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Abstract

We study goodness-of-fit testing for non-causal autoregressive time series

with non-Gaussian stable noise. To model time series exhibiting sharp spikes

or occasional bursts of outlying observations, the exponent of the non-Gaussian

stable variables is assumed to be less than two. Under such conditions, the

innovation variables have no finite second moment. We proved that the sample

autocorrelation functions of the trimmed residuals are asymptotically normal.

Nonparametric tests are also investigated. The rank correlations of the residuals

or the squared residuals are shown to be asymptotically normal. Thus, an

assortment of portmanteau statistics are available for model assessment.
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1 Introduction

Infinite variance autoregressive (AR) time series models have various practical appli-

cations. For example, Resnick (1997) fitted such a model to interarrival times between

packet transmissions on a computer network, Gallagher (2001) studied differenced sea

surface temperatures and fitted a symmetric α-stable AR model, and Ling (2005) ex-

amined the daily log-returns of the Hang Seng Index in the Hong Kong stock market.

When modeling infinite variance autoregressive processes, non-Gaussian α-stable dis-

tributions (i.e. the exponent parameter α < 2) are often adopted to specify the

innovation process due to their intriguing mathematical properties. This rich class

of probability distributions allows heavy tails and skewness, the features exhibited in

many observed time series including signal processing in electrical engineering Stuck

and Kleiner (1974); Sheng and Chen (2011), portfolio selection Rachev et al. (2004),

and asset allocation Tokat and Schwartz (2002). So, the use of α-stable AR models

is well justified both theoretically and empirically.

When studying AR processes, causality (all roots of AR polynomial are outside the

unit circle) is conventionally assumed. However, such an assumption is only needed

when the study is carried out within the classical Gaussian framework in order to

ensure the identifiability of model parameters. Indeed, for every non-causal Gaussian

AR process there exists an equivalent causal representation in the sense that the

two processes have the same mean and autocorrelation functions (see Brockwell and

Davis (1991)). Since a Gaussian distribution is uniquely determined by its first two

moments, the two processes necessarily possess the identical probability structure and

hence are indistinguishable. In contrast, under a non-Gaussian setting, a non-causal

AR process will have a different probability structure than its causal representation.

In other words, for a non-Gaussian AR process the model parameters are identifiable

and the model can be configured uniquely without being confined to the causal case;

see Breidt and Davis (1992) and Rosenblatt (2000).
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In this work we consider diagnostic tests for non-Gaussian non-causal α-stable

AR processes. We remove the assumption of causality and refer to such processes

as general AR processes. There has been a certain amount of work in the literature

on general AR processes. For example, Breidt et al. (1991) discussed a maximum

likelihood procedure for parameter estimation for autoregressive processes with non-

Gaussian innovations. Andrews et al. (2009) studied maximum likelihood estimation

for general AR processes with non-Gaussian α-stable innovations. They showed that,

when fitting trading volumes of the Wal-Mart stock, a general model yielded a better

description of the observed data in the sense that the residuals are more compatible

with the assumption of independent innovations than the residuals produced by its

causal representation. Lanne et al. (2010) considered forecasting of the non-causal AR

time series and demonstrated the improvements in the change-of-direction forecasts

when relaxing causality in the AR model fitted to the US inflation series. Recently

Andrews and Davis (2011) developed a procedure of model identification for infinite

variance AR processes and showed that minimizing Gaussian-based AIC yields a

consistent estimator of the AR order.

Compared to the devotions received to parameter estimation and model identifi-

cation for infinite variance non-causal AR processes, model diagnostics have not been

fully addressed so far. This work intends to fill the gap. Utilizing the recent results

of Lee and Ng (2010) and Bouhaddioui and Ghoudi (2012) we develop portmanteau

test procedures for checking the goodness-of-fit of the non-causal α-stable AR model,

where the model parameters are fit using maximum likelihood estimation. As second

moments do not exist for infinite variance models, the behavior of the sample auto-

correlation of the residuals from the fitted model is hard to harness for the purpose of

model diagnostics. To circumvent the difficulty, we propose to use the trimmed resid-

uals or nonparametric procedures based on the ranks of the residuals or the squared

residuals. We show that the sample autocorrelation of trimmed residuals at a given
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lag for fitted general AR processes is asymptotically normal and hence the commonly

used portmanteau tests in the classical Gaussian framework that are based on sam-

ple ACF, such as Box and Pierce (1970) and Ljung and Box (1978), can be easily

extended to an infinite variance setting. We also proved that the rank correlations of

the residuals or the squared residuals are asymptotically normal. Thus nonparametric

tests could also be developed for model diagnostic purpose.

The rest of the paper is organized as follows. In section 2, we introduce the neces-

sary background material to derive the asymptotic distribution of trimmed residuals.

We then discuss the use of nonparametric and propose nonparametric methods.Using

the asymptotic properties we propose an assortment of portmanteau test based on

the classical methods and recent results. In section 3, we examine the finite sample

performance of the proposed procedures through simulation studies. We check and

compare the empirical sizes and powers of the tests. All technical proofs are relegated

to the Appendix.

2 Theoretical Results

2.1 Preliminaries

Let {Yt} be the autoregressive process satisfying the stochastic difference equation

φ(B)Yt = Zt, (1)

where the AR characteristic polynomial has no zeros on the units circle, φ(z) :=

1 − φ1z − · · · − φpz
p 6= 0 for |z| = 1, and the i.i.d innovation variables {Zt} have a

stable distribution with exponent α ∈ (0, 2). We also assume that the AR charac-

teristic polynomial could be written as the product of causal and purely non-causal
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polynomials,

φ(z) = (1− θ1z − · · · − θrz
r)(1− θr+1z − · · · − θr+sz

s).

Then the unique strictly stationary solution to (1) is given by Yt =

∞
∑

j=−∞
ψjZt−j , where

ψj ’s are determined by the Laurent series expansion for 1/φ(z), 1/φ(z) =
∞
∑

j=−∞
ψjz

j .

It is well known that the coefficients {ψj} are geometrically decaying; namely there

exist C1 > 0 and 0 < D1 < 1 such that |ψj| < C1D
|j|
1 for all j. Now let ψ̄j = ψ−j , for

j > 0. We rewrite the solution to (1) as

Yt =
∞
∑

j=0

ψjZt−j +
∞
∑

j=1

ψ̄jZt+j. (2)

For the AR model defined in (1), let φ̂ be the MLE estimator by Andrews et

al. (2009). Then n1/α(φ − φ̂)
L→ S, where S is some random variable. It could

be shown that there exists δ, satisfying 2α/(2 + α) < δ < min(α, 1), such that

n−1/α = o(n−1/δ+1/2).

Suppose the observed time series is represented as {Y−p+1, · · · , Y0, Y1, · · · , Yn}.

Then the residuals of the fitted model, {Ẑt}nt=1, are given by

Ẑt = Yt − φ̂1Yt−1 − · · · − φ̂pYt−p. (3)

Let {Ẑt}nt=1 be the residuals of the fitted model. For some predetermined lower

percentile λL and upper percentile λU , let M̂L
n and M̂U

n be the (nλL)-th and (nλU)-th

order statistics of {Ẑt}nt=1, respectively. We define the following trimmed residuals

τ̂t = ẐtI(M̂L
n <Ẑt<M̂U

n ).

The goal is to test the hypotheses where the null (H0) is that the ARMA model
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(1) with s > 0 is adequately identified. For the trimmed residuals, the sample auto-

correlation at lag k, ρ̂k, is computed by the formula

ρ̂k =

(
∑n

t=k+1 τ̂tτ̂t−k

)

−
(
∑n

t=k+1 τ̂t
) (

∑n
t=k+1 τ̂t−k

)

/(n− k)

(
∑n

t=1 τ̂
2
t )− (

∑n
t=1 τ̂t)

2
/n

. (4)

Theorem 1. If the model (1) is correctly identified by the MLE method, then, for

any positive integer m, we have

√
nρ̂ρρ(m)

D→ N(0, Im),

where ρ̂ρρ(m) := (ρ̂1, . . . , ρ̂m)
T and Im is the m×m identity matrix

The sample partial autocorrelation (PACF) at lag k, π̂k, can be derived by Durbin–

Levison algorithm:

π̂k =
ρ̂k − ρ̂ρρT(k−1)R

−1
(k−1)ρ̂ρρ

∗
(k−1)

1− ρ̂ρρρρρρρρT(k−1)R
−1
(k−1)ρ̂ρρ(k−1)

, (5)

where ρ̂ρρ(k−1) = (ρ̂1, . . . , ρ̂k−1)
T , R(k−1) = (ρ̂|i−j|)

k
i,j=1 (i.e. the symmetric Toeplitz

matrix generated by (1, ρ̂1, . . . , ρ̂k−1)), and ρ̂ρρ
∗
(k−1) = (ρ̂k−1, . . . , ρ̂1)

T .

Theorem 2. If the model (1) is correctly identified by the MLE method, then, for

any positive integer m, we have

√
nπ̂ππ(m)

D→ N(0, Im),

where π̂ππ(m) := (π̂1, . . . , π̂m)
T and Im is the m×m identity matrix

Nonparametric portmanteau tests could also be developed. The following result

provides the foundation for nonparametric tests based on the empirical process of the

residuals or the squared residuals. Let r̃j =
∑n

i=1 I{Ẑi ≤ Ẑj}/n be the normalized

rank of Ẑj and define the rank correlation as γ̂i =
∑n−i

t=1(r̃t−1/2)(r̃t+i−1/2). We can

also define the rank correlations for the squared residuals, γ̂∗i , in the same fashion.
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Theorem 3. If the model (1) is correctly identified by MLE method, then, for any

positive integer m, we have

12
√
nγ̂γγ(m)

D→ N(0, Im)

12
√
nγ̂γγ∗(m)

D→ N(0, Im)

where γ̂γγ(m) := (γ̂1, . . . , γ̂m)
T , γ̂γγ∗(m) := (γ̂∗1 , . . . , γ̂

∗
m)

T and Im is the m × m identity

matrix.

2.2 Goodness-of-fit testing

The results of Theorems 1, 2 and 3 allow for the construction of the so called Port-

manteau Statistics for time series goodness-of-fit. A Box and Pierce (1970) or Ljung

and Box (1978) type statistic can be constructed, consider:

Qℓb(m) = n(n+ 2)
m
∑

k=1

ρ̂k
n− k

. (6)

Under the null hypothesis, the Ljung Box type statistic will behave as a chi-square

random variable with m degrees of freedom.

A statistic inspired by Monti (1994) can be constructed utilizing the partial au-

tocorrelation function of trimmed residuals and Theorem 2,

Qmt(m) = n(n+ 2)
m
∑

k=1

π̂2
k

n− k
(7)

will be asymptotically distributed as a chi-square random variable with m degrees of

freedom for a given positive integer m.

Recent work in the literature has suggested asymmetric statistics may be more

powerful in some situations than the symmetric (i.e. equally weighted) Ljung Box
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and Monti type statistics. Define R̂m as the Toeplitz matrix of autocorrelations:

R̂m =



















1 ρ̂1 . . . ρ̂m

ρ̂1 1 . . . ρ̂m−1

...
...

. . .
...

ρ̂m ρ̂m−1 . . . 1



















.

Peña and Rodŕıguez (2002) suggest a statistics based on the likelihood ratio test from

multivariate analysis. Their statistic is D̂ = n(1−|R̂m|1/m). Utilizing the asymptotic

normality from Theorem 2 and an application of the delta-method, the asymptotic

distribution under the null hypothesis can be shown to satisfy

D̂
D→

m
∑

k=1

m− k + 1

m
χ2
k (8)

where each χ2
k is a chi-square random variable with one degree of freedom. This

distribution is difficult to write explicitly but can be well approximated by a Gamma

distribution; see Peña and Rodŕıguez (2002) for details.

In Peña and Rodŕıguez (2006) they suggest the sum of the log of one minus the

squared partial autocorrelation function. Utilizing Theorem 2, that statistic can also

be shown to satisfy (8). Mahdi and McLeod (2012) generalize the result of Peña and

Rodŕıguez (2002, 2006) to the multivariate time series setting. In the univariate case

their statistic is

Qgv(m) =
−3n

2m+ 1
log |R̂m| (9)

and the distribution follows a result similar to (8) and can be approximated with a

chi-square with (3/2)m(m+ 1)/(2m+ 1) degrees of freedom.

Recently, Fisher and Gallagher (2012) suggest an alternative asymmetric test

compared to those based on the determinant of the matrix R̂m. They suggest a
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Weighted Ljung Box

Qwℓ(m) = n(n + 2)

m
∑

k=1

m− k + 1

m

ρ̂2k
n− k

(10)

which is shown to satisfy the distribution in (8) and can be well approximated by

a Gamma random variable with shape α = 3m(m + 1)/(8m + 4) and scale β =

2(2m + 1)/3m. Likewise, a Weighted Monti statistic is also introduced that follows

the same asymptotic distribution under the null hypothesis.

3 Simulation Studies

Computation on α-stable distributions has been well studied and is known to be

computationally difficult. Our studies were performed in the GNU-licensed R-Project

utilizing the stable distribution in the stabledist package with parameterization

method zero. Due to the computational intensity in optimizing the likelihood function

in Andrews et al. (2009), much of our studies were run in a parallel framework

utilizing the multicore package. Similar to Andrews et al. (2009), when optimizing

the likelihood function we generate 1200 random initial conditions; the likelihood

function is found for each, and then the Nelder-Mead optimization routine is run on

the best eight. The parameters for maximum likelihood function of those eight is

chosen as the MLE for the general AR process with α-stable innovations. Since the

maximum likelihood function is found we can easily calculate the model identification

criterion from Andrews and Davis (2011) as well.

In our studies we compare the Ljung Box type statistic in (6), the Monti type

in (7), the Mahdi McLeod type in (9), the corresponding Weighted version of Box-

Pierce Qwb, Monti bype Qwm, and Ljung Box test Qwℓ in (10) and the nonparametric

test Qrk = 144n
∑m

k=1 γ̂
2
k for the residuals and Qrks = 144n

∑m
k=1(γ̂

∗
k)

2 for the squared

residuals. The Mahdi McLeod was chosen over the suggestions in Peña and Rodŕıguez

9



(2002, 2006) since it is numerically stable (see Lin and McLeod (2006)), has conser-

vative Type I error performance and is implemented in the portes package. The

statistics from Fisher and Gallagher (2012) are available in the WeightedPortTest

package and include unweighted versions as well; i.e. the traditional Ljung Box and

Monti types. When trimming the residuals, we truncate at the first and 99th per-

centiles.

We check the finite sample sizes and powers of the proposed tests for different

AR(1) and AR(2) models. For each selected model the simulation is run 1000 times.

The results are summarized in Table 1 through Table 3. Overall, these tests perform

well when α ≥ 1.5. No test dominate the performance. As α decreases the empirical

sizes increase. But since in practice the α for the fitted model is always above 1.5,

the problem does not cause big concerns to us.

4 Appendix

To prove Theorem 1, we follow the method used in Lee and Ng (2010). Since Propo-

sition 5.2 is true for the innovation process in general, we can use it for free. The

key is to establish the remaining technical lemmas in their paper for the non-causal

model. In the following, Proposition 1 and 2 are corresponding to Proposition 5.1

and 5.3 of Lee and Ng respectively.

Let ϕt = Zt − Ẑt, for t = 1, · · · , n. From (2) we get

ϕt =

p
∑

j=1

(φj − φ̂j)Yt−j =

p
∑

j=1

(φj − φ̂j)

∞
∑

k=0

ψkZt−j−k +

p
∑

j=1

(φj − φ̂j)

∞
∑

k=1

ψ̄kZt−j+k (11)

By changing the order of summation

10



Table 1: Empirical sizes of non-causal AR(2) model with s=1, n=500

AR(2)
φ1 = 2.8 φ2 = −1.6 Qℓb Qmt Qrk Qgv Qrks Qwb Qwℓ Qwm

α = 1.8 5 0.042 0.045 0.030 0.020 0.051 0.034 0.036 0.037
β = 0 10 0.050 0.049 0.035 0.020 0.034 0.035 0.039 0.040
γ = 1 15 0.045 0.049 0.035 0.018 0.039 0.046 0.050 0.046
δ = 0 20 0.043 0.045 0.034 0.017 0.039 0.049 0.056 0.049

25 0.042 0.054 0.038 0.014 0.047 0.039 0.052 0.048
α = 1.5 5 0.032 0.029 0.030 0.031 0.043 0.030 0.031 0.034
β = 0 10 0.044 0.046 0.032 0.023 0.041 0.032 0.034 0.036
γ = 1 15 0.045 0.044 0.024 0.020 0.038 0.036 0.039 0.042
δ = 0 20 0.048 0.048 0.039 0.016 0.041 0.038 0.042 0.042

25 0.039 0.046 0.037 0.015 0.046 0.034 0.043 0.047
α = 1.2 5 0.059 0.062 0.059 0.037 0.059 0.052 0.050 0.053
β = 0 10 0.060 0.056 0.062 0.029 0.062 0.057 0.061 0.056
γ = 1 15 0.056 0.055 0.059 0.025 0.052 0.057 0.062 0.058
δ = 0 20 0.049 0.053 0.067 0.021 0.057 0.057 0.060 0.056

25 0.050 0.062 0.061 0.018 0.059 0.054 0.059 0.059
α = 0.8 5 0.088 0.083 0.073 0.068 0.087 0.084 0.087 0.086
β = 0 10 0.078 0.081 0.085 0.053 0.069 0.088 0.091 0.088
γ = 1 15 0.081 0.084 0.078 0.047 0.071 0.087 0.091 0.092
δ = 0 20 0.086 0.080 0.074 0.048 0.068 0.079 0.085 0.084

25 0.083 0.078 0.071 0.046 0.063 0.074 0.082 0.080
α = 1.8 5 0.045 0.045 0.038 0.022 0.041 0.030 0.030 0.029
β = 0.5 10 0.046 0.047 0.034 0.017 0.039 0.043 0.044 0.044
γ = 1 15 0.042 0.040 0.040 0.019 0.040 0.041 0.043 0.042
δ = 0 20 0.046 0.039 0.037 0.014 0.046 0.037 0.042 0.041

25 0.045 0.044 0.035 0.015 0.044 0.033 0.040 0.039
α = 1.5 5 0.048 0.043 0.037 0.036 0.044 0.039 0.041 0.042
β = 0.5 10 0.038 0.043 0.031 0.032 0.033 0.034 0.038 0.037
γ = 1 15 0.042 0.040 0.042 0.034 0.035 0.038 0.042 0.034
δ = 0 20 0.036 0.044 0.035 0.034 0.034 0.035 0.036 0.036

25 0.035 0.033 0.030 0.034 0.036 0.031 0.037 0.036
α = 1.2 5 0.066 0.063 0.047 0.054 0.069 0.062 0.064 0.060
β = 0.5 10 0.061 0.066 0.045 0.066 0.064 0.062 0.064 0.061
γ = 1 15 0.063 0.070 0.040 0.070 0.064 0.064 0.069 0.063
δ = 0 20 0.06 0.075 0.053 0.075 0.062 0.065 0.067 0.065

25 0.06 0.061 0.054 0.076 0.056 0.065 0.068 0.064
α = 0.8 5 0.099 0.104 0.098 0.043 0.094 0.099 0.100 0.102
β = 0.5 10 0.114 0.113 0.091 0.047 0.083 0.115 0.117 0.115
γ = 1 15 0.115 0.110 0.098 0.053 0.079 0.104 0.109 0.115
δ = 0 20 0.105 0.102 0.094 0.059 0.073 0.103 0.110 0.109

25 0.108 0.115 0.087 0.060 0.071 0.095 0.105 0.109
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Table 2: Empirical powers for non-causal AR(2) model fitted as non-causal AR(1), n=50

AR(2)
φ1 = −1.2 φ2 = 1.6 Qℓb Qmt Qgv Qwb Qrk

α = 0.8 5 0.616 0.541 0.67 0.756 0.915
β = 0 10 0.483 0.325 0.523 0.629 0.833
γ = 1 15 0.397 0.246 0.420 0.574 0.752
δ = 0 20 0.373 0.167 0.326 0.538 0.693

25 0.356 0.135 0.258 0.504 0.623
α = 1.2 5 0.533 0.454 0.550 0.633 0.684
β = 0 10 0.425 0.311 0.446 0.556 0.550
γ = 1 15 0.381 0.219 0.349 0.509 0.462
δ = 0 20 0.376 0.167 0.276 0.487 0.404

25 0.349 0.117 0.204 0.460 0.360
α = 1.5 5 0.426 0.358 0.428 0.497 0.456
β = 0 10 0.323 0.241 0.335 0.447 0.343
γ = 1 15 0.302 0.174 0.262 0.407 0.264
δ = 0 20 0.284 0.138 0.192 0.379 0.227

25 0.311 0.107 0.145 0.361 0.178
α = 1.8 5 0.313 0.263 0.305 0.362 0.323
β = 0 10 0.235 0.188 0.247 0.319 0.214
γ = 1 15 0.228 0.145 0.193 0.296 0.155
δ = 0 20 0.230 0.115 0.142 0.275 0.116

25 0.246 0.092 0.094 0.282 0.095
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Table 3: Empirical powers for non-causal AR(2) model fitted as non-causal AR(1), n=75

AR(2)
φ1 = −1.2 φ2 = 1.6 Qℓb Qmt Qgv Qwb Qrk

α = 0.8 5 0.909 0.851 0.933 0.948 0.99
β = 0 10 0.692 0.591 0.853 0.905 0.973
γ = 1 15 0.601 0.447 0.723 0.801 0.954
δ = 0 20 0.554 0.351 0.617 0.727 0.935

25 0.492 0.296 0.547 0.687 0.900
α = 1.2 5 0.831 0.791 0.868 0.873 0.911
β = 0 10 0.678 0.583 0.783 0.833 0.829
γ = 1 15 0.598 0.470 0.694 0.776 0.770
δ = 0 20 0.568 0.377 0.608 0.732 0.729

25 0.533 0.312 0.537 0.694 0.673
α = 1.5 5 0.727 0.692 0.744 0.772 0.785
β = 0 10 0.606 0.528 0.689 0.742 0.657
γ = 1 15 0.537 0.422 0.617 0.687 0.580
δ = 0 20 0.506 0.344 0.541 0.658 0.522

25 0.492 0.277 0.469 0.635 0.464
α = 1.8 5 0.554 0.519 0.586 0.618 0.628
β = 0 10 0.470 0.420 0.521 0.586 0.485
γ = 1 15 0.421 0.339 0.470 0.545 0.394
δ = 0 20 0.413 0.285 0.408 0.522 0.343

25 0.389 0.240 0.343 0.507 0.288
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|
p

∑

j=1

(φj − φ̂j)

∞
∑

k=0

ψkZt−j−k| ≤ |
∞
∑

j=1

min(j,p)
∑

k=1

(φk − φ̂k)ψj−kZt−j |

≤
∞
∑

j=1

min(j,p)
∑

k=1

∥

∥

∥
φ− φ̂

∥

∥

∥
|ψj−k||Zt−j|, (12)

and

|
p

∑

j=1

(φj − φ̂j)

∞
∑

k=1

ψ̄kZt−j+k|

≤
∞
∑

j=0

|
p

∑

k=1

(φk − φ̂k)ψ̄j+kZt+j |+ |
p−1
∑

j=1

p
∑

k=j+1

(φk − φ̂k)ψ̄k−jZt−j |

≤
∞
∑

j=0

p
∑

k=1

∥

∥

∥
φ− φ̂

∥

∥

∥
|ψ̄j+kZt+j|+

p−1
∑

j=1

p
∑

k=j+1

∥

∥

∥
φ− φ̂

∥

∥

∥
|ψ̄k−jZt−j|, (13)

where
∥

∥

∥
φ− φ̂

∥

∥

∥
is the Euclidean distance of φ and φ̂. By Andrews and Davis (2009)

the MLE estimator of the AR polynomial coefficients, φ̂, converges to some random

variable in distribution n1/α(φ̂ − φ)
D→ S. By our assumption that 0 < α < 2, we

can find a δ with 2α/(α + 2) < δ < min{α, 1} such that n−α = o(n−1/δ+1/2). Note

that for any given ǫ > 0 there always exists a γ1 > 0 such that P(|S| > γ1) < ǫ/2.

If we define define An =
{
∥

∥

∥
φ− φ̂

∥

∥

∥
< γ1n

−1/α
}

then there exists N > 0 such that

P (An) > 1− ǫ whenever n > N1. Under the condition of An, we can obtain an upper

bound for (12)

|
p

∑

j=1

(φj − φ̂j)

∞
∑

j=0

ψkZt−k| ≤ γ1n
−1/α

∞
∑

j=1

min(j,p)
∑

k=1

|ψj−k||Zt−j|, (14)

and an upper bound for (13)

14



|
p

∑

j=1

(φj−φ̂j)

∞
∑

k=1

ψ̄kZt+k| ≤ γ1n
−1/α

∞
∑

j=0

p
∑

k=1

|ψ̄j+k||Zt+j|+γ1n−1/α

p−1
∑

j=1

p
∑

k=j+1

|ψ̄k−j||Zt−j|.

(15)

Let ψ∗
j =

min(j,p)
∑

k=1

|ψj−k|, ψ̄∗
j =

p
∑

k=1

|ψ̄j+k|, and ψ̄1,··· ,p =

p
∑

k=1

|ψ̄k|.

Assuming An is true, an upper bound for |ϕt| is given by

|ϕt| ≤ γ1n
−1/α

∞
∑

j=1

ψ∗
j |Zt−j|+ γ1n

−1/α
∞
∑

j=0

ψ̄∗
j |Zt+j|+ γ1n

−1/α

p−1
∑

j=1

ψ̄1,··· ,p|Zt−j |. (16)

Proposition 1. For (16), the following are true,

E|
∞
∑

j=1

ψ∗
j |Zt−j ||δ <∞,

E|
∞
∑

j=0

ψ̄∗
j |Zt+j ||δ <∞,

γδ1n
−δ/α

n
∑

t=1

{E|
∞
∑

j=1

ψ∗
j |Zt−j||δ + E|

∞
∑

j=0

ψ̄∗
j |Zt+j||δ} = o(n).

Proof. The coefficients {ψj} and {ψ̄j} are geometrically decaying as j → ∞. As a

result,

∞
∑

j=1

|ψj |δ <∞ and

∞
∑

j=1

|ψ∗
j |δ <∞.

Change the order of summation and apply the triangle inequality, then we have

∞
∑

j=1

|ψ∗
j |δ ≤

∞
∑

j=1

min(j,p)
∑

k=1

|ψj−k|δ = p

∞
∑

j=0

|ψj |δ <∞,

and

∞
∑

j=0

|ψ̄j
∗|δ ≤

∞
∑

j=0

p
∑

k=1

|ψ̄j+k|δ ≤ p
∞
∑

j=1

|ψ̄j|δ <∞.

Also by the triangle inequality (for example, page 537, Brockwell and Davis, 1991)

15



and E|Zt−j|δ <∞

E|
∞
∑

j=1

ψ∗
j |Zt−j||δ ≤ E|

∞
∑

j=1

|ψ∗
j |δ||Zt−j|δ <∞,

E|
∞
∑

j=0

ψ̄∗
j |Zt+j||δ ≤ E|

∞
∑

j=0

|ψ̄∗
j |δ||Zt+j|δ <∞.

Given a fixed number 0 < λ < 1 and βn a predetermined sequence of real numbers,

let χt = Zt − Z([nλ]) − βn. The Proposition 5.3. of Lee and Ng (2010) is also true for

the non-causal AR sequences.

Proposition 2. For any γ2 > 0,

P{n−1/2
n

∑

t=1

1(|ϕt|>|χt|)1An
> γ2} → 0.

Proof. As in Lee and Ng (2010), we can pick a constant γ3 > 0 such that P(|Zs[nλ]| >

γ3) is arbitrarily small in which s(k) = j if Zj is the kth largest number among

{Z1, . . . , Zn}. To show the result it is sufficient to get

n
∑

t=1

P{(|ϕt| > |χt|) ∩An ∩ (|Zs[nλ]| < γ3)} = o(n1/2).

By Lee and Ng (2010), for any t ∈ {1, . . . , n},

P{(|ϕt| > |χt|)∩An∩(|Zs[nλ]| < γ3)} ≤ 1

n
+
n− 1

n
E{|ϕt|δ|χt|−δ1(|Zs[nλ]|<γ3)1An

∣

∣

∣

∣

t 6= s([nλ])}.

16



Use triangle inequality and (16)

n
∑

t=1

E{|ϕt|δ|χt|−δ1(|Zs[nλ]|<γ3)1An

∣

∣

∣

∣

t 6= s([nλ])}

≤
n

∑

t=1

E{γδ1n−δ/α(

∞
∑

j=1

ψ∗
j |Zt−j|)δ|χt|−δ1(|Zs[nλ]|<γ3)

∣

∣

∣

∣

s([nλ]) 6= t}+ (17)

n
∑

t=1

E{γδ1n−δ/α(
∞
∑

j=0

ψ̄∗
j |Zt+j |)δ|χt|−δ1(|Zs[nλ]|<γ3)

∣

∣

∣

∣

s([nλ]) 6= t}+ (18)

n
∑

t=1

E{γδ1n−δ/α(

p−1
∑

j=1

ψ̄1,··· ,p|Zt−j|)δ|χt|−δ1(|Zs[nλ]|<γ3)

∣

∣

∣

∣

s([nλ]) 6= t}. (19)

To finish the proof, in the next we will show (17), (18), and (19) are o(n1/2).

Conditional on s([nλ]) = t− j and s([nλ]) 6= t− j, (17) is bounded above by

n
∑

t=1

γδ1γ
δ
3n

−δ/α
∞
∑

j=1

|ψ∗
j |δE{|χt|−δ

∣

∣

∣

∣

s([nλ]) 6= t}+ (20)

n
∑

t=1

E{γδ1n−δ/α

∞
∑

j=1

|ψ∗
j |δ|Zt−j|δ|χt|−δ1(s[nλ] 6=t−j)

∣

∣

∣

∣

s([nλ]) 6= t}. (21)

We apply Proposition 1, (5.23) in Proposition 5.3 of Lee and Ng (2010), and the fact

that n−1/α = o(n−1/δ+1/2) to (20) and get

n
∑

t=1

γδ1γ
δ
3n

−δ/α
∞
∑

j=1

|ψ∗
j |δE{|χt|−δ

∣

∣

∣

∣

s([nλ]) 6= t} = o(n1/2).

For (21), two cases, 1 ≤ j ≤ t − 1 and j ≥ t, are considered respectively. When

1 ≤ j ≤ t− 1,

n
∑

t=1

E{γδ1n−δ/α

t−1
∑

j=1

|ψ∗
j |δ|Zt−j |δ|χt|−δ1(s[nλ] 6=t−j)

∣

∣

∣

∣

s([nλ]) 6= t} ≤

n
∑

t=1

γδ1n
−δ/αn− 2

n− 1
E{

t−1
∑

j=1

|ψ∗
j |δ|Zt−j |δ|χt|−δ

∣

∣

∣

∣

s([nλ]) 6= t, t− j} = o
(

n1/2
)

,
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since by (5.22) of Lee and Ng (2010) E{
t−1
∑

j=1

|ψ∗
j |δ|Zt−j|δ|χt|−δ

∣

∣

∣

∣

s([nλ]) 6= t, t − j} =

O(1). When j ≥ t, Zt−j is in the set {Z0, Z−1, . . .}. Hence, Zt−j is independent of

s([nλ]), which implies that

E{|ψ∗
j |δ|Zt−j|δ|χt|−δ1(s[nλ] 6=t−j)

∣

∣

∣

∣

s([nλ]) 6= t} = |ψ∗
j |δE{|Zt−j|δ}E{|χt|−δ1(s[nλ] 6=t−j)

∣

∣

∣

∣

s([nλ]) 6= t}.

Now use Proposition 1 and (5.23) of Lee and Ng again

n
∑

t=1

E{γδ1n−δ/α
∞
∑

j=t

|ψ∗
j |δ|Zt−j|δ|χt|−δ1(s[nλ] 6=t−j)

∣

∣

∣

∣

s([nλ]) 6= t} ≤

n
∑

t=1

γδ1n
−δ/αn− 1

n

∞
∑

j=t

|ψ∗
j |δE{|Zt−j |δ}E{|χt|−δ1(s[nλ] 6=t−j)

∣

∣

∣

∣

s([nλ]) 6= t} = o
(

n1/2
)

.

Therefore, (17) is o(n1/2) . In the same way, the result also holds for (18) and (19).

Proof. of Theorem 1.

Let qL and qU be the (λL)-th and (λU)-th quantiles of Zt. Denote the mean and

standard deviation of the trimmed random variable ZtI(q
L < Zt < qU) by µ and σ,

µ = E[ZtI(q
L < Zt < qU)] and σ2 = V ar[ZtI(q

L < Zt < qU)].

Let Zµ
t = ZtIt − µ, then directly from Lemma 4.1 in Lee and Ng (2010),

n−1/2

{

n
∑

t=k+1

Zµ
t Z

µ
t−k

}

k=1,2,...,m

D→ N(0, σ4Im),

n−1/2

n
∑

t=1

Zµ
t

D→ N(0, κ2),

n−1

n
∑

t=1

(Zµ
t )

2 p→ σ2, (22)

18



with κ being certain constant associated with the distribution of Zt, and (qL, qU).

Now let ML
n andMU

n be the (nλL)-th and (nλU)-th order statistics of {Zt}nt=1 and

define Ẑµ
t = ZtIt − µ and

It =











1, if ML
n < Zt < MU

n ,

0, otherwise,
Ît =











1, if M̂L
n < Ẑt < M̂U

n ,

0, otherwise.

It follows from Proposition (1), Proposition (2), and the proof of Lemma 4.2 in Lee

and Ng (2010) that

n−1/2

n
∑

t=k+1

|Zµ
t Z

µ
t−k − Ẑµ

t Ẑ
µ
t−k|

p→ 0, for k = 1, 2, . . . , m,

n−1/2
n

∑

t=1

|ZtIt − ẐtÎt|
p→ 0,

n−1
n

∑

t=1

|(Zµ
t )

2 − (Ẑµ
t )

2| p→ 0. (23)

Now note that

√
n− kρ̂k =

1√
n−k

n
∑

t=k+1

Ẑµ
t Ẑ

µ
t−k −

1√
n− k

n
∑

t=k+1

Ẑµ
t

1

n− k

n
∑

t=k+1

Ẑµ
t−k

1
n

n
∑

t=1

(Ẑµ
t )

2 − 1

n2
(

n
∑

t=1

Ẑµ
t )

2

.

Combining (22) and (23) yields the result.

Proof. of Theorem 2.

By Theorem 1 and equation (5).

Proof. of Theorem 3
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Define the empirical copula of the residuals be defines as

Cm,n(u1, . . . , um) =
1√

n−m+ 1

n−m+1
∑

i=1

[

m
∏

j=1

I(r̃i+j−1 ≤ uj)−
m
∏

j=1

uj

]

,

where (u1, . . . , um) ∈ [0, 1]m. Cline and Brockwell (1985) showed

lim
t→∞

P [|Y1| > t]

P [|Z1| > t]
=

∞
∑

j=−∞
|ψj|α. (24)

As a result

lim
t→∞

nP [|Y1| > ant] =

∞
∑

j=−∞
|ψj|αt−α, (25)

for all t > 0, where an = inf{t : nP [|Z1| > t] ≤ 1}. Then we can follow the same

lines of Theorem 3.4 and related technical Lemmas in Bouhaddioui and Ghoudi (2012)

to prove that the empirical copula of the residuals Cm,n converges to a continuous

process C̃ if the model (1) is correctly identified by MLE method. The continuous

process C̃ is the limit of the sequential empirical process of a sequence of i.i.d random

variables identified in Genest and Rémillard (2004), for which there is no simple

expression. However, as in Proposition 2.1 of Genest and Rémillard (2004), the

Möbius transformation of Cm,n, M, leads to some simple results. Let A be a subset

of {1, . . . , m} with |A| > 1, the Möbius transformation of Cm,n indexed by A is

MA(Cm,n) =
1√

n−m+ 1

n−m+1
∑

i=1

∏

j∈A
[I(r̃i+j−1 ≤ uj)− uj] .

Then MA(Cm,n) converge jointly to continuous centered Gaussian processes MA(C̃)

and furthermore MA(C̃) and MA′ (C̃) are asymptotically independent whenever two

sets A 6= A
′

. Letting A = {1, k + 1}, then the serial rank correlation γ̂i could be

derived, as in Bouhaddioui and Ghoudi (2012), from the Möbius transformation of

Cm,n through

20



γ̂i =
1√
n

∫

MA(Cm,n)du

=
1√
n

∫ 1

0

∫ 1

0

Cm,n(u1, 1, . . . , 1, uk+1, 1, . . . , 1)du1duk+1

=
1

n

[

n−i
∑

t=1

(r̃t − 1/2)(r̃t+k − 1/2)

]

. (26)

and
√
nγ̂i is asymptotically normal with mean zero and variance 1/122. The same

result carries over to the case of the squared residuals as discussed in Bouhaddioui

and Ghoudi (2012).
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