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Nonparametric testing for no-effect with functional

responses and functional covariates

Valentin Patilea∗ César Sánchez-Sellero† Matthieu Saumard‡

Abstract

This paper studies the problem of nonparametric testing for the no-effect of a
random functional covariate on a functional response. That means testing whether
the conditional expectation of the response given the covariate is almost surely zero
or not without imposing any model relating response and covariate. The response
and the covariate take values in possibly different separable Hilbert spaces. Hence
the situations with scalar response or covariate will be particular cases. Our test
is based on the remark that checking the no-effect of the functional covariate is
equivalent to checking the nullity of the conditional expectation of the response
given a sufficiently rich set of projections of the covariate. Such projections could be
on elements from finite-dimension subspaces of the Hilbert space where the covariate
takes values. Then, the idea is to search a finite-dimension element of norm 1 that is,
in some sense, the least favorable for the null hypothesis. With at hand such a least
favorable direction, it remains to check the nullity of the conditional expectation
of the functional response given the scalar product between the covariate and the
selected direction. We follow these steps using a nearest neighbors (NN) smoothing
approach. As a result, our test statistic is a quadratic form involving univariate
NN smoothing and the asymptotic critical values are given by the standard normal
law. The test is able to detect nonparametric alternatives, not only linear ones.
The responses could be heteroscedastic with conditional variance of unknown form.
The law of the covariate does not need to be known. An empirical study with both
simulated and real data is reported. The cases of functional response and functional
or scalar covariate are considered. Our conclusion is that the test could be easily
implemented and performs well in simulations and real data applications.
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1 Introduction

There has been substantial recent work on the methodology of regression analysis with
functional data where predictors, responses, or both of them can be viewed as random
functions. Functional data arise in many applications, the monograph of Ramsay and
Silverman (2005) provides many compelling examples. In this paper we focus on the case
where both the response and the predictor (or covariate) are random elements taking
values in a space of functions. The functional linear model is the benchmark approach,
see Chiou, Müller and Wang (2004), Yao, Müller and Wang (2005), Gabrys, Horváth
and Kokoszka (2010) and the references therein. Recently, alternative nonparametric
approaches have been considered; see Ferraty et al. (2011), Lian (2011), Ferraty, Van
Keilegom and Vieu (2012).

An important step in the statistical modeling is the goodness-of-fit of the model con-
sidered, for instance the functional linear model. To our best knowledge only the papers of
Chiou and Müller (2007) and Kokoszka et al. (2008) investigate the problem of goodness-
of-fit. Chiou and Müller (2007) introduced diagnostics of the functional regression fit
using plots of functional principal components scores (FPC) of the response and the co-
variate. They also used residuals versus fitted values FPC scores plots. (The FPC are
the random coefficients in the Karhunen-Loève expansions.) It is easy to understand that
such two-dimension plots could not capture all types of effects of the covariate on the
response, such for instance the effect of the interactions of the covariate FPC. Kokoszka
et al. (2008) used the response and covariate FPC scores to build a test statistic with χ2

distribution under the null hypothesis of no linear effect. Again, by construction, the test
of Kokoszka et al. cannot detect any nonlinear alternative. When little is known about the
structure of the data, it is preferable to allow for flexible, nonparametric, alternatives for
the goodness-of-fit test. Moreover, when proceeding to nonparametric estimation of the
link between the response and the predictor, one should also check whether the predictor
has an effect of the response or not.

Formally, the statistical issue we address in this paper could be formulated as follows.
Consider a sample of independent copies (U1, X1), · · · , (Un, Xn) of (U,X) where U and X
takes values in some separable Hilbert spaces H1 and H2. Without loss of generality we
may suppose that U has zero expectation. The problem is to build a statistical test of
the hypothesis of no-effect of U on X , that is

H0 : E (U |X) = 0 almost surely (a.s.), (1.1)

against the nonparametric alternative P[E (U |X) = 0] < 1.∗ Since H1 or H2 could be of
finite dimension, for instance the real line, this framework covers all the common situations
involving functional data. However, our focus of interest will be on the case functional
response and functional covariate.

∗See for instance Parthasarathy (1967) for the construction of the expectation and conditional expec-
tation of a Hilbert-space valued random variable.
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The goodness-of-fit or no-effect against nonparametric alternatives has been very lit-
tle explored in functional data context. In the case of scalar response, Delsol, Ferraty
and Vieu (2011) proposed a testing procedure adapted from the approach of Härdle and
Mammen (1993). However, their procedure involves smoothing in the functional space and
requires quite restrictive conditions which make it difficult to apply to real data situations.
Patilea, Sánchez-Sellero and Saumard (2012) and Garćıa-Portugués, González-Manteiga
and Febrero-Bande (2012) proposed alternative nonparametric goodness-of-fit tests for
scalar response and functional covariate using one dimension projections of the covariate.
Such projection-based methods are much less restrictive and performs well in applications.
To our best knowledge, no nonparametric statistical test of no-effect or goodness-of-fit is
available when both the response and the covariate are functional.

Our test is based on the remark that checking the no-effect of the functional covariate
is equivalent to checking the nullity of the conditional expectation of the response given a
sufficiently rich set of projections of the covariate. Such projections could be on elements
of norm 1 from finite-dimension subspaces of the Hilbert space where the covariate takes
values. Then, the idea is to search a finite-dimension element of norm 1 that is, in some
sense, the least favorable for the null hypothesis. With at hand such a least favorable
direction, it remains to check the nullity of the conditional expectation of the functional re-
sponse given the scalar product between the covariate and the selected direction. Patilea,
Sánchez-Sellero and Saumard (2012) used a similar idea with scalar responses. We follow
these steps using a nearest neighbors (NN) smoothing approach. As a result, our new
test statistic is a quadratic form involving univariate NN smoothing and the asymptotic
critical values are given by the standard normal law. When the response is univariate, our
statistic is related but different from the one introduced by Patilea, Sánchez-Sellero and
Saumard (2012). By construction, the test is able to detect nonparametric alternatives.
The responses could be heteroscedastic with conditional variance of unknown form. The
law of the covariate does not need to be known.

The paper is organized as follows. In section 2 we introduce the main notation and
we derive a fundamental lemma for our approach. This lemma states that checking
condition (1.1) is equivalent to checking the nullity of the conditional expectation of U
given a sufficiently rich set of projections of X on elements of norm 1 from finite-dimension
subspaces of H2. In section 3 we introduce the test statistic for testing of no-effect of X
on U when U is observed. Our statistic is a quadratic form, based on univariate NN
smoothing, that behaves like a standard normal random variable under H0. We prove
that, under mild technical assumptions, the induced test is consistent against any type of
fixed alternatives and against sequences of directional alternatives approaching the null
hypothesis at a suitable rate. The allowed rates are almost the same as those obtained in
parametric model checks based on smoothing with univariate covariate, see for instance
Guerre and Lavergne (2005). Clearly, our test procedure applies also to the case where
the sample of U is not observed and has to be estimated, for instance as the residual
of a regression. Under suitable regularity conditions ensuring that the sample of U is
estimated sufficiently accurate, the test statistic will still have standard normal critical
values. To keep this paper at reasonable length, the extension of our methodology to the
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case of estimated responses will be investigated elsewhere. In section 4.1 we propose a
simple wild bootstrap procedure to approximate the critical values of our test statistic with
small samples and we report the results of several simulation experiments. In particular
we compare our test with the one proposed by Kokoszka et al. (2008). We conclude that
the test could be easily implemented and performs well in applications. The proofs are
relegated to the appendix.

2 A dimension reduction lemma

In order to simplify the presentation and without loss of generality, hereafter we focus
on the case where the Hilbert spaces H1 and H2 are both equal to the space of square-
integrable random functions defined on the unit interval.

Let us introduce some notation. For any p ≥ 1, let Sp = {γ ∈ R
p : ‖γ‖ = 1} denote

the unit hypersphere in R
p. Let L2[0, 1] be the space of the square-integrable real-valued

functions defined on the unit interval 〈·, ·〉 denote the inner product in L2[0, 1], that is for
any W1,W2 ∈ L2[0, 1]

〈W1,W2〉 =

∫ 1

0

W1(t)W2(t)dt.

Let ‖ · ‖L2 be the associated norm. Hereafter R = {ρ1, ρ2, · · · } will be an arbitrarily fixed
orthonormal basis of the function space L2[0, 1], that is 〈ρi, ρj〉 = δij . Then the response
and the predictor processes can be expanded into

U(t) =

∞∑

j=1

ujρj(t) and X(t) =

∞∑

j=1

xjρj(t), (2.2)

where the random coefficients uj (resp. xj) are given by uj = 〈U, ρj〉 (resp. xj = 〈X, ρj〉).
For a fixed positive integer p and any W ∈ L2[0, 1], W (p) ∈ L2[0, 1] will be the projection
of X on the subspace generated by the first p elements of the basis R, that is

W (p)(t) =

p∑

j=1

wjρj(t).

By abuse we also identify W (p) with the p−dimension random vector (w1, · · · , wp). On
the other hand, for any integer p ≥ 1 and non random vector γ = (γ1, · · · , γp) ∈ R

p, we
identify γ with

∑p
j=1 γjρj(t) ∈ L2[0, 1] and hence we write 〈W, γ〉 = 〈W (p), γ〉 =

∑p
i=1 xjγj.

In the following we will also use β =
∑∞

j=1 bjρj(t) to denote a non random element of

L2[0, 1].
Our approach relies on the following lemma, an extension of Lemma 2.1 of Lavergne

and Patilea (2008) and Theorem 1 in Bierens (1990) to Hilbert space-valued responses and
conditioning random variables. For any γ ∈ Sp, let Fγ denote the distribution function
(d.f.) of the real-valued variable 〈X, γ〉, that is Fγ(t) = P(〈X, γ〉 ≤ t), ∀t ∈ R.
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Lemma 2.1 Let U,X ∈ L2[0, 1] be random functions. Assume that E‖U‖ < ∞ and
E(U) = 0.

(A) The following statements are equivalent:

1. E(U | X) = 0 a.s.

2. E [〈U,E (U | 〈X, γ〉)〉] = 0 a.s. ∀p ≥ 1, ∀γ ∈ Sp.

3. E [〈U,E {U | Fγ(〈X, γ〉)}〉] = 0 a.s. ∀p ≥ 1, ∀γ ∈ Sp.

(B) Suppose in addition that for any positive real number s,

E(‖U‖ exp{s‖X‖}) <∞. (2.3)

If P[E(U | X) = 0] < 1, then there exists a positive integer p0 such that for any integer
p ≥ p0, the set

A = {γ ∈ Sp : E(U | 〈X, γ〉) = 0 a.s. } = {γ ∈ Sp : E(U | Fγ(〈X, γ〉)) = 0 a.s. }

has Lebesgue measure zero on the unit hypersphere Sp and is not dense.

Point (A) is a cornerstone for proving the behavior of our test under the null and the
alternative hypotheses. Point (B) shows that in applications it will not be difficult to find
directions γ able to reveal the failure of the null hypothesis (1.1) since, under the very
mild† conditions, such directions represent almost all the points on the unit hyperspheres
Sp, provided p is sufficiently large.

Let
Q(γ) = E[〈U ,E{U | Fγ(〈X, γ〉)}〉] (2.4)

The following new formulation of H0 is a direct consequences of Lemma 2.1 above.

Corollary 2.2 Consider a L2[0, 1]−valued random variable U such that E‖U‖ <∞. The
following statements are equivalent:

1. The null hypothesis (1.1) holds true.

2. for any p ≥ 1 and any set Bp ⊂ Sp with strictly positive Lebesgue measure on the
unit hypersphere Sp,

∀p ≥ 1, max
γ∈Bp

Q(γ) = 0. (2.5)

†If X does not satisfy condition (2.3), it suffices to transform X into some variable W ∈ L2[0, 1] such
that the σ−field generated by W is the same as the one generated by X and the variable W satisfies
condition (2.3).
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3 Testing the effect of a functional covariate

We introduce a general approach for nonparametric testing the no-effect of a functional
covariate X on a functional random variable U based on the characterization (2.5) of the
null hypothesis.

3.1 The test statistic

In view of equation (2.5), our goal is to estimate Q(γ). With at hand a sample of (U,X),
define

Qn (γ) =
1

n(n− 1)

∑

1≤i 6=j≤n

〈Ui, Uj〉
1

h
Kh (Fγ,n(〈Xi, γ〉) − Fγ,n(〈Xj, γ〉)) , γ ∈ Sp,

where Kh (·) = K (·/h), K(·) is a kernel, h the bandwidth, and Fγ,n is the empirical d.f.
of the sample 〈X1, γ〉, · · · , 〈Xn, γ〉.‡

The statistic Qn (γ) is related to statistics considered by Fan and Li (1996) and Zheng
(1996) for checks of parametric regressions for finite dimension data. See also Patilea,
Sánchez-Sellero and Saumard (2012) for the extension of this type of statistics to test-
ing the goodness-of-fit of functional linear model. The statistics considered by all these
authors are based on a Nadaraya-Watson regression estimator. Here we use the nearest
neighbor (NN) approach of Stute (1984) and hence our new statistic is more in the spirit
of the one introduced by Stute and González Manteiga (1996) to test simple linear mod-
els with scalar outcome and covariate and homoscedastic error term. Herein we allow for
heteroscedasticity of unknown form and hence, in the particular case where U and X are
scalar, we extend the framework of Stute and González Manteiga (1996).

The idea of using projections of the covariates was also considered by Lavergne and
Patilea (2008); see also Bierens (1990), Cuesta-Albertos et al. (2007), Cuesta-Albertos,
Fraiman and Ransford (2007). The extension of the scope to functional responses seems
to be new.

Under H0, by the Central Limit Theorem (CLT) for degenerate U−statistics, for fixed
p and γ ∈ Sp, nh1/2Qn (γ) has asymptotic centered normal distribution. Here we use the
CLT in Theorem 5.1 in de Jong (1987). We will show de Jong CLT still applies and the
asymptotic normal distribution is preserved even when p grows at a suitable rate with
the sample size. On the other hand, Lemma 2.1-(B) indicates that if p is large enough,
the maximum of Q (γ) over γ stays away from zero under the alternative hypothesis and
this will guarantee consistency against any departure from H0.

The statistic Qn(γ) is expected to be close to Q(γ) uniformly in γ, provided p increases
suitably. Then a natural idea would be to build a test statistic using the maximum of
Qn(γ) with respect to γ. However, like in the finite dimension covariate case, under H0

‡ Ties in the values 〈Xi, γ〉, 1 ≤ i ≤ n, could be broken by comparing indices, that is if 〈Xi, γ〉 =
〈Xj , γ〉, then we define Fγ,n(〈Xi, γ〉) < Fγ,n(〈Xj , γ〉) if i < j. However, for simplicity in our assumptions
below we will assume that the 〈Xi, γ〉′s have continuous distribution for all γ.
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one expects Qn(γ) to converges to zero for any p and γ and thus the objective function of
the maximization problem to be flat. Therefore we will choose a direction γ as the least
favorable direction for the null hypothesis H0 obtained from a penalized criterion based on
a standardized version of Qn (γ); see also Lavergne and Patilea (2008) and Bierens (1990)
for related approaches. More precisely, fix some γ0 ∈ L2[0, 1] that could be interpreted as
an initial guess of an unfavorable direction for H0. Let b0j , j ≥ 1, be the coefficients in
the expansion of γ0 in the basis R. For any given p ≥ 1 such that

∑p
j=1 b

2
0j > 0, let

γ
(p)
0 =

(b01, · · · , b0p)
‖(b01, · · · , b0p)‖

∈ Sp .

Let

v̂2n(γ) =
2

n(n− 1)h

∑

j 6=i

〈Ui, Uj〉2K2
h (Fγ,n(〈Xi, γ〉) − Fγ,n(〈Xj , γ〉)) , γ ∈ Sp, (3.1)

be an estimate of the variance of nh1/2Qn(·). Given Bp ⊂ Sp with positive Lebesgue

measure in Sp that contains γ
(p)
0 , the least favorable direction γ for H0 is defined by

γ̂n = arg max
γ∈Bp

[
nh1/2Qn(γ)/v̂n(γ) − αnI

{
γ 6=γ

(p)
0

}
]
, (3.2)

where IA is the indicator function of a set A, and αn, n ≥ 1 is a sequence of positive real
numbers decreasing to zero at an appropriate rate that depends on the rates of h and p
and that will be made explicit below. Using a standardized version of Qn(γ) avoids scaling
αn according to the variability of the observations. Let us notice that the maximization
used to define γ̂n ∈ Bp ⊂ Sp is a finite dimension optimization problem. The choice of γ

(p)
0

will be shown to be theoretically irrelevant, it will not affect the asymptotic critical values
and the consistency results. However, in practice the choice of γ

(p)
0 could be related to

prior information of the practitioner on a class of alternatives. Since Qn(γ) = Qn(−γ) for
any γ ∈ Sp, one could restrict the set Bp to a half unit hypersphere like {γ ∈ Sp : γ1 ≥ 0}.
One could restrict Bp even more, and hence to speed optimization algorithms, when some
prior information indicates a set of directions that would be able to detect alternatives.

We will prove that with suitable rates of increase for αn and p and decrease for h, the
probability of the event {γ̂n = γ

(p)
0 } tends to 1 under H0. Hence Qn(γ̂n)/v̂n(γ̂) behaves

asymptotically like Qn(γ
(p)
0 )/v̂n(γ

(p)
0 ), even when p grows with the sample size. Therefore

the test statistic we consider is

Tn = nh1/2
Qn(γ̂n)

v̂n(γ̂n)
. (3.3)

We will show that an asymptotic a-level test is given by I (Tn ≥ z1−a), where z1−a is the
(1 − a)-th quantile of the standard normal distribution.
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3.2 Behavior under the null hypothesis

In order to derive the asymptotic behavior of the statistic Tn under null hypothesis, below
we introduce a set of assumptions on the data (Assumption D), and on the kernel and
the rates of h and p (Assumption K).

Assumption D

(a) The random vectors (U1, X1), . . . , (Un, Xn) are independent draws from the random
vector (U,X) ∈ L2[0, 1] × L2[0, 1] that satisfies E‖U‖8 <∞.

(b) For any p ≥ 1 and any γ ∈ Sp, the d.f. Fγ is continuous.

(c) ∃ σ2, C1, C2 > 0 and ν > 2 such that:

(i) 0 < σ2 ≤ E(〈U1, U2〉21{〈U1,U2〉≤C1} | X1, X2) almost surely;

(ii) E [‖U‖ν | X ] ≤ C2.

(d) For any p ≥ 1, γ
(p)
0 ∈ Bp ⊂ Sp, Bp are open subsets of Sp and Bp × 0p ′−p ⊂ Bp ′,

∀1 ≤ p < p ′ where 0p ∈ R
p denotes the null vector of dimension p.

The continuity assumption required in (b) is a mild assumption that simplifies the
NN smoothing. Condition (c) will allow to prove that the variance of the statistics Qn(γ)
is bounded away from zero and infinity uniformly with respect to γ. The very mild
conditions imposed on Bp simplify the proofs for the consistency. These conditions are
satisfied for instance when Bp is a half unit hypersphere.

Assumption K

(a) The kernel K is a continuous density on real line such that K(x) = K(−x) and
K(·) is non increasing on [0,∞).

(b) h→ 0 and nh2 → ∞.

(c) p ≥ 1 increases to infinity with n and there exists a constant λ > 0 such that p ln−λ n
is bounded.

The first step to derive a test statistic is the study of the behavior of the process
Qn(γ), γ ∈ Bp, under H0 when p is allowed to increase with the sample size. The
following key lemma is crucially based on a powerful combinatorial result due to Cover
(1967) on the number of possible orderings of 〈X1, γ〉, · · · , 〈Xn, γ〉 when γ belongs to the
whole hypersphere Sp, and on exponential inequalities for U−statistics.
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Lemma 3.1 Under Assumptions D and K and if H0 holds true,

sup
γ∈Bp⊂Sp

|Qn(γ)| = OP(n−1h−1/2p lnn).

Moreover, if v̂2n(γ) is the estimate defined in equation (3.1),

sup
γ∈Bp⊂Sp

{1/v̂2n(γ)} = OP(1).

We now describe the behavior of γ̂n under H0. A suitable rate αn will make γ̂n to be
equal to γ

(p)
0 with high probability. Under the null, αn has to grow to infinity sufficiently

fast to render the probability of the event {γ̂n = γ
(p)
0 } close to 1. We will see below that,

for better detection of alternative hypothesis, αn should grow as slow as possible. Indeed,
slower rates for αn will allow the selection of directions γ̂n that could be better suited than
γ
(p)
0 for revealing the departure from the null hypothesis. The rate of p is also involved

in the search of a trade-off for the rate of αn: larger p renders slower the rate of uniform
convergence to zero of Qn(γ), γ ∈ Bp, and hence requires larger αn.

Lemma 3.2 Under Assumptions D, K, for a positive sequence αn, n ≥ 1 such that
αnp

−1 ln−1 n→ ∞,
P(γ̂n = γ

(p)
0 ) → 1, under H0.

The proof of Lemma 3.2 is similar to the proof of Lemma 3.2 in Lavergne and Patilea
(2008) and hence will be omitted. The following result shows that the asymptotic critical
values of our test statistic are standard normal.

Theorem 3.3 Under the conditions of Lemma 3.2 and if the hypothesis H0 in (1.1) holds
true, the test statistic Tn converges in law to a standard normal. Consequently, the test
given by I(Tn ≥ z1−a), with za the (1 − a)−quantile of the standard normal distribution,
has asymptotic level a.

3.3 The behavior under the alternatives

Our test is consistent against the general alternative

H1 : P[E(U | X) = 0] < 1,

that is the probability that the test statistic Tn is larger than any quantile z1−a) tends to
one under H1. This could be rapidly understood from the following simple inequalities:

Tn =
nh1/2Qn(γ̂n)

v̂n(γ̂n)

= max
γ∈Bp

{
nh1/2Qn(γ)/v̂n(γ) − αnI{γ 6=γ

(p)
0 }

}
+ αnI{γ̂n 6=γ

(p)
0 }

≥ max
γ∈Bp

nh1/2Qn(γ)

v̂n(γ)
− αn ≥ nh1/2Qn(γ̃)

v̂n(γ̃)
− αn, ∀γ̃ ∈ Bp ⊂ Sp, (3.4)
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with v̂n(γ) defined in (3.1). Since V ar(〈U1, U2〉 | X1, X2) ≥ σ2, it is clear that 1/v̂n(γ̃) =
OP(1) for all γ̃. On the other hand, from Lemma 2.1, there exists p0 and γ̃ ∈ Bp0 such
that the expectation of Qn(γ̃) stays away from zero as the sample size grows to infinity
and h decrease to zero. On the other hand, for any p > p0 and any n and h, clearly
maxγ∈Bp

Qn(γ) ≥ Qn(γ̃), because Bp0 × 0p−p0 ⊂ Bp. All these facts show why our test is
omnibus, that is consistent against nonparametric alternatives, provided that p→ ∞.

To state the consistency result, let δ(X) be some L2[0, 1]-valued function such that
E[δ(X)] = 0 and 0 < E[‖δ(X)‖4] < ∞, and let rn, n ≥ 1 be sequence of real numbers
that decrease to zero or rn = 1, ∀n. Consider the sequence of alternatives

H1n : U = U0 + rnδ(X), n ≥ 1, with U0 ∈ L2[0, 1], E(U0 | X) = 0.

We show below that such directional alternatives can be detected as soon as r2nnh
1/2/αn

tends to infinity. This is exactly the condition one would obtain with scalar covariate;
see Lavergne and Patilea (2008). However, in the functional data framework, to obtain
the convenient standard normal critical values, we need 1/αn = o(p−1 ln−1 n). Hence,
the rate rn at which the alternatives H1n tend to the null hypothesis should satisfy
r2nnh

1/2/{p lnn} → ∞.

Theorem 3.4 Suppose that

(a) Assumption D holds true with U replaced by U0;

(b) Assumption K is satisfied and in addition nh4 → ∞ and there exists a constant C
such that |K(u) −K(v)| ≤ C|u− v|, ∀u, v ∈ R;

(c) αn/{p lnn} → ∞ and rn, n ≥ 1 is such that r2nnh
1/2/αn → ∞;

(d) E[δ(X)] = 0 and 0 < E[‖δ(X)‖4] <∞;

(e) there exists p and γ̃ ∈ Bp ⊂ Sp (independent of n) such that E[δ(X) | 〈X, γ̃〉] 6= 0
and ∀t ∈ [0, 1], the Fourier Transform of δ(t, ·) = E[δ(X)(t) | Fγ(〈X, γ〉) = ·] is
integrable;

Then the test based on Tn is consistent against the sequence of alternatives H1n.

The additional Lipschitz condition on the kernel K(·) and the restriction on the band-
width range in Theorem 3.4-(b) are reasonable technical conditions that greatly reduce
the complexity of the proof of the consistency. The existence of a vector γ̃ such that
E[δ(X) | 〈X, γ̃〉] 6= 0 is guaranteed by Lemma 2.1-(B). In Theorem 3.4-(c) we impose a
convenient mild technical condition on one of such vector.
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4 Empirical study

A simulation study was carried out to assess the behavior of the proposed methods under
the null and with different types of effects under the alternative. For comparison with
the procedure proposed by Kokoszka et al. (2008), we considered a sample size n = 40.
The critical values of our procedure were approximated by a wild bootstrap procedure as
described below.

4.1 Bootstrap procedure

The bootstrap sample, denoted by U b
i , 1 ≤ i ≤ n, is obtained as: U b

i = ZiUi, 1 ≤
i ≤ n, where Zi, 1 ≤ i ≤ n are independent random variables following the two-points
distribution proposed by Mammen (1993), that is, Zi = −(

√
5 − 1)/2 with probability

(
√

5 + 1)/(2
√

5) and Zi = (
√

5 + 1)/2 with probability (
√

5 − 1)/(2
√

5).
A bootstrap test statistic is built from a bootstrap sample as was the original test

statistic. When this scheme is repeated many times, the bootstrap critical value z⋆1−a,n

at level a is the empirical (1 − a)−th quantile of the bootstrapped test statistics. This
critical value is then compared to the initial test statistic.

4.2 Simulation study

The first situation we considered was a functional linear model, given by

Ui(t) =

∫ 1

0

ψ(s, t)Xi(s) ds+ ǫi(t), 1 ≤ i ≤ n

where Xi and ǫi are independent Brownian bridges and ψ is square-integrable over [0, 1)×
[0, 1). The kernel ψ was chosen to be ψ(s, t) = c · exp(t2 + s2)/2, with c = 0 under the
null and c = 0.3 under the alternative.

The well-known Karhunen-Loeve decomposition of the Brownian bridge provides a
good approximation of the covariate function. Thus, the orthonormal basis of eigen-
functions R = {

√
2 sin(jπt) : 0 ≤ t ≤ 1, j = 1, 2 . . .} seems a good choice for our test

statistic. Different possibilities for the privileged direction γ
(p)
0 were considered. The di-

rection γ
(p)
0 = (1, 0, . . . , 0) ∈ Sp generally provides a powerful test. Here we present the

results for an uninformative direction, with the same coefficients in all basic elements.
For the penalization we used the value αn = 1, which provides a good trade-off between
the privileged direction and the direction maximizing the standardized statistic.

To compute the statistic for each direction, we used the Epanechnikov kernel, K(x) =
(1 − x2)I{|x|≤1}. A grid of bandwidths was considered in order to explore the effect of the
bandwidth on the power of the test.

The number of basic components was p = 3. For the optimization in the hypersphere
Sp, a grid of 1200 points was used. For each original sample, we used 499 bootstrap
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samples to compute the critical value. One thousand original samples of size n = 40 were
generated to approximate the percentages of rejection.

Figure 1 shows the empirical powers obtained for a grid of values of the bandwidth
both under the null hypothesis of no-effect and under the functional linear alternative.
We observe that the power is not very much affected by the bandwidth around a possibly
optimal value. For purposes of comparison, the empirical power of the Kokoszka et al.
(2008)’s test is also shown. These authors proposed a test of the functional linear effect,
that is, a test specially designed to detect the alternative of a functional linear effect
versus the no-effect. Our test provides similar or even better power than the Kokoszka et
al.’s parametric test in their ideal framework. The level is quite well respected for any of
the considered bandwidths.
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Figure 1: Testing the null-effect versus a functional linear alternative.

Another alternative was considered of the following type:

Ui(t) = β(t)Xi(t) + ǫi(t), 1 ≤ i ≤ n

where Xi and ǫi are independent Brownian bridges (as in the previous situation) and β is a
square-integrable function on [0, 1]. This is the so-called concurrent model studied in detail
in Ramsay and Silverman (2005), where the covariate at time t, Xi(t), only influences the
response function at time t, Ui(t). The function β was β(t) = c · exp(−4(t− 0.3)2), with
c = 0 under the null and c = 0.6 under the alternative.

Figure 2 shows the power of our test under the concurrent alternative, in comparison
with Kokoszka et al.’s test. In this case, Kokoszka et al.’s test is slightly more powerful
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than ours. This is not necessarily surprising since the concurrent model is in a sense a
degenerate functional linear model.
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Figure 2: Testing the null-effect versus a concurrent model alternative.

A completely nonlinear alternative was also considered. In this case a quadratic model
of this type was generated:

Ui(t) = H (Xi(t)) + ǫi(t), 1 ≤ i ≤ n

where Xi and ǫi are independent Brownian motion and Brownian bridge, respectively,
and H2(x) = x2 − 1 Since the covariate function is a Brownian motion, instead of the
Brownian bridge of the previous situations, the basis was chosen as the orthonormal basis
of eigenfunctions of the Brownian motion.

Figure 3 shows the percentages of rejections under the null and under this quadratic
alternative for a range of bandwidths. The power of the Kokoszka et al.’s test is also
plotted. As expected, Kokozska et al.’s test, which was designed to detect only linear
effects, is not powerful under this quadratic alternative.
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Figure 3: Testing the null-effect versus a quadratic alternative.

5 Appendix: technical proofs

In this section c, c1, C, C1, ... denote constants that may have different values from line to
line. Recall that if X =

∑∞
j=1 xjρj , then X(p) =

∑p
j=1 xjρj .

Proof of Lemma 2.1. (A) We have

E(U | X) = 0 ⇔ E(〈U, ρj〉 | X) = 0, ∀j ≥ 1

⇔ E(〈U, ρj〉 | X(p)) = 0, ∀j ≥ 1, ∀p ≥ 1

⇔ E(〈U, ρj〉 | 〈X, γ〉) = 0, ∀j ≥ 1, ∀p ≥ 1, ∀γ ∈ Sp

⇔ E(U | 〈X, γ〉) = 0, ∀p ≥ 1, ∀γ ∈ Sp

⇔ E(U | Fγ(〈X, γ〉)) = 0, ∀p ≥ 1, ∀γ ∈ Sp

The first and the fourth equivalence in the last display are due to the fact that R is a basis
in L2[0, 1]. Next, note that by Cauchy-Schwarz inequality ∀j, E|〈U, ρj〉| ≤ E‖U‖ < ∞.
Thus the second equivalence in the last display is guaranteed elementary properties of
the conditional expectations and the Doob’s Martingale Convergence Theorem, while the
third equivalence is given by Lemma 2.1-(A) of Lavergne and Patilea (2008). For the last
equivalence recall that for any random variable Y with d.f. F , P(F−1 ◦ F (Y ) 6= Y ) = 0
where F−1(t) = {y : F (y) ≥ t}, ∀0 < t < 1; see for instance Proposition 3, Chapter
1 in Shorack and Wellner (1986). Deduce that E(U | 〈X, γ〉) = E(U | Fγ(〈X, γ〉)). To
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complete the proof of part (A) it suffices to note that

E [〈U,E (U | 〈X, γ〉)〉] = E
[
‖E(U | 〈X, γ〉)‖2

]

= E
[
‖E(U | Fγ(〈X, γ〉))‖2

]

= E [〈U,E {U | Fγ(〈X, γ〉)}〉] .

(B) First note that A ⊂
⋂

j≥1Aj where

Aj = {γ ∈ Sp : E(〈U, ρj〉 | 〈X, γ〉) = 0 a.s. }.

Now, if P[E(U | X) = 0] < 1, then there exists j ≥ 1 such that P[E(〈U, ρj〉 | X) = 0] < 1.
For any arbitrarily fixed j ≥ 1, Lemma 2.1 in Patilea, Saumard and Sanchez (2012) allows
to deduce that there exists p0 ≥ 1 such that, for any p ≥ p0, Aj has Lebesgue measure
zero on Sp and is not dense. Since A is included in any Aj, the conclusion follows.

Lemma 5.1 Let K be a density satisfying Assumption K-(a) and assume that h→ 0 and
nh→ ∞. Let

Sni =
1

(n− 1)h

∑

1≤j≤n, i 6=j

K

(
i− j

nh

)
and Sn =

1

n

∑

1≤i≤n

Sni.

Then exists constants c1, c2 such that for sufficiently large n

0 < c1 ≤ min
1≤i≤n

Sni ≤ max
1≤i≤n

Sni ≤ c2 <∞.

Moreover, Sn → 1.

Proof. Clearly that Sn − S̃n → 0 where

S̃n =
1

n2h

∑

1≤i,j≤n

K

(
i− j

nh

)
.

If [a] denote the integer part of any real number a, we can write

S̃n =

∫ (n+1)/n

1/n

∫ (n+1)/n

1/n

h−1K

(
[ns] − [nt]

nh

)
dsdt

=

∫ (n+1)/n

1/n

∫ 1/h+1/nh−t/h

1/nh−t/h

K

(
[nt+ nzh] − [nt]

nh

)
dzdt [z = (s− t)/h]

=

∫ (n+1)/n

1/n

∫ 1/h+1/nh−t/h

1/nh−t/h

K (z) dzdt+ o(1)

=

∫ 1/h

−1/h

∫ 1+1/n−zh

1/n−zh

dtK (z) dz + o(1) [Fubini]

→ 1,
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where the order o(1) of the reminder on the right-hand side of the third equality could
be obtained as a consequence of the fact K is symmetric and monotonic. Hence Sn → 1.
Similarly, we can write

S̃ni =

∫ (n+1)/n

1/n

h−1K

(
i− [nt]

nh

)
dt

=

∫ 1/h+(1−i)/nh

(1−i)/nh

K

(
i− [i+ nzh]

nh

)
dz [z = (t− i/n)/h]

=

∫ 1/h+(1−i)/nh

(1−i)/nh

K (z) dz + o(1).

Deduce that ∫ 1

0

K(z)dz + rni ≤ S̃ni ≤
∫

R

K(z)dz + rni

where max1≤i≤n{|rni| + |rni|} = o(1). The result follows.

One of the ingredients we will use for the proof of Lemma 3.1 is a moment inequality
for U−statistics presented in Lemma 5.2 below and due to Giné, Lata la and Zinn (2000).
To state the result we will use, let us introduce some notation. Let Z1, · · · , Zn be inde-
pendent random variables (not necessarily with the same distribution) taking values in a
measurable space (Z,Υ). Let hi,j(·, ·), 1 ≤ i, j ≤ n be real-valued measurable functions
on Z2 such that hi,j(zi, zj) = hj,i(zj , zi) and E[hi,j(zi, Zj)] = 0, ∀1 ≤ i, j ≤ n, ∀zi, zj. The
functions hi,j could be different for different values of n. Define

An = max
i,j

‖hi,j(·, ·)‖∞, B2
n = max

j

∥∥∥∥∥
∑

i

E[h2i,j(Zi, ·)]
∥∥∥∥∥
∞

, C2
n =

∑

i,j

E[h2i,j(Zi, Zj)],

and

Dn = sup

{
E

∑

i,j

hi,j(Zi, Zj)fi(Zi)gj(Zj) : E

∑

i

f 2
i (Zi) ≤ 1, E

∑

j

g2j (Zj) ≤ 1

}
.

The following result is simplified version of Theorem 3.3 in Giné, Lata la and Zinn (2000).

Lemma 5.2 There exist an universal constant L < ∞ (in particular, independent on n
and the functions hi,j) such that

P

{
∑

1≤i 6=j≤n

hn(Zi, Zj) ≥ t

}
≤ L exp

[
− 1

L
min

(
t2

C2
n

,
t

Dn
,
t2/3

B
2/3
n

,
t1/2

A
1/2
n

)]
, ∀t > 0.

Let γ ∈ Sp and let x1, · · · , xn be an arbitrary collection of non-random points in
L2[0, 1]. Consider Z̃1, · · · , Z̃n independent random variables with values in L2[0, 1] such
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that for each 1 ≤ i ≤ n the law of Z̃i is the conditional law of Ui given Xi = xi. We will
apply Lemma 5.2 with hi,i ≡ 0 and for 1 ≤ i 6= j ≤ n

hi,j(Zi, Zj) =
〈Zi , Zj〉

n(n− 1)hM2
Kh (Fγ,n(〈xi, γ〉) − Fγ,n(〈xj , γ〉)) , (5.1)

where Zi = Z̃i1{‖Z̃i‖≤M} − E[Z̃i1{‖Z̃i‖≤M}], M > 0 is some constant (that we will allow to

increase with n).§ Here Fγ,n is the empirical d.f. of the sample 〈x1, γ〉, · · · , 〈xn, γ〉. The
functions hi,j(·, ·) vanish outside the rectangle [−2M, 2M ] × [−2M, 2M ]. The following
lemma provides upper bounds for the quantities An to Dn in this setup. The bounds are
independent of the collection x1, · · · , xn ∈ L2[0, 1], and of p ≥ 1 and γ ∈ Sp.

Lemma 5.3 Under the conditions of Lemma 3.1, for hi,j defined as in (5.1)

An =
‖K‖∞

n(n− 1)h
, B2

n ≤ c

n3hM2
, C2

n ≤ c

n2hM4
and Dn ≤ c

nM2
,

for some constant c depending only on the upper bound of E(‖U‖2 | X) and
∫
K2.

Proof. The bound for An is obvious. For C2
n note that

E[h2i,j(Zi, Zj)] =
M−4

n2(n−1)2h
E
{
E
[
〈Zi , Zj〉2

]
h−1Kh (Fγ,n(〈xi, γ〉) − Fγ,n(〈xj, γ〉))

}
.

By Cauchy-Schwarz inequality and triangle inequality and recalling that Z̃i is distributed
according to the conditional law of Ui given Xi = xi,

E
[
〈Zi , Zj〉2

]
≤ 16E

[
‖Z̃i‖2

]
E

[
‖Z̃j‖2

]
≤ 16C2,

for any constant C that bounds from above E(‖U‖2 | X), see Assumption D-(c). Finally,
note that

1

n(n− 1)h

∑

1≤i 6=j≤n

Kh (Fγ,n(〈xi, γ〉) − Fγ,n(〈xj , γ〉)) =
1

n(n− 1)h

∑

1≤i 6=j≤n

K

(
i− j

nh

)

and apply the second part of Lemma 5.1 to derive the bound for C2
n. To derive the bound

for B2
n recall that hi,j(Zj , z) vanishes for |z| > 2M , use again Cauchy-Schwarz inequality

and triangle inequality and the first part of Lemma 5.1. For the bound of Dn, using
Cauchy-Schwarz inequality and the independence of Zi and Zj, we can write

E

∑

i,j

hi,j(Zi,Zj)fi(Zi)gj(Zj) ≤
∑

i,j

E|〈Zifi(Zi), Zjgj(Zj)〉|
n(n− 1)hM2

Kh(Fγ,n(〈xi, γ〉)−Fγ,n(〈xj , γ〉))

≤
∑

i,j

16C2
E|fi(Zi)|E|gj(Zj)|
n(n− 1)hM2

Kh(Fγ,n(〈xi, γ〉)−Fγ,n(〈xj, γ〉))

≤ 16C2

M2
‖|K‖|2,

§Note that in particular the E[Zi1{‖Zi‖≤M}] coincide with the values E[Ui1{‖Ui‖≤M} | Xi = xi].
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where C is such that E(‖U‖2 | X) ≤ C and K is the matrix with elements

Kij = K ((i− j)/nh) /[n(n− 1)h], i 6= j, and Kii = 0,

and ‖|K‖|2 is the spectral norm of K. By definition, ‖|K‖|2 = supu∈Rn,u 6=0 ‖Ku‖/‖u‖ and
|u′Kw| ≤ ‖|K‖|2‖u‖w‖ for any u, w ∈ R

n. By Lemma 5.1, for any u ∈ R
n,

‖Ku‖2 =
n∑

i=1

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)
uj

)2

≤
n∑

i=1

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)

)
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)
u2j

≤ ‖u‖2
[

max
1≤i≤n

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)

)]2

≤ cn−2‖u‖2, (5.2)

for some constant c > 0. The bound for Dn follows immediately.

Another ingredient is an upper bound for the number of different possible orderings in
the sample 〈X1, γ〉, · · · , 〈Xn, γ〉 when γ belongs to the unit hypersphere in R

p (obviously
the same number is obtained if γ is allowed to belong to the whole space R

p). Let
x1, · · · , xn a collection of n points in R

p and let π be a permutation of the set of integers
{1, 2, · · · , n}. Following Cover (1967), we shall say that γ ∈ Sp induces the ordering π if

〈xπ(1), γ〉 < 〈xπ(2), γ〉 < · · · < 〈xπ(n), γ〉.

Conversely, the ordering π will be said to be linearly inducible if there exists such vector
γ. The following result is due to Cover (1967).

Lemma 5.4 There are precisely q(n, p) linearly inducible orderings of n points in general
position in R

p, where

q(n, p) = 2

p−1∑

k=0

Sn,k = 2

[
1 +

∑

2≤i≤n−1

i+
∑

2≤i<j≤n−1

ij + · · ·
]

(p terms),

where Sn,k is the number of the (n− 2)!/(n− 2− k)!k! possible products of numbers taken
k at a time without repetition from the set {2, 3, · · · , n− 1}

By Lemma 5.4 we obtain a simple upper bound for q(n, p) when n ≥ 2p, that is

q(n, p) ≤ 2[1 + n2 + · · · + np] ≤ np+1. (5.3)
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Proof of Lemma 3.1. Fix M that depends on n in a way that will be specified below.
Let

QM,n (γ) =
1

n(n− 1)

∑

1≤i 6=j≤n

〈UM,i, UM,j〉
1

h
Kh (Fγ,n(〈Xi, γ〉) − Fγ,n(〈Xj, γ〉)) , γ ∈ Sp,

where UM,i = Ui1{‖Ui‖≤M} − E[Ui1{‖Ui‖≤M}]. We can write

P

(
sup
γ∈Sp

|QM,n(γ)| > tp lnn

nh1/2

)
= E

[
P

(
sup
γ∈Sp

|QM,n(γ)| > tp lnn

nh1/2
| X1, · · · , Xn

)]

In view of Lemma 5.4, for any n, p, given X1, · · · , Xn there exists a set Onp ⊂ R
p with at

most np elements, that depend on X1, · · · , Xn, such that

sup
γ∈Sp

|QM,n(γ)| = sup
γ∈Onp

|QM,n(γ)|.

Let bn = M−2n−1h−1/2p lnn. By Lemmas 5.2 and 5.4 deduce that there exists an universal
constant L such that for any t > 0,

P

(
sup
γ∈Sp

|QM,n(γ)| > tp lnn

nh1/2
| X1, · · · , Xn

)
≤
∑

γ∈Onp

P
(
|M−2QM,n(γ)| > tbn | X1, · · · , Xn

)

≤ max{L, 1} exp

[
(p+ 1) lnn− 1

L
min

(
(tbn)2

C2
n

,
tbn
Dn

,
(tbn)2/3

B
2/3
n

,
(tbn)1/2

A
1/2
n

)]
.

Now, take M = n1/4−a for some (small) a > 0 and notice that the exponential bound in
the last display is independent of X1, · · · , Xn and tends to zero for any t. Deduce that

sup
γ∈Sp

|QM,n(γ)| = OP(n−1h−1/2p lnn)

Next we show that supγ∈Sp |Qn(γ) −QM,n(γ)| = oP(n−1h−1/2p lnn). Let

R1n(γ) =
1

n(n− 1)

∑

1≤i 6=j≤n

〈UM,i, Uj − UM,j〉
1

h
Kh (Fγ,n(〈Xi, γ〉)−Fγ,n(〈Xj, γ〉)) , γ ∈ Sp,

and R2n(γ) = Qn(γ) −QM,n(γ) − 2R1n(γ). We have,

E sup
γ

|R1n(γ)| ≤ Ch−1
E (‖UM,i‖‖Uj − UM,j‖) ≤ 2Ch−1

E (‖Ui‖)E (‖Uj − UM,j‖) .

By Hölder inequality and Chebyshev inequality

E (‖Uj − UM,j‖) ≤ 2E1/m [‖Uj‖m]P(m−1)/m [‖Uj‖ > M ] ≤ 2E [‖Uj‖m] M1−m.

Now, to deduce that R1n(γ) is uniformly negligible, it suffices to note that under Assump-
tion K-(b), for m > 7 and a sufficiently small,

M1−m = n(1−m)(1/4−a) = o
(
n−1h1/2p lnn

)
.
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Clearly, supγ |R2n(γ)| is of smaller order than supγ |R1n(γ)|.
For the inverse of the variance estimator, for any γ ∈ Sp let us define

v̂2N,n(γ) =
2

n(n− 1)h

∑

j 6=i

〈Ui, Uj〉21{〈Ui,Uj〉2≤N}K
2
h (Fγ,n(〈Xi, γ〉) − Fγ,n(〈Xj , γ〉)) .

Using Hölder inequality, Chebyshev inequality and Cauchy-Schwarz inequality,

E sup
γ

∣∣v̂2n(γ) − v̂2N,n(γ)
∣∣ ≤ Ch−1

E
(
〈Ui, Uj〉21{〈Ui,Uj〉2>N}

)

≤ h−1
E
1/s
[
〈Ui, Uj〉2s

]
P
(s−1)/s

[
〈Ui, Uj〉2s > N s

]

≤ h−1
E
2
[
‖Uj‖2s

]
N1−s.

Take s = 4, N = n1/4 and deduce that the right bound in the last display tends to zero.
On the other hand, we apply Hoeffding (1963) inequality for U−statistics to control the
deviations of v̂2N,n(γ)−E[v̂2N,n(γ) | X1, · · · , Xn] conditionally on X1, · · · , Xn. For any fixed
γ we have

P
(
n1/2h|v̂2N,n(γ) − E[v̂2N,n(γ) | X1, · · · , Xn]| ≥ t | X1, · · · , Xn

)

≤ 2 exp

{
− [n/2]n−1t2

2[τ 2 +K2(0)Nn−1/2t/3]

}

where τ 2 is the variance of a term in the sum defining hv̂2N,n(γ)−E[hv̂2N,n(γ) | X1, · · · , Xn].

Take t = n1/2−ch for some small c > 0 and note that τ 2 ≤ C for some constant independent
of γ and h. In the similar way we did for QM,n(γ), applying Lemma 5.4, we obtain an
exponential bound for the tail of v̂2N,n(γ) − E[v̂2N,n(γ) | X1, · · · , Xn] given X1, · · · , Xn

uniformly with respect to γ. This bound is independent of X1, · · · , Xn. Finally integrate
out X1, · · · , Xn and deduce that

sup
γ

|v̂2N,n(γ) − E[v̂2N,n(γ) | X1, · · · , Xn]| = oP(1).

It remains to note that Assumption D-(c) and the first part of Lemma 5.1 guarantee that
E[v̂2N,n(γ) | X1, · · · , Xn] stays away from zero. Gathering the results we conclude that
1/v̂2n(γ) is uniformly bounded in probability. Now the proof is complete.

Proof of Theorem 3.3. By Lemma 3.2, if suffices to prove the asymptotic normality of
the test statistic Tn defined with γ̂ = γ

(p)
0 . The proof of this asymptotic normality is based

on the Central Limit Theorem 5.1 of de Jong (1987). We will apply the result of de Jong
conditionally given the values of the covariate sample. Let x1, · · · , xn be an arbitrary
collection of non-random points in L2[0, 1]. Consider Z̃1, · · · , Z̃n independent random

variables with values in L2[0, 1] such that for each i the law of Z̃i is the conditional law of

Ui given Xi = xi. Let F
γ
(p)
0 ,n

(·) be the empirical d.f. of the sample 〈x1, γ(p)0 〉, · · · , 〈xn, γ(p)0 〉,

Kh,ij(γ
(p)
0 ) = Kh

(
F
γ
(p)
0 ,n

(〈xi, γ(p)0 〉) − F
γ
(p)
0 ,n

(〈xj, γ(p)0 〉)
)
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and

Wij =
1

n(n− 1)
〈Z̃i, Z̃j〉

1

h
Kh,ij(γ

(p)
0 ), 1 ≤ i 6= j ≤ n, Wii = 0, 1 ≤ i ≤ n.

Hence Qn(γ
(p)
0 ) =

∑
i,j Wij and v̂2n(γ

(p)
0 ) = 2n(n − 1)h

∑
i,j W

2
ij . A crucial remark that

is used several times in the following is that the elements of the matrix (Kh,ij(γ
(p)
0 )) are

the same as those of matrix (Kh((i − j)/nh) up to permutations of lines and columns.
Following the notation of de Jong (1987), let

σ2
ij = E(W 2

ij) = E[〈Ui, Uj〉2 | Xi = xi, Xj = xj ]
K2

h,ij(γ
(p)
0 )

n2(n− 1)2h2

and σ2(n) = 2
∑

i 6=j σ
2
ij . Since

E[〈Ui, Uj〉2 | X1, · · · , Xn] = E[〈Ui, Uj〉2 | Xi, Xj] ≤ E[‖Ui‖2 | Xi]E[‖Uj‖2 | Xj ],

and E[〈Ui, Uj〉2 | Xi, Xj] is bounded away from zero by Assumption D-(c), deduce that
there exist positive constants c and c such that

c

n4h2
K2

h,ij(γ
(p)
0 ) ≤ σ2

ij ≤
c

n4h2
K2

h,ij(γ
(p)
0 ). (5.4)

Apply Lemma 5.1 with K replaced by K2 and deduce that

c1
n3h

≤ max
1≤i≤n

∑

1≤j≤n,i 6=j

σ2
ij = max

1≤i≤n

∑

1≤j≤n,i 6=j

K2
h((i− j)/nh) ≤ c2

n3h
,

for some constants c1 and c2. Moreover, there exist constants c′ and c′ such that

c′n−2h−1 ≤ σ(n)2 ≤ c′n−2h−1.

It follows that

σ(n)−2 max
1≤i≤n

n∑

j=1

σ2
ij = O(n−1),

and thus Condition 1 in Theorem 5.1 of de Jong (1987) holds true as soon as κ(n) =
o(n1/2). For checking Condition 2 in Theorem 5.1 of de Jong (1987), let us use Hölder
inequality with p = ν/2 and q = ν/(ν − 2), with ν given by Assumption D-(c)-(ii), and
Markov inequality to get, for some constant C,

E[σ−2
ij W

2
ij1{σ−1

ij
|Wij |>κ(n)}] ≤ E

2/ν [σ−ν
ij |Wij|ν ]P(ν−2)/ν [σ−1

ij |Wij| > κ(n)] ≤ Cκ(n)−(ν−2)/ν .

That shows that Condition 2 of Theorem 5.1 of de Jong holds true with any κ(n) tending
to infinity. Finally, let µ1, · · · , µn denote the eigenvalues of the matrix (σij). To check
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Condition 3 of de Jong, use the upper bound of σij in (5.4) to deduce that there exists a
constant C (independent on n and i) such that

n∑

j=1,j 6=i

σij ≤ C

n2h

n∑

j=1,j 6=i

Kh,ij(γ
(p)
0 ).

Next, note that if Σ denotes the n×n matrix with generic element σij , following the lines
of equation (5.2) and using equation (5.4), for any u ∈ R

n,

‖Σu‖2 ≤ ‖u‖2
[

max
1≤i≤n

(
n∑

j=1,j 6=i

σij

)]2

≤ c1 ‖u‖2
[

max
1≤i≤n

(
n∑

j=1,j 6=i

Kh ((i− j)/nh)

hn(n− 1)

)]2

≤ c2n
−2‖u‖2, (5.5)

for some constants c1, c2 > 0. Deduce that

σ(n)−2 max
1≤i≤n

µ2
i ≤

hn2

c′
1

n2
→ 0,

and thus Condition 3 of de Jong (1987) holds true. To complete the proof of the asymptotic

normality of the statistic Tn = nh1/2Qn(γ
(p)
0 )/v̂n(γ

(p)
0 ) given the covariate values, note that

σ2(n) = E[Q2
n(γ

(p)
0 ) | X1 = x1, · · · , Xn = xn] =

E[v̂2n(γ
(p)
0 ) | X1 = x1, · · · , Xn = xn]

n(n− 1)h
.

Moreover, by direct standard calculations it can be shown that the variance of

1

n(n− 1)

∑

1≤i 6=j≤n

〈Z̃i, Z̃j〉2
1

h
K2

h,ij(γ
(p)
0 )

is of rate O(h−1n−1) = o(1). Deduce that

v̂2n(γ
(p)
0 )/n(n− 1)h

σ2(n)
− 1 = oP(1) (5.6)

given X1 = x1, · · · , Xn = xn. The asymptotic normality of Tn given X1 = x1, · · · , Xn = xn
is a consequence of Theorem 5.1 of de Jong and equation (5.6). The proof is complete.

Proof of Theorem 3.4. The proof is based on inequality (3.4). Since E(〈U1, U2〉2 |
X1, X2) ≥ σ2 + r4n〈δ(X1), δ(X2)〉2, clearly the variance estimate v̂2n(γ̃) stays away from
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zero for all γ̃. On the other hand, by Cauchy-Schwarz and the property of the spectral
norm for matricis,

v̂2n(γ̃) ≤ 2n/(n− 1)

n2h

∑

1≤i,j≤n

‖δ(Xi)‖2‖δ(Xj)‖2K2
h(Fn,γ̃(〈Xi, γ̃〉) − Fn,γ̃(〈Xj, γ̃〉))

≤ ‖|K2‖|2
∑

1≤i≤n

‖δ(Xi)‖4,

where K2 is the matrix with entries n−2h−1K2
h(Fn,γ̃(〈Xi, γ̃〉) − Fn,γ̃(〈Xj, γ̃〉)). By the ar-

guments used in equation (5.5), ‖|K2‖|2 = OP(n−1). This together with the finite fourth
order moment condition for δ(·) imply that v̂2n(γ̃) is bounded in probability. Hence it suf-
fices to look at the behavior ofQn(γ̃). By Lemma 2.1-(B) there exists p0 and γ̃ ∈ Bp0 ⊂ Sp0

(p0 and γ̃ independent of n) such that E[δ(X) | 〈X, γ̃〉] 6= 0. Hereafter, γ̃ is supposed
to have this property. Let Vi = Fγ̃(〈Xi, γ̃〉), so that V1, · · · , Vn are independent uniform
variables on [0, 1]. Next introduce Vni = Fn,γ̃(〈Xi, γ̃〉) and

∆n = sup
1≤i≤n

|Vni − Vi| ≤ sup
t∈R

|Fn,γ̃(t) − Fγ̃(t)|.

Note that for any s ∈ R,

∣∣eisVni − eisVi
∣∣ ≤ |s||Vni − Vi| ≤ |s|∆n, (5.7)

and ∆n = OP(n−1/2).
We can write

Qn(γ̃) =
1

n(n− 1)h

∑

i 6=j

〈U0
i , U

0
j 〉Kh(Vni − Vnj〉)

+
2rn

n(n− 1)h

∑

i 6=j

〈U0
i , δ(Xj)〉Kh(Vni − Vnj)

+
r2n

n(n− 1)h

∑

i 6=j

〈δ(Xi), δ(Xj)〉Kh(Vni − Vnj)

=: Q0n(γ̃) + 2rnQ1n(γ̃) + r2nQ2n(γ̃).

Since γ̃ is fixed, Q0n(γ̃) = OP(n−1h−1/2) (cf. proof of Theorem 3.3). Let

Q⋆
1n(γ̃) =

1

n2h

∑

1≤i 6=j≤n

〈U0
i , δ(Xj)〉Kh(Vi − Vj).

First we show that Q1n(γ̃) −Q⋆
1n(γ̃) = oP(1). If K satisfies a Lipschitz condition,

|Q1n(γ̃) −Q⋆
1n(γ̃)| ≤ C∆n

n2h2

∑

1≤i 6=j≤n

‖U0
i ‖‖δ(Xj)‖ =

C∆n

h2
OP(1) = oP(1).

23



Next, the U−statistic Q⋆
1n(γ̃) can be decomposed into a degenerate U−statistic of order

2 with the rate OP(h−1n−1) = OP(n−1/2) and the sum average of centered variables

1

n

∑

1≤i≤n

〈U0
i ,E[δ(Xj)h

−1Kh(Vi − Vj) | Vi]〉.

Hence it suffice to bound the variance of the terms in the sum. We can write

v2n = E{〈U0
i ,E[δ(Xj)h

−1Kh(Vi − Vj) | Vi]〉2}
≤ E{‖U0

i ‖2‖E[δ(Xj)h
−1Kh(Vi − Vj) | Vi]‖2}

≤ cE{‖E[δ(Xj)h
−1Kh(Vi − Vj) | Vi]‖2},

for some constant c > 0 larger than E{‖U0
i ‖2 | Xi}. Next we show that the map v 7→

E[δ(Xj)h
−1Kh(v − Vj)] is squared integrable. Let δ(t, v) = E[δ(Xj)(t) | Vj = v] and note

that 0 <
∫∫

[0,1]×[0,1]
|δ(t, v)|2dvdt < ∞. Then using the Inverse Fourier Transform for K

we have for any t

E[δ(Xj)(t)h
−1Kh(v − Vj)] = E

[
δ(t, Vj)

∫
exp{is(v − Vj)}F [K](hs)ds

]

=

∫

R

exp{isv}F [δ(t, ·)](s)F [K](hs)ds. (5.8)

Take absolute value and deduce that

∫

[0,1]×[0,1]

E
2[δ(Xj)(t)h

−1Kh(v − Vj)]dvdt ≤
∫

[0,1]×[0,1]

(∫

R

∣∣F [δ(t, ·)](s)
∣∣ ds
)2

dvdt

≤
∫

[0,1]×[0,1]

∫

R

∣∣F [δ(t, ·)](s)
∣∣2 dsdvdt

=

∫

[0,1]×[0,1]

∫

R

∣∣δ(t, v)
∣∣2 dvdt.

Since the Vi’s are uniformly distributed, we can deduce that v2n is bounded and thus
Q1n(γ̃) = OP(n−1/2). Now, let

Q′
2n(γ̃) =

1

n2h

∑

1≤i,j≤n

〈δ(Xi), δ(Xj)〉Kh(Vni − Vnj),

Q′′
2n(γ̃) =

1

n2h

∑

1≤i,j≤n

〈δ(Xi), δ(Xj)〉Kh(Vi − Vj),

Q⋆
2n(γ̃) =

1

n2h

∑

1≤i 6=j≤n

〈δ(Xi), δ(Xj)〉Kh(Vi − Vj).
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It is easy to check that

Q′
2n(γ̃) − n−1

n
Q2n(γ̃) = Q′′

2n(γ̃)− n−1

n
Q⋆

2n(γ̃)=
K(0)

n2h

n∑

i=1

‖δ(Xi)‖2=OP(n−1h−1)=oP(1).

Next we have to show that Q′
2n(γ̃) −Q′′

2n(γ̃) = oP(1). If K satisfies a Lipschitz condition
and nh4 → ∞, by Cauchy-Schwarz inequality, for some constant C > 0

|Q′
2n(γ̃) −Q′′

2n(γ̃)| ≤ C∆n

h2

[
1

n

∑

1≤i≤n

‖δ(Xi)‖
]2

= oP(1).

Conclude that Q2n(γ̃)−Q∗
2n(γ̃) = oP(1), so that is suffices to investigate Q∗

2n(γ̃). It is easy
to show that the variance of Q∗

2n(γ̃) tends to zero, so that it remains to show that the
expectation of Q∗

2n(γ̃) stay away from zero. From the representation (5.8) and repeated
applications of Fubini’s theorem we get

E[Q∗
2n(γ̃)] = E

[
〈δ(Xi), δ(Xj)〉h−1Kh(Vi − Vj)

]

= E(〈δ(Xi),E[δ(Xj)h
−1Kh(Vi − Vj) | Xi]〉)

=

∫

[0,1]

E

(
δ(Xi)(t)

∫

R

exp{isVi}F [δ(t, ·)](−s)F [K](hs)ds

)
dt

=

∫

[0,1]

∫

R

‖F [δ(t, ·)](s)‖2F [K](hs)dsdt.

By Lebesgue dominated convergence theorem and Plancherel theorem,

E[Q∗
2n(γ̃)] →

∫

[0,1]

∫

R

|δ(t, v)|2dvdt.

Deduce that P[c−1 ≤ Q2n(γ̃) ≤ c] → 1 for some constant c > 0. Gathering the results
conclude that for any C > 0, P[Tn ≥ C] → 1.
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Härdle, W., and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits.

Ann. Statist. 21, 1296-1947.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist.

Assoc. 58, 13–30.

Kokoszka, P., Maslova, I., Sojka, J., and Zhu, L. (2008). Testing for lack of dependence in the

functional linear model. Canadian J. Statist. 36, 1–16.

Lavergne, P. and Patilea, V. (2008). Breaking the curse of dimensionality in nonparametric testing.

J. Econometrics 143, 103–122.

Lian, H. (2011). Convergence of functional k−nearest neighbor regression estimate with functional

responses. Electron. J. Statist. 5, 31–40.

Mammen, E. (1993). Bootstrap and Wild Bootstrap for High Dimensional Linear Models. Ann. Statist.

21, 255–285.

Parthasarathy, K.R. (1967). Probability measures on metric spaces. A.M.S. New-York.

Patilea, V., Sánchez-Sellero, C., and Saumard, M. (2012). Projection-based nonparametric

goodness-of-fit testing with functional covariates. arXiv:1205.5578 [math.ST]

Ramsay, J., and Silverman, B.W. (2005). Functional Data Analysis (2nd ed.). Springer-Verlag, New

York.

Shorack, G., and Wellner, J.A. (1986). Empirical Processes with Applications in Statistics. John

Wiley & Sons, Inc.

Stute, W. (1984). Asymptotic normality of nearest neighbor regression function estimates. Ann.

Statist. 12, 917–926.
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