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Abstract

Integrated powers of densities of one- or two-multidimensional random variables
appear in a variety of problems in mathematical statistics, information theory,
and computer science. We study U -statistic estimators for a class of such in-
tegral functionals based on the ǫ-close vector observations in the correspond-
ing independent and identically distributed samples. We show some asymptotic
properties of these estimators (e.g., consistency and asymptotic normality). The
results can be used in a variety of problems in mathematical statistics and com-
puter science (e.g., distribution identification problems, approximate matching
for random databases, two-sample problems).

Keywords: U -statistics, estimation of divergence, density power divergence,
asymptotic normality, entropy estimation, Rényi entropy

1. Introduction

Let the distributions PX and PY of the d-dimensional random variables X
and Y have densities pX(x) and pY (x), x ∈ Rd, respectively. Various character-
istics in mathematical statistics, information theory, and computer science, say
entropy-type integral functionals, are expressed in terms of integrated powers of
pX(x) and pY (x). For example, a widely accepted measure of closeness between
PX and PY is the (quadratic) density power divergence (Basu et al., 1998)

D2 = D2(PX ,PY ) :=

∫

Rd

(pX(x) − pY (x))
2dx.

Other examples include the Rényi entropy for quantifying uncertainty in PX

(Rényi, 1970)

hs = hs(PX) :=
1

1− s
log

(∫

Rd

pX(x)sdx

)

, s 6= 1,
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and the differential variability for some database problems (Seleznjev and Thal-
heim, 2010)

v = v(PX ,PY ) := − log

(∫

Rd

pX(x)pY (x)dx

)

.

Henceforth we use log x to denote the natural logarithm of x. For non-negative
integers k1, k2 ≥ 0,k := (k1, k2), we consider the Rényi entropy functionals
(Källberg et al., 2012)

qk = qk1,k2
:=

∫

Rd

pX(x)k1pY (x)
k2dx, k1 + k2 ≥ 2.

Moreover, given a set of constants a := {a0, a1, a2}, we introduce the related
quadratic functionals

q2 = q2(a) := a0q2,0 + a1q1,1 + a2q0,2.

Note that the quadratic divergence D2 = q2,0 − 2q1,1 + q0,2, the Rényi entropy
hk = log(qk,0)/(1 − k), k = 2, 3, . . ., and the variability v = − log(q1,1). Some
applications of Rényi entropy and divergence measures can be found, e.g., in
information theoretic learning (Principe, 2010). More applications of entropy
and divergence in statistics (e.g., classification, distribution identification prob-
lems, and statistical inference), computer science (e.g., average case analysis for
random databases, pattern recognition, and image matching), and econometrics
are discussed, e.g., in Kapur (1989), Kapur and Kesavan (1992), Pardo (2006),
Leonenko et al. (2008), Escolano et al. (2009), Seleznjev and Thalheim (2003,
2010), Thalheim (2000), Leonenko and Seleznjev (2010), Neemuchwala et al.
(2005), and Ullah (1996). The divergence D2 belongs to a subclass of the Breg-
man divergences that find various applications in statistics (see, e.g., Basseville,
2010, and references therein).

In this paper, to demonstrate the general approach, we study non-parametric
estimation of some entropy-type integral functionals, e.g., qk and q2(a), using in-
dependent samples from PX and PY . Some new asymptotic results are presented
for a class of U -statistic estimators for these functionals. These estimators are
based on the ǫ-close observations in the corresponding samples. We general-
ize some results and techniques proposed in Leonenko and Seleznjev (2010) and
Källberg et al. (2012). In particular, we obtain consistency of the corresponding
estimators for a more wide class of distributions and prove asymptotic normality
of the estimators for the quadratic functionals q2(a).

Leonenko et al. (2008) study asymptotic properties of nearest-neighbor esti-
mators for qk, and obtain consistency when the densities are bounded. Giné and
Nickl (2008) show asymptotical normality for a kernel estimator of q2,0 in the
one-dimensional case. Ahmad and Cerrito (1993) and Li (1996, 1999) use kernel
estimates of the quadratic divergence D2 as test statistics for the two-sample
problem, and obtain asymptotically normal null distribution. For a certain ker-
nel estimator, we prove asymptotic normality under different conditions. The
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number of small interpoint distances in a random sample is among the most
studied examples of U -statistics with kernels varying with the sample size (see,
e.g., Weber, 1983, Jammalamadaka and Janson, 1986, Penrose, 1995). A signifi-
cant feature of such characteristics is that one can obtain normal limit laws even
in some degenerate cases. We generalize this approach for two-sample statis-
tics. This extension enables some statistical applications where the degeneracy
condition might be crucial, e.g., estimation of divergence.

First we introduce some notation. Throughout the paper, we assume that
the random vectors X and Y are independent. Let d(x, y) := |x− y| denote the
Euclidean distance in Rd and define Bǫ(x) := {y : d(x, y) < ǫ} to be an open
ǫ-ball in Rd with center at x and radius ǫ. Denote by bǫ(d) := ǫdb1(d), b1(d) =
2πd/2/(dΓ(d/2)), the volume of the ǫ-ball. Define the ǫ-ball probability as

pX,ǫ(x) := P{X ∈ Bǫ(x)}.

We say that the vectors x and y are ǫ-close, if d(x, y) < ǫ, for some ǫ > 0. Let
X1, . . . , Xn1

and Y1, . . . , Yn2
be mutually independent samples of independent

and identically distributed (i.i.d.) observations from PX and PY , respectively.
Define n := (n1, n2), n := n1 + n2, and say that n → ∞ if n1, n2 → ∞. Let
ǫ = ǫ(n) → 0 as n → ∞.

In what follows, we consider estimation problems for both one and two sam-
ples. However, in statements of results and the proofs it is assumed, for sake
of space and clarity, that two samples are available, i.e., n1, n2 > 0. This can
be done without loss of generality, because in the one-sample case, e.g., estima-
tion of qk1,0, k1 ≥ 2, from X1, . . . , Xn1

, an auxiliary sample Y1, . . . , Yn2
can be

considered.
Denote by

D→ and
P→ convergence in distribution and probability, respec-

tively. For a sequence of random variables Un, n ≥ 1, we write Un = OP(1)
as n → ∞ if for any δ > 0 and large enough n ≥ 1, there exists C > 0 such
that P (|Un| > C) ≤ δ. Moreover, for a numerical sequence wn, n ≥ 1, let
Un = OP(wn) as n→ ∞ if Un/wn = OP(1) as n→ ∞.

The remaining part of the paper is organized as follows. In Section 2, we
consider estimation of the Rényi entropy functional qk. The asymptotic results
for estimation of the quadratic functional q2(a) are given in Section 3. In Sec-
tion 4, we discuss applications of the obtained results to estimation of density
power divergence, the two-sample problem, and statistical inference for some
entropy-type characteristics. Several numerical examples illustrate the rate of
convergence of the asymptotic results. Section 5 contains the proofs of the
statements from the previous sections.

2. Estimation of the Rényi entropy functional qk

We introduce the U -statistic estimators of qk proposed by Källberg et al.
(2012). If r is a non-negative integer, define Sm,r to be the set of all r-subsets
of {1, . . . ,m}. Let S ∈ Sn1,k1

and T ∈ Sn2,k2
. When k1 ≥ 1, we define

ψ
(i)
k,n,ǫ(S;T ) = I(d(Xi, Xj) < ǫ, d(Xi, Yl) < ǫ, ∀j ∈ S, ∀l ∈ T ), i ∈ S,
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i.e., the indicator of the event that the observations {Xj, j ∈ S} and {Yl, l ∈ T }
are ǫ-close to Xi. By conditioning, we have

qk,ǫ := E(ψ
(i)
k,n(S;T )) = E(pX,ǫ(X)k1−1pY,ǫ(X)k2).

In a similar way, when k1 = 0 and k2 ≥ 1, we define

ψ
(i)
k,n,ǫ(T ) = I(d(Yi, Yj) < ǫ, ∀j ∈ T ), i ∈ T,

and
qk,ǫ := E(ψ

(i)
k,n(T )) = E(pY,ǫ(Y )k2−1).

Now, a U -statistic for qk,ǫ (see, e.g., Ch. 2, Lee, 1990) is given by

Qk,n = Qk,n,ǫ :=

(

n1

k1

)−1(
n2

k2

)−1
∑

S∈Sn1,k1

∑

T∈Sn2,k2

ψk,n(S;T ),

with the kernel ψk,n(S;T ) defined by the symmetrization

ψk,n(S;T ) = ψk,n,ǫ(S;T ) :=



















1

k1

∑

i∈S

ψ
(i)
k,n,ǫ(S;T ), if k1 ≥ 1,

1

k2

∑

i∈T

ψ
(i)
k,n,ǫ(T ), if k1 = 0, k2 ≥ 1.

By definition, Qk,n is an unbiased estimator of qk,ǫ. Let k := k1 + k2, k ≥ 2,
and define the estimator of qk as

Q̃k,n := Qk,n/bǫ(d)
k−1.

Källberg et al. (2012) obtain consistency of Q̃k,n when the densities are bounded
and continuous. The following theorem yields weaker density conditions for
consistency.

Theorem 1. If pX , pY ∈ L2k−1(R
d), nǫd(1−1/k) → ∞, and n1/n→ ρ, 0 < ρ < 1,

then
Q̃k,n

P→ qk as n → ∞.

3. Estimation of the quadratic functional q2(a)

The following linear combination is a sensible estimator for the quadratic
functional q2

Q̃2,n = Q̃2,n(a) := a0Q̃2,0,n + a1Q̃1,1,n + a2Q̃0,2,n.

For 0 < ρ < 1, introduce the characteristics

κ = κρ(a) :=
4

ρ
Var

(

a0pX(X)+
a1
2
pY (X)

)

+
4

1− ρ
Var

(

a2pY (Y ) +
a1
2
pX(Y )

)

,

η = ηρ(a) :=
2

b1(d)

(

a20
ρ2
q2,0 +

a22
(1− ρ)2

q0,2 +
a21

2ρ(1− ρ)
q1,1

)

.
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Let
q̃2,ǫ := E(Q̃2,n) = a0q̃2,0,ǫ + a1q̃1,1,ǫ + a2q̃0,2,ǫ,

where q̃k,ǫ := E(Q̃k,n) = bǫ(d)
−1qk,ǫ. We get the following theorem for the

asymptotic normality of Q̃2,n.

Theorem 2. Let pX , pY ∈ L3(R
d), and n1/n = ρ, 0 < ρ < 1.

(i) If nǫd → β, 0 < β <∞, then

√
n(Q̃2,n − q̃2,ǫ)

D→ N(0, κ+ η/β) as n → ∞.

(ii) If nǫd → 0 and n2ǫd → ∞, then

nǫd/2(Q̃2,n − q̃2,ǫ)
D→ N(0, η) as n → ∞.

From a practical point of view, the unknown asymptotic variances in Theorem 2
have to be estimated, i.e., we need consistent estimators for κ and η. By ex-
panding the terms in κ, we see that it is a function of ρ and the functionals
{qi,j : 2 ≤ i + j ≤ 3}, i.e., κ = κ(ρ, {qi,j : 2 ≤ i + j ≤ 3}). Since Theorem 1

yields that {Q̃i,j,n : 2 ≤ i+j ≤ 3} are consistent estimators of these functionals,
we set up the plug-in estimator

κn := κ(ρn, {Q̃i,j,n : 2 ≤ i+ j ≤ 3})

for κ, where ρn := n1/n. Similarly, denote by ηn the corresponding estimator
for η and define νn := κn + ηn/βn, βn := nǫd, to be an estimator of κ+ η/β. It
follows from the Slutsky theorem that ηn and νn are consistent estimators of η
and κ+ η/β, respectively.

To ensure a sufficient rate of decay for the bias term q̃2,ǫ − q2, we propose

smoothness conditions for the densities. Denote by H
(α)
2 (K), 0 < α ≤ 1,K > 0,

a linear space of functions in L5(R
d) that satisfy a α-Hölder condition in L2-

norm with constant K, i.e., if p ∈ H
(α)
2 (K) and h ∈ B1(d), then

||p(·+ h)− p(·)||2 ≤ K|h|α. (1)

Note that (1) holds if, e.g., for some function g ∈ L2(R
d),

|p(x+ h)− p(x)| ≤ g(x)|h|α.

The density smoothness can be introduced in different ways, e.g., by the point-
wise Hölder conditions (Källberg et al., 2012) or the Fourier characterization
(Giné and Nickl, 2008).

A bound for the bias and the rate of convergence in probability are presented
in the following theorem. Additionally, we obtain asymptotically pivotal quan-
tities which can be used, e.g., to construct asymptotic confidence intervals for
the functional q2. Let L(n), n ≥ 1, be a slowly varying function as n→ ∞.
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Theorem 3. Let pX , pY ∈ H
(α)
2 (K) and n1/n = ρ, 0 < ρ < 1.

(i) Then for the bias, we have

|q̃2,ǫ − q2| ≤ Cǫ2α, C > 0.

(ii) If 0 < α ≤ d/4 and ǫ ∼ cn−1/(2α+d/2), c > 0, then

Q̃2,n − q2 = OP(n
−2α/(2α+d/2)) as n → ∞.

(iii) If α > d/4 and nǫd → β, 0 < β <∞, then

√
n(Q̃2,n − q2)

D→ N(0, κ+ η/β) and

√
n√
νn

(Q̃2,n − q2)
D→ N(0, 1)

as n → ∞.

(iv) If ǫ ∼ L(n)n−2/d and L(n) → ∞, i.e., n2ǫd → ∞, then

nǫd/2(Q̃2,n − q2)
D→ N(0, η) and

nǫd/2√
ηn

(Q̃2,n − q2)
D→ N(0, 1)

as n → ∞.

Remark 1. It is worth noting that in this paper, we do not require κ > 0 (cf.
Källberg et al, 2012). The condition κ > 0 corresponds to the non-degeneracy
condition commonly used for proving asymptotic normality of U -statistics by
the conventional techniques, e.g., using the H-decomposition (see, e.g., Lee,
1990, Koroljuk and Borovskich, 1994). For example, when considering, e.g., the
divergence D2, the condition κ > 0 implies that pX(x) 6= pY (x) on a set of
positive measure. This assumption may be too restrictive in some statistical
applications whenever the distributions of X and Y are too close.

Remark 2. In Theorem 3(iv), we get asymptotic normality for an arbitrary
dimension. This is an improvement of some results in Leonenko and Seleznjev
(2010) and Källberg et al. (2012). Note, however, that the rate of convergence
nǫd/2 ∼ L(n)d/2 can be slower than

√
n in this case.

Remark 3. The condition n1/n = ρ, 0 < ρ < 1, in Theorems 2 and 3 is
technical and we claim that it can be replaced with the slightly weaker condition
n1/n→ ρ, 0 < ρ < 1.

Remark 4. In the one-sample case, the results in Theorems 2 and 3 are es-
sentially independent of ρ. In fact, consider, e.g., the estimator Q̃2,0,n of q2,0,
i.e., a = {1, 0, 0}, κ = 4Var(pX(X))/ρ, and η = 2b1(d)

−1q2,0/ρ
2. We have

n = n1/ρ, so if n1ǫ
d → λ, 0 < λ < ∞, then nǫd → λ/ρ =: β. Hence, it follows

from Theorem 3(iii) that

√
n1(Q̃2,0,n − q2,0)

D→ N

(

0, 4Var(pX(X)) +
2

b1(d)
q2,0/λ

)

as n1 → ∞.

Therefore, we obtain a result with
√
n1-scaling that does not depend on ρ as

desired. A similar modification can be done for the nǫd/2-scaling.
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4. Applications

4.1. Estimation of density power divergence

The introduced quadratic divergence D2 belongs to the wide class of density
power divergences (Basu et al., 1998), defined by

Ds =Ds(PX ,PY ) :=

∫

Rd

(

1

s− 1
pX(x)s − s

s− 1
pX(x)pY (x)

s−1 + pY (x)
s

)

dx

=
1

s− 1
qs,0 −

s

s− 1
q1,s−1 + q0,s, s > 1.

When s = r is a non-negative integer and pX , pY ∈ L2r−1(R
d), then Theorem 1

implies that

D̂r,n :=
1

r − 1
Q̃r,0,n − r

r − 1
Q̃1,r−1,n + Q̃0,r,n

is a consistent estimator ofDr. Moreover, Theorem 3 gives conditions for asymp-
totic normality of the quadratic estimator D̂2,n.

The quadratic divergence D2 can be used as a dissimilarity measure to in-
vestigate pairwise differences amongM populations or objects. Let the features
of population l be represented by the random feature vector Vl with density
pVl

(x), x ∈ Rd, l = 1, . . . ,M . Using independent samples from populations
Vl, l = 1, . . . ,M , we apply, e.g., the Bonferroni method and calculate the

(

M
2

)

approximate simultaneous confidence intervals {Ilm} for the quadratic diver-
gences {D2,l,m}, D2,l,m := D2(PVl

,PVm), for a given confidence level. Now, the
intervals {Ilm} can be used to determine which populations are different with
respect to their feature densities.

Example 1. We consider estimation of the quadratic density power divergence
D2(PX ,PY ) between two three-dimensional distributions. The distribution of
the components of X and Y are t(3)-i.i.d. and N(1, 1)-i.i.d., respectively. In
this case it holds that D2 ≈ 0.018. We simulate Nsim = 500 independent

and normalized residuals R
(i)
n :=

√
n(D̂2,n − D2)/

√
νn, i = 1, . . . , Nsim, with

n1 = n2 = 500, and ǫ = 1/4. Figure 1 illustrates the performance of the

normal approximation of R
(i)
n indicated by Theorem 3. The histogram, normal

quantile plot, and p-value (0.41) for the Kolmogorov-Smirnov test also support
the assumption of standard normality for the residuals.

4.2. The two-sample problem

A general null hypothesis of closeness between PX and PY is given by

H0 : pX(x) = pY (x) a.e.

We consider the problem of testing H0 against the alternative H1 that pX(x)
and pY (x) differ on a set of positive measure (often referred to as the two-sample
problem). Note that the alternative can be written as H1 : D2 > 0. Hence, we
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Figure 1: Three-dimensional distributions with t(3)-i.i.d. and N(1, 1)-i.i.d. components, re-
spectively; sample sizes n1 = n2 = 500 and ǫ = 1/4. Standard normal approximation for the
normalized residuals; Nsim = 500.

define a test statistic based on the estimator D̂2,n for D2 (see, e.g., Li, 1996),
according to

Tn :=
nǫd/2√
ηn

D̂2,n.

The asymptotics for the distribution of Tn are presented in the following propo-
sition. Let {un} be a numerical sequence such that un = o(nǫd/2) as n → ∞.

Proposition 4. Assume that pX , pY ∈ L3(R
d), n2ǫd → ∞, and n1/n = ρ.

(i) Under H0, we have

nǫd/2D̂2,n
D→ N(0, η) and Tn

D→ N(0, 1) as n → ∞.

(ii) Under H1, we have

P (Tn > un) → 1 as n → ∞.

Thus, we reject H0 if Tn > λα, where λα is the α−quantile of the standard
normal distribution. It follows that this test has asymptotic significance level α
and is consistent against all alternatives that satisfy pX , pY ∈ L3(R

d).

Remark 5. Since q2,0 = q1,1 = q0,2 under H0, the asymptotic variance in
Proposition 4(i) is reduced to

η
H0= η0 :=

2q2,0
b1(d)ρ2(1− ρ)2

.
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Therefore, the test might be more accurate if Tn is redefined by means of re-
placing ηn with an estimate of η0 based on the pooled sample {Z1, . . . , Zn} :=
{X1, . . . , Xn1

, Y1, . . . , Yn2
} (cf. Li, 1999).

4.3. Estimation of Rényi entropy and differential variability

Consider the class of functionals

hk = hk(PX ,PY ) :=
1

1− k
log(qk), k ≥ 2.

When PX = PY , we get the Rényi entropy hk,0, a family of functions for measur-
ing uncertainty or randomness of a system (Rényi, 1970). Another important
example is the differential variability v = h1,1, a characteristic for modeling
some random databases (Seleznjev and Thalheim, 2010). When the densities
are bounded and continuous, the results in Källberg et al. (2012) imply consis-
tency of the truncated plug-in estimator

Hk,n :=
1

1− k
log(max(Q̃k,n, 1/n))

for hk. It follows from Theorem 1 and the Slutsky theorem that Hk,n is consis-
tent under the weaker condition pX , pY ∈ L2k−1(R

d).
In the quadratic cases k = 2, i.e., k = (2, 0), (1, 1), the asymptotic normality

properties of Hk,n are studied by Leonenko and Seleznjev (2010) and Källberg
et al. (2012). The following proposition generalizes some of these results (see
also Remarks 1-4).

Proposition 5. Assume that k = 2. Let pX , pY ∈ H
(α)
2 (K) and n1/n = ρ,

0 < ρ < 1.

(i) If 0 < α ≤ d/4 and ǫ ∼ cn−1/(2α+d/2), c > 0, then

Hk,n − hk = OP(n
−2α/(2α+d/2)) as n → ∞.

(ii) If α > d/4 and nǫd → β, 0 < β <∞, then

√
n(Hk,n − hk)

D→ N(0, κ+ η/β) and
√
n
Q̃k,n√
νn

(Hk,n − hk)
D→ N(0, 1)

as n → ∞.

(iii) If ǫ ∼ L(n)n−2/d and L(n) → ∞, i.e., n2ǫd → ∞, then

nǫd/2(Hk,n − hk)
D→ N(0, η) and nǫd/2

Q̃k,n√
ηn

(Hk,n − hk)
D→ N(0, 1)

as n → ∞.
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The estimator Hk,n of hk can be used, e.g., for distribution identification prob-
lems and approximate matching in stochastic databases (for a description, see
Källberg et al., 2012).

Example 2. Let X and Y be one-dimensional uniform random variables,
i.e., X ∼ U(0, 1) and Y ∼ U(0,

√
2), and consider estimation of the differ-

ential variability v = h1,1 = log(2)/2. We simulate independent and nor-

malized residuals R
(i)
n :=

√
nQ̃1,1,n(H1,1,n − h1,1)/

√
νn, i = 1, . . . , Nsim, with

n1 = n2 = 300, ǫ = 1/100, and Nsim = 600. Figure 2 illustrates the normal ap-
proximation for these residuals indicated by Proposition 5(ii). The histogram,
quantile plot, and p-value (0.36) for the Kolmogorov-Smirnov test allow to ac-
cept the hypothesis of standard normality.
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Figure 2: Uniform distributions, U(0, 1) and U(0,
√

2); sample sizes n1 = n2 = 300 and
ǫ = 1/100. Standard normal approximation for the normalized residuals; Nsim = 600.

5. Proofs

The following lemma is used in the subsequent proofs.

Lemma 1. For a, b ≥ 0, assume that pX , pY ∈ La+b+1(R
d). Then

bǫ(d)
−(a+b)E(pX,ǫ(X)apY,ǫ(X)b) → qa+1,b as ǫ→ 0.

Proof. Let p̃X,ǫ(x) := bǫ(d)
−1pX,ǫ(x), p̃Y,ǫ(x) := bǫ(d)

−1pY,ǫ(x). Consider the
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decomposition

bǫ(d)
−(a+b)E(pX,ǫ(X)apY,ǫ(X)b) =

∫

Rd

p̃X,ǫ(x)
ap̃Y,ǫ(x)

bpX(x)dx

=

∫

Rd

pX(x)a+1pY (x)
bdx+

∫

Rd

(p̃Y,ǫ(x)
b − pY (x)

b)pX(x)a+1dx (2)

+

∫

Rd

(p̃X,ǫ(x)
a − pX(x)a)p̃Y,ǫ(x)

bpX(x)dx

Hence, the assertion follows if the last two terms in (2) tend to 0 as ǫ→ 0. By
the extension of Hölder’s inequality (see, e.g., Ch. 2, Bogachev, 2007),

∣

∣

∣

∫

Rd

(p̃X,ǫ(x)
a − pX(x)a)p̃Y,ǫ(x)

bpX(x)dx
∣

∣

∣ (3)

≤ ||p̃X,ǫ(·)a − pX(·)a||(a+b+1)/a||p̃Y,ǫ(·)b||(a+b+1)/b||pX(·)||a+b+1

The Lebesgue differentiation theorem implies

p̃X,ǫ(x)
a+b+1 → pX(x)a+b+1 as ǫ→ 0 a.e. (4)

If V = (V1, . . . , Vd)
′ is an auxiliary random vector uniformly distributed in the

unit ball B1(d), then p̃X,ǫ(x) = E(pX(x − ǫV )), and by Jensen’s inequality,

(p̃X,ǫ(x)
a)(a+b+1)/a ≤ gǫ(x) := E(pX(x− ǫV )a+b+1) (5)

=
1

bǫ(d)

∫

Bǫ(x)

pX(y)a+b+1dy.

Since pX ∈ La+b+1(R
d), it follows from the Lebesgue differentiation theorem

that
gǫ(x) → g(x) := pX(x)a+b+1 as ǫ→ 0 a.e. (6)

Furthermore, Fubini’s theorem yields
∫

Rd

gǫ(x)dx =

∫

Rd

g(x)dx. (7)

We get from (4)-(7) and a generalization of the dominated convergence theorem
(see, e.g., Ch. 2, Bogachev, 2007) that

||p̃X,ǫ(·)a||(a+b+1)/a → ||pX(·)a||(a+b+1)/a as ǫ→ 0. (8)

Similarly,
||p̃Y,ǫ(·)b||(a+b+1)/b → ||pY (·)b||(a+b+1)/b as ǫ→ 0. (9)

Now we use the following result (see, e.g., Ch. 1, Kallenberg, 1997): For a
sequence of functions fn ∈ Lp(R

d), p ≥ 1, n = 1, . . ., with fn(x) → f(x) a.e.,
f ∈ Lp(R

d), it holds that

||fn||p → ||f ||p iff ||fn − f ||p → 0 as n→ ∞. (10)

11



Note that (4), (8), and (10) imply

||p̃X,ǫ(·)a − pX(·)a||(a+b+1)/a → 0 as ǫ→ 0. (11)

Finally, it follows from (3), (9), and (11) that
∫

Rd

(p̃X,ǫ(x)
a − pX(x)a)p̃Y,ǫ(x)

bpX(x)dx → 0 as ǫ→ 0.

In a similar way, we obtain
∫

Rd

(p̃Y,ǫ(x)
b − pY (x)

b)pX(x)a+1dx→ 0 as ǫ→ 0.

This completes the proof. ✷

Proof of Theorem 1. For l = 0, . . . , k1, and m = 0, . . . , k2, let

ψk,l,m,n(x1, . . . , xl; y1, . . . , ym)

:= E(ψk,n(x1, . . . , xl, Xl+1, . . . , Xk1
; y1, . . . , ym, Ym+1, . . . , Yk2

))

and
σ2
k,l,m,n := Var(ψk,l,m,n(X1, . . . , Xl;Y1, . . . , Ym)),

where we define σ2
k,0,0,n = 0. From the conventional theory of U -statistics (see,

e.g., Ch. 2, Lee, 1990), we have

Var(Q̃k,n) = bǫ(d)
−2(k−1)

k1
∑

l=0

k2
∑

m=0

(

k1

l

)(

k2

m

)(

n1−k1

k1−l

)(

n2−k2

k2−m

)

(

n1

k1

)(

n2

k2

) σ2
k,l,m,n. (12)

First, assume that k1 ≥ 1. Following the argument in Källberg et al. (2012), it
is straightforward to show that

σ2
k,l,m,n ≤ E(pX,3ǫ(X)2k1−l−1pY,3ǫ(X)2k2−m),

so Lemma 1 implies

σ2
k,l,m,n = O(bǫ(d)

2k−l−m−1) as n → ∞. (13)

For l = 0, . . . , k1 and m = 0, . . . , k2, we obtain

bǫ(d)
−2(k−1)

(

k1

l

)(

k2

m

)(

n1−k1

k1−l

)(

n2−k2

k2−m

)

(

n1

k1

)(

n2

k2

) σ2
k,l,m,n (14)

∼ Cl,m

bǫ(d)
−(2k−l−m−1)σ2

k,l,m,n

nl+mǫd(l+m−1)
,

for some constant Cl,m > 0. Since l +m ≤ k, we have

nl+mǫd(l+m−1) = (nǫd(1−1/(l+m)))l+m ≥ (nǫd(1−1/k))l+m. (15)

12



Now, if nǫd(1−1/k) → c, 0 < c ≤ ∞, it follows from (12)-(15) that

Var(Q̃k,n) = O

(

1

nǫd(1−1/k)

)

as n → ∞. (16)

In the same way, it can be shown that (16) holds when k1 = 0. In particular, if
nǫd(1−1/k) → ∞, we get

Var(Q̃k,n) → 0 as n → ∞. (17)

Moreover, it follows from Lemma 1 that E(Q̃k,n) = bǫ(d)
−(k−1)qk,ǫ → qk, so we

obtain from (17) that Q̃k,n
P→ qk as n → ∞. This completes the proof. ✷

Proof of Theorem 2. Note that (i) and (ii) can be expressed together as follows:
If nǫd → β, 0 ≤ β <∞, and n2ǫd → ∞, then

nǫd/2(Q̃2,n − q̃2,ǫ)
D→ N(0, η + βκ).

So we prove the theorem using the scaling nǫd/2 for both (i) and (ii). If n3 =
n3(n) is defined to be the greatest common divisor of n1 and n2, then n1 = n3l
and n2 = n3m, where l and m are positive integers that satisfy l/(l +m) = ρ.
Consider the following pooled random vectors in Rd(l+m)

Zi := (Xl(i−1)+1, . . . , Xli, Ym(i−1)+1, . . . , Ymi), i = 1, . . . , n3.

The method of proof relies on the decomposition

nǫd/2(Q̃2,n − q̃2,ǫ) = nǫd/2
(

n3

2

)−1

bǫ(d)
−1(Un − E(Un)) +Rn, (18)

where Un, to be defined later, essentially is a one-sample U -statistic with respect
to the i.i.d. sample {Z1, . . . , Zn3

}. The idea is to prove that the remainder Rn

tends to 0 in probability and use the corresponding result from Jammalamadaka
and Janson (1986) to show asymptotic normality for the first term in (18).

For zi := (xl(i−1)+1, . . . , xli, ym(i−1)+1, . . . , ymi), i = 1, . . . , n3, introduce the
kernels

φ(1)n (zi, zj) :=

l
∑

s=1

l
∑

t=1

I
(

d
(

xl(i−1)+s, xl(j−1)+t

)

< ǫ
)

,

φ(2)
n

(zi, zj) :=

m
∑

s=1

m
∑

t=1

I
(

d
(

ym(i−1)+s, ym(j−1)+t

)

< ǫ
)

,

φ(3)
n

(zi, zj) :=

l
∑

s=1

m
∑

t=1

I
(

d
(

xl(i−1)+s, ym(j−1)+t

)

< ǫ
)

+

l
∑

s=1

m
∑

t=1

I
(

d
(

xl(j−1)+s, ym(i−1)+t

)

< ǫ
)

.
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Furthermore, define

fn(zi, zj) := a0l
−2φ(1)n (zi, zj) + a2m

−2φ(2)n (zi, zj) + a1(2lm)−1φ(3)n (zi, zj),

µn := E(fn(Z1, Z2)) = bǫ(d)q̃2,ǫ,

gn(zi) := E(fn(zi, Zj))− µn (19)

=
a0
l

l
∑

s=1

pX,ǫ(xl(i−1)+s) +
a2
m

m
∑

s=1

pY,ǫ(ym(i−1)+s)

+
a1
2

(

1

l

l
∑

s=1

pY,ǫ(xl(i−1)+s) +
1

m

m
∑

s=1

pX,ǫ(ym(i−1)+s)

)

− µn.

Let

Mn :=
∑

i<j

I(d(Xi, Xj) < ǫ), Vn :=
∑

i<j

I(d(Yi, Yj) < ǫ),

Wn :=
∑

i,j

I(d(Xi, Yj) < ǫ),

and note that

bǫ(d)Q̃2,n = a0

(

n1

2

)−1

Mn + a2

(

n2

2

)−1

Vn + a1(n1n2)
−1Wn. (20)

Now consider the decompositions

Mn =M (1)
n +M (2)

n , Vn = V (1)
n + V (2)

n , Wn =W (1)
n +W (2)

n ,

where

M (1)
n :=

∑

i<j

φ(1)n (Zi, Zj), V (1)
n :=

∑

i<j

φ(2)n (Zi, Zj), W (1)
n :=

∑

i<j

φ(3)n (Zi, Zj),

and define

Un :=
a0
l2
M (1)

n
+
a2
m2

V (1)
n

+
a1
2lm

W (1)
n

=
∑

i<j

fn(Zi, Zj).

With this definition of Un, it follows from (20) that the decomposition (18)
holds with remainder

Rn = R(1)
n +R(2)

n +R(3)
n +R(4)

n +R(5)
n +R(6)

n ,
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where

R(1)
n

:= a0

(

(

n1

2

)−1

− l−2

(

n3

2

)−1
)

nǫd/2bǫ(d)
−1M (1)

n
,

R(2)
n

:= a2

(

(

n2

2

)−1

−m−2

(

n3

2

)−1
)

nǫd/2bǫ(d)
−1V (1)

n
,

R(3)
n := a1

(

(n1n2)
−1 − (2lm)−1

(

n3

2

)−1
)

nǫd/2bǫ(d)
−1W (1)

n ,

R(4)
n := a0

(

n1

2

)−1

nǫd/2bǫ(d)
−1M (2)

n ,

R(5)
n

:= a2

(

n2

2

)−1

nǫd/2bǫ(d)
−1V (2)

n
,

R(6)
n

:= a1(n1n2)
−1nǫd/2bǫ(d)

−1W (2)
n
.

By the conventional U -statistic theory for one-sample U -statistics (see, e.g., Ch.
1, Lee, 1990), we have

Var(M (1)
n ) =

(

n3

2

)

(2(n3 − 2)ξ1,n + ξ2,n) , (21)

where

ξ1,n := Cov(φ(1)n (Z1, Z2), φ
(1)
n (Z1, Z3)), ξ2,n := Var(φ(1)n (Z1, Z2)).

It follows that

ξ2,n ≤ E(φ(1)n (Z1, Z2)
2) ≤ l2E(φ(1)n (Z1, Z2)) = l4P (d(X1, X2) < ǫ),

and hence ξ1,n, ξ2,n = O(bǫ(d)). Therefore, we get from (21) that

Var(M (1)
n

) = O(n3
3bǫ(d)) as n → ∞. (22)

Since
(

n1

2

)−1

− l−2

(

n3

2

)−1

=

(

n1

2

)−1

− l−2

(

n1/l

2

)−1

∼ C

n3
1

as n → ∞,

it follows from (22) that

Var(R(1)
n

) = O(n−1) → 0 as n → ∞. (23)

Similarly, for i = 2, 3,
Var(R(i)

n ) → 0 as n → ∞. (24)

Moreover, if a kernel is defined as

θn(zi) :=
∑

1≤j<k≤l

I
(

d
(

xl(i−1)+j , xl(i−1)+k

)

< ǫ
)

, i = 1, . . . , n3,
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then

M (2)
n

=

n3
∑

i=1

θn(Zi)

and by Lemma 1,

Var(M (2)
n

) = n3Var(θn(Z1)) ∼ n3

(

l

2

)

bǫ(d)q2,0 = O(n3ǫ
d) as n → ∞.

This yields
Var(R(4)

n ) = O(n−1) → 0 as n → ∞. (25)

In a similar way, for i=5, 6,

Var(R(i)
n ) → 0 as n → ∞. (26)

Since E(Rn) = 0, it follows from (23)-(26) that

Rn

P→ 0 as n → ∞. (27)

Next we prove asymptotic normality for Un. Let

σ2
n
:=

n2
3

2
Var(fn(Z1, Z2)) + n3

3Var(gn(Z1)). (28)

Using Lemma 1, it is straightforward to show that, as n → ∞,

σ2
n
∼ n2

3bǫ(d)

2

(

a20
l2
q2,0 +

a22
m2

q0,2 +
a21
2lm

q1,1

)

(29)

+n3
3bǫ(d)

2

(

1

l
Var

(

a0pX(X)+
a1
2
pY (X)

)

+
1

m
Var

(

a2pY (Y )+
a1
2
pX(Y )

)

)

.

Since n2ǫd → ∞ implies n2
3bǫ(d) → ∞, we get from (29) that

σn → ∞ as n → ∞,

and hence

sup
z1,z2

|fn(z1, z2)| ≤ |a0|+ |a2|+ |a1| = o(σn) as n → ∞. (30)

Moreover, note that

E(|fn(z1, Z2)|) ≤
|a0|
l

l
∑

i=1

pX,ǫ(xi) +
|a2|
m

m
∑

i=1

pY,ǫ(yi) (31)

+
|a1|
2l

l
∑

i=1

pY,ǫ(xi) +
|a1|
2m

m
∑

i=1

pX,ǫ(yi).
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By Hölder’s inequality,

pX,ǫ(x) =

∫

|y−x|<ǫ

pX(y)dy ≤
(

∫

|y−x|<ǫ

dy

)1/2(
∫

|y−x|<ǫ

pX(y)2dy

)1/2

= bǫ(d)
1/2

(

∫

|y−x|<ǫ

pX(y)2dy

)1/2

,

where the last integral tends to 0 uniformly in x as ǫ → 0. The corresponding
results can be shown for the other terms in (31). Hence, we obtain

sup
z1

E(|fn(z1, Z2)|) = o(bǫ(d)
1/2) = o(σn/n3). (32)

Now, it follows from (30) and (32) that the conditions of Theorem 2.1. in Jam-
malamadaka and Janson (1986) hold. Consequently,

Un − E(Un)

σn
=

1

σn





∑

i<j

fn(Zi, Zj)−
(

n3

2

)

µn





D→ N(0, 1) as n → ∞. (33)

Moreover, since nǫd → β, 0 ≤ β <∞, it follows from (29) and Lemma 1 that

n2ǫd
(

n3

2

)−2

bǫ(d)
−2σ2

n
→ η + βκ as n → ∞. (34)

Finally, (18), (27), (33), (34), and the Slutsky theorem yield

nǫd/2(Q̃2,n − q̃2,ǫ)
D→ N(0, η + βκ) as n → ∞.

This completes the proof.

Proof of Theorem 3. (i) Let V := (V1, . . . , Vd)
′ be an auxiliary random vec-

tor uniformly distributed in the unit ball B1(0). By definition, we have q̃1,1,ǫ =
bǫ(d)

−1E(pX,ǫ(Y )) = E(pX(Y − ǫV )), and hence

q̃1,1,ǫ − q1,1 =

∫

Rd

E(pX(y − ǫV ))pY (y)dy −
∫

Rd

pX(y)pY (y)dy

= E

(∫

Rd

(pX(y − ǫV )− pX(y))pY (y)dy

)

= E

(∫

Rd

(pX(y − ǫV )− pX(y))(pY (y)− pY (y − ǫV ))dy

)

+ E

(∫

Rd

(pX(y − ǫV )− pX(y))pY (y − ǫV )dy

)

.
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For the last term, by the change of variables z = y−ǫV and symmetry V
D
= −V ,

we obtain

E

(∫

Rd

(pX(y − ǫV )− pX(y))pY (y − ǫV )dy

)

= E

(∫

Rd

(pX(z)− pX(z + ǫV ))pY (z)dz

)

= E

(∫

Rd

(pX(z)− pX(z − ǫV ))pY (z)dz

)

= −(q̃1,1,ǫ − q1,1).

We get

2(q̃1,1,ǫ − q1,1) = E

(∫

Rd

(pX(y − ǫV )− pX(y))(pY (y)− pY (y − ǫV ))dy

)

,

and, by Hölder’s inequality and the density smoothness condition,

|q̃1,1,ǫ − q1,1| ≤
1

2
E

(

(∫

Rd

(pX(y − ǫV )− pX(y))2dy

)1/2

×
(∫

Rd

(pY (y)− pY (y − ǫV ))2dy

)1/2
)

≤ 1

2
K2E(|V |2α)ǫ2α ≤ 1

2
K2ǫ2α.

Similar inequalities can be obtained for q̃2,0,ǫ and q̃0,2,ǫ. Now it follows directly
that, for some C > 0,

|q̃2,ǫ − q2| ≤ Cǫ2α.

This proves the assertion.

(ii) Note that the conditions ǫ ∼ cn−1/(2α+d/2) and 0 < α ≤ d/4 imply

nǫd = cdn− d/2−2α
2α+d/2 → β, 0 ≤ β < 0, as n → ∞. (35)

From Jammalamadaka and Janson (1986), we get

Var(Q̃2,0,n) ∼ 4n−1
1 (q3,0 − q22,0) + 2n−2

1 bǫ(d)
−1q2,0 as n → ∞, (36)

and the corresponding result for Var(Q̃0,2,n). Furthermore, (12) yields

Var(Q̃1,1,n)=
bǫ(d)

−2

n1n2

(

(n1 − 1)σ2
1,1,0,1,n + (n2 − 1)σ2

1,1,1,0,n + σ2
1,1,1,1,n

)

, (37)

where, by Lemma 1,

bǫ(d)
−2σ2

1,1,0,1,n = bǫ(d)
−2Var(pX,ǫ(Y1)) → q2,1 − q21,1, (38)

bǫ(d)
−2σ2

1,1,1,0,n = bǫ(d)
−2Var(pY,ǫ(X1)) → q1,2 − q21,1,

bǫ(d)
−1σ2

1,1,1,1,n = bǫ(d)
−1Var(I(d(X1, Y1) < ǫ)) → q1,1 as n → ∞.
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It follows from (35)-(38) that

Var(Q̃2,n) ≤ 3
(

a20Var(Q̃2,0,n) + a22Var(Q̃0,2,n) + a21Var(Q̃1,1,n)
)

= O

(

1

n2ǫd

)

= O
(

n− 4α
2α+d/2

)

as n → ∞. (39)

We get from (i) that (q̃2,ǫ − q2)
2 ≤ Cn− 4α

2α+d/2 , C > 0, so (39) implies

Var(Q̃2,n) + (q̃2,ǫ − q2)
2 = O

(

n− 4α
2α+d/2

)

as n → ∞.

Hence, for some C2 > 0, any A > 0, and large enough n1, n2, we obtain

P
(

|Q̃2,n − q2| > An− 2α
2α+d/2

)

≤ n
4α

2α+d/2
Var(Q̃2,n) + (q̃2,ǫ − q2)

2

A2
≤ C2

A2
,

and the assertion follows.

(iii) We have
√
n(Q̃2,n − q2) =

√
n(Q̃2,n − q̃2,ǫ) +

√
n(q̃2,ǫ − q2). (40)

Now, when nǫd → β, 0 ≤ β <∞ and α > d/4, then (i) imply

|
√
n(q̃2,ǫ − q2)| ≤ Cn1/2ǫ2α = C(nǫd)1/2ǫ2α−d/2 → 0 as n → ∞,

so the assertion follows from Theorem 2(i) and the Slutsky theorem.

(iv) From (i) and the assumption ǫ ∼ L(n)n−2/d, we get

|nǫd/2(q̃2,ǫ − q2)| ≤ CL(n)d/2+2αn−4α/d → 0 as n → ∞.

Therefore, similarly as above, the assertion follows by using the decomposition
corresponding to (40), Theorem 2(ii), and the Slutsky theorem. This completes
the proof.

Proof of Proposition 4. (i) When n2ǫd → ∞ and nǫd → β, 0 ≤ β < ∞, Theo-
rem 2 can be applied with Q̃2,n = D̂2,n. Under H0, we have q̃2,ǫ = E(D̂2,n) = 0
and κ = 0, so Theorem 2 yields

nǫd/2D̂2,n
D→ N(0, η) as n → ∞ (41)

in this case. Hence, we need to show that, for D̂2,n under H0, the proof of
Theorem 2 can be modified so that the assumption nǫd → β, 0 ≤ β < ∞
is unnecessary. In fact, this assumption is only needed for the convergence
property (34) of σ2

n. Under H0, we get from the definition (19) that gn(z) = 0
and hence Var(gn(Z1)) = 0. Therefore, the definition (28) of σ2

n
implies

σ2
n ∼ n2

3bǫ(d)

2

(

a20
l2
q2,0 +

a22
m2

q0,2 +
a21
2lm

q1,1

)

as n → ∞,
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and hence (34) can be written

n2ǫd
(

n3

2

)−2

bǫ(d)
−2σ2

n
→ η as n → ∞,

which does not require convergence of nǫd. Thus, the assertion follows from (41)
and the Slutsky theorem.

(ii) UnderH1, we get from Theorem 1 and the Slutsky theorem that D̂2,n/
√
ηn

P→
D2/

√
η. Hence,

P (Tn > un) = 1−P (D2/
√
η−un/nǫd/2 ≤ D2/

√
η−D̂2,n/

√
ηn) → 1 as n → ∞.

This completes the proof.

Proof of Proposition 5. The assertion follows straightforwardly from Theorem
3 and in a similar way as in Leonenko and Seleznjev (2010).
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Giné, E., Nickl, R., 2008, A simple adaptive estimator for the integrated square of a

density, Bernoulli 14, 47-61.

Jammalamadaka, S.R., Janson, S., 1986, Limit theorems for a triangular scheme of

U -statistics with applications to inter-point distances, Ann. Probab. 14, 1347-1358.

Kallenberg, O., 1997, Foundations of Modern Probability, Springer-Verlag, New York.

Kapur, J.N., 1989, Maximum-entropy Models in Science and Engineering, Wiley, New

York.

20



Kapur, J.N., Kesavan, H.K., 1992, Entropy Optimization Principles with Applications,

Academic Press, New York.

Koroljuk, V.S., Borovskich, Y.V., 1994, Theory of U -statistics, Kluwer, Dordrecht.

Källberg, D., Leonenko, N., Seleznjev, O., 2012, Statistical inference for Rényi entropy
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