On the Chung-Diaconis-Graham random process

Martin V. Hildebrand, *University at Albany, SUNY*

Abstract

Chung, Diaconis, and Graham considered random processes of the form $X_{n+1}=2X_n+b_n$ (mod p) where $X_0=0$, p is odd, and b_n for n=0, 1, 2, ... are i.i.d. random variables on $\{-1,0,1\}$. If $\Pr(b_n=-1)=\Pr(b_n=1)=\beta$ and $\Pr(b_n=0)=1-2\beta$, they asked which value of β makes X_n get close to uniformly distributed on the integers mod p the slowest. In this paper, we extend the results of Chung, Diaconis, and Graham in the case $p=2^t-1$ to show that for $0<\beta \le 1/2$, there is no such value of β .

Full text: PDF | PostScript

Pages: 347-356

Published on: December 15, 2006

Bibliography

- 1. Chung, F. R. K.; Diaconis, Persi; Graham, R. L. Random walks arising in random number generation. *Ann. Probab.* 15 (1987), no. 3, 1148--1165. MR0893921 (88d:60033)
- 2. Diaconis, Persi. Group representations in probability and statistics. 11. *Institute of Mathematical Statistics, Hayward, CA*, 1988. vi+198 pp. ISBN: 0-940600-14-5 MR0964069 (90a:60001)
- Hildebrand, Martin. Random processes of the form \$Xsb {n+1}=asb nXsb n+bsb npmod Ann. Probab. 21 (1993), no. 2, 710--720. MR1217562 (94d:60012)
- 4. Hildebrand, Martin. Random processes of the form \$Xsb {n+1}=asb nXsb n+bsb npmod p\$ 153--174, IMA Vol. Math. Appl., 76, Springer, New York, 1996. MR1395613 (97g:60085)

Research Support Tool

Capture Cite View Metadata Printer Friendly

, Cont

Author Address

Action

Email Author Email Others