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Abstract

We reformulate the Gross–Pitaevskii equation with an external parabolic potential as a discrete
dynamical system, by using the basis of Hermite functions. We consider small amplitude stationary
solutions with a single node, called dark solitons, and examine their existence and linear stability.
Furthermore, we prove the persistence of a periodic motion in a neighborhood of such solutions.
Our results are corroborated by numerical computations elucidating the existence, linear stability
and dynamics of the relevant solutions.

1 Introduction

We address the Gross-Pitaevskii (GP) equation with an external parabolic potential

iUT = −1

2
UXX + ǫ2X2U + σ|U |2U, (1.1)

where U(X,T ) : R × R+ 7→ C is decaying to zero as |x| → ∞, ǫ ∈ R is the strength of the external
potential and σ = 1 (σ = −1) is normalized for the defocusing (focusing) cubic nonlinearity. This
equation is of particular interest in the context of Bose-Einstein condensates, i.e., dilute alkali vapors
at near-zero temperatures, where dynamics of localized dips in the ground state trapped by the mag-
netically induced, confining potential V (X) = ǫ2X2 is studied in many recent papers, see review in
[11]. A question of particular interest concerns whether the localized density dips oscillate periodically
near the center point X = 0 of the potential V (X). If the motion of a localized dip is truly periodic,
the frequency of periodic oscillations is to be found [5], while if the periodic oscillations are destroyed
due to emission of radiation, the gradual change in the amplitude of oscillations is to be followed for
sufficiently small ǫ [16]. Numerical simulations show radiation and amplitude changes if the confining
parabolic potential is perturbed by a periodic potential while no radiation and time-periodic oscillations
in the case of purely parabolic confinement [18].

If σ = 1, a localized dip on the ground state of the GP equation (1.1) in the formal limit ǫ → 0
represents the so-called dark soliton of the defocusing nonlinear Schrödinger (NLS) equation, which is
the reason why we use the term ”dark soliton” for a localized solution. Persistence and stability of
a dark soliton of the defocusing NLS equation in the presence of an exponentially decaying potential
V (X) was studied in our previous paper [17], where methods of Lyapunov–Schmidt reductions, Evans
functions and the stability theory in Pontryagin space were employed. These methods can not be
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applied to the potential V (X) = ǫ2X2 since the potential deforms drastically the spectrum of the
linearized problem: the continuous spectral band at ǫ = 0 becomes an infinite sequence of isolated
eigenvalues for ǫ 6= 0. Therefore, we do not use here the limit ǫ → 0. Moreover, we transform the GP
equation (1.1) to the ǫ-independent form

iut = −1

2
uxx +

1

2
x2u+ σ|u|2u, (1.2)

by the scaling transformation x = λX, t = λ2T , and u(x, t) = λ−1U(X,T ) with λ = 21/4ǫ1/2.

Substitution u(x, t) = e−
i
2
t−iµtφ(x) reduces equation (1.2) to the second-order non-autonomous ODE

− 1

2
φ′′(x) +

1

2
x2φ(x) + σφ3(x) =

(

µ+
1

2

)

φ(x), (1.3)

where φ : R 7→ R. A strong solution of the ODE (1.3) is said to be a dark soliton if φ(x) is odd on
x ∈ R, has no zeros on x ∈ R+, and decays to zero sufficiently fast as |x| → ∞. A classification of
all localized solutions of the second-order ODE (1.3) and their construction with a rigorous shooting
method is suggested in recent work [3].

Substitution of u(x, t) = e−
i
2
t−iµt [φ(x) + v(x, t) + iw(x, t)] reduces equation (1.2) to the PDE system

{

vt = L−w + 2σφ(x)vw + σ(v2 + w2)w,
−wt = L+v + σφ(x)(3v2 + w2) + σ(v2 + w2)v,

(1.4)

where (v,w) : R × R+ 7→ R
2 and L± are self-adjoint Schrödinger operators in L2(R)

{

L+ = −1
2∂

2
x + 1

2x
2 − 1

2 − µ+ 3σφ2(x),
L− = −1

2∂
2
x + 1

2x
2 − 1

2 − µ+ σφ2(x).
(1.5)

Solutions of the PDE (1.2) are considered in space

H1(R) = {u ∈ H1(R) : xu ∈ L2(R)} (1.6)

equipped with the norm

‖u‖2
H1

=

∫

R

(

|u′(x)|2 + (x2 + 1)|u(x)|2
)

dx. (1.7)

Similarly, the domain of operators L± in (1.5) is defined in space

H2(R) = {u ∈ H2(R) : x2u ∈ L2(R)}. (1.8)

The PDE system (1.4) is a Hamiltonian system with the standard symplectic structure and the
Hamiltonian function in the form

H =
1

2
(v,L+v) +

1

2
(w,L−w) + σ(φv, v2 + w2) +

σ

4
(v2 + w2, v2 + w2), (1.9)

where (·, ·) denotes a standard inner product in L2(R). The Hamiltonian function H is bounded if
v,w ∈ H1(R) and is constant in time t. Due to the gauge invariance of the PDE (1.2), there exists an
additional quantity

Q = 2(φ, v) + (v, v) + (w,w), (1.10)

which is constant in time t. Global existence of solutions of the initial-value problem associated with
the PDE (1.2) in space u ∈ H1(R) for all t ∈ R+ has been proved (see Proposition 2.2 in [6]).
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Considering the linear part of the PDE system (1.4), one can separate the variables in the form
v(x, t) = v(x)eλt, w(x, t) = w(x)eλt and obtain the linear problem

L+v = −λw, L−w = λv (1.11)

for the spectral parameter λ ∈ C and the eigenvector (v,w) ∈ L2(R,C2). Fix µ ∈ R such that a
stationary solution of the ODE (1.3) exists and φ ∈ H1(R). Then, the linear problem (1.11) admits an
exact solution

λ = ±i : v = φ′(x), w = ∓ixφ(x), (1.12)

and (v,w) ∈ L2(R,C2). Additionally, for any µ ∈ R, for which the stationary solution φ(x) is smooth
with respect to parameter µ, the linear problem (1.11) admits another exact solution for zero eigenvalue
λ = 0 of geometric multiplicity one and algebraic multiplicity two:

L−φ(x) = 0, L+∂µφ(x) = −φ(x). (1.13)

The main part of this work is devoted to the study of periodic solutions of the PDE system (1.4) for
values of µ near µ = 1. This special value corresponds to the second eigenvalue of the linear Schrödinger
operator

L = −1

2
∂2

x +
1

2
x2 − 1

2
(1.14)

with the eigenfunction φ(x) = εxe−x2/2. Here the parameter ε is arbitrary in the linear problem and
it parameterizes the corresponding family of stationary solutions (µ, φ(x)) of the nonlinear ODE (1.3),
which bifurcates from the small-amplitude eigenmode [3].

A periodic solution of the PDE system (1.4) bifurcates from the linear eigenmodes v(x) = δeiτφ′(x)
and w(x) = ∓iδeiτxφ(x) corresponding to the eigenvalue pair λ = ±i of the linear problem (1.11). Here
δ and τ are two real-valued parameters, which are arbitrary in the linear problem and parameterize the
corresponding family of periodic solutions (v,w) of the PDE system (1.4). An additional parameter α
comes from the projection of the solution (v,w) to the geometric kernel of the linear problem (1.11)
with the eigenmode v(x) = 0 and w(x) = αφ(x). Using this construction, the main result of our paper
is described by the following theorem.

Theorem 1 Let ε and δ be sufficiently small and let α, τ be arbitrary. There exists a unique family of
solutions of the ODE (1.3) such that

‖φ− εxe−x2/2‖H1
≤ C1ε

3,

∣

∣

∣

∣

µ− 1 − 3σε2√
32π

∣

∣

∣

∣

≤ C2ε
4, (1.15)

for some ε-independent constants C1, C2 > 0. There exists a family of time-periodic space-localized
solutions of the PDE system (1.4) such that (v,w) ∈ H1(R,R

2) for all t ∈ R,

v

(

x, t+
2π

Ω

)

= v(x, t), w

(

x, t+
2π

Ω

)

= w(x, t), ∀(x, t) ∈ R
2, (1.16)

with the bounds

∥

∥v(·, t) − δφ′(x) cos(Ωt+ τ)
∥

∥

H1
≤ C3εδ

2, (1.17)

‖w(·, t) − δ [xφ(x) sin(Ωt+ τ) + αφ(x)]‖H1
≤ C4εδ

2, (1.18)

and |Ω − 1| ≤ C5ε
2δ2 for some (ε, δ)-independent constants C3, C4, C5 > 0.
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The periodic solution of Theorem 1 has four free parameters (ε, δ, τ, α) which are associated with
projections to the four eigenmodes (1.12) and (1.13) of the linear problem (1.11). Parameters τ and
α can be set to zero due to two obvious symmetries of the PDE (1.2): the gauge transformation
u(x, t) 7→ u(x, t)eiα, ∀α ∈ R and the reversibility transformation u(x, t) 7→ ū(x,−t), ∀t ∈ R.

Although the eigenmodes (1.12) and (1.13) persist for all µ ∈ R, existence of periodic orbits of
the GP equation (1.2) is only proved near µ = 1. This is due to the fact that the non-resonance
conditions n 6= Imλm, ∀n,m ∈ N are proved to be satisfied only in this domain, where λm denote other
isolated eigenvalues of the linear problem (1.11) with Imλm > 0 which are different from λ = i. Thus,
resonances do not occur near the value µ = 1. The construction of the periodic orbit is complicated
due to the existence of translational eigenmodes associated with the double zero eigenvalue λ = 0 of
the linear problem (1.11).

Our main result is in agreement with Theorem 2.1 in [9], where the Newton’s law of particle dynamics
is obtained in a more general context of multi-dimensional confining potentials and general nonlinear
functions of the GP equation iψ̇ = −∇2ψ+V (x)ψ−f(ψ). The Newton’s law is derived for parameters
(a, p) of the solitary wave solution of the unperturbed equation with V (x) ≡ 0 and it takes the form

ȧ = 2p, ṗ = −∇V (a). (1.19)

Adopting our notations for the time variable and the potential function of the GP equation (1.2), we
rewrite the Newton’s law (1.19) in the explicit form ä+ a = 0, which recovers the frequency Ω = 1 of
the periodic solution of Theorem 1 in the linear approximation δ → 0.

There are several differences between results of Theorem 2.1 in [9] and our Theorem 1. First, the
Newton’s law (1.19) is valid on finite time intervals and in the limit when the localization length of
the stationary solution φ(x) is much smaller than the confinement length of the potential V (x). This
situation corresponds to the original GP equation (1.1) in the limit ǫ→ 0. Second, the exact periodicity
is not guaranteed by the periodic solutions of the Newton’s law (1.19) because of the remainder terms.
Lastly, the frequency Ω = 1 of the Newton’s law is independent of the nonlinear function f(ψ) and the
nonlinear corrections in (a, p). In our case, the result of Theorem 1 is valid for all time intervals, the
exact periodicity is guaranteed, and the frequency Ω changes with parameters δ. On the other hand,
our results are valid in the limit µ→ 1, which is far from the limit ǫ→ 0 of the GP equation (1.1).

Note that the oscillations of the dark solitons in the GP equation (1.2) with the frequency Ω = 1 were
predicted from the Ehrenfest Theorem in much earlier works (see references in [5] and [9]). However,
it was argued that this frequency is not observed in numerical simulations of the original GP equation
(1.1) with σ = 1 for sufficiently small ǫ [5, 16, 18]. It was suggested in these works (see review in
[11]) that dark solitons oscillate with a smaller frequency Ω = 1√

2
. We will show that both frequencies

occur in the spectrum of the linear problem (1.11) in the corresponding limit but the non-resonance
conditions are not satisfied for either frequency in this limit.

Our strategy for the proof of Theorem 1 is to use a complete set of Hermite functions and to
reformulate the evolution problem for the PDE (1.2) as an infinite-dimensional discrete dynamical
system for coefficients of the decomposition (Section 2). Existence of stationary solutions φ(x) of the
ODE (1.3) and spectral stability of stationary solutions in the linear problem (1.11) are studied in the
framework of the discrete dynamical system (Section 3). The proof of existence of periodic solutions of
the PDE system (1.4) relies on construction of periodic orbits in the discrete dynamical system (Section
4). The analytical results are verified with numerical approximations of solutions of the ODE (1.3),
eigenvalues of the linear problem (1.11) and solutions of the GP equation (1.2) (Section 5). Distribution
of eigenvalues of the linear problem (1.11) in the limit µ → ∞ for σ = 1 is also analyzed with formal
asymptotic methods (Appendix A).
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2 Formalism of the discrete dynamical system

The set of Hermite functions is defined by the standard expressions [1]:

φn(x) =
1

√

2nn!
√
π
Hn(x)e−x2/2, ∀n = 0, 1, 2, 3, ..., (2.1)

where Hn(x) denote the Hermite polynomials, e.g. H0 = 1, H1 = 2x, H2 = 4x2 − 2, H3 = 8x3 − 12x,
etc. Since the Hermite functions are eigenfunctions of the linear Schrödinger equation

− 1

2
φ′′n(x) +

1

2
x2φn(x) =

(

n+
1

2

)

φn(x), ∀n = 0, 1, 2, 3, ..., (2.2)

the Sturm–Liouville theory implies that the set of Hermite functions {φn(x)}∞n=0 forms an orthogonal
basis in L2(R). The normalization coefficients in the expressions (2.1) ensure that the Hermite functions
have unit L2-norm, such that

(φn, φm) = δn,m, ∀n,m = 0, 1, 2, 3, .... (2.3)

We represent a solution u(x, t) of the GP equation (1.2) by the series of eigenfunctions

u(x, t) = e−
i
2
t

∞
∑

n=0

an(t)φn(x) (2.4)

where the components (a0, a1, a2, ...) form a vector a on N. When the series representation (2.4) is
substituted to the GP equation (1.2), the PDE problem is converted to the discrete dynamical system

iȧn = nan + σ
∑

(n1,n2,n3)

Kn,n1,n2,n3
an1

ān2
an3

, ∀n = 0, 1, 2, 3, ..., (2.5)

where Kn,n1,n2,n3
= (φn, φn1

φn2
φn3

). We shall use a convention to avoid specifying the range of non-
negative integers (n1, n2, n3) and n in the summation signs of the dynamical system (2.5). Let l2s(N)
be a weighted discrete l2-space equipped with the standard norm

‖a‖2
l2s

=

∞
∑

n=0

(1 + n)2s|an|2 <∞, ∀s ∈ R. (2.6)

Since the set {φn(x)}∞n=0 forms an orthonormal basis in L2(R), we note the isometry ‖u‖2
L2 = ‖a‖2

l2 , so
that u ∈ L2(R) if and only if a ∈ l2(N). On the other hand, we need an equivalence between the space
H1(R) for the function u(x) and the space l2s(N) for the vector a. In addition, we need to determine
the domain and range of the vector field of the discrete dynamical system (2.5). These results are
described in Lemmas 1 and 2.

Lemma 1 Let u(x) =
∞
∑

m=0
anφn(x). Then u ∈ H1(R) if and only if a ∈ l21/2(N).

Proof. It follows directly that

‖u‖2
H1

=

∫

R

(

|u′(x)|2 + (x2 + 1)|u(x)|2
)

dx

5



=
∞
∑

n1=0

∞
∑

n2=0

an1
ān2

∫

R

[

φ′n1
(x)φ′n2

(x) + (x2 + 1)φn1
(x)φn2

(x)
]

dx

= 2
∞
∑

n1=0

∞
∑

n2=0

an1
ān2

(1 + n2)(φn1
, φn2

)

= 2

∞
∑

n=0

(1 + n)|an|2 = 2‖a‖2
l2
1/2

,

where the orthogonality relations (2.3) have been used. �

Remark 1 By the same method, one can prove that u ∈ H2(R) if and only if a ∈ l21(N).

Lemma 2 The vector field of the dynamical system (2.5) maps l21/2(N) to l2−1/2(N).

Proof. The vector field of the dynamical system (2.5) is decomposed into the linear f(a) and nonlinear
σg(a) parts, where

fn = nan, gn =
∑

(n1,n2,n3)

Kn,n1,n2,n3
an1

ān2
an3

, ∀n = 0, 1, 2, 3, ...

The linear unbounded part satisfies the estimate

‖f(a)‖2
l2s

=

∞
∑

n=0

(1 + n)2sn2|an|2 ≤ ‖a‖2
l2s+1

, (2.7)

such that f : l2s+1(N) 7→ l2s(N) for all s ∈ R. If a ∈ l21/2(N), then s = −1
2 . The nonlinear vector part

satisfies the estimate

‖g(a)‖2
l2s

=

∞
∑

n=0

(1 + n)2s
∑

(n1,n2,n3)

∑

(m1,m2,m3)

Kn,n1,n2,n3
Kn,m1,m2,m3

an1
ān2

an3
ām1

am2
ām3

=

∞
∑

n=0

(1 + n)2s
∣

∣

(

φnu, |u|2
)
∣

∣

2 ≤
( ∞
∑

n=0

(1 + n)2s‖uφn‖2
L2

)

‖u‖4
L4

≤
( ∞
∑

n=0

(1 + n)2s‖φn‖2
L4

)

‖u‖6
L4 ,

where u(x) =
∞
∑

n=0
anφn(x) and all φn(x) are real-valued. By the main theorem of [7], there exists a

constant C > 0 such that

‖φn‖4
L4 ≤ C

log(1 + n)√
1 + n

, ∀n = 0, 1, 2, ... (2.8)

Therefore, the series
∑∞

n=0(1 +n)2s‖φn‖2
L4 converges for all s < −3

8 . The value s = −1
2 belongs to this

interval. Finally, by the Sobolev embedding and Poincare inequality [2], there are constants C, C̃ > 0
such that

‖u‖4
L4 ≤ C‖(u2)′‖2

L2 ≤ 4C‖u‖2
L∞‖u′‖2

L2 ≤ C̃‖u‖4
H1 ≤ C̃‖u‖4

H1
.
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Since the norm in H1(R) for the function u(x) is equivalent to the norm in l21/2(Z) for the vector a by
Lemma 1, the estimate for the nonlinear vector field is completed by

‖g(a)‖2
l2
−1/2

≤ C0‖u‖6
L4 ≤ C̃0‖a‖6

l2
1/2

, (2.9)

for some C0, C̃0 > 0. The interpolation argument for the bounds (2.7) and (2.9) concludes the proof
that the nonlinear vector field f(a) + σg(a) maps l21/2(N) to l2−1/2(N). �

Theorem 2 The discrete dynamical system (2.5) is globally well-posed in the phase space a ∈ l21/2(N).

Proof. By Proposition 2.2 in [6], the GP equation (1.2) is globally well-posed in the phase space
u ∈ H1(R). By Lemma 1, the trajectory u(t) ∈ H1(R) is equivalent to the trajectory a(t) ∈ l21/2(N)

on t ∈ R. By Lemma 2, the vector field of the discrete dynamical system (2.5) is well-defined on
l21/2(N) ⊂ l2(N), where it is equivalent to the vector field of the GP equation (1.2) by virtue of standard
orthogonal projections. �

3 Existence and stability of stationary solutions

Stationary solutions of the dynamical system (2.5) take the form a(t) = Ae−iµt, where A is a time-

independent vector and µ is a parameter of the solution. If A ∈ l21/2(N) and φ(x) =
∞
∑

n=0
Anφn(x), then

φ ∈ H1(R) is a stationary solution of the GP equation (1.2), that is φ(x) satisfies the ODE (1.3). The
vector A is found as a root of the infinite-dimensional cubic vector field F : l21/2(N) × R 7→ l2−1/2(N),

where the n-th component of F(A, µ) is given by

Fn = (µ− n)An − σ
∑

(n1,n2,n3)

Kn;n1,n2,n3
An1

Ān2
An3

= 0, ∀n = 0, 1, 2, ... (3.1)

The Jacobian operator DAF(0, µ) is a diagonal matrix with entries µ − n and it admits a one-
dimensional kernel if µ = n0 for any non-negative integer n0. The corresponding eigenvector is en0

,
the unit vector in l2(N). By the local bifurcation theory [8], each eigenvector of DAF(0, n0) can be
uniquely continued in a local neighborhood of the point A = 0 ∈ l21/2(N) and µ = n0 ∈ R. We are

particularly interested in the second eigenvalue n0 = 1, which corresponds to the dark soliton φ(x) with
a single zero (node) at x = 0. (Other bifurcations of stationary localized solutions φ(x) are considered
in [3].) Details of this bifurcation are given in the following proposition.

Proposition 1 Consider real-valued roots (A, µ) of the vector field F(A, µ) such that A ∈ l21/2(N).
There exists a unique family of solutions near µ = 1 parameterized by ε such that

‖A − εe1‖l2
1/2

≤ C1ε
3,

∣

∣

∣

∣

µ− 1 − 3σε2√
32π

∣

∣

∣

∣

≤ C2ε
4, (3.2)

for some ε-independent constants C1, C2 > 0 and sufficiently small ε. Moreover, if σ 6= 0, the solution
(A, µ) is smooth with respect to ε for sufficiently small ε and d

dµQ(A) 6= 0, where Q(A) = ‖A‖2
l2 .

Proof. Both F(A, µ) and DAF(A, µ) are continuous in a local neighborhood of A = 0 ∈ l21/2(N)
and µ = 1 ∈ R. At the point A = 0 and µ = 1, the operator has a one-dimensional kernel with

7



the eigenvector e1 ∈ l2(N). By using the method of Lyapunov–Schmidt reductions [8], we set A =

ε
[

e1 + Ã
]

and µ = 1 + µ̃, where Ã is an orthogonal complement of e1 in l2(N) such that Ã1 = 0. The

orthogonal projection of equation (3.1) to e1 gives a bifurcation equation for µ̃

µ̃ = σε2



K1;1,1,1 + 3
∑

n1

K1;1,1,nÃn1
+ 3

∑

(n1,n2)

K1;1,n1,n2
Ãn1

Ãn2
+

∑

(n1,n2,n3)

K1;n1,n2,n3
Ãn1

Ãn2
Ãn3



 ,

where the index for (n1, n2, n3) in the summation signs runs on the set {0, 2, 3, ...}. Let P be an
orthogonal projection from l2(N) to the orthogonal complement of e1. Then the inverse of PDAF(0, 1)P
exists and is a bounded operator from l21/2(N) to l21/2(N). By the Implicit Function Theorem, there

exists a unique smooth solution Ã in the neighborhood of Ã = 0 ∈ l2s(N) such that ‖Ã‖l2
1/2

≤ C1ε
2

for some C1 > 0. By the Implicit Function Theorem, there exists a unique smooth solution µ̃ of the
bifurcation equation in the neighborhood of µ̃ = 0 such that |µ̃− ε2σK1,1,1,1| ≤ C2ε

4 for some C2 > 0.
The value K1,1,1,1 = ‖φ1‖4

L4 = 3√
32π

is computed in Table I. Since Q(A) = ‖A‖2
l2 = ε2 + O(ε4) and

µ− 1 = 3σε2
√

32π
+ O(ε4), then d

dµQ(A) 6= 0 near µ = 1 for σ 6= 0. �

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

Kn,n,n,n
1√
2π

3
4
√

2π
41

64
√

2π
147

256
√

2π
8649

16384
√

2π
32307

65536
√

2π

K1,n,n,1
1

2
√

2π
3

4
√

2π
7

16
√

2π
11

32
√

2π
75

256
√

2π
133

512
√

2π

K0,1,1,n
1

2
√

2π
0 1

8
√

π
0 − 3

√
3

32
√

π
0

Table I: Numerical values for Kn,n,n,n = ‖φn‖4
L4 , K1,n,n,1 = (φ2

1, φ
2
n), and K0,1,1,n = (φ0φn, φ

2
1).

Let (A, µ) be a real-valued root of the nonlinear vector field (3.1) such that A ∈ l21/2(N). Spectral
stability of the stationary solution is studied with the expansion

a(t) = e−iµt
[

A + (B − C) eiΩt +
(

B̄ + C̄
)

e−iΩ̄t + O(‖B‖2 + ‖C‖2)
]

, (3.3)

where the spectral parameter Ω ∈ C and the eigenvector (B,C) ∈ l2(N,C2) satisfy the linear problem

L+B = ΩC, L−C = ΩB, (3.4)

associated with matrix operators L±. Their n-th components are defined in the form

{

(L+B)n = (n− µ)Bn + 3σ
∑

n1
Vn,n1

Bn1
,

(L−C)n = (n− µ)Cn + σ
∑

n1
Vn,n1

Cn1
,

∀n = 0, 1, 2, 3, ..., (3.5)

where Vn,n1
=

∑

(n2,n3)

Kn,n1,n2,n3
An2

An3
. We have used here the symmetry of the coefficients Kn,n1,n2,n3

with respect to the interchange of (n1, n2, n3).

Lemma 3 Let (A, µ) be a real-valued root of the vector field F(A, µ) such that A ∈ l21/2(N). Operators

L+ and L− admit closed self-adjoint extensions in l2(N) with the domain in l21(N).

Proof. The diagonal unbounded part of L± maps l21(N) to l2(N). We need to show that the non-diagonal
part of L± represents a bounded perturbation from l2(N) to l2(N) if A ∈ l21/2(N). This is done by using
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the same ideas as in the proof of Lemma 2:

∞
∑

n=0

∣

∣

∣

∣

∣

∑

n1

Vn,n1
Bn1

∣

∣

∣

∣

∣

2

=

∞
∑

n=0

∑

(n1,n2,n3)

∑

(m1,m2,m3)

Kn,n1,n2,n3
Kn,m1,m2,m3

An2
An3

Am2
Am3

Bn1
B̄m1

=

∞
∑

n=0

|(φn, u
2v)|2 = ‖u2v‖2

L2 ≤ ‖u‖4
L∞‖v‖2

L2 ≤ C4‖u‖4
H1

∞
∑

n=0

|Bn|2,

where u(x) =
∑∞

n=0Anφn(x) and v(x) =
∑∞

n=0Bnφn(x). �

Remark 2 The result of Lemma 3 is obvious from the equivalence between the space H2(R) for the
function v(x) and the space l21(N) for the vector B, see Remark 1. We recall that the differential
operators L± given by (1.5) are defined on the domain H2(R) and the matrix operators L± given by
(3.5) represent the action of differential operators on the basis of Hermite functions in H2(R).

The linear problem (3.4) has eigenvalue Ω = 0 of geometric multiplicity one and algebraic multiplicity
two due to the exact solution

L−A = 0, L+∂µA = A, (3.6)

where the smoothness of A with respect to µ near µ = 1 is guaranteed by Proposition 1.

When A = 0 and µ = 1, the spectrum of the eigenvalue problem (3.4) is known in the explicit form.
It consists of eigenvalues Ω = 0 and Ω = ±1 of geometric and algebraic multiplicities two and simple
eigenvalues Ω = ±m for all m = 2, 3, .... The double zero eigenvalue persists for any ε according to the
exact solution (3.6), stemming from the underlying U(1) invariance of the system. Splitting of all other
eigenvalues in a local neighborhood of A = 0 and µ = 1 is described by the following proposition.

Proposition 2 Let (A, µ) be defined by Proposition 1 for sufficiently small ε. Non-zero eigenvalues
of the linear problem (3.4) form a set {±Ωm}∞m=0 of simple real symmetric eigenvalue pairs, such that

|Ω0 − 1| ≤ C0ε
4,

∣

∣

∣

∣

Ω1 − 1 +
ε2σ

8
√

2π

∣

∣

∣

∣

≤ C1ε
4 (3.7)

and
∣

∣Ωm −m+ ε2σ (K1,1,1,1 − 2Km+1,1,1,m+1)
∣

∣ ≤ Cmε
4, ∀m = 2, 3, .... (3.8)

for some ε-independent constants C0, C1, Cm > 0.

Proof. Since the essential spectrum of the matrix operators L± is empty and the potential terms are
bounded perturbations to the unbounded diagonal terms, isolated eigenvalues split according to the
regular perturbation theory [10]. The formal power series expansion for a simple eigenvalue Ω = m =
2, 3, ... is defined by







B = em+1 + ε2B̃ + O(ε4),

C = em+1 + ε2C̃ + O(ε4),

Ω = m+ ε2Ω̃ + O(ε4).

(3.9)

Projections to the component n = m+ 1 lead to a linear system at the leading order O(ε2)






m
(

B̃m+1 − C̃m+1

)

= σ [K1,1,1,1 − 3Km+1,1,1,m+1] + Ω̃

m
(

C̃m+1 − B̃m+1

)

= σ [K1,1,1,1 −Km+1,1,1,m+1] + Ω̃.
(3.10)
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The linear system has a solution if and only if Ω̃ = σ (2Km+1,1,1,m+1 −K1,1,1,1). Persistence of the
eigenvalue by the perturbation theory results in the expansion (3.8). The power series expansion for
the double eigenvalue Ω = 1 is defined by







B = αe0 + βe2 + ε2B̃ + O(ε4),

C = −αe0 + βe2 + ε2C̃ + O(ε4),

Ω = 1 + ε2Ω̃ + O(ε4),

(3.11)

where (α, β) are arbitrary parameters. Projections to the components n = 0 and n = 2 leads to a
linear system at the leading order O(ε2)































(

B̃0 + C̃0

)

= σ [3K0;1,1,0α+ 3K0,1,1,2β −K1,1,1,1α] + Ω̃α

−
(

C̃0 + B̃0

)

= σ [K0,1,1,0α−K0,1,1,2β −K1,1,1,1α] + Ω̃α
(

B̃2 − C̃2

)

= σ [K1,1,1,1β − 3K2,1,1,0α− 3K2,1,1,2β] + Ω̃β
(

C̃2 − B̃2

)

= σ [K1,1,1,1β +K2,1,1,0α−K2,1,1,2β] + Ω̃α

(3.12)

The linear system has a solution if and only if (α, β) satisfies a homogeneous system

{

σ (K1,1,1,1α− 2K0,1,1,0α−K0,1,1,2β) = Ω̃α,

σ (−K1,1,1,1β +K2,1,1,0α+ 2K2,1,1,2β) = Ω̃β.
(3.13)

The homogeneous system for (α, β) has a non-zero solution if and only if Ω̃ satisfies a quadratic equation,
roots of which are given by

Ω̃ = σ
(

K2,1,1,2 −K0,1,1,0 ±
√

(K1,1,1,1 −K0,1,1,0 −K2,1,1,2)2 −K2
0,1,1,2

)

. (3.14)

It follows from Table I that
√

(K1,1,1,1 −K0,1,1,0 −K2,1,1,2)2 −K2
0,1,1,2 = 1

16
√

2π
and K2,1,1,2−K0,1,1,0 =

− 1
16

√
2π

. Persistence of the eigenvalues by the perturbation theory results in the expansion (3.7). �

Corollary 1 Let [Bm,Cm]T be an eigenvector of the linear problem (3.4) for the eigenvalue Ωm ∈ R+

for any m = 0, 1, 2, 3... in Proposition 2. For sufficiently small ε, the eigenvalue Ω0 has positive
signature of 〈B0, L+B0〉, the eigenvalue Ω1 has negative signature of 〈B1, L+B1〉, while all other eigen-
values Ωm with m = 2, 3, ... have positive signature of 〈Bm, L+Bm〉, where 〈·, ·〉 denotes a standard
inner product in l2(N).

Proof. In the case Ω̃ = 0, the homogeneous system (3.13) for (α, β) has a one-parameter family of
solutions with β = −

√
2α, such that 〈B0, L+B0〉 = −|α|2 + |β|2 + O(ε2) > 0 for sufficiently small ε.

In the case Ω̃ 6= 0, the homogeneous system (3.13) for (α, β) has a one-parameter family of solutions
with α = −

√
2β, such that 〈B1, L+B1〉 = −|α|2 + |β|2 + O(ε2) < 0 for sufficiently small ε. In the case

of other eigenvalues, it is obvious from the proof of Proposition 2 that 〈Bm, L+Bm〉 = m+ O(ε2) for
m = 2, 3, .... �

Remark 3 The double zero eigenvalue is associated with the expansions

A = εe1 + O(ε3), ∂µA =

√
32π

3σε
e1 + O(ε), (3.15)

where ε is sufficiently small. As a result, 〈A, ∂µA〉 =
√

32π
3σ + O(ε2).
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Lemma 4 Let ε be sufficiently small. Let {[Bm,Cm]T }∞m=0 be a set of real-valued eigenvectors of the
linear problem (3.4) for the set of positive eigenvalues {Ωm}∞m=0. The set of eigenvectors is symplecti-
cally orthogonal such that

〈Bm′ ,Cm〉 = 0, ∀m′ 6= m 〈Bm,Cm〉 6= 0, ∀m = 0, 1, 2, 3... (3.16)

In addition, two eigenvectors {[0,A]T , [∂µA,0]T } for the double zero eigenvalue Ω = 0 are symplecti-
cally orthogonal to other eigenvectors and 〈A, ∂µA〉 6= 0. The set of eigenvectors

{[Bm,Cm]T }∞m=0 ⊕ {[Bm,−Cm]T }∞m=0 ⊕ {[0,A]T , [∂µA,0]T } (3.17)

is a basis in l2(N,R2) which is orthogonal with respect to the symplectic projections (3.16).

Proof. All eigenvalues {Ωm}∞m=0 are positive and simple for sufficiently small ε by Proposition 2. Since
L± are self-adjoint in l2(N) and Ωm is a real eigenvalue, then the eigenvector [Bm,Cm]T of the linear
problem (3.4) can be chosen to be real-valued. The orthogonality relations (3.16) follow by direct
computations from the linear problem (3.4) for distinct eigenvalues Ωm′ 6= Ωm for all m′ 6= m. Values
of 〈Bm,Cm〉 are proportional to the values of 〈Bm, L+Bm〉 for Ωm 6= 0 and they are non-zero for
sufficiently small ε by Corollary 1. The value of 〈A, ∂µA〉 = 1

2
d
dµQ(A) is non-zero for sufficiently small

ε by Proposition 1. By the proof of Proposition 2 and Remark 3, the eigenvectors of the set (3.17) are
represented for sufficiently small ε by the standard basis {em}∞m=0 ⊕{em}∞m=0 perturbed by a bounded
perturbation in l2(N) of the order O(ε2). Also

Ωm = m+ O(ε2), 〈Bm,Cm〉 =
〈Bm, L+Bm〉

Ωm
= 1 + O(m−1ε2), ∀m = 2, 3, ..., (3.18)

for sufficiently small ε, uniformly in m. Since no other eigenvalues exist, the set of linearly independent
eigenvectors (3.17) is complete in l2(N,R2). According to the Banach Theorem for non-self-adjoint
operators, the set is a basis if and only if the spectral projections are bounded from below by a non-
zero constant in the limit m → ∞, which follows from the uniform asymptotic distribution (3.18).
Therefore, the set (3.17) is a basis in l2(N,R2). �

Lemma 5 Fix ε 6= 0 sufficiently small. Simple positive eigenvalues of the set {Ωm}∞m=0 lie in the
intervals

σ > 0 : Ω0 = 1 and m− C−
mε

2 < Ωm < m, ∀m ∈ N (3.19)

and
σ < 0 : Ω0 = 1 and m < Ωm < m+C+

mε
2, ∀m ∈ N (3.20)

for some ε-independent constants C±
m > 0.

Proof. The eigenvalue Ω0 = 1 persists for any ε ∈ R due to equivalence of the linear eigenvalue
problems (1.11) and (3.4) for φ ∈ H1(R) and A ∈ l21/2(N) and the existence of the exact solution (1.12)

of the linear eigenvalue problem (1.11). The corresponding eigenvector (B,C) of the linear eigenvalue
problem (3.4) is found from the series representation

φ′(x) =

∞
∑

n=0

Bnφn(x), −xφ(x) =

∞
∑

n=0

Cnφn(x).
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The eigenvalue Ω1 satisfies the bounds (3.19)–(3.20) due to the explicit bound (3.7). We use the
bound (3.8) to prove the bounds (3.19)–(3.20) for eigenvalues Ωm for all m = 2, 3, .... The values of
K1,1,1,1 − 2Km+1,1,1,m+1 are positive for the first values of m = 3, 4, ... as follows from Table I, e.g.

K1,1,1,1 − 2K3,1,1,3 =
1

16
√

2π
, K1,1,1,1 − 2K4,1,1,4 =

21

128
√

2π
, K1,1,1,1 − 2K5,1,1,5 =

59

256
√

2π
.

Note that the positive numerical values are monotonically increasing. According to the main theorem
in [7], the sequence {‖φn‖L4}n∈N is monotonically decreasing to zero with the bound (2.8). Since
Km+1,1,1,m+1 ≤ ‖φ1‖2

L4‖φm+1‖2
L4 , then

K1,1,1,1 − 2Km+1,1,1,m+1 ≥ ‖φ1‖2
L4

(

‖φ1‖2
L4 − 2‖φm+1‖2

L4

)

, ∀m = 2, 3, ...

Since ‖φm+1‖2
L4 decays monotonically to zero as m → ∞, there exists M sufficiently large, such that

the lower bound above is strictly positive for m ≥M . �

4 Existence of periodic solutions

Let (A, µ) be a real-valued root of the nonlinear vector field F(A, µ) such that A ∈ l21/2(N). We use a

decomposition a(t) = e−iµt [A + B(t) + iC(t)] with real-valued vectors B and C to rewrite the discrete
dynamical system (2.5) in the form

Ḃ = L−C + σN−(B,C), −Ċ = L+B + σN+(B,C), (4.1)

where the operators L± are defined by (3.5) and the vector fields N±(B,C) contains quadratic and
cubic terms with respect to (B,C). By Theorem 2, the initial-value problem for system (4.1) is globally
well-posed and the solution set (B,C) ∈ l11/2(N,R

2) is equivalent to the solution set (v,w) ∈ H1(R,R
2)

of the PDE system (1.4). The discrete dynamical system (4.1) inherits the Hamiltonian function (1.9)
in the form

H =
1

2
〈B, L+B〉 +

1

2
〈C, L−C〉 + σ

∑

(n,n1,n2,n3)

Kn,n1,n2,n3
An1

(Bn2
Bn3

+Cn2
Cn3

)Bn

+
σ

4

∑

(n,n1,n2,n3)

Kn,n1,n2,n3
(Bn1

Bn2
Bn3

Bn + 2Bn1
Bn2

Cn3
Cn + Cn1

Cn2
Cn3

Cn) (4.2)

and the conserved quantity (1.10) in the form

Q = 2〈A,B〉 + 〈B,B〉 + 〈C,C〉. (4.3)

Using Lemma 4, we represent a solution (B,C) of the discrete system (4.1) by the series of eigenvectors
(3.17) associated with the linear problem (3.4):

{

B(t) =
∑∞

m=0 bm(t)Bm +
∑∞

m=0 b̄m(t)Bm + β(t)∂µA,

C(t) = i
∑∞

m=0 bm(t)Cm − i
∑∞

m=0 b̄m(t)Cm + γ(t)A,
(4.4)

where b0(t), b(t) = (b1, b2, ...) are complex-valued and β(t), γ(t) are real-valued. The linear part of
system (4.1) becomes block-diagonal in the representation (4.4), yielding the evolution equations

ḃm − iΩmbm = σNm(b0,b, β, γ), ∀m = 0, 1, 2, 3... (4.5)
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and
β̇ = σS0(b0,b, β, γ), γ̇ + β = σS1(b0,b, β, γ), (4.6)

where

Nm(b0,b, β, γ) =
〈Cm,N−(B,C)〉 + i〈Bm,N+(B,C)〉

2〈Cm,Bm〉 , ∀m = 0, 1, 2, 3, ...

and

S0(b0,b, β, γ) =
〈A,N−(B,C)〉

〈A, ∂µA〉 , S1(b0,b, β, γ) = −〈∂µA,N+(B,C)〉
〈A, ∂µA〉 .

Using conservation of Q given by (4.3) and the decomposition (4.4), one can integrate the first equation
of system (4.6) in the form

β =
Q− ‖B‖2

l2 − ‖C‖2
l2

2〈A, ∂µA〉 , (4.7)

where Q is constant in time t ∈ R. As a result, the second equation of system (4.6) is rewritten
explicitly in the form

γ̇ =
‖B‖2

l2 + ‖C‖2
l2 − 2σ〈∂µA,N+(B,C)〉 −Q

2〈A, ∂µA〉 . (4.8)

We are now ready to apply the method of Lyapunov–Schmidt reductions to the proof of Theorem 1.

Proof of Theorem 1: The vector space (B,C) ∈ l21/2(N,R
2) is equivalent to the vector space b ∈ l21/2(N)

because of the asymptotic distribution (3.18). For instance, one obtains that

∞
∑

n=0

(1 + n)|Bn| ∼ 〈B, L+B〉 = 2

∞
∑

m=0

Ωm〈Cm,Bm〉|bm|2 + |β|2〈A, ∂µA〉 ∼
∑

n∈N

(1 + n)|bn|2.

We should work in the space of T -periodic functions b0(t), b(t) ∈ l21/2(N), β(t) and γ(t) on t ∈ R,
where T is close to 2π. This period corresponds to the eigenvalue Ω0 = 1 which persists for any ε ∈ R.
By Lemma 5, all other eigenvalues of the linear problem (3.4) satisfy the non-resonance conditions
n 6= Ωm, ∀n,m ∈ N for any fixed ε 6= 0 sufficiently small. As a result, we define periodic functions b(t),
β(t) and γ(t) in terms of the periodic function b0(t), which solves a reduced evolution problem. Let δ
be sufficiently small. We shall prove that there exist solutions of system (4.5), (4.7) and (4.8) which
are T -periodic on t ∈ R satisfying the apriori bounds

|b0(t)| ≤ εδC0, ‖b(t)‖l2
1/2

≤ εδ2Cb, |β(t)| ≤ ε2δ2Cβ, |γ(t) − δα| ≤ ε2δ2Cγ , ∀t ∈ R, ∀α ∈ R, (4.9)

for some (ε, δ)-independent constants C0, Cb, Cβ, Cγ > 0. If b0(t), b(t) ∈ l21/2(N), β(t) and γ(t) are T -

periodic functions on t ∈ R satisfying the bounds (4.9), then (B(t),C(t)) ∈ l21/2(N,R
2) is a T -periodic

function on t ∈ R satisfying the bound

‖B(t)‖l2
1/2

+ ‖C(t)‖l2
1/2

≤ Cεδ, ∀t ∈ R, ∀α ∈ R, (4.10)

for some (ε, δ)-independent constant C > 0. Here we recall the expansion (3.15) for A, ∂µA and the
fact that (Bm,Cm)T are close to the unit vectors em for sufficiently small ε. Since N±(B,C) is cubic
with respect (A,B,C), contains quadratic terms in (B,C), and maps l21/2(N,R

2) to l2−1/2(N,R
2), we

obtain the bound
‖N±(B(t),C(t))‖l2

−1/2
≤ C±ε

3δ2, ∀t ∈ R, ∀α ∈ R, (4.11)
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for some (ε, δ)-independent constants C± > 0. By the Implicit Function Theorem to the right-hand-
side of equation (4.8), there exists a unique constant Q in the interval |Q| ≤ CQε

2δ2 for some CQ > 0,
such that the periodic function in the right-hand-side of equation (4.8) has zero mean on t ∈ R. In this
case, there exists a periodic solution γ(t) = δα + γ̃(t) of the differential equation (4.8), where γ̃(t) is
a uniquely defined varying part and δα is an arbitrary mean part. The varying part γ̃(t) satisfies the
last bound in the list (4.9). The function β(t) is uniquely defined by the explicit representation (4.7)
and it hence satisfies the third bound in the list (4.9).

Consider now system (4.5) for m ∈ N. Recall that Ωm −m = O(ǫ2) for m = 1, 2, ... uniformly in m ∈ N

for sufficiently small ε. By the Implicit Function Theorem, there exists a unique solution b(t) ∈ l21/2(N)

defined by the periodic function b0(t) and parameter α ∈ R for sufficiently small δ provided that the
distance |Ωm −m| 6= 0 and the frequency Ω of the periodic function b0(t) is such that Ω → 1 as δ → 0.
By the bound (4.11) and the distribution Ωm −m = O(ǫ2) for all m ∈ N, the function b(t) satisfies the
second bound in the list (4.9).

Eliminating the components b, β and γ from equation (4.5) for n = 0, we obtain a reduced evolution
problem for b0(t) in the form

ḃ0 = ib0 +R(b0;α), (4.12)

where R(b0;α) is a remainder term. Explicit computations of N0(b0,b, β, γ) show that

R(b0;α) = ε
[

iK1(ε)b
2
0 + iK2(ε)b̄

2
0 + iK3(ε)|b0|2 + iK4(ε)δ

2α2 +K5(ε)δαb̄0
]

+ O
(

|b0|3, ε2δ2α2|b0|, ε|b0|‖b‖
)

, (4.13)

where K1,2,3,4,5 are real-valued constants which are bounded for sufficiently small ε. We are looking
for T -periodic functions b0(t) which satisfy the evolution problem (4.12), have the leading order b0 ∼
εδeit+iτ , where τ ∈ R is arbitrary, and satisfy the first bound in the list (4.9). By the normal form
analysis of the ODE (4.12) (see [14]), the quadratic terms in the remainder (4.13) do not change the
frequency Ω of oscillations of the periodic function b0(t) at the leading order and therefore, |Ω − 1| ≤
CΩε

2δ2 for some CΩ > 0. Since the Hamiltonian function (4.2) of system (4.1) is constant in time, it
remains constant when the function b0(t) solves the reduced evolution problem (4.12) and the functions
b(t), β(t) and γ(t) are constructed above. By the normal form analysis of reversible systems, there
exists a two-dimensional invariant manifold of system (4.12) filled with periodic solutions of frequencies
close to Ω = 1 and parameterized by (δ, τ) in addition to parameter (ε, α). �

Remark 4 Theorem 1 is reminiscent of an infinite-dimensional analogue of the Lyapunov Theorem
for persistence of periodic orbits in Hamiltonian systems (see Chapter II, Section 45 on pp. 166–180
of [15]). However, due to the symmetries, a double zero eigenvalue occurs in the linear problem (3.4),
and the proof of Theorem 1 is complicated by the analysis of the associated two-dimensional subspace.
Similar theorems on persistence of k-dimensional tori in n-dimensional Hamiltonian system with k− 1
additional conserved quantities were studied in the Nekhoroshev–Kuksin Theorems (see Theorem 2.3
on p. 4 of [4] and Theorem 1 on p. xiii of [13]).

Remark 5 The periodic solution of Theorem 1 has the smallest frequency in the focusing case σ = −1,
since Ω1 > 1 in the bound (3.20) for sufficiently small ε. However, it is not the smallest frequency in
the defocusing case σ = 1 since Ω1 < 1 in the bound (3.19). Persistence of the periodic solution for
the smallest frequency Ω1 can not be proved by a simple application of the Lyapunov Theorem since
the bound (3.19) does not guarantee that the non-resonance conditions nΩ1 6= Ωm are satisfied for all
n ∈ N and m = 2, 3, .... By the same reason, persistence of quasi-periodic oscillations on the tori with
two and more frequencies {1,Ω1,Ω2, ...} can not be proved for small ε.
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Remark 6 Persistence of quasi-periodic oscillations on the tori along the Cantor set of parameter
values was proved in Section 2.5 on p. 33 of [13] for the Hartree nonlinear functions and a perturbation
of the parabolic potential V (x) = 1

2x
2 by a localized potential V0(x). Our main result is stronger

than this application of the main theorem in [13] since the periodic orbit is continuous with respect to
parameters of the PDE problem rather than along the Cantor set of parameter values.

5 Numerical Results

We illustrate results of our manuscript with some numerical approximations. First, we identify the
relevant branch of stationary solutions of the ODE (1.3). To do so, we use a fixed point method
(Newton-Raphson iteration) to solve a discretized boundary-value problem. A centered-difference
scheme is applied to the second-order derivatives with a typical spacing ∆x ∈ [0.025, 0.1]. We are
using a sufficiently large computational domain x ∈ [−L,L] such that the boundary conditions do not
affect the approximations within the considered numerical precision. The solutions φ(x) are obtained,
using continuation, as a function of parameter µ. The continuation of the solution branches is per-
formed from the linear limit µ = 1, both for the cases σ = 1 and σ = −1. The results are shown
in Figure 1, illustrating the quantity Q = ‖φ‖2

L2 as a function of µ. The numerical findings are also
compared to the asymptotic result (3.2) of Proposition 1 indicating the good agreement of the latter
prediction with our computational results for a fairly wide parametric window.

Once the corresponding numerical solution is identified (for a given σ and µ), the linear eigenvalue
problem (1.11) is approximated numerically. We use again a discretization of differential operators on
a finite grid, such that the spectral problem (1.11) becomes a matrix eigenvalue problem that is solved
through standard numerical linear algebra routines. The relevant lowest eigenvalues are presented in
Figure 2 and are also compared with the corresponding asymptotic results (3.7)–(3.8) of Proposition
2. The dashed lines show asymptotic results (A.7)–(A.8) of Appendix A derived in the limit µ → ∞
for σ = 1. Once again, the good agreement offers us a quantitative handle on the relevant eigenvalues.

Finally, we have also examined periodic oscillations of dark solitons in the numerical simulations of
the GP equation (1.2). A typical example is shown in Figure 3 for σ = 1 and µ = 1.1 for the initial
condition u(x, 0) = φ(x) + δφ′(x) with δ = 10−3. The top left panel shows the space-time contour
plot of |u(x, t)|2, clearly highlighting that this is a small (imperceptible, at the scale of this panel)
perturbation of a stable stationary solution φ(x). The bottom left panel shows the space-time contour
plot of |u(x, t)|2−φ2(x), emphasizing the time-periodic oscillations of the perturbation to the stationary
solution. The periodic oscillations are also visible on the top right panel where |u(x0, t)|2 is plotted
versus t for x0 = 2. Finally, the bottom right panel illustrates the Fourier transform of the time series
of |u(x0, t)|2 (normalized to its maximum). It shows a high peak of the frequency spectrum near the
value Ω = 1, in agreement with the results of the main Theorem 1.

Acknowledgement. D.P. thanks to W. Craig and V. Konotop for useful discussions related to the
project. D.P. is supported by the Humboldt and EPSRC fellowships. P.G.K. is supported by NSF
through the grants DMS-0204585, DMS-CAREER, DMS-0505663 and DMS-0619492.

A Asymptotic distribution of eigenvalues

Let us consider the case σ = 1, when the solution φ(x) of the ODE (1.3) bifurcates to the interval
µ > 1 (see Proposition 1 and Figure 1). We are interested in the distribution of eigenvalues of the
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Figure 1: Branches of dark solitons versus µ both for the case of σ = −1 (when µ < 1) and σ = 1
(when µ > 1). The numerically obtained solution is shown by solid line and the asymptotic solution
(3.2) is shown by dash-dotted line.
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Figure 2: Smallest purely imaginary eigenvalues of the linear eigenvalue problem (1.11) versus µ. The
numerically obtained eigenvalues are shown by solid lines, the asymptotic results (3.7)-(3.8) are shown
by dash-dotted lines, and the asymptotic results (A.7)–(A.8) are shown by dashed lines.
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Figure 3: A typical example of the robust time-periodic solution of the Gross-Pitaevskii equation (1.2)
for σ = 1, µ = 1.1 and u(x, 0) = φ(x) + δφ′(x) with δ = 10−3. The top left panel shows the space-time
contour plot of |u(x, t)|2, the bottom left panel shows the space-time contour of |u(x, t)|2 − φ2(x). The
top right panel shows the time evolution of |u(x0, t)|2 with x0 = 2, while the bottom right panel shows
the Fourier transform of the time series of |u(x0, t)|2, featuring a peak at Ω ≈ 1.
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linear problem (1.11) as µ→ ∞, assuming that the solution φ(x) persists in this limit. It follows from
the scaling transformation below equation (1.2) that the limit µ → ∞ of the normalized equation (1.2)
corresponds to the limit ǫ→ 0 in the original GP equation (1.1). We shall replace µ+ 1

2 = µ̃ and drop
tilde notations for the sake of simplicity. We report here formal results based on asymptotic methods.
Rigorous justification of these results is beyond the scope of our work.

Denote the ground state of the ODE (1.3) by φ0(x) such that φ0(x) is even and positive on x ∈ R

and it decays to zero as |x| → ∞ sufficiently fast. Using the substitution φ0(x) =
√

µq(ξ) and ξ = x√
2µ

,

we obtain an equation for q(ξ),

q = 1 − ξ2 +
1

4µ2√q
d2

dξ2
√
q, ∀ξ ∈ R, (A.1)

which is solvable with the nonlinear WKB series [12]. The main result of the formal WKB theory is
that there exists a classical solution qµ(ξ) of the ODE (A.1) for sufficiently large µ > 1 such that

lim
µ→∞

qµ(x) =

{

1 − ξ2, ∀|ξ| ≤ 1
0, ∀|ξ| > 1

(A.2)

The linear problem (1.11) associated with the ground state φ0(x) for σ = 1 and µ + 1
2 → µ can be

written in variables v = V (ξ), w = W (ξ) and λ = µΛ for sufficiently large µ > 1. In new variables, it
takes the form

L+V = −ΛW, L−W = ΛV, (A.3)

where

L+ = 3q(ξ) − 1 + ξ2 − 1

4µ2

d2

dξ2
, L− = q(ξ) − 1 + ξ2 − 1

4µ2

d2

dξ2
. (A.4)

Eliminating V (x), we close the linear problem (A.3) at the fourth-order ODE

L+L−W = ΓW, Γ = −Λ2. (A.5)

By using the WKB theory (A.2), we consider the auxiliary eigenvalue problem

1

16µ4
W (iv) − (1 − ξ2)

2µ2
W ′′ = ΓW (ξ), ∀ξ ∈ [−1, 1], (A.6)

for W ∈ L2([−1, 1]). The entire spectrum of the problem (A.6) is defined by a set of polynomial
solutions W = Pm(ξ) = ξm + αm,m−2ξ

m−2 + ... + αm,kξ
k, ∀m ∈ N, where k = 1 if m is odd and k = 0

if m is even. The balance of the largest term in the ODE (A.6) shows that the eigenvalue Γ = Γm is

found explicitly as Γm = m(m−1)
2µ2 , while all coefficients {αm,m−2k}[m/2]

k=1 are uniquely defined. Converting

the values of Γ to the values of λ, we have found that the linear problem (1.11) associated with the
ground state φ0(x) has a set of simple purely imaginary and symmetric eigenvalue pairs {±iΩm}m∈N,
such that

lim
µ→∞

Ωm =

√

m(m+ 1)√
2

, ∀m ∈ N, (A.7)

in addition to the double zero eigenvalue λ = 0.

Finally, the dark soliton φ(x) of the ODE (1.3) is obtained asymptotically from the ground state
φ0(x) by the factorization φ(x) = φ0(x)ψ(x), where ψ(x) is odd on x ∈ R, positive on x ∈ R+ and may
approach to the constant values as |x| → ∞ [16]. Using this factorization and the formal asymptotic
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analysis, it was shown in [16] that the spectrum of the linear problem (1.11) associated with the dark
soliton φ(x) admits a pair of simple purely imaginary eigenvalues ±iΩ0, such that

lim
µ→∞

Ω0 =
1√
2
. (A.8)

Although the analysis of [16] was directed to the original GP equation (1.1) in the limit of small ǫ
and the eigenvalue pair was found to be λ̃ → ±iǫ, the scaling transformation to the normalized GP

equation (1.2) implies that λ = λ̃
21/2ǫ

→ ± i√
2
.

Numerical computations (see Figure 2) suggests that the entire spectrum of the linear problem (1.11)
associated with the dark soliton φ(x) is a superposition between an infinite set of eigenvalues (A.7) of
the linear problem (1.11) associated with the ground state φ0(x) and the additional pair of eigenvalues
(A.8).

Note that the linear eigenmode corresponding to the smallest eigenvalue Ω0 = 1√
2

may not result

in the periodic solution of the nonlinear PDE system (1.4) because the non-resonance condition n 6=
√

m(m+ 1) for all n,m ∈ N is violated in the limit n,m → ∞. Similarly, the linear eigenmode
corresponding to the second eigenvalue Ω1 = 1 may not result in the periodic solution of the PDE

system (1.4) because the non-resonance condition n 6=
√

m(m+1)√
2

for all n,m = 2, 3, ... is violated at

least for n = 6 and m = 8. In both cases, the Lyapunov Theorem for persistence of periodic orbit in
Hamiltonian dynamical systems can not be applied [15].
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