An oriented competition model on $Z_{+}{ }^{2}$

Steven P Lalley, University of Chicago
George Kordzakhia, University of California, Berkeley

Abstract

We consider a two-type oriented competition model on the first quadrant of the two-dimensional integer lattice. Each vertex of the space may contain only one particle of either Red type or Blue type. A vertex flips to the color of a randomly chosen southwest nearest neighbor at exponential rate 2 . At time zero there is one Red particle located at $(1,0)$ and one Blue particle located at $(0,1)$. The main result is a partial shape theorem: Denote by $R(t)$ and $B(t)$ the red and blue regions at time~t. Then (i) eventually the upper half of the unit square contains no points of B (t$) / \mathrm{t}$, and the lower half no points of $\mathrm{R}(\mathrm{t}) / \mathrm{t}$; and (ii) with positive probability there are angular sectors rooted at $(1,1)$ that are eventually either red or blue. The second result is contingent on the uniform curvature of the boundary of the corresponding Richardson shape.

Full text: PDF | PostScript
Pages: 548-561
Published on: October 19, 2008

Bibliography

1. Alexander, Kenneth S. A note on some rates of convergence in first-passage percolation. Ann. Appl. Probab. 3 (1993), no. 1, 81--90. MR1202516 (94c: 60167)
2. Cox, J. Theodore; Durrett, Richard. Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9 (1981), no. 4, 583--603. MR0624685 (82k: 60208)
3. Durrett, Richard. Lecture notes on particle systems and percolation.The Wadsworth \& Brooks/Cole Statistics/Probability Series. Wadsworth \& Brooks/Cole Advanced Books \& Software, Pacific Grove, CA, 1988. viii+335 pp. ISBN: 0-534-09462-7 MR0940469 (89k: 60157)
4. Ferrari, Pablo A.; Pimentel, Leandro P. R. Competition interfaces and second class particles. Ann. Probab. 33 (2005), no. 4, 1235--1254. MR2150188 (2006e: 60141)
5. Kesten, Harry. On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3 (1993), no. 2, 296--338. MR1221154 (94m:60205)
6. Kordzakhia, George; Lalley, Steven P. A two-species competition model on $\$$ Bbb Zsp d\$. Stochastic Process. Appl. 115 (2005), no. 5, 781--796. MR2132598 (2006b:60222)
7. Martin, James B. Limiting shape for directed percolation models. Ann. Probab. 32 (2004), no. 4, 2908--2937. MR2094434 (2005i:60198)
8. Newman, Charles M.; Piza, Marcelo S. T. Divergence of shape fluctuations in two dimensions. Ann. Probab. 23 (1995), no. 3, 977--1005. MR1349159 (96g:82052)
9. Richardson, Daniel. Random growth in a tessellation. Proc. Cambridge Philos. Soc. 74 (1973), 515--528. MR0329079 (48 \#7421)

Home | Contents | Submissions, editors, etc.| Login | Search | EJP Electronic Communications in Probability. ISSN: 1083-589X

