 1 the limiting distribution of
(
φ̂n − 1

)
has
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nonnegative support and then

lim
n→∞

P
(
φ̂n − 1 < 0

)
= 0.

The relation between the first autoregressive parameterφ̂n and the fractional parameterd, high-

lighted by the results of Theorem1 and illustrated by the figure1, in the context ofARFIMA(0, d, 0)

process, suggests that when we deal with unit root test, we have φ = 1 or φ < 1, according to

wetherd ≥ 1 or d < 1. In other words, the testing problem

H0 : φ = 1 againstH1 : φ < 1 (3.6)

is equivalent to the testing problem

H0 : d ≥ 1 againstH1 : d < 1 (3.7)

It is obvious that the classical testing hypothesis of the Dickey-Fuller test is(3.6). If one would

test the hypotheses(3.6), then in the familiar Dickey-Fuller test we have

H0 : φ = 1 implies d = 1,

H1 : φ < 1 implies d = 0,

whereas in the context ofARFIMA(0, d, 0) processes we have

H0 : φ = 1 implies d ≥ 1,

H1 : φ < 1 implies d < 1.
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Now, we can expose our simple idea associated with the non explosive feature of theARFIMA(0, d, 0)

process which will allow us to draw up a bridge between the processI(0) and I(1), by using a

new fractional autoregression model. The new fractional model includes process(1.1) and (1.2)

like a particular case. For the testing problem(1.6), we propose to test the null hypothesis by

means of thet-statistic of the coefficient of(1 − L)−1+d0yt−1 in the ordinary least squares (OLS)

autoregression

∆−1+d0yt = φ∆−1+d0yt−1 + ǫt, t = 1, 2, · · · , n, (3.8)

or equivalently

∆d0yt = ρ∆−1+d0yt−1 + ǫt, t = 1, 2, · · · , n, (3.9)

whereρ = φ − 1 and ǫt the residuals. Ifd = d0 and ǫt = ut (recall thatd is the true value of

integration parameter andd0 is the value specified under the null), in the fractional autoregressive

model (3.8) and (3.9), according to wether

d0 = 0 andφ = 1 i.e. (ρ = 0)

d0 ∈ ]0, 1[ andφ = 1 i.e. (ρ = 0)

d0 = 1 andφ = 1 i.e. (ρ = 0)

we have respectively

yt = ut i.e. yt  I(0)

(1− L)d0yt = ut, d0 ∈ ]0, 1[ i.e. yt  FI(d0)

(1− L)yt = ut i.e. yt  I(1)

In order to grasp the intuition behind the fractional autoregressive model(3.9), suppose that

yt  FI(d0) and let us consider the relation between∆d0yt and∆−1+d0yt−1. Note that, it is easy

to check, that∆d0yt = (1 − L)
[
∆−1+d0yt

]
and∆−1+d0yt  I(1). Putting∆−1+d0yt = xt we can

rewrite (3.9) as follows

(1− L)xt = ρxt−1 + ǫt, t = 1, 2, · · · , n. (3.10)
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The regression model(3.10) is the simple Dickey-Fuller framework to deal with the testing problem

(3.6). Furthermore, suppose thatyt  FI(d) thenxt  FI(1+ d−d0) and we have the following

(because of nonexplosiveness ofARFIMA(0, d, 0) processes)

φ = 1 i.e. ρ = 0,

φ < 1 i.e. ρ < 0,

according to wether

1 + d− d0 ≥ 1 i.e. d ≥ d0,

1 + d− d0 < 1 i.e. d < d0.

In other words, by using the regression model(3.9), the testing problem(1.6) is equivalent to

the testing problem(3.6).

The simple fractional autoregression model(3.9) can be easily implemented for practical settings

and is flexible enough to account for broad family of long memory specification of the fractional

parameterd. The OLS estimator ofρ (hereafterρ̂n and itst-ratio (hereaftertρ̂n) for the regression

model (3.9), are given by the usual squares expressions

ρ̂n =

∑n
t=1

[
∆d0yt

] [
∆−1+d0yt−1

]
∑n

t=1 [∆
−1+d0yt−1]

2 ,

tρ̂n =

∑n
t=1

[
∆d0yt

] [
∆−1+d0yt−1

]
{
s2n
∑n

t=1 [∆
−1+d0yt−1]

2
}1/2

,

where the variance of the residuals,s2n is given by

s2n =

∑n
t=1

[
∆d0yt − ρ̂∆−1+d0yt−1

]

n
.

We call the testing procedure based both on the regression model (3.9) and the hypothesis test

(1.6) the ”Fractional Dickey and Fuller” (F −DF ) test.

III. A SYMPTOTIC NULL AND ALTERNATIVE DISTRIBUTION AND CONSISTENCY OF F-DF TEST

A. Asymptotic null and alternative distribution

The asymptotic distribution of the statistic’ŝρn (appropriately standardized) andtρ̂n , under the

hypothesisH0 : d ≥ d0 andH1 : d < d0, is given in the following theorems.
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Theorem 2. Let yt satisfy(3.1). For δ = d− d0 ∈
]
−1

2
, 1
2

[
, if the regression model(3.9) is fitted

to a sample of sizen then, asn → ∞

n1+2δ ρ̂n ⇒ −

[
1
2
+ δ
] Γ(1+δ)

Γ(1−δ)∫ 1

0
B2

δ(r)dr
, if − 0.5 < δ < 0, (4.1)

nρ̂n ⇒
1
2
{B2(1)− 1}
∫ 1

0
B2(r)dr

, if δ = 0, (4.2)

nρ̂n ⇒
1
2
{B2

δ(1)}∫ 1

0
B2

δ(r)dr
, if 0.5 ≥ δ > 0, (4.3)

whereBδ(r) and B(r) are respectively the typeI fractional Brownian Motion and the standard

Brownian Motion.

Theorem2 indicates that the rate of convergence depends on the difference between the unknown

true value of the parameterd and the value specified under the nulld0 i.e. δ = d− d0. The rate of

convergence increases withδ for −1
2
< δ < 0 until the raten, and converges at the same raten for

all δ ≥ 0 (See figure 2 above). The asymptotic distributions ofρ̂n depends also on theδ = d− d0.

If δ = 0 i.e. (d = d0), then the asymptotic distribution of̂ρn is reduced to that deduced by Dickey

and Fuller(1979) for the particular caseH0 : d = 1. In the caseδ 6= 0, then the distribution of̂ρn

are reduced to those deduced by Sowell(1990) for particular caseH0 : d = 1 andd− 1 = δ with

δ 6= 0.

Theorem 3. Let yt satisfy(3.1). For δ = d− d0 ∈
]
−1

2
, 1
2

[
, if the regression model(3.9) is fitted

to a sample of sizen then, asn → ∞

tρ̂n
p
→ −∞, if − 0.5 ≤ δ < 0, (4.5)

tρ̂n ⇒
1

2
{B2(1)−1}

[
∫
1

0
B2(r)dr]

1/2 , if δ = 0, (4.6)

tρ̂n
p
→ +∞, if 0.5 ≥ δ > 0, (4.7)

whereB(r) is the standard Brownian Motion.

Theorem3 indicates that the asymptotic distribution oftρ̂n depends also onδ = d− d0. If δ = 0

the asymptotic distribution oftρ̂n is reduced to that deduced by Dickey and Fuller(1979) for the
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particular caseH0 : d = 1. In the caseδ > 0 andδ < 0 the distribution oftρ̂n diverge respectively

to (+∞) and (−∞). Similar results, for the particular caseH0 : d = 1 with d − 1 = δ 6= 0 are

derived by Sowell(1990).

Corollary. Let {yt} be generated by(3.1). For δ = d− d0 ∈
]
−1

2
, 1
2

[
. If regression model(3.9)

is fitted to a sample of sizen then, asn → ∞, we have for thet-statistic

n−δ (tρ̂n) ⇒ Cδ

1

2
[B2

δ(r)]

(
∫
1

0
B

2

δ(r)dr)
1/2 if δ > 0,

and

nδ (tρ̂n) ⇒ −Cδ
( 1

2
+δ)Γ(1+δ)

Γ(1−δ)(
∫
1

0
B

2

δ(r)dr)
1/2 if δ < 0,

whereCδ =
[

Γ(1−2δ)
(1+2δ)Γ(1+δ)Γ(1−δ)

]1/2
andwhereBδ(r) andB(r) are respectively the type I fractional

Brownian Motion and the standard Brownian Motion.

The limiting distribution ofn−|δ| (tρ̂n) has nonnegative support ifδ > 0 and a nonpositive support

if δ < 0.

The standardized least squares estimateρ̂n and the correspondingt-statistic,tρ̂n will be noted

hereafter respectively byτρ andτt. By using these notations, we explain now, how one can exploit

the results of theorem(3) to statistical inference in time series. Our interest is to show that the

F-DF tests, based onτt statistics are consistent whereas the F-DF tests based onτρ statistics are

not consistent.

B. Consistency of F-DF test based onτt statistic

Consider the problem of hypothesis test(1.6) in sample of sizen. It is convenient to introduce

the nonrandomized test defined by a functionΦn on the sample space of the observationsτt, with

critical regionC. TheΦn test for a regionC is its indicator function

Φn (τt) =





1 if τt ∈ C

0 if τt /∈ C

(4.8)
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Let α andβ respectively the typeI error and the typeII error of the testΦn. SinceH0 andH1

are composite, we have

α = Supd≥d0π0(d)

β = Infd<d0π1(d)

whereπ0(d) = PH0
(reject H0) and π1(d) = PH1

(acceptH0). Practically, this entails computing

a statisticτt from a sample, whose distributionPH0
when the null hypothesisH0 is true can be

tabulated, and used to fix the probability of rejection whenH0 is true (a TypeI error) not exceed a

chosen valueα. Since, the alternative hypothesis isH1 : d < d0, it is natural to consider one sided

critical regions of the form

C = {τt < cn (α)} , (4.9)

whereα is the level of the test. With these settings, the power function of the testΦn, denoted by

πΦn(d) is :

πΦn(d) = 1− Infd<d0π1(d).

Theorem 4. A sequence of tests{Φn} defined by(4.8), with critical region (4.9) each of given

sizeα is consistent i.e.

lim
n→∞

πΦn(d) → 1 for d < d0.

Proof. If δ < 0, from theorem3 and corollary1 it follows

lim
n−→∞

PH1
(τt < cn (α)) = lim

n−→∞
PH1

(
nδτt < nδcn (α)

)

= lim
n−→∞

PH1

(
−Cδ

( 1

2
+δ)Γ(1+δ)

Γ(1−δ)(
∫
1

0
B

2

δ(r)dr)
1/2 < 0

)

= 1, becausenδτt has nonpositive support.

As n becomes infinite,πΦn(d) tends to1, if δ < 0. Moreover, for eachn, πΦn(d) is an increasing

function, with larger absolute value onδ < 0 thanδ = 0. Hence, for testingd ≥ d0 againstd < d0,

the regionτt < cn (α) is unbiased (for anyn) and defines a consistent family of tests.
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We have also

lim
n−→∞

PH0
(τt > cn (α)) = 1− α, if δ = 0,

and

lim
n−→∞

PH0
(τt > cn (α)) = 1, if δ > 0.

For the case whereδ = 0, the exact critical pointscn (α) are given by Fuller (1976, pp. 373

and 375). These critical points are also asymptotically valid (with in the case where theut’s are

not normal). This implies that the proposed test can be understood and implemented exactly as the

Dickey and Fuller test for unit root by using the usual table statistics.

In practice, the statistician or econometrician, would wish to know the answer to the following

question : Is the series, under study, stationary or not ? To answer this question, we propose the

following downward testing procedures where the highest integration level is tested first.

1) RejectH0 : d ≥ 1 (againstH1 : d < 1) and go to step 2 ifτt < cn (α); otherwise, conclude

thatH0 : d ≥ 1 is true.

2) RejectH0 : d ≥ 0.5 (againstH1 : d < 0.5) if τt < cn (α); otherwise, conclude thatH1 : d ≥

0.5 is true and0.5 ≤ d < 1.

IV. POWER OFF-DF TEST IN FINITE SAMPLE

After the theoretical analysis of the F-DF test based onτt statistic, we now conduct a Monte-

Carlo experiment to examine the finite sample performance ofF-DF test based onτt and the F-DF

test based onτρ.

We consider the data generating processes,

(1− L)dyt = ut. (5.1)
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The regression model will be used for estimation and inference to deal with the hypothesis test

H0 : d ≥ d0 againstH0 : d < d0, (I)

is

(1− L)d0yt = ρn(1− L)−1+d0yt−1 + ǫt. (5.2)

Before giving the main results of these experiments, we examine initially, the two following simple

hypothesis tests

H0 : d = d0 againstH1 : d < d0 (II)

and

H0 : d = d0 againstH1 : d > d0 (III)

In the experiments reported in this section, a general procedure for generating a stationary frac-

tionally integrated series of lengthn is to apply, fort = 1, · · · , n and some fixedm, the formula

xt =
m+t−1∑

j=0

Γ (d+ j)

Γ (d) Γ (j + 1)
ut−j, (5.3)

where{u1−m, · · · , un} is a random sequence ofi.i.d.N(0, 1). This simulation strategie for type I

fractional Brownian processes has suggested by Davidson and Hashimzade(2008). They argued

that, by choosingm large we should be able to approximate the type I processes toany desired

degree of accuracy. For the non-stationary parameter confugarationsd = 0.6, 0.7, 0.8, 0.9, 1, 1.1,

1.2, 1.3 and1.4, we use the following:

xt = xt−1 +

m+t−1∑

j=0

Γ (δ + j)

Γ (δ) Γ (j + 1)
ut−j , (5.4)

where δ ∈
]
−1

2
, 1
2

[
. For the particular cased = 0.5 we can use(5.3) or (5.4) and the value of

m = 500. All computations were done in Eviews 4.0.
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A. The size of the hypothesis tests(II) and (III).

Trough Monte Carlo study we show that the F-DF test, based on the fractional first autoregression

model(5.2), fare very well in terms of size when we useτρ or τt statistics. To investigate the size of

the hypothesis test(II) and(III), 10000 samples ofFI(d) Gaussian processes(5.1) are generated

and the regression model(5.2) is used for estimateτρ and τt. The samples sizes considered are

n = 50; 100; 150; 200 and250. Samples ofn observations were generated for five values ofd : 0;

0.2; 0.5; 0.8; 1 and for each valued, we specify under the null only one valued0 equal tod.

For the case whereut’s are normal, the exact critical points forτρ and τt, under the null are

given by Fuller (1976, pp. 373 and 375: Table 8.5.1 forτρ and Table 8.5.2 forτt). For the testing

problem(II) we consider one-sided critical regions of the formτρ < bn(α) and τt < cn(α). For

the testing problem(III) we consider one sided critical regions of the formτρ > bn(1 − α) and

τt > cn(1− α), whereα is the level of the test.

Table 1 reports the acceptation frequencies at, respectively theα = 1%, 5%, 10% significance

level, for the testing problem(II) when we use the dickey Fullert-statistic τt. It is noted that

the estimated frequencies are very close to the theoreticalfrequencies (1 − α = 0.99, 0.95, 0.90).

Similar results, not reported here, are found for the test hypothesis(III) when we use the dickey

Fuller t-statistic τt and for the tests hypothesis(II) and (III) when we use the Dickey-Fuller

’normalized biais’ statisticτρ.
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Table 1.

T \ d 0 0.2 0.5 0.8 1

α = 0.01

50

100

150

200

250

98.96

98.94

99.05

99.05

99.01

98.93

98.91

98.98

98.90

98.83

98.91

98.96

98.96

99.11

99.18

98.90

98.93

98.81

99.01

99.11

99.12

99.12

99.04

99.08

98.89

α = 0.05

50

100

150

200

250

94.05

94.48

95.09

95.04

94.68

95.22

95.05

95.09

95.20

94.90

95.22

94.97

94.79

95.32

95.44

95.10

94.95

94.59

94.83

94.93

95.13

95.17

94.91

94.88

94.87

α = 0.10

50

100

150

200

250

90.34

89.73

90.17

90.39

89.49

89.79

99.76

90.34

90.23

90.04

90.00

90.21

89.86

89.84

90.49

90.25

89.97

89.72

89.66

90.11

90.02

90.24

89.95

89.99

90.15

Although these results are very significant we have also, used the samples of10000 observations

to estimate the densities (following Sowell(1990)) of τρ andτt underδ = 0 by the kernel estimator

f̂(x) =
1

10000h

10000∑

j=1

Ψ

(
x− θ̂j

h

)
,

where θ̂j are the estimated values ofτρ under(δ = 0) or τt under(δ = 0) for the 10000 samples

and Ψ (y) is the density defined by
(
15
16

) (
(1− y2)

2
)

for −1 < y < 1 and zero elsewhere. The

value of h was chosen to minimize the integrated mean square error (seeTapia and Thompson

(1978, pp 67)). The estimated densities are presented in Fig. 3. and Fig.4.

For each statisticsτρ or τt under δ = 0 (i.e. d = d0) and for a given size of samplen, the
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estimated densities for different values ofd are represented on the same graph. The figures 3 and

4 shows that by fitting the regression model(5.2) to the sample generated according(5.1), one

obtains the same distribution that those used by Dickey-Fuller (1979,1981).

B. The power of the hypothesis tests(II) and (III)

To study the power of fractional unit root test, we have generated 10000 samples ofFI(d)

Gaussian process according(5.1) for d = 1. To evaluate the power of the test(II) we specify

different values ofd0 under the null :1, 1.1, 1.2, 1.3 and 1.4. The figure below represent the

different densities ofτρ under (δ ≤ 0) for the case where the true value ofd is equal1 and

δ ∈ {−0.4; − 0.3; − 0.2; − 0.1; 0}. Let bn(α) the critical point at the significance levelα for τρ
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under(δ < 0), we have

P [τρ > bn(α) | δ < 0] = β ′.

If the test(II) has good performance in terms of power then the probabilityβ ′ should decrease

when δ decreases (i.e.d0 increases) and moves away from zero.β ′ should be always less than

β. The figure 5 below show the opposite i.e.β ′ increases whenδ decreases, because, as noted

by Sowell (1990), the density appears to be converging to unit mass at zero when δ approaches

(−0.5). Consequently, we can not use the statisticτρ for the hypotheses test(II).

Now considering the test(III) in the case whered = d0 + δ is the true value of fractional

integration of the processyt with δ ∈ {0; 0.1; 0.2; 0.3; 0.4}. The figure below represents the

estimated densities ofτρ under (δ ≥ 0) for a size of samplen = 250, if the true value of the

fractional parameter of integration is equal to1, whereas the values specified under the null are

d0 ∈ {1; 0.9; 0.8; 0.7; 0.6}. The two graphs show that the various densitiesτρ under(δ ≥ 0), with

δ ∈ {0; 0.1; 0.2; 0.3; 0.4} are all to fit together. In other terms, whenH1 : d > d0 is true, the

distribution ofτρ under(δ ≥ 0) does not make it possible to have a powerful test. Contrary tothe

preceding test, the reason of disappointing results of the third test is not in the distribution ofτρ,

but in the parameterρ. Indeed, the parameterρ takes the value0 if the null is true, i.e.d = d0 and

it takes also value0 if the alternative is true i.e.d > d0.
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C. Size and power of the F-DF test based on hypothesis test(I) and τt

In this subsection, in Monte Carlo study we show that the proposed hypotheses test(I) based on

the DGP(5.1) and in the auxiliary regression model(5.2) fare very well both in terms of power

and size when we use theτt statistic. To investigate the size and power of the hypotheses test(I),

10000 samples ofFI(d) Gaussian processes(5.1) are generated and the regression model(5.2)

is used to estimateτt. The sample size considered isn = 50 andn = 250. We will use, as true

values of the fractional parameter of integration of the processyt, three valuesd : 0; 0.5; 1 and for

each value, we specify various values ford0. If the set of the values ofd0 for a given value ofd

is denotes bySd(d0) then the sets which will be used for the three values ofd are respectively

S0(d0) = {−0.4; − 0.3; − 0.2; − 0.1; 0; 0.1; 0.2; 0.3; 0.4} ,

S0.5(d0) = {0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9} ,

S1(d0) = {0.5; 0.6; 0.7; 0.8; 0.9; 1; 1.1; 1.2; 1.3; 1.4} .

The tables 2 and 3 contains the simulations results on the size of the F-DF test for the hypotheses

test(I). The tables 2 and 3 shows that the testing problem(I) has good performances in terms of

size, since we have

P (τt ≥ cn(α) | δ ≥ 0) ≥ 1− α.

The table 5 and Table 6 contains the simulations results on the power of the F-DF test for the
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hypotheses test(I). There are some conclusions to be drawn from it. First, the power of the F-DF

test increases with the increase of sample size andδ = d − d0. For examples, forα = 5%, d = 1

and δ = −0.1, power is12.36% for n = 50, 20.76% for n = 250and for α = 5%, d = 1 and

δ = −0.3, power is48.5% for n = 50, 86.05% for n = 250. Second, as shown in table 5 and 6,

for n = 250, the power of F-DF test is below50% for (δ = −0.1) and for (α = 1%, δ = −0.2).

Third, for a givenn, α and δ, the power ford = 0, d = 0.5 andd = 1 are approximately similar

because the asymptotic under the alternative does not depend on d but depend onδ = d− d0.

Table 2. Size of the hypotheses test(I) when we useτt (n = 50)

α \ δ 0.4 0.3 0.2 0.1 0

d0 = 0

1%

5%

10%

100

99.98

99.85

99.99

99.85

99.48

99.93

99.39

98.26

99.73

98.17

95.78

98.96

94.05

90.34

d0 = 0.5

1%

5%

10%

99.98

99.91

99.78

99.97

99.78

99.42

99.90

99.28

98.25

99.74

98.14

95.63

98.91

95.22

90.00

d0 = 1

1%

5%

10%

100

99.95

99.83

99.99

99.92

99.54

99.97

99.55

98.72

99.79

98.34

96.03

99.12

95.13

90.02
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Table 3. Size of the hypotheses test(I) when we useτt (n = 250)

α \ δ 0.4 0.3 0.2 0.1 0

d = 0

1%

5%

10%

100

100

100

100

99.99

99.97

99.99

99.95

99.73

99.92

99.29

97.87

99.01

94.68

89.49

d = 0.5

1%

5%

10%

100

100

100

99.98

100

100

99.8

99.97

100

99.91

99.27

97.66

99.18

95.44

90.49

d = 1

1%

5%

10%

100

100

99.98

100

100

99.97

100

99.96

99.80

99.92

99.32

98.00

98.89

94.87

90.15

Table 5. power of the hypotheses test(I) when we useτt (n = 50)

α \ δ −0.1 −0.2 −0.3 −0.4

d = 0

1%

5%

10%

3.61

12.66

21.97

9.53

26.68

39.56

22.23

47.16

62.14

45.82

73.03

84.92

d = 0.5

1%

5%

10%

2.87

11.9

21.17

9.36

25.17

39.58

22.59

48.34

63.23

45.16

72.74

84.39

d = 1

1%

5%

10%

3.2

12.36

21.63

9.39

26.1

39.24

22.91

48.50

63.69

46.23

73.47

84.99
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Table 6. Power of the hypotheses test(I) when we useτt (n = 250)

α \ δ −0.1 −0.2 −0.3 −0.4

d = 0

1%

5%

10%

7.59

19.98

30.62

30.07

52.53

64.77

68.00

85.90

92.95

95.48

99; 16

99.87

d = 0.5

1%

5%

10%

7.3

20.35

31.44

30.06

52.40

65.10

68.54

85.80

92.50

95.60

99.39

99.89

d = 1

1%

5%

10%

7.71

20.76

31.71

29.90

51.77

64.29

68.36

86.05

92.41

95.39

99.35

99.87

V. D ISCUSSION AND CONCLUDINGREMARKS

In this paper, to distinguish betweenFI(d) processes withd ∈
]
−1

2
, 3
2

[
, we have proposed a new

and appropriate testing procedure in time domain that extends the familiar Dickey-Fuller(1979)

types tests for unit root (I(1) againstI(0)), by embedding the cased = 0 andd = 1 in continuum

of memory properties. The main idea of our test procedure is the following: in order to test if the

processyt is fractionally integrated of orderd0, it suffices to test if the processxt = (1−L)−1+d0yt

is integrated of order1. We have referred to the test based on this original idea as the Fractional

Dickey-Fuller (FD-F) test. The proposed test is based on theOLS estimator (̂ρn) or its t-ratio in

the autoregression model

∆d0yt = ρ∆−1+d0yt−1 + ǫt, t = 1, 2, · · · , n

With this regression model associated with the non explosive feature ofFI(d) processes, we have

showed that the testing problemH0 : d ≥ d0 againstH1 : d < d0 with d ∈
]
−1

2
, 3
2

[
andd0 ∈ [0, 1], is

equivalent toH0 : ρ = 0 againstH1 : ρ < 0. We have also, showed that the asymptotic distributions
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for ordinary least squares (OLS) and itst-ratio under the null simple hypothesisH0 : d = d0

are identical to those derived by Dickey and Fuller (1979,1981) for the simple case (without drift

and trend). This implies that the proposed test can be understood and implemented exactly as the

Dickey-Fuller test for unit root by using the usual tables statistics. It worthnoting that the new

F-DF test proposed in this paper is a generalization of the particular caseH0 : d = 1 against

H1 : d < 1 (or d > 1) studied by Sowell(1990) for d ∈
]
1
2
, 3
2

[
, to the general caseH0 : d ≥ d0

againstH1 : d < d0 with d ∈
]
−1

2
, 3
2

[
andd0 ∈ [0, 1]. For the particular case, Sowell(1990) have

concluded that the asymptotic distributions ofρ̂n and tρ̂n can not be used to test the presence of

unit root in fractional ARMA models, since the implementation of the test require tabulations of

the percentiles of fractional Brownian motion conditionally on δ = d − 1 and thus suffer from

misspecification. These disappointing conclusions originate from an ill defined statistical problem

and from an inappropriate use of asymptotic distributionaltheory. In fact, Sowell have focused

his attention on the parameterρ by considering the testH0 : ρ = 0 againstH1 : ρ < 0 and

considered that under the null there are three asymptotic distributions conditionally onδ = d − 1

(δ < 0, δ = 0, δ > 0). In this paper, by using the non explosiveness ofARFIMA(0, d, 0) processes,

we have showed, for the general case, that under the nullH0 : ρ = 0 there are only two possible

asymptotic distributions conditionally onδ = d− d0 (δ = 0, δ > 0) and under the alternative there

is only one asymptotic distribution (δ < 0).

The theoretical framework above, is the unified framework for the unit root test and fractional

unit root test. Furthermore, in order to test if a given process yt is stationary we can perform the

downward F-DF testing procedures where the highest integration level is tested first (in our case

d0 = 1). We can easily extend our results, by using the same framework, to the sequential testing

procedure advocate by Dickey and Pantula, allowing the analysis to cover the cased ∈ ]−1.5, 2.5[

andd0 ∈ [0, 2].

Further research is currently being undertaken towards generalizing the F-DF testing approach
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along similar directions as the D-F test has been extended inthe unit root literature accounting for

time series which may exhibit a trending behavior and for general ARFIMA case.

VI. A PPENDIX

Proof of Theorem 1. If {xt} satisfy(2.1) and if the first autoregression modelxt = φxt−1 +ωt

or equivalently∆xt = (φ− 1)xt−1+ωt is fitted to a sample of sizen then, the least squares slope

estimate have the following expression:

φ̂n =

∑n
t=1 xt−1xt∑n
t=1 x

2
t−1

= 1 +

∑n
t=1 xt−1∆xt∑n

t=1 x
2
t−1

. (A1)

Whend = m+ δ = 0.5 i.e. m = 0, δ = 0.5 and∆xt ∼ FI (−0.5) it follows from (2.7), that

κ−2 (δ, n)n−1
n∑

t=1

x2
t−1 =⇒

∫ 1

0

[
B 1

2
,0 (r)

]2
dr. (A.2)

Whenm = 1 for −1/2 < δ ≤ 1/2 and∆xt ∼ FI (δ), it follows from (2.7), that

κ−2 (δ, n)n−2δ−2

n∑

t=1

x2
t−1 =⇒

∫ 1

0

B
2
δ,0 (r) dr, (A.3)

and when(m > 1 for 0 < δ ≤ 1/2) and∆xt ∼ FI (m− 1 + δ), it follows from (2.7), that

κ−2 (δ)n−2δ−2m
n∑

t=1

x2
t−1 =⇒

∫ 1

0

B
2
δ,m (r) dr. (A.4)

As regards the
∑n

t=1 xt−1∆xt term, we can rewrite it as

1
2

n∑

t=1

{
x2
t − x2

t−1 − (xt − xt−1)
2} = 1

2

n∑

t=1

x2
n −

1
2

n∑

t=1

(∆xt)
2 .

Whenm = 0 for δ = 0.5 and∆xt ∼ FI (−0.5), the first term when multiplied byκ−2 (δ, n) =

2σ2
u

π
log n converges in distribution to1

2
[B(1)]2 because relation(2.5), whilst the limiting distribution

of the second term follows from Lemma2.1 of Ming Liu (1998) result2, we have

n−1∑n
t=1 (∆xt)

2 p
−→

4σ2
ε

π
. (A.5)

Whenm = 1 for −1/2 < δ ≤ 0 and∆xt ∼ FI (δ), the first term when multiplied byκ−2 (δ, n)n−1−2δ

converges in distribution to1
2
[Bδ(1)]

2 because of the(2.5), whilst the limiting distribution of the
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second term follows by using the ergodic theorem

n−1
∑n

t=1 (∆xt)
2 p
−→

σ2
uΓ(1− 2δ)

Γ2(1− δ)
. (A.6)

Therefore, whenδ = 0, i.e.,whend = 1, κ2 (δ) = σ2
u, Bδ(r) = B(r) for r ∈ [0, 1] and

κ−2 (δ, n)n−1
n∑

t=1

xt−1∆xt =⇒
1
2

[
B

2(1)− 1
]
, (A.7)

whereas whend = m+ δ for (m ≥ 2 and − 1/2 < δ ≤ 1/2) or (m = 1 and0 < δ ≤ 1/2)

κ−2 (δ, n)n1−2m−2δ
n∑

t=1

xt−1∆xt =⇒
1

2
B

2
δ,m (1) , (A.8)

and whend = 1 + δ for −1/2 < δ ≤ 0

κ−2 (δ, n)n−1
n∑

t=1

xt−1∆xt =⇒ −
σ2
uΓ(1− 2δ)

2Γ2(1− δ)
, (A.9)

and whend = 0.5

κ−2 (δ, n)n−1
n∑

t=1

xt−1∆xt =⇒ −2. (A.10)

Hence, using(A2)− (A10) and the continuous mapping theorem, we obtain that

logn
(
φ̂n − 1

)
=

κ−2 (δ, n)n−1 log n
∑n

t=1 xt−1∆xt

κ−2 (δ, n)n−1
∑n

t=1 x
2
t−1

=⇒
−2

∫ 1

0

[
B 1

2
,0(r)

]2
dr

, (A.11)

whend = 0.5.

n1+2δ
(
φ̂n − 1

)
=

κ−2 (δ, n)n−1
∑n

t=1 xt−1∆xt

κ−2 (δ, n)n−2δ−2
∑n

t=1 x
2
t−1

=⇒
−
[
1
2
+ δ
] Γ(1+δ)

Γ(1−δ)∫ 1

0
B2

δ,0 (r) dr
, (A.12)

whend = 1 + δ for −1/2 < δ ≤ 0.

n
(
φ̂n − 1

)
=

κ−2 (δ, n)n−1
∑n

t=1 xt−1∆xt

κ−2 (δ, n)n−2
∑n

t=1 x
2
t−1

=⇒
1
2
[B2 (1)− 1]
∫ 1

0
B2 (r) dr

(A.13)

if d = 1, i.e.,m = 1 andδ = 0.

n
(
φ̂n − 1

)
=

κ−2 (δ, n)n1−2δ−2m
∑n

t=1 xt−1∆xt

κ−2 (δ, n)n−2δ−2m
∑n

t=1 x
2
t−1

=⇒
1
2
B

2
δ,m (1)

∫ 1

0
B2

δ,m (r) dr)
, (A.14)

if d = m+ δ for (m ≥ 2 and − 1/2 < δ ≤ 1/2) or (m = 1 and0 < δ ≤ 1/2).
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Proof of Theorem 2. The proof is omitted because of its similarity with Theorem 1. Indeed,

if we denote∆−1+d0yt = xt then we can rewrite the regression model(3.9) as∆xt = ρxt−1 + ωt

with xt ∼ FI (1 + δ) and−0.5 < δ < 0.5.

Proof of Theorem 3. If yt satisfy (3.1) with d ∈
]
−1

2
, 3
2

[
andd− d0 = δ with −0.5 < δ < 0.5

and if the regression model (3.9) is fitted to sample of sizen then, by denoting∆−1+d0yt = xt ∼

FI(1 + δ), the t student statistic have the following expression

tρ̂n =

∑n
t=1 xt−1∆xt

sn
{∑n

t=1 x
2
t−1

}1/2 .

We can rewritetρ̂n as follows

tρ̂n =
κ (δ)−1 n−1−δ

∑n
t=1 xt−1∆xt

sn
{
κ (δ)−2 n−2−2δ

∑n
t=1 x

2
t−1

}1/2

=
1
2
κ (δ)−1 n−1−δ (xn)

2 − 1
2
κ (δ)−1 n−1−δ

∑n
t=1 (∆xt)

2

sn
{
κ (δ)−2 n−2−2δ

∑n
t=1 x

2
t−1

}1/2 .

First notice that

sn =
1

n

n∑

t=1

(∆xt − ρ̂nxt−1)
2 =

1

n

n∑

t=1

(∆xt)
2 +

1

n
ρ̂2n

n∑

t=1

x2
t−1 −

2

n
ρ̂n

n∑

t=1

xt−1∆xt

Hence, by usingA3, A6, A7, A9, Theorem 2 and the continuous mapping theorem, it follows that

sn
p
→

Γ(1− 2δ)

Γ2(1− δ)
σ2
u, (A.15)

for all δ ∈ ]−0.5, 0.5[.

Consider now, the numerator,N , of the tρ̂n statistic, which can rewrite as

N =
1

2
κ (δ)nδ

[
κ (δ)−2 n−1−2δ (xn)

2]− 1

2
κ (δ)−1 n−δ

[
n−1

n∑

t=1

(∆xt)
2

]
.

By using (2.5) and (2.7) andA.7 we obtains

N =⇒





−∞ if δ < 0

1
2
{(B(1)2 − 1)} if δ = 0

+∞ if δ > 0.

(A.12)
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Hence, usingA.3, A.11 andA.12 and the continuous mapping theorem, we obtain that

tρ̂n
p
→ −∞ if − 0.5 ≤ δ < 0,

tρ̂n ⇒
1

2
{B2(1)−1}

[
∫
1

0
B2(r)dr]

1/2 if δ = 0,

tρ̂n
p
→ +∞ if 0.5 ≥ δ > 0 .

Proof: Proof of Corollary 1. Direct consequence of Theorem 3.
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